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Example 4.26. Suppose we have the integrand xe®. Let us choose
/ x / x

u=x, UV =e = u =1 v=e".

Therefore, we can calculate the integral as follows:

/xex dr = /uv’ dx
= uv—/u'vdm
= :cez/exd:v

= ze* —e*+C.
Check:

d—[mex—e”C—I—C]:ex—i—:z‘ex—em:xex.
x

Example 4.27. Suppose we want to integrate Inxz = 1 - Inz. We choose
u=lhz, V=1 = J== v=u.

So we calculate the integral as

/lnmd:r = /1-lnxd:c
= /uv'daz
= uv—/u’vda;
= xlnx—/1~xdm
x

= ghhe—a+C.

Check:

d 1
— [zlhz—2z+C]=hzr+z-——1=Inx.
dz x

Example 4.28. Suppose we want to integrate e” cosx. First let us choose

/ / :
u=cosx, v =¢' = o =-—sinz, v=¢c"

So we write our integral as

/excosxdx = /uv'dm
= uv—/u’vdaj

= excosx—i—/exsinxdx.

Now, we have an integral similar to what we started with, so let us integrate this by parts

too, choosing

_ . _/ _
u=sinx, v =e = W =cosx, U=c¢€".
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So our original integral becomes
/emcosxdx = ercosx+/uv’d:c
= excosa:—i—uv—/u’vdx
= excoszn—{—exsinx—/emcosxdzx.

Note, now on the RHS we have the same integral we started with. Rearranging this, we
can make the integral the subject, i.e.

/e””cosxdm:emcosx—ke’”sinx—/excosxdx,

2/e$cosxdx = e cosx + e’ sinx.

So finally, we can write
1
/ex cosxdr = 3 [e” (cosx +sinx)] + C,

remembering the constant of integration! Check:

a1
dr |2

which is correct.

1
[e® (cosx + sinx)] + C] =3 {e"(cosx +sinz) + e*(—sinz + cosx)} = €* cosz,

4.4 Definite integrals

Remark: all the techniques acquired can be applied to definite integrals.

Example 4.29. Consider the integral

1
I:/ (x4 1) da.
0
Let us choose the following substitution:
uv=cr+1 = dr=du,
then the limits of the integral become
r=0—u=1 and z=1—u=2.

Therefore, we calculate the integral as

2 1
I:/ wdu = ~u*
1 4

This is the same as finding the indefinite integral first,

2
1
121[24_14]:

15
=

/(a;+1)3da::i(a:+l)4+0,

then imposing the limits, so

2 1
I:/ ud du = [4($—|—1)4—|—C]
1
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Example 4.30. Consider the integral

I:/ cos® x dx.
0

Let us choose

! ! . .
U:COSQl‘, UV = COST — u :—QCOSI‘SIHIE, VUV =S81mnx.

Then the integral is calculated as

(VB

I = / cos® x cos z dx
0
s

us 2
= cos’zsinw |3 +2/ cos x sin? x da
0

Jus

2
= 2/ cos x sin’ z dz.
0

Now there are two ways to finish the integration.

1.
3 n
I = 2 coszsin® x dx
0
2 2
= 2/ cosz(1 — cos® x) dx
0
3 5
= 2/ Cosmd:v—Z/ cos®’ x dx
0 0
= 28in$|g—21
= 2-2].
Finally we can write
2
I1=2-2] = I:§.
2.

jus
2
1 = 2/ cos xsin? z dx
0

™

2, 2 .
= 2 sin® zd(sin z).
0
Using the substitution @ = sinz, then x =0 - u =0 and x = § — u = 1. So, we

have ) )
2 2
I:2/ wdu = =u?

0 3

0 3
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4.5 Numerical integration

Consider evaluating the definite integral

/abf(:n) da.

In practice, we may only know f(z) at some discrete points, and even if we know f(x),
its antiderivative may not be expressed in terms of the functions we know, for example

/\/1+x3da: or /ex2 dzx.

Since most integrals can not be done analytically, we do them numerically. We do this
using a “geometric idea”.

4.5.1 Trapezium method

We want to estimate the integral of f(x) on the interval [a,b], which represents the area
under the curve y = f(z) from a to b.

a=xyg X1 T2 T3 T4 Tz Tg T7 I8 .’L’g:b

Figure 4.9: Forming trapeziums with height of the sides dictated by the curve
y = f(z) over the interval [a,b].

We choose n number of pieces. Divide the interval a < x < b into n (equal) pieces with
points
a=x9)<x1 <x2< < Tp_1 < xp, =>b.

On each piece of the interval, we build a trapezium by joining points on the curve by a
straight line. We calculate the total area by summing all the area of the trapezia. This is
our estimate of the integral.

To start with, let h be the width of one piece of the interval, i.e.

h:b—a,
n




CHAPTER 4. INTEGRATION 83

then we have
xp=x9+kh, k=0,1,2,....,n. z9=a, z,=0>.

Let us consider the trapezium based on the piece [x_1, zk|, whose width is h. The height
of the sides of the trapezium are f(xp_1) and f(zg). So the area is

f(xp—1) + f(z)

h 5 .
f(zr-1) A f(xk)
=
Tk—1 Tk

Figure 4.10: Trapezium constructed over each piece of the interval, where each piece

has width h.

Then the total area under the curve over [a,b] is the sum:

f(xo);rf(l)Jrhf(wl)-;f(ﬂ?Q)+_“+hf(90n—1)2+f(33n)

[(f (o) + f(21)) + (F (1) + f(22)) + - + (f(@n-1) + f(2n))]
[f (o) +2(f (x1) + f(@2) + -+ 4 f(2n-1)) + f(2n))]

n—1

Flao)+2 5 Flan) + flwn)
k=1

>

Area =

(SISO SIS VS

We can think of the sum as follows, we have the two outer sides of the first and last
trapezium, then every trapezium in-between shares its sides with its neighbour, therefore
we require two lots of the interior sides.®

5End Lecture 19.



