1.3.1 Exponents

We have seen the function $f(x) = x^2$. In general, a function of the form $f(x) = x^a$, where a is a constant, is called a power function. For example,

$$f(x) = x^5, \quad a = 5,$$

 $f(x) = \sqrt{x}, \quad a = 1/2, \quad x \ge 0.$

What about $f(x) = a^x$? Can we define a function of this form? Yes, we can, but we need to explore the meaning of a^x , when x is not a positive integer.

REVISION: when we wish to multiply a number by itself several times, we make use of index or power notation. We have notation for powers:

$$a^2 = a \cdot a, \quad a^3 = a \cdot a \cdot a, \quad a^x = \overbrace{a \cdot a \dots a \cdot a}^x, \quad a \in \mathbb{R}, \quad x \in \mathbb{N}.$$

Here, a is called the *base* and x is called the *index* or *power*. We also know the following properties (laws of exponents)

1.
$$a^{x+y} = a^x \cdot a^y$$
, e.g. $2^5 = 2 \cdot 2 \cdot 2 \cdot 2 = 2^3 \cdot 2^2$, $x = 3$, $y = 2$.
2. $(a^x)^y = a^{xy}$, e.g. $3^6 = 3^{2 \times 3} = 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 3^2 \cdot 3^2 \cdot 3^2 = (3^2)^3$.
3. $a^x \cdot b^x = (ab)^x$, e.g. $2^3 \cdot 3^3 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 = (2 \cdot 3)(2 \cdot 3)(2 \cdot 3) = (2 \cdot 3)^3$.

These laws hold for any $a \in \mathbb{R}$ and $x, y \in \mathbb{N}$.

Now we want to generalise the notation for the power to include whole numbers, fractions and irrational numbers, so that a^x makes sense for most values of a and all $x \in \mathbb{R}$. The idea is to make laws of exponents hold generally.

First, we choose $a^0 = 1$ $(a \neq 0)$ so that

$$a^{2} = a^{2+0} = a^{2} \cdot a^{0} = a^{2}$$
, i.e. $a^{x} = a^{x+0} = a^{x} \cdot a^{0} = a^{x}$.

Second, we choose

$$a^{-1} = \frac{1}{a}, \quad a^{-2} = \frac{1}{a^2}, \dots, a^{-n} = \frac{1}{a^n}, \quad n \in \mathbb{N},$$

so that

$$a^2 \cdot a^{-2} = a^{2-2} = a^0 = 1$$
, or $a^n \cdot a^{-n} = a^{n-n} = a^0 = 1$, for all $n \in \mathbb{N}$.

We choose

$$a^{1/2} = \sqrt{a}$$
 (the square root of $a, a \ge 0$),

$$a^{1/3} = \sqrt[3]{a}$$
 (the cube root of $a, a \in \mathbb{R}$),
:
 $a^{1/n} = \sqrt[n]{a}$ (the *n*th root of *a*. If *n* is even, $a \ge 0$; otherwise any $a \in \mathbb{R}$ is O.K.)

so that

$$a^{1/2} \cdot a^{1/2} = a^{\frac{1}{2} + \frac{1}{2}} = a^{1} = a,$$

$$a^{1/3} \cdot a^{1/3} \cdot a^{1/3} = a^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = a^{1} = a,$$

$$\vdots$$

$$a^{1/n} \cdot a^{1/n} \dots a^{1/n} = a^{\frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n}} = a^{\frac{n}{n}} = a^{1} = a.$$

If x is a rational number, then x = p/q, where p and q are integers and q > 0. Then

$$a^{x} = a^{p/q} = (a^{1/q})^{p} = (a^{p})^{1/q}$$
 (order doesn't matter).

Therefore, a^x makes sense for any rational number x.

If x is an irrational number, then we can always find two rational numbers c and d which are sufficiently close to x and which satisfy c < x < d. So

$$a^{c} < a^{d}$$
 if $a \ge 1$; $a^{c} > a^{d}$ if $0 < a < 1$.

It can be shown that there is exactly one number between a^c and a^d . We define this number as a^x .

Finally, an exponential function can be defined by

$$f(x) = a^x, \quad x \in \mathbb{R}$$

where a is a positive constant. The domain of f is \mathbb{R} and the range is \mathbb{R}^+ . Graph:

Summary:

If a and b are positive numbers, x and y are any real numbers, then we have

 $1 \quad a^{x+y} = a^x \cdot a^y,$ $2 \quad a^{x-y} = \frac{a^x}{a^y},$ $3 \quad (a^x)^y = a^{xy},$ $4 \quad a^x \cdot b^x = (ab)^x.$

There is also a special exponential function, $f = e^x$, we will investigate this further later in the course.²

 $^{^{2}}$ End Lecture 2.