4.6.2 Finding a distance by the integral of velocity

If you know the velocity v(t), then the distance s as a function of time, i.e. s = s(t), is

$$s(t) = \int v(t) dt$$
, (since $s'(t) = v(t)$).

Similarly, if you know the acceleration a(t), then the velocity can be found by the integral of a(t),

$$v(t) = \int a(t) dt$$
 (since $v'(t) = a(t)$)

Example 4.34. A ball is thrown down from a tall building with an initial velocity of 100ft/sec. Then its velocity after t seconds is given by v(t) = 32t + 100. How far does the ball fall between 1 and 3 seconds of elapsed time?

First let us write the distance as the integral of the velocity, that is

$$s(t) = \int v(t) = \int 32t + 100 \, dt = 16t^2 + 100t + C.$$

Then the distance fallen, \bar{s} say, is given by

$$\bar{s} = s(3) - s(1) = (16t^2 + 100t + C)\big|_{t=3} - (16t^2 + 100t + C)\big|_{t=1} = 328 \text{ ft.}$$

Notice that

$$\begin{aligned} (16t^2 + 100t + C)\big|_{t=3} &- (16t^2 + 100t + C)\big|_{t=1} &= (16t^2 + 100t + C)\big|_1^3 \\ &= \int_1^3 (32t + 100) \, dt \\ &= \int_1^3 v(t) \, dt. \end{aligned}$$

In general, if v(t) is a velocity function, then the change in distance between t_1 and t_2 is

$$s(t_2) - s(t_1) = \int_{t_1}^{t_2} v(t) dt,$$

and the total distance is

$$s(t) = \int_0^t v(\tau) \, d\tau.$$

NOTE: here we call τ a *dummy variable*.

Chapter 5

Differential Equations

Differential equations are equations involving a certain unknown function and its derivative (equations for functions). For example

$$y' = x^2$$
 or $\frac{dy}{dx} = x^2$,

where y is a function of x, i.e. y = y(x). We know that in this particular case,

$$y(x) = \frac{1}{3}x^3 + C,$$

where C is an arbitrary constant.

Recall exponential growth and decay: we define the relative rate of growth as y'/y. If we assume that the rate is constant, say λ , then we have

$$y' = \lambda y, \quad (y = y(t)). \tag{5.1}$$

This has solution $y = Ae^{\lambda t}$, since

$$y'(t) = \lambda A e^{\lambda t} = \lambda y(t),$$

where A is an unknown constant.

The solution $Ae^{\lambda t}$ is called the *general solution* to the differential equation in (5.1), implying that we have found all possible solutions.

To determine the constant, we need an extra piece of information. For instance, if we know y at the initial time, say $y(0) = y_0$ (given), then

$$y(0) = Ae^{\lambda \cdot 0} = A = y_0,$$

so $y(t) = y_0 e^{\lambda t}$.

The problem $y' = \lambda y$, $y(0) = y_0$ is call an *initial value problem* (IVP), which has a unique solution $y = y_0 e^{\lambda t}$.

The *order* of a differential equation is the order of the highest derivative appearing in the equation.

Example 5.1.

 $y' + 2xy = e^x$ - first order, y'' + 3y' + 4y = 0 - second order, $(y')^2 + 2\ln y + 4e^x = x^3$ - first order, $y^{(3)} + 3y'' + 2y' + 4y = 10$ - third order.

5.1 First order differential equations

Here we will consider different techniques to solve first order ordinary differential equations (1st order ODEs).

5.1.1 Separation of variables

Let us consider the simplest case of a first order differential equation, that is

$$\frac{dy}{dx} = f(x, y),\tag{5.2}$$

for example

$$\begin{aligned} y' + 2xy &= e^x \implies y' = -2xy + e^x = f(x, y), \\ (y')^2 + 2\ln y + 4e^x &= x^3 \implies y' = \pm \sqrt{x^3 - 2\ln y + 4e^x} = f(x, y), \\ y^2y' - x &= 0 \implies y' = x/y^2 = f(x, y). \end{aligned}$$

Suppose that f(x, y) is separable, i.e. it can be written as

$$f(x,y) = g(x)h(y), \tag{5.3}$$

for example

$$f(x,y) = \frac{x}{y^2} = x \cdot \frac{1}{y^2} \quad \Longrightarrow \quad g(x) = x, \quad h(y) = \frac{1}{y^2}$$

Then we have

$$\frac{1}{h(y)}\,dy = g(x)\,dx,$$

where the LHS only depends on y and the RHS only depends on x. Integrating both sides we have

$$\int \frac{1}{h(y)} \, dy = \int g(x) \, dx.$$

Therefore, if we can work out the integrals, then we can obtain the general solution to the equation. Also, since we expect a constant of integration, we can merge the constants from both sides into one constant, say C, since we are integrating the equation once only.¹

¹End Lecture 21.