
Chapter 3

Exponentials and Logarithms

3.1 Exponentials

An exponential function is a function of the form

f(x) = ax,

where a is a positive constant.

Example 3.1.

(a) y = 2

x. (b) y =

�
1
2

�
x

.

Figure 3.1: The domain: �1 < x < +1; the range: (0,+1).

For

a > 1, f(x) increases as x increases.

a < 1, f(x) decreases as x increases.

a = 1, f(x) = 1.

a0 = 1 for each a, so the graph always passes through the point (0, 1).
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3.1.1 Slope of exponentials

First let us consider the slope at x = 0.

Example 3.2. Suppose we have f(x) = 2x, then applying the definition of the derivative
we have

f 0(0) = lim
h!0

f(0 + h)� f(0)

h
= lim

h!0

2h � 1

h
.

h f 0(0) ⇡
0.1 0.7177
0.01 0.6955
0.001 0.6933
0.0001 0.6932

So for f(x) = 2x, (a = 2), we have slope ⇡ 0.693 at x = 0.

Similarly, for f(x) = 3x, (a = 3), we have slope ⇡ 1.698 at x = 0.

Therefore, we expect that there is a number between 2 and 3 such that the slope at
x = 0 is 1. This number is called e, where e ⇡ 2.718281828459 . . . . The number e is
irrational.

Figure 3.2: Graph of y = ex, which has tangent with slope of 1 at x = 1.

The fact that the slope is 1 at x = 0 tells us that

eh � e0

h
=

eh � 1

h
! 1, ash ! 0.

Therefore, if h is small, then eh � 1 ⇡ h, i.e.

eh ⇡ 1 + h.
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We call f(x) = ex = exp(x) the exponential function.

To find the slope at x = c, we need to look at

f 0(c) = lim
h!0

f(c+ h)� f(c)

h
= lim

h!0

ec+h � ec

h
= lim

h!0

ec(eh � 1)

h
= ec lim

h!0

eh � 1

h
= ec,

i.e. the derivative of ex is itself,
d

dx
(ex) = ex.

Example 3.3. Consider f(x) = e
p
1+x. Here we will employ the chain rule. Choose

g(x) =
p
1 + x and f(u) = eu, so we have g0(x) = 1

2

(1 + x)�
1
2 and f 0(u) = eu.

d

dx

⇣

e
p
1+x

⌘

= f 0(g(x))g0(x)

= e
p
1+x

1

2
(1 + x)�

1
2

=
e
p
1+x

2
p
1 + x

.

3.2 The natural logarithm

Consider the inverse function of f(x) = ex. In f(x), every positive number occurs as the
exponential of something, i.e. M = et for an appropriate t. The number t is called ln(M):
the natural logarithm of M . In other words

“ lnM is the number whose exponential is M”: elnM = M.

In this way, we define the function of the natural logarithm

g(M) = lnM.

Example 3.4.

(a) y = e

x. (b) y = lnx.

Figure 3.3: For lnx the domain: (0,+1); the range: (�1,+1). The graph y = ex

has a horizontal asymptote at y = 0, while y = lnx has a vertical asymptote at x = 0.
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By definition,
elnM = M, ln(ex) = x,

which means that if you perform ln(exp) or take the exp(ln), then we get back to where
we started.

3.2.1 Characteristic properties

1. ln(MN) = lnM + lnN .

2. ln(Mp) = p lnM .

Logarithms are used among other things to solve “exponential equations”.

Example 3.5. Find x, given 3x = 7. Taking the logarithm of both sides we have

ln(3x) = ln 7 =) x ln 3 = ln 7.

Rearranging we have

x =
ln 3

ln 7
⇡ 1.95

1.10
⇡ 1.77.

Exercise 3.1. Show that
d

dx
(lnx) =

1

x
.

Hint: put y = lnx.

Example 3.6. Consider the function f(x) = ln(cosx). Choose g(x) = cosx and f(u) =
lnu, so we have g0(x) = � sinx and f 0(u) = 1/u. Thus

d

dx
(ln(cosx)) = f 0(g(x))g0(x)

=
1

cosx
· (� sinx)

= � tanx.

Similarly we have

d

dx
(sin(lnx)) = cos(lnx) · 1

x

=
cos(lnx)

x
.

Di↵erentiation of other exponentials

In order to di↵erentiate for example 3x, we must express it in firms of ex :

3 = eln 3 =) 3x = (eln 3)x = ex ln 3

Therefore we calculate the derivative of 3x as follows:

d

dx
(3x) =

d

dx
(ex ln 3)

= f 0(g(x))g0(x)

= ex ln 3 · ln 3
= 3x · ln 3.
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Here we chose g(x) = x ln 3 and f(u) = eu so that g0(x) = ln 3 and f 0(u) = eu.

In general, for any positive constant a

d

dx
(ax) = ax ln a.

NOTATION: log
e

x = lnx, is the “proper” way of writing the natural logarithm.

3.2.2 Logarithms base a

We can also define log
a

(x) to be the number m, i.e. log
a

(x) = m is such that am = x. In
this way we can think of logarithms as a di↵erent form of writing powers.

Example 3.7. log
10

(1000) = 3.

The derivative of log
a

(x) is
d

dx
(log

a

(x)) =
1

x ln(a)
.

Exercise 3.2. Try to show the above statement is true. Hint: use the chain rule.1

1
End Lecture 12.


