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5.3 Solving initial-value problems numerically:
Euler’s method

Most di↵erential equations can not be solved analytically, so we try to solve them numer-
ically.

Suppose we have an initial-value problem:

dy

dx
= f(x, y), y(a) = y

0

.

We want to find the solution y(x) numerically on the interval [a, b].

First we divide [a, b] into N subintervals by the points

a = x
0

< x
1

< x
2

< · · · < x
k

< · · · < x
N

= b.

If the subintervals have equal length, say h, then

x
k

= a+ kh, h =
b� a

N
(step size), k = 0, 1, . . . , N.

Assume that y(x) is the solution we want, then

d

dx
y(x) = f(x, y(x)), y(a) = y

0

.

Integrating both sides on the subinterval [x
k

, x
k+1

], we have

Z

x

k+1

x

k

y0(x) dx =

Z

x

k+1

x

k

f(x, y(x)) dx.

Considering the LHS, we have

LHS = y(x)|xk+1
x

k

= y(x
k+1

)� y(x
k

),

thus

y(x
k+1

)� y(x
k

) =

Z

x

k+1

x

k

f(x, y(x)) dx.

Let g(x) = f(x, y(x)), then

RHS =

Z

x

k+1

x

k

g(x) dx,

representing the area under the curve y = g(x), between x
k

and x
k+1

.
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Figure 5.5: The integral which represents the area under the curve y = g(x) is
approximated using rectangles. Error depends on the width of the rectangles, i.e. the

number of sub-intervals.

If we use the area of the rectangle

(x
k+1

� x
k

)g(x
k

) = hg(x
k

) = hf(x
k

, y(x
k

)),

to approximate the area, we have

y(x
k+1

)� y(x
k

) ⇡ hf(x
k

, y(x
k

)).

k = 0: y(x
1

)�y
0

⇡ h(f(x
0

, y
0

) =) y(x
1

) ⇡ y
0

+hf(x
0

, y
1

) , y
1

, an approximation
to y(x

1

).

k = 1: y(x
2

) � y(x
1

) ⇡ h(f(x
1

, y(x
1

)) =) y(x
2

) ⇡ y(x
1

) + hf(x
1

, y(x
1

)) ⇡
y
1

+ hf(x
1

, y
1

) , y
2

, an approximation to y(x
2

).

...

In general, we have

y
k+1

= y
k

+ hf(x
k

, y
k

), k = 0, 1, . . . N � 1,

where y
k

is an approximation to y(x
k

). This is a di↵erence equation and we can solve it
iteratively. This method is based on the above formula, and is called Euler’s method.

Example 5.25. Estimate y(1), where y(x) satisfies the initial-value problem:

dy

dx
= y, y(0) = 1.

We know the exact solution is

y(x) = ex, =) y(1) = e ⇡ 2.71828.

Now we apply Euler’s method to the problem. We have

f(x, y) = y.

First, we take N = 5, then h = (1� 0)/5 = 0.2.
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y
0

= y(0) = 1

y
1

= y
0

+ hf(x
0

, y
0

) = 1 + 0.2⇥ 1 = 1.2

y
2

= y
1

+ hf(x
1

, y
1

) = 1.2 + 0.2⇥ 1.2 = (1.2)2

y
3

= y
2

+ hf(x
2

, y
2

) = y
2

+ hy
2

= y
2

(1 + h) = (1.2)2 ⇥ 1.2 = (1.2)3

y
4

= (1.2)4

y
5

= (1.2)5 ⇡ 2.48832.

For N = 5, we have

error = e� y
5

= 2.71828� 2.48832 = 0.22996.

Now, we double the number of subintervals: N = 10, h = 0.1 then we need 10 steps to
reach x

10

= 1.
y
10

= (1.1)10 ⇡ 2.59374,

then we have
error = 2.71828� 2.59374 = 0.12454.

For N = 20, h = 0.05 and so

y
20

= (1.05)20 ⇡ 2.65330, error = 0.0650.

For N = 40, h = 0.025 and so

y
20

= (1.025)40 ⇡ 2.68506, error = 0.0332.

Euler’s method is first order, i.e. the error behaves like O(h).

In general, if h = 1/N , then

y
1

= y
0

+ hy
0

= (1 + h)y
0

= 1 + h = 1 +
1

N

y
2

= y
1

+ hy
1

= (1 + h)y
1

=

✓

1 +
1

N

◆

2

...

y
N

=

✓

1 +
1

N

◆

N

.

Thus

y(1) ⇡
✓

1 +
1

N

◆

N

.

Actually,

lim
N!1

(

✓

1 +
1

N

◆

N

)

= e.
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The source of the errors when approximating the function come from

1. discretisation error,

2. round-o↵ error.8

8
End Lecture 28. End of course.


