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Consider the general case for a first-order differential equation given by (5.6). First let us
multiply both sides of the equation by e?(®),

eT(x)% + T @g(z)y = T@p(x). (5.7)

Now let us consider the derivative of ey,

d 1@,y — J0% 4 1@
dx (e y) - € d./,v + ydx (6 )
d d
T(z) %Y T(z) &
T 4yt L (7))
d
_ JT@)% T(z)
e + ye” Wq(x)
= T@p(x).

Here we have put T'(z) = ¢(x) and applied (5.7). So we have

d xr X
(e y) = T p(a).

Therefore, integrating both sides we have

iy [ ey

or

y=eT@ /eT(I)p(x) dx.

we have shown that if ¢’ + ¢(z)y = p(z) and T'(z) = [ ¢(z) dz, then

y=e 1@ /eT(x)p(x) dx. (5.8)

Note, we expect a constant when we complete the integration above.

Example 5.9. Consider the differential equation
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note that f(z,y) = x — (y/x) can’t be separated. So we put
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Then we have the solution

11 1 C
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Example 5.10. Consider
dy

%—l-xy:a:.

So we put

g(x)=2z, plz)=2 = T(x)= /q(az) dx = /:Ed:z: = %3:2.
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Then the solution is

ie. -
y=1+4+Ce 2.

NOTE: this example could have been done using separation of variables.

Example 5.11. Solve the initial-value problem:
y =y+a®, y(0)=1,

SO we put
q(x) = -1, pz)= z2, T(z) = /—1 dr = —1.

Therefore, the solution is
Y= .egc/e_””:v2 dzx.

We calculate the integral using integration by parts,

/exe dx = —x26x+/2xem dx

= —2% " —2xe " + /26_30 dx
= e 7 [—x2 — 256] — Q/e_w
= —e 7 (:c2 +2z+2) + C.
Hence, the solution to the differential equation is
y = —(2% 4 2z + 2) + Ce”.
It remains to use the initial condition to find C, i.e.
y(0)=—2+C=1 = (=3,

so the final solution is
y = —(2% + 22 + 2) + 3¢

In the previous three examples, we gained the following results:

Ex. 5.9. ] ] ]
y+-y=az, y=-2"+C-.—,
x 3 x
Ex. 5.10. L
Y +ay=x, y=1+C-e 27,

Ex. 5.11.

y/—y:qu, y:—($2+2$+2)+061.
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These examples have something very important in common, that is the solutions have the
following form

y = f(x) + Cy(),
with explicit functions f and g. Here y = f(x) is a particular solution (take C' = 0) of the
non-homogeneous equation, and y = g(z) is a solution of the corresponding homogeneous
equation. For example

Ex. 5.9.

2

1
if y=_—2° theny +-y= +
x

if y=

K| =Wl

2 1
o+ =
3 T
1 1 1
, theny'+fy:f—2+f
x x4z

Ex. 5.10.

if y=1, theny +zy=0+2=u,

1
it y=e 3, theny fay=c 2" (2 ' 233) +zem 2™ = 0.

These examples reveal an intrinsic structure of the general solution of a linear differential
equation. We solve the equation by finding the solution of its homogeneous equation, and
a particular solution to the non-homogeneous equation.

Now we will understand how to use this method to solve a first-order linear differential
equation with constant coeflicients:

y' + Ay =p(x), \is constant.
We know that the general solution is

y(x) = f(z) + Cyg(z) :
~~ ~——

particular integral (P.I.)  complementary function (C.F.)

and
f'+Af=px), ¢ +Ig=0,

where C' is the constant of integration to be found. We start by building g. So we need
to solve

solution:
g=Ce 2.

Therefore, the general to y' + Ay = p(x) is
y = f(x)+Ce ™,

where f is a particular solution (depending on p(z)). In what follows, we shall find f(z)
for certain kinds of function p(z).3

3End Lecture 23.



