

Free boundary problems in a Hele-Shaw cell

by

Ali Haseeb Khalid BSc, MSc DIC, ARAeS

A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy

Department of Mathematics

Faculty of Mathematical & Physical Sciences

University College London

November, 2014

Disclaimer

I, Ali Haseeb Khalid, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.

Signature _____

Date _____

Abstract

The motion of a free boundary separating two immiscible fluids in an unbounded Hele-Shaw cell is considered. In the one-phase problem, a viscous fluid is separated from an inviscid fluid by a simple closed boundary. Preliminaries for a complex variable technique are presented by which the one-phase problem can be solved explicitly via conformal mappings. The Schwarz function of the boundary plays a major role giving rise to the so called Schwarz function equation which governs the evolution of exact solutions. The Schwarz function approach is used to study the stability of a translating elliptical bubble due to a uniform background flow, and the stability of a blob (or bubble) subject to an external electric field.

The one-phase problem of a translating free boundary and of a free boundary subject to an external field are studied numerically. A boundary integral method is formulated in the complex plane by considering the Cauchy integral formula and the complex velocity of a fluid particle on the free boundary. In the case of a free boundary subject to an external electric field due to a point charge, it is demonstrated that a stable steady state is achieved for appropriate charge strength. The method is also employed to study breakup of a single translating bubble in which the Schwarz function singularities (shown to be stationary) of the initial boundary play an important role. The two-phase problem is also considered, where the free boundary now separates two viscous fluids, and the construction of exact solutions is studied. The one-phase numerical model is enhanced, where a boundary integral method is formulated to accommodate the variable pressure in both viscous phases. Some numerical experiments are presented with a comparison to analytical results, in particular for the case where the free boundary is driven by a uniform background flow.

This thesis was completed under the supervision of **Professor Nicholas Robb** McDonald and Professor Jean-Marc Vanden-Broeck.

Acknowledgments

It has been a pleasure and honour to have been supervised by Robb McDonald and Jean-Marc Vanden-Broeck, to whom I extend my deepest gratitude. I appreciate their support, as well as the time and mathematical training they have given me; I am hugely indebted to them both. I imagine that Robb's feelings, when proofreading my work, could be summarised by the quote '*Word-smithing is a much greater percentage* of what I am supposed to be doing in life than I would have ever thought'—Donald E. Knuth. Thank you Robb, for your patience and excellent wordsmanship.

The Department of Mathematics has funded my research through a Departmental Teaching Assistantship, an opportunity I am enormously grateful to have received. I would also like to thank Helen Higgins, Mumtaz Ghafoor, Soheni Francis, Bonita Carboo and Richard Hoyle for their support throughout my studies at UCL.

I take this opportunity to thank those who have invested in me and shaped my life significantly. Roy Baker and Antoine Touil, who gave me solid foundations to study mathematics at any level. The lecturers that have guided and inspired me whilst at UCL and Imperial College, in particular Frank Smith, Anatoly Ruban, Sergei Timoshin, Keith Ball, Richard Hillier and Ted Johnson. A heartfelt mention goes to my teacher, not just of mathematics—but of life lessons in general—the late Rashid Ahmed. I can only hope that I have done you proud.

I am eternally grateful to my mother, father and brother. Having always shown me unparalleled love and support throughout my entire life, without them this thesis would have been extremely difficult to realise. I also thank my friends, whom I consider as family, for their championship and encouragement over the years. In particular Reena Patel, Xiao Han and Alastair Jones.

Thank you also to my colleagues and mentors who made my time as a research student enjoyable, and for providing many interesting and useful discussions over the years. A special thanks to Tom Ashbee, Gavin Esler, Oliver Southwick, Adam Townsend and Pietro Servini, whom helped with the proofreading of this thesis.

I have been incredibly lucky to have had the opportunity to meet with, experience talks by, and present research to some eminent researchers in the field of free boundary problems and fluid mechanics. I am grateful for numerous conversations and useful discussions with Giovani Vasconcelos, Mark Mineev-Weinstein, Darren Crowdy, Christopher Green, Jonathan Marshall and Michael Dallaston.

A special mention must go to The KLB. It's also known as KAB, and sometimes referred to as M201 Mathematics Mezzanine; where the fridge is always overflowing and the sink very rarely empty. The KLB manages to exhibit massively varying localised climates: recently, the West Wing akin to the Antarctic, and the East End very much like Northern Africa. As seasons change throughout the year in the UK, so do the localised climates of The KLB, but its inhabitants—even those who are experts in atmospheric flows—have not yet observed a predictable pattern, on any time scale! However, with a continuous supply of Yorkshire Tea from the 6th floor of 25 Gordon Street, it has been an enjoyable setting, housing a wonderful bunch of mathematicians. It has provided a place to work at any time, to share ideas, to learn from others, to house sporting pastimes—such as book ball and table tennis—and, most importantly, an arena to enjoy the company of others. The KLB is a magical place which truly encompasses the character of UCL. It will be sorely missed.

