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Abstract

The motion of a free boundary separating two immiscible fluids in an unbounded

Hele-Shaw cell is considered. In the one-phase problem, a viscous fluid is separated

from an inviscid fluid by a simple closed boundary. Preliminaries for a complex vari-

able technique are presented by which the one-phase problem can be solved explicitly

via conformal mappings. The Schwarz function of the boundary plays a major role

giving rise to the so called Schwarz function equation which governs the evolution of

exact solutions. The Schwarz function approach is used to study the stability of a

translating elliptical bubble due to a uniform background flow, and the stability of

a blob (or bubble) subject to an external electric field.

The one-phase problem of a translating free boundary and of a free boundary

subject to an external field are studied numerically. A boundary integral method

is formulated in the complex plane by considering the Cauchy integral formula and

the complex velocity of a fluid particle on the free boundary. In the case of a free

boundary subject to an external electric field due to a point charge, it is demon-

strated that a stable steady state is achieved for appropriate charge strength. The

method is also employed to study breakup of a single translating bubble in which

the Schwarz function singularities (shown to be stationary) of the initial boundary

play an important role.
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The two-phase problem is also considered, where the free boundary now separates

two viscous fluids, and the construction of exact solutions is studied. The one-phase

numerical model is enhanced, where a boundary integral method is formulated to

accommodate the variable pressure in both viscous phases. Some numerical exper-

iments are presented with a comparison to analytical results, in particular for the

case where the free boundary is driven by a uniform background flow.

This thesis was completed under the supervision of Professor Nicholas Robb

McDonald and Professor Jean-Marc Vanden-Broeck.
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