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Consider the general case for a first-order di↵erential equation given by (5.6). First let us
multiply both sides of the equation by eT (x),

eT (x)

dy

dx
+ eT (x)q(x)y = eT (x)p(x). (5.7)

Now let us consider the derivative of eT (x)y,

d

dx
(eT (x)y) = eT (x)

dy

dx
+ y

d

dx
(eT (x))

= eT (x)

dy

dx
+ yeT (x)

d

dx
(T (x))

= eT (x)

dy

dx
+ yeT (x)q(x)

= eT (x)p(x).

Here we have put T 0(x) = q(x) and applied (5.7). So we have

d

dx
(eT (x)y) = eT (x)p(x).

Therefore, integrating both sides we have

eT (x)y =

Z

eT (x)p(x) dx,

or

y = e�T (x)

Z

eT (x)p(x) dx.

we have shown that if y0 + q(x)y = p(x) and T (x) =
R

q(x) dx, then

y = e�T (x)

Z

eT (x)p(x) dx. (5.8)

Note, we expect a constant when we complete the integration above.

Example 5.9. Consider the di↵erential equation

dy

dx
+

y

x
= x,

note that f(x, y) = x� (y/x) can’t be separated. So we put

q(x) =
1

x
, p(x) = x =) T (x) =

Z

q(x) dx =

Z

1

x
dx = lnx.

Then we have the solution

y = e� lnx

Z

elnxx dx = eln
1
x

Z

x2 dx =
1

x



1

3
x3 + C

�

=
1

3
x2 +

C

x
.

Example 5.10. Consider
dy

dx
+ xy = x.

So we put

q(x) = x, p(x) = x =) T (x) =

Z

q(x) dx =

Z

x dx =
1

2
x2.
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Then the solution is

y = e�
1
2x

2
Z

e
1
2x

2
x dx = e�

1
2x

2



Z

e
1
2x

2
d

✓

1

2
x2

◆�

= e�
1
2x

2
h

e
1
2x

2
+ C

i

,

i.e.
y = 1 + Ce�

1
2x

2
.

NOTE: this example could have been done using separation of variables.

Example 5.11. Solve the initial-value problem:

y0 = y + x2, y(0) = 1,

so we put

q(x) = �1, p(x) = x2, T (x) =

Z

�1 dx = �x.

Therefore, the solution is

y = ex
Z

e�xx2 dx.

We calculate the integral using integration by parts,
Z

e�xx2 dx = �x2e�x +

Z

2xe�x dx

= �x2e�x � 2xe�x +

Z

2e�x dx

= e�x

⇥

�x2 � 2x
⇤

� 2

Z

e�x

= �e�x

�

x2 + 2x+ 2
�

+ C.

Hence, the solution to the di↵erential equation is

y = �(x2 + 2x+ 2) + Cex.

It remains to use the initial condition to find C, i.e.

y(0) = �2 + Ce0 = 1 =) C = 3,

so the final solution is
y = �(x2 + 2x+ 2) + 3ex.

In the previous three examples, we gained the following results:

Ex. 5.9.

y0 +
1

x
y = x, y =

1

3
x2 + C · .1

x
,

Ex. 5.10.
y0 + xy = x, y = 1 + C · e�

1
2x

2
,

Ex. 5.11.
y0 � y = x2, y = �(x2 + 2x+ 2) + Cex.
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These examples have something very important in common, that is the solutions have the
following form

y = f(x) + Cg(x),

with explicit functions f and g. Here y = f(x) is a particular solution (take C = 0) of the
non-homogeneous equation, and y = g(x) is a solution of the corresponding homogeneous
equation. For example

Ex. 5.9.

if y =
1

3
x2, then y0 +

1

x
y =

2

3
x+

1

x
· 1
3
x2 = x,

if y =
1

x
, then y0 +

1

x
y = � 1

x2
+

1

x
· 1
x
= 0.

Ex. 5.10.

if y = 1, then y0 + xy = 0 + x = x,

if y = e�
1
2x

2
, then y0 + xy = e�

1
2x

2

✓

1

2
· 2x

◆

+ xe�
1
2x

2
= 0.

These examples reveal an intrinsic structure of the general solution of a linear di↵erential
equation. We solve the equation by finding the solution of its homogeneous equation, and
a particular solution to the non-homogeneous equation.

Now we will understand how to use this method to solve a first-order linear di↵erential
equation with constant coe�cients:

y0 + �y = p(x), � is constant.

We know that the general solution is

y(x) = f(x)
|{z}

particular integral (P.I.)

+ Cg(x)
| {z }

complementary function (C.F.)

,

and
f 0 + �f = p(x), g0 + �g = 0,

where C is the constant of integration to be found. We start by building g. So we need
to solve

g0 = �g = 0,

solution:
g = Ce��x.

Therefore, the general to y0 + �y = p(x) is

y = f(x) + Ce��x,

where f is a particular solution (depending on p(x)). In what follows, we shall find f(x)
for certain kinds of function p(x).3

3
End Lecture 23.