Ali Khalid, University College London, November 2014

To the world of fluid mechanics. A subject that has afforded me the opportunity to conduct research in an area of applied mathematics I thoroughly enjoy studying. Simplicity is the ultimate sophistication —Leonardo da Vinci

Contents

Di	isclai	mer		2
Al	bstra	ıct		3
A	ckno	wledgr	nents	5
\mathbf{Li}	st of	Table	S	13
\mathbf{Li}	st of	Figur	es	14
1	Intr	roduct	ion	20
	1.1	Proble	em background	20
		1.1.1	Historic overview, recent studies and applications	24
	1.2	Mathe	ematical model	28
		1.2.1	The Stokes-Leibenzon model	29
		1.2.2	The ZST Hele-Shaw free boundary problem	33
	1.3	Prelin	ninaries	36
		1.3.1	Conformal mapping techniques	37
		1.3.2	The Schwarz function & its properties	39
		1.3.3	The Schwarz function equation $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	43
		1.3.4	Exact solutions of one-phase Hele-Shaw flow \hdots	47
		1.3.5	The generalised Schwarz function equation $\ldots \ldots \ldots \ldots$	55
	1.4	Thesis	s structure	59
	1.5	Contr	ibution to literature	62

2	A n	umeri	cal model for one-phase Hele-Shaw flows	64	
	2.1 Boundary Integral Methods		lary Integral Methods	64	
	2.2	Nume	rical model	67	
		2.2.1	Decomposition of the velocity potential	69	
		2.2.2	Mathematical formulation	70	
	2.3	Numerical procedure			
		2.3.1	Computing elements of the resulting matrix equation	80	
	2.4	Nume	rical instability of the discretised equations	81	
	2.5	Including external potential fields			
	2.6	A boundary integral formulation for a finite bubble in an unbounded			
		Hele-Shaw cell			
	2.7	Testin	g and results	92	
	2.8	8 Extension to multiple interface problems			
	2.9	Summ	ary	107	
3	Hel	e-Shav	v flows of conducting fluids	108	
	3.1	Electromagnetic field equations			
	3.2				
		to an	external electric field	112	
		3.2.1	Flow driven by an isolated static point charge	112	
	3.3	Analy	tical results	114	
		3.3.1	Steady solution for an initially circular fluid blob with a point		
			charge at its centre	115	
		3.3.2	Stability of blobs subject to an electric point charge	116	
		3.3.3	A circular fluid blob with an off-centre point charge	118	
	3.4	Nume	rical results	119	
		3.4.1	A circular blob subject to an electric point charge	119	
		3.4.2	Delaying cusp formation in sink driven flows using an electric		
			point charge	123	
		3.4.3	Stability of steady solutions	126	
	3.5	Summ	ary	132	

4	Uns	steady	translating bubbles in a Hele-Shaw cell	134		
	4.1	The Taylor-Saffman bubble in an unbounded Hele-Shaw cell				
	4.2	Steady elliptical solution and rotational invariance				
	4.3	Numerical simulations of a translating bubble				
		4.3.1	Attraction of an elliptical bubble to a circular bubble	141		
		4.3.2	Initial conditions leading to bubble breakup	144		
		4.3.3	Finite blob pinch-off within a bubble	151		
	4.4	Stability of elliptical bubbles				
		4.4.1	Unsteady perturbed solutions that exist for all time	158		
	4.5	Summ	ary	161		
5	5 Two-phase Hele-Shaw flows					
	5.1	Proble	em background and mathematical model	165		
	5.2	A nun	nerical model for two-phase Hele-Shaw flows	169		
		5.2.1	Mathematical formulation	169		
		5.2.2	Numerical procedure	175		
		5.2.3	Testing and results	178		
	5.3	Exact	solutions	179		
		5.3.1	Solution methods	182		
		5.3.2	Rotated elliptical inclusion in a uniform flow	186		
		5.3.3	Circular inclusion in a uniform flow	193		
		5.3.4	On the remarks made by Taylor and Saffman (1959) regarding			
			two-phase solutions	197		
	5.4	Summ	ary	200		
6	Con	clusio	ns and further study	202		
\mathbf{A}	Con	nplex	moment description of Hele-Shaw flows	221		
в	Hel	e-Shaw	flows with external potential fields	224		
	B.1	The H	ele-Shaw equation with background conservative forcing \ldots .	224		
	B.2	Bound	lary effects leading to updated boundary conditions	226		
	B.3	The Hele-Shaw free boundary problem driven by an external electric				
		field		227		

Co	Contents		
С	The Polubarinova-Galin equation	228	
D	An alternative derivation of the Schwarz function equation	232	
\mathbf{E}	Role of the Kelly-Hinch procedure for translating bubbles	234	
\mathbf{F}	Alternative BIE and method of computing the normal velocity	238	
\mathbf{G}	An exact rational map solution for a translating bubble	241	
Bi	Bibliography		