Chapter 1

Functions

1.1 What is a function?

Example 1.1. The area A of a circle depends on the radius r of the circle. The rule that connects r and A is given by the following equation,

$$A = \pi r^2. \tag{1.1}$$

With each positive number r, there is associated one value of A and we say that A is a function of r, denoted by A = A(r).

Example 1.2. The human population of the world P depends on the time t. The table below gives estimates of the world population at time t, for certain years:

t (years)	1900	1910	1950	1960	1990	2000
P (millions)	1650	1750	2650	3040	5280	6080

For instance, $P(1950) \approx 2,560,000,000$ and $P(2000) \approx 6,080,000,000$.

For each value of time t, there is a corresponding value of P, and we say that P is a function of t.

However, in this case we don't know the rule that connects t and P at the moment. In fact, it is one of our tasks to find and understand the rule for a function.

1.2 The definition of a function

Here we will look at more precise definition of a function. First let us define a set.

Definition 1.1. A set is a collection of objects, 'things' and states. A 'piece' or object of a set is called an element of the set.

Example 1.3. The following are examples of sets:

- (i) $\mathbb{Z} = \{ \text{all whole numbers} \} = \{ \dots, -2, -1, 0, 1, 2, \dots \},\$
- (ii) $\mathbb{N} = \{ \text{all positive whole numbers} \} = \{1, 2, 3, \dots \},\$
- (iii) $\mathbb{R} = \{ \text{all real numbers} \}.$

If we have two sets A and B, then a function $f: A \to B$ is a rule that sends each element x in A to exactly one element called f(x) in B.

Here we call the set A the domain of f and B is known as the range of f. Suppose x is some element of A which is denoted by $x \in A$, then x is called an *independent variable* and f(x) is called the dependent variable where $f(x) \in B$, i.e. f(x) is an element of B.

NOTE: f is not a function if it is multi-valued, i.e. if one element from A maps to two distinct elements in B. Such a mapping is sometimes called multi-valued function, however this is just terminology, strictly by the definition for our purposes f would not be a function in this case.

1.3 Representing a function

Example 1.4. Let S be the function from the real numbers to itself, that is $S : \mathbb{R} \to \mathbb{R}$ given by

$$S(x) = x^2. \tag{1.2}$$

Here we have defined the function S algebraically using an explicit formula.

That is, S is the function that squares things (real numbers), i.e. a function performs some sort of 'action'. Here we have described the function verbally!

We can also represent a function numerically (by table of values):

x	1	2	3	 7	
S(x)	1	4	9	 49	

Finally, a function can also be represented visually, for example by a graph.

If the domain of S is \mathbb{R} , then the range of S is $\mathbb{R}^+ = \{ \text{all positive real numbers} \}.$

Summary:

A function is a rule, it takes some independent variable (in the domain) for which there is some dependent variable (in the range).

There are four ways to represent function.

In the following, we take a look at some specific functions.¹

¹End Lecture 1.