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Example 4.26. Suppose we have the integrand xex. Let us choose

u = x, v0 = ex =) u0 = 1, v = ex.

Therefore, we can calculate the integral as follows:
Z

xex dx =

Z

uv0 dx

= uv �
Z

u0v dx

= xex �
Z

ex dx

= xex � ex + C.

Check:
d

dx
[xex � ex + C] = ex + xex � ex = xex.

Example 4.27. Suppose we want to integrate lnx = 1 · lnx. We choose

u = lnx, v0 = 1 =) u0 =
1

x
, v = x.

So we calculate the integral as
Z

lnx dx =

Z

1 · lnx dx

=

Z

uv0 dx

= uv �
Z

u0v dx

= x lnx�
Z

1

x
· x dx

= x lnx� x+ C.

Check:
d

dx
[x lnx� x+ C] = lnx+ x · 1

x
� 1 = lnx.

Example 4.28. Suppose we want to integrate ex cosx. First let us choose

u = cosx, v0 = ex =) u0 = � sinx, v = ex.

So we write our integral as
Z

ex cosx dx =

Z

uv0 dx

= uv �
Z

u0v dx

= ex cosx+

Z

ex sinx dx.

Now, we have an integral similar to what we started with, so let us integrate this by parts
too, choosing

ū = sinx, v̄0 = ex =) ū0 = cosx, v̄ = ex.
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So our original integral becomes
Z

ex cosx dx = ex cosx+

Z

ūv̄0 dx

= ex cosx+ ūv̄ �
Z

ū0v̄ dx

= ex cosx+ ex sinx�
Z

ex cosx dx.

Note, now on the RHS we have the same integral we started with. Rearranging this, we
can make the integral the subject, i.e.

Z

ex cosx dx = ex cosx+ ex sinx�
Z

ex cosx dx,

) 2

Z

ex cosx dx = ex cosx+ ex sinx.

So finally, we can write
Z

ex cosx dx =
1

2
[ex (cosx+ sinx)] + C,

remembering the constant of integration! Check:

d

dx



1

2
[ex (cosx+ sinx)] + C

�

=
1

2
{ex(cosx+ sinx) + ex(� sinx+ cosx)} = ex cosx,

which is correct.

4.4 Definite integrals

Remark: all the techniques acquired can be applied to definite integrals.

Example 4.29. Consider the integral

I =

Z

1

0

(x+ 1)3 dx.

Let us choose the following substitution:

u = x+ 1 =) dx = du,

then the limits of the integral become

x = 0 ! u = 1 and x = 1 ! u = 2.

Therefore, we calculate the integral as

I =

Z

2

1

u3 du =
1

4
u4

�

�

�

�

2

1

=
1

4

⇥

24 � 14
⇤

=
15

4
.

This is the same as finding the indefinite integral first,
Z

(x+ 1)3 dx =
1

4
(x+ 1)4 + C,

then imposing the limits, so

I =

Z

2

1

u3 du =



1

4
(x+ 1)4 + C

�

�

�

�

�

x=1

�


1

4
(x+ 1)4 + C

�

�

�

�

�

x=0

=
15

4
.
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Example 4.30. Consider the integral

I =

Z

⇡

2

0

cos3 x dx.

Let us choose

u = cos2 x, v0 = cosx =) u0 = �2 cosx sinx, v = sinx.

Then the integral is calculated as

I =

Z

⇡

2

0

cos2 x cosx dx

= cos2 x sinx |
⇡

2
0

+ 2

Z

⇡

2

0

cosx sin2 x dx

= 2

Z

⇡

2

0

cosx sin2 x dx.

Now there are two ways to finish the integration.

1.

I = 2

Z

⇡

2

0

cosx sin2 x dx

= 2

Z

⇡

2

0

cosx(1� cos2 x) dx

= 2

Z

⇡

2

0

cosx dx� 2

Z

⇡

2

0

cos3 x dx

= 2 sinx|
⇡

2
0

� 2I

= 2� 2I.

Finally we can write

I = 2� 2I =) I =
2

3
.

2.

I = 2

Z

⇡

2

0

cosx sin2 x dx

= 2

Z

⇡

2

0

sin2 xd(sinx).

Using the substitution ū = sinx, then x = 0 ! u = 0 and x = ⇡

2

! u = 1. So, we
have

I = 2

Z

1

0

u2 du =
2

3
u3

�

�

�

�

1

0

=
2

3
.
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4.5 Numerical integration

Consider evaluating the definite integral

Z

b

a

f(x) dx.

In practice, we may only know f(x) at some discrete points, and even if we know f(x),
its antiderivative may not be expressed in terms of the functions we know, for example

Z

p

1 + x3 dx or

Z

ex
2
dx.

Since most integrals can not be done analytically, we do them numerically. We do this
using a “geometric idea”.

4.5.1 Trapezium method

We want to estimate the integral of f(x) on the interval [a, b], which represents the area
under the curve y = f(x) from a to b.

Figure 4.9: Forming trapeziums with height of the sides dictated by the curve
y = f(x) over the interval [a, b].

We choose n number of pieces. Divide the interval a  x  b into n (equal) pieces with
points

a = x
0

< x
1

< x
2

< · · · < x
n�1

< x
n

= b.

On each piece of the interval, we build a trapezium by joining points on the curve by a
straight line. We calculate the total area by summing all the area of the trapezia. This is
our estimate of the integral.

To start with, let h be the width of one piece of the interval, i.e.

h =
b� a

n
,
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then we have
x
k

= x
0

+ kh, k = 0, 1, 2, . . . , n. x
0

= a, x
n

= b.

Let us consider the trapezium based on the piece [x
k�1

, x
k

], whose width is h. The height
of the sides of the trapezium are f(x

k�1

) and f(x
k

). So the area is

h
f(x

k�1

) + f(x
k

)

2
.

Figure 4.10: Trapezium constructed over each piece of the interval, where each piece
has width h.

Then the total area under the curve over [a, b] is the sum:

Area = h
f(x

0

) + f(1)

2
+ h

f(x
1

) + f(x
2

)

2
+ · · ·+ h

f(x
n�1

) + f(x
n

)

2

=
h

2
[(f(x

0

) + f(x
1

)) + (f(x
1

) + f(x
2

)) + · · ·+ (f(x
n�1

) + f(x
n

))]

=
h

2
[f(x

0

) + 2(f(x
1

) + f(x
2

) + · · ·+ f(x
n�1

)) + f(x
n

)]

=
h

2

"

f(x
0

) + 2
n�1

X

k=1

f(x
k

) + f(x
n

)

#

.

We can think of the sum as follows, we have the two outer sides of the first and last
trapezium, then every trapezium in-between shares its sides with its neighbour, therefore
we require two lots of the interior sides.5

5
End Lecture 19.


