
Chapter 4

Integration

4.1 The basic idea

We are interested in calculating areas under curves.

Example 4.1.

(a) Shaded area under y = f(x). (b) Rectangular strips under y = f(x).

Figure 4.1: Integration calculates the shaded area under the curve y = f(x), we could
do this by dividing the area into rectangles and summing the area of all rectangles.

How do we do it?

1. We divide the interval a  x  b into pieces (say equal length).

2. We build a rectangle on each piece, where the top touches the curve.

3. We calculate the total area of the rectangles.

We say, if the division is very fine, we will get a good measure of the area we want. We
watch what happens as we make the division of the “strips” finer and finer.
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Example 4.2. Consider the function f(x) = x on the interval 0  x  1.

Figure 4.2: Integrating under the curve y = x, from x = 0 to x = 1.
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The sum of the area of all rectangles on the interval is
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That is the sum is approaching the actual area 1

2

.

Therefore, as we increase n so as to get finer divisions, the area approaches the exact area
under the curve. You could do this for all functions, however, there is a much quicker way.

Idea: we want to find the area under the curve, let us call it y = f(t).
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Example 4.3.

(a) Shaded area under y = f(t). (b) Integrating y = f(t) up to point x.

Figure 4.3: Writing the shaded area under the curve y = f(t) as a function of x, where
x is point within the desired interval [a, b].

We think of the area as a function of x, say A(x). If we know A(x), then we know the
area, i.e. A(b)�A(a). So we want to find this function A(x).

We don’t know A, but we can say something about it. Think about how it is related to
f . What we know is that

A0(x) = f(x). (4.1)

Why can we say this? We need to understand what happens to

A(x+ h)�A(x)

h
as h ! 0. (4.2)

Figure 4.4: Consider one “strip” under the curve y = f(t), to find the limit (4.2).

The di↵erence A(x + h) � A(x) is the area between t = x and t = x + h. So the area is
roughly rectangular (if h is small) with height f(x) and base h. So the area is approxi-
mately f(x) · h. Therefore

A(x+ h)�A(x) ⇡ f(x) · h =) A(x+ h)�A(x)

h
⇡ f(x),
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and
A(x+ h)�A(x)

h
! f(x) as h ! 0.

Thus, by the definition of the derivative, we have A0(x) = f(x). We defined A(x) as
the antiderivative of f(x).1

1
End Lecture 15.


