Chapter 3

Exponentials and Logarithms

3.1 Exponentials

An exponential function is a function of the form

$$f(x) = a^x,$$

where a is a positive constant.

Example 3.1.

For

a > 1, f(x) increases as x increases. a < 1, f(x) decreases as x increases.

$$a = 1, f(x) = 1.$$

 $a^0 = 1$ for each a, so the graph always passes through the point (0, 1).

3.1.1 Slope of exponentials

First let us consider the slope at x = 0.

Example 3.2. Suppose we have $f(x) = 2^x$, then applying the definition of the derivative we have

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{2^h - 1}{h}$$

h	$f'(0) \approx$
0.1	0.7177
0.01	0.6955
0.001	0.6933
0.0001	0.6932

So for $f(x) = 2^x$, (a = 2), we have slope ≈ 0.693 at x = 0.

Similarly, for $f(x) = 3^x$, (a = 3), we have slope ≈ 1.698 at x = 0.

Therefore, we expect that there is a number between 2 and 3 such that the slope at x = 0 is 1. This number is called e, where $e \approx 2.718281828459...$ The number e is irrational.

The fact that the slope is 1 at x = 0 tells us that

$$\frac{e^h - e^0}{h} = \frac{e^h - 1}{h} \to 1, \quad ash \to 0.$$

Therefore, if h is small, then $e^h - 1 \approx h$, i.e.

$$e^h \approx 1 + h.$$

We call $f(x) = e^x = \exp(x)$ the exponential function.

To find the slope at x = c, we need to look at

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0} \frac{e^{c+h} - e^c}{h} = \lim_{h \to 0} \frac{e^c(e^h - 1)}{h} = e^c \lim_{h \to 0} \frac{e^h - 1}{h} = e^c,$$

i.e. the derivative of e^x is itself,

$$\frac{d}{dx}(e^x) = e^x.$$

Example 3.3. Consider $f(x) = e^{\sqrt{1+x}}$. Here we will employ the chain rule. Choose $g(x) = \sqrt{1+x}$ and $f(u) = e^u$, so we have $g'(x) = \frac{1}{2}(1+x)^{-\frac{1}{2}}$ and $f'(u) = e^u$.

$$\frac{d}{dx} \left(e^{\sqrt{1+x}} \right) = f'(g(x))g'(x) = e^{\sqrt{1+x}} \frac{1}{2}(1+x)^{-\frac{1}{2}} = \frac{e^{\sqrt{1+x}}}{2\sqrt{1+x}}.$$

3.2 The natural logarithm

Consider the inverse function of $f(x) = e^x$. In f(x), every positive number occurs as the exponential of something, i.e. $M = e^t$ for an appropriate t. The number t is called $\ln(M)$: the natural logarithm of M. In other words

"ln M is the number whose exponential is M": $e^{\ln M} = M$.

In this way, we define the function of the natural logarithm

$$g(M) = \ln M.$$

Example 3.4.

Figure 3.3: For $\ln x$ the domain: $(0, +\infty)$; the range: $(-\infty, +\infty)$. The graph $y = e^x$ has a horizontal asymptote at y = 0, while $y = \ln x$ has a vertical asymptote at x = 0.

By definition,

$$e^{\ln M} = M, \quad \ln(e^x) = x,$$

which means that if you perform $\ln(\exp)$ or take the $\exp(\ln)$, then we get back to where we started.

3.2.1 Characteristic properties

- 1. $\ln(MN) = \ln M + \ln N.$
- 2. $\ln(M^p) = p \ln M.$

Logarithms are used among other things to solve "exponential equations".

Example 3.5. Find x, given $3^x = 7$. Taking the logarithm of both sides we have

$$\ln(3^x) = \ln 7 \implies x \ln 3 = \ln 7.$$

Rearranging we have

$$x = \frac{\ln 3}{\ln 7} \approx \frac{1.95}{1.10} \approx 1.77.$$

Exercise 3.1. Show that

$$\frac{d}{dx}(\ln x) = \frac{1}{x}.$$

Hint: put $y = \ln x$.

Example 3.6. Consider the function $f(x) = \ln(\cos x)$. Choose $g(x) = \cos x$ and $f(u) = \ln u$, so we have $g'(x) = -\sin x$ and f'(u) = 1/u. Thus

$$\frac{d}{dx}(\ln(\cos x)) = f'(g(x))g'(x)$$
$$= \frac{1}{\cos x} \cdot (-\sin x)$$
$$= -\tan x.$$

Similarly we have

$$\frac{d}{dx}(\sin(\ln x)) = \cos(\ln x) \cdot \frac{1}{x}$$
$$= \frac{\cos(\ln x)}{x}.$$

Differentiation of other exponentials

In order to differentiate for example 3^x , we must express it in firms of e^x :

$$3 = e^{\ln 3} \quad \Longrightarrow \quad 3^x = (e^{\ln 3})^x = e^{x \ln 3}$$

Therefore we calculate the derivative of 3^x as follows:

$$\frac{d}{dx}(3^x) = \frac{d}{dx}(e^{x\ln 3})$$
$$= f'(g(x))g'(x)$$
$$= e^{x\ln 3} \cdot \ln 3$$
$$= 3^x \cdot \ln 3.$$

Here we chose $g(x) = x \ln 3$ and $f(u) = e^u$ so that $g'(x) = \ln 3$ and $f'(u) = e^u$.

In general, for any positive constant a

$$\frac{d}{dx}(a^x) = a^x \ln a.$$

NOTATION: $\log_e x = \ln x$, is the "proper" way of writing the natural logarithm.

3.2.2 Logarithms base *a*

We can also define $\log_a(x)$ to be the number m, i.e. $\log_a(x) = m$ is such that $a^m = x$. In this way we can think of logarithms as a different form of writing powers.

Example 3.7. $\log_{10}(1000) = 3.$

The derivative of $\log_a(x)$ is

$$\frac{d}{dx}\left(\log_a(x)\right) = \frac{1}{x\ln(a)}$$

Exercise 3.2. Try to show the above statement is true. Hint: use the chain rule.¹

 $^{^{1}\}mathrm{End}$ Lecture 12.