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Example 4.31. Using the trapezium method, estimate
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Figure 4.11: Numerically integrating under y = 1/(1 + x4). Dividing interval into 4
pieces of width h = 1/4.

This is an over-estimate of the integral since y = f(x) is convex (i.e. it curves up like a
cup). If it were concave (i.e. curved down like a cap), then you would have an under-
estimate.

Example 4.32. Estimate the following integral
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However, notice that we can’t calculate f(1). This is because y = f(x) has a vertical
asymptote at x = 1.
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Figure 4.12: Graph of y = 1/(
p
1� x4), with an asymptote at x = 1. Estimating

integral on interval [0, 1].

The problem here is that at x ! 1, 1� x4 ! 0, rather like 1� x.

Since 1� x4 = (1� x)(1 + x+ x2 + x3), i.e. 1� x4 contains a factor 1� x, which makes
f(x) become singular at x = 1. So we may try to get rid of it by a substitution.
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Let us try u =
p
1� x, then u2 = 1 � x or x = 1 � u2 and dx = 2 � udu. Now, at

x = 0 ! u = 1 and x = 1 ! u = 0. Thus, the integral becomes
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where we have applied the rule
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i.e. if you switch the limits, the integral changes sign.

Let us put

g(u) =
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4� 6u2 + 4u4 � u6
.

Choosing n = 4, we have h = 1

4

, so

u
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= kh, k = 0, 1, 2, 3, 4.
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Then, we estimate
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The exact result is 1.311 . . . , so we have a close estimate given we only chose 4 divisions
of the interval.

4.6 Application of the definite integral

4.6.1 Area bounded by curves

As we have discussed, integrating allows us to find the area bounded by the x-axis and a
curve y = f(x). We can extend this to find the area between di↵erent curves on the same
axis.

If f(x) is a non-negative function on a  x  b, then
R

b

a

f(x) dx is the area between the
curves y = f(x) and y = 0 (i.e. the x-axis) from a to b. That is, the region is bounded by

y = f(x), y = 0, x = a, x = b.

In general, the area between the curves y = f(x) and x-axis from a to b is
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(a) Use y = f(x). (b) Use y = |f(x)|. (c) Use y = |x3|.

Figure 4.13: Examples of area bounded between curves y = f(x) and y = 0, on the
interval [a, b].
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Recall:
Z

1

�1

x3 dx =
x4

4

�

�

�

�

1

�1

,

but the shaded area is given by

A =

Z

1

�1

|x3| dx =

Z

0

�1

(�x3) dx+

Z

1

0

x3 dx =
1

2
.

Suppose the region is bounded above and below by two curves y = f
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(x) (top) and
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(x) (bottom) from a to b, then the area of the region is
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Figure 4.14: Area bounded between two curves on the interval [a, b].

Example 4.33. Find the area of the region between y = x+ 1 and y = 7� x from x = 2
to x = 5.

Figure 4.15: Shaded area between y = x+ 1 and y = 7� x over the interval [2, 5].
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First, we need to find the point where the two curves intersect. The point should satisfy
both equations, therefore we solve

y = x+ 1
y = 7x� 1

�

=) x+ 1 = 7� x =)
⇢

x = 3
y = 4

We need to know the point of intersection because from the graph, it is easy to see that
on the left of the point of intersection, y = 7 � x is above y = x + 1, whilst on the right
y = x+1 is above y = 7� x. So we have to be careful when employing the formula (4.7).

Therefore, we can finally calculate the area as follows:
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Exercise 4.1. Find the area bounded by the curves y = x2 and y = 1�x2, on the interval
[�1, 1]. Hint: is there more than one point of intersection?6

6
End Lecture 20.


