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1 Notes on Complex Numbers

1.1 The Basics

Suppose we want to solve the the quadratic equation x2 + 1 = 0, inserting
this into the equation to solve quadratics:

x =
−0±

√
02 − 4 · 1 · 1
2 · 1

=
±
√
−4

2
= ±
√
−1

So we can’t solve the equation. So we define the following quantity i =√
−1, and we call i the imaginary number, if i =

√
−1, then i2 = −1. All

numbers can be built out of real numbers and imaginary numbers which we
call complex numbers. A complex number is usually written as z, and we
write z = x+yi, we add complex numbers in the following way, if z1 = a+ bi
and z2 = c+ di then:

z1 + z2 = (a+ c) + (b+ d)i (1)

The set of complex numbers is denoted by C, complex numbers obey the the
following sets.

1. order doesn’t matter in addition z1 + z2 = z2 + z1

2. order doesn’t matter in multiplication z1z2 = z2z1

3. Addition is associative (z1 + z2) + z3 = z1 + (z2 + z3)

4. Multiplication is associative (z1z2)z3 = z1(z2z3)

5. There is an associative identity z + 0 = z
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6. There is a multiplicative identity 1 · z = z

7. For every z, there is a −z such that z + (−z) = 0

8. For every z, there is a number 1/z such that z · (1/z) = 1

9. The distribution law holds z1(z2 + z3) = z1z2 + z1z3

If z = a+ bi, then we will write down the inverse.

1

z
=

1

a+ bi

=
1

a+ bi

a− bi
a− bi

=
a− bi

(a+ bi)(a− bi)

=
a− bi

a(a− bi) + bi(a− bi)

=
a− bi

a2 − abi+ abi− b2i2

=
a− bi
a2 + b2

So:
1

z
=

a− bi
a2 + b2

(2)

Given a complex number z = a+ bi, we define the complex conjugate, z̄ by:

z̄ = a− bi (3)

We can write the real part of a general complex number z = a + bi as
Re(z) = a and the imaginary part of z as Im(z) = b, so the general complex
number can be written z = Re(z) + Im(z)i. The modulus of the complex
number is written as |z|, if z = a+ bi, then:

|z|2 = zz̄ = (a+ bi)(a− bi) = a2 + b2 (4)

We can now solve quadratics like x2 − 4x + 13 = 0, inserting this into the
equation for solving quadratics shows:

x =
−b±

√
b2 − 4ac

2a

=
−(−4)±

√
(−4)2 − 4 · 1 · 13

2 · 1

2



=
4±
√

16− 52

2

=
4±
√
−36

2

=
4± 6

√
−1

2
= 2± 3

√
−1

= 2± 3i

1.2 The Argand Diagram/Complex Plane

Complex numbers can be written in the form z = (a, b) where z = a+ bi and
this notation is suggestive of the usual plane which we’re familiar with. We
can associate the x co-ordinate with Re(z) and the y co-ordinate with Im(z),
so a general complex number z = a+bi as a point on the complex plane. The
argand diagram suggest that it is possible for yet another representation of
a complex number, the use of polar co-ordinates. The distance r is just the
modulus, so for a complex number z = a+ bi, r = |z| =

√
a2 + b2, the angle

θ is called the argument and is written Arg(z). The argument is calculated
as follows:

Arg(z) = θ = tan−1

(
b

a

)
(5)

From the definition of cos θ and sin θ:

sin θ =
b

r
, cos θ =

a

r

So re-arranging:
a = r cos θ, b = r sin θ

As z = a+ bi, we can write it as:

z = r(cos θ + i sin θ) (6)

This is called the polar form of a complex number.
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Example. Compute the modulus and argument of z = −
√

3+ i and plot
it on and argant diagram.
The modulus can be computed as

|z| =
√
zz̄

=

√
(−
√

3 + i)(−
√

3− i)

=

√
(3 + 1 + i

√
3− i

√
3)

=
√

4

= 2

To calculate the Argument, we compute:

Arg(z) = θ

= tan−1

(
− 1√

3

)
= π − 1√

3

= π − π

6

=
5π

6

So the polar form of the complex number is:

z = 2

[
cos

(
5π

6

)
+ i sin

(
5π

6

)]
1.3 Other Identities Associate With Complex Num-

bers

1.3.1 Euler’s Formula

Previously we computed a series for for ex, there is a special equation called
Eulers formula which deals with eiθ. Then:

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+ · · ·

= 1 + iθ − θ2

2!
− θ3i

3!
+
θ4

4!
+
θ5i

5!
+ · · ·

=

(
1− θ2

2!
+
θ4

4!
+ · · ·

)
+

(
θ − θ3

3!
+
θ5

5!
+ · · ·

)
i

= cos θ + i sin θ
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The result
eiθ = cos θ + i sin θ (7)

Is known as Eulers formula. Setting θ = π, shows that:

eiπ + 1 = 0 (8)

which links all the most important numbers in maths. A general complex
number can be written as z = reiθ

1.3.2 De Moivre’s Theorem

We have spoken about the polar representation of a complex number z =
r(cos θ + i sin θ), let us examine z2.

z2 = (r(cos θ + i sin θ))2

= r2(cos θ + i sin θ)2

= r2(cos2 θ + (i sin θ)2 + 2i sin θ cos θ)

= r2(cos2 θ + (i)2(sin θ)2 + 2i sin θ cos θ)

= r2(cos2 θ − sin2 θ + 2i sin θ cos θ)

= r2(cos 2θ + i sin 2θ)

So we have shown something rather remarkable!

(cos θ + sin θ)2 = cos 2θ + i sin 2θ (9)

A natural question to ask is if this true for general powers, we can compute
for z3 = (r(cos θ + i sin θ))3.

z3 = z · z2

= (r(cos θ + i sin θ))r2(cos 2θ + i sin 2θ)

= r3(cos θ cos 2θ + (i sin θ)(i sin 2θ) + i sin θ cos 2θ + i sin 2θ cos θ)

= r3(cos θ cos 2θ − sin θ sin 2θ + (sin θ cos 2θ + cos θ sin 2θ)i)

= r3(cos(θ + 2θ) + i sin(θ + 2θ))

= r3(cos 3θ + i sin 3θ)

We can do the same for any whole number n and it shows that:

(r(cos θ + i sin θ))n = rn(cosnθ + i sinnθ) (10)
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