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m Analytics: Schwarz function approach
m Check: numerical result

Concluding remarks



e Flow of viscous fluid ‘sandwiched’ between two parallel plates

e Fluid air interface: Hele-Shaw free boundary problem

N
V2¢:ZQJ6(X*Xj7yfyj)v (XJ’yJ)GQ(t)

Jj=1

o= W(va)v (X,y)E@Q(t),

Vo =——=Vo¢-n, (x,y)e€ o0t).

see e.g. Entov & Etingof (EJAM, 2007)

e @ - strength hydrodynamic singularities, n - unit normal vector on
0Q)(t), V - external potential, ¢ - velocity potential (u= V¢)
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e In complex variables z = x + iy, conformally map the unit (-disk to
the domain Q(t)

2= (G0

[cl=1 g(z,t) = f(1/¢.1)

e One can calculate the Schwarz function of the curve 0Q(t) by

g(z,t) =2 =F(C 1) = F(1/¢,t), z€dQ(t) <+« [(P=1

e It has been shown (McDonald, EJAM, 2011) the following generalised
Schwarz function equation holds on the entire domain Q(t):
OF _ov 10g
0z 0z 20t
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dz 0z 20t
e The above equation is useful since it must hold in the limit where
singularities of F/(z) are approached

e So g must have the same structure of singularity as other terms =
find g(z,t), i.e. the shape of the boundary

e Driving singularities of F(z) and initial boundary shape, g(z,0),
complete initial description

e In the absence of external fields i.e. ¥ = 0, equation reduces to that
previously used, see e.g. Cummings et al. (EJAM, 1999), Abanov et
al. (Physica D, 2007)



e Slightly deformed circular fluid blob driven by a hydrodynamic sink of
strength Q at z =0 (here ¥ =0)

Polynomial map: z({, t) = a(t) (C n b(nt)(n)

n z" n z

Schwarz function: g(z,t) = b1 g2 (1 + bi) 1100

Asz — 0, F(z) = £ log(z) = F'(z) = ;%

Y|v4

e Compare terms of O(z71), O(z™") in Schwarz function equation:

e ()

— [a(t)""1b(t)] =0

Q d
w’ dt



For n=2, @ =-1, a(0) = 0.9, b(0) =0.1
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e Suppose you are given initial boundary 9Q(0) and its velocity, i.e.
xt = x(0), yj1 = y(0), uj1 = u(0) and vj1 =v(0), forj=1,...,N

J
e Step in time by advection
dx dy
E = u, E =V (1)

k+1 _ _k k k+1 _  k k
X; =X + ujAt, Y =y +viAt

e Require 2 equations for the 2 unknowns u}‘“ and vij



e (i) Consider simple smooth curve 9€(t) of fluid blob driven by
hydrodynamic singularity

e Suppose we choose a point z; = Xm + iym on the 9Q(t) and consider
the following integral (boundary integral equation)

- L /{;Q(t) uz) = iv(z) % {u(zm) — iv(zm)} + ; {Res (MZJH @)

27 Z— Zm Z— Zm

DO(t)



e (ii) Along 09(t) given ¢ = ¥ and since u = ¢« and v = ¢, then
(dynamic condition)
dx dy dx dy

= R A /AR 1/ &
uds+vds ds+ Y ds (3)

s - arclength parameter

e Since le<+1’ yijr1 (and their derivatives) are known, discretise and

solve (2) and (3) for uj‘“ and ij+1_

e Obtain N equations from (2) by placing N midpoints, z,, on
equispaced mesh around 0€(t) and N equations from (3) at mesh
points = solve linear system of 2/ equations at each time step.



Non-trivial example:

Fluid Blob Movie

Exact = dashed red, Numerical = solid blue, Q = 7 at z = %1

Time evolution, t = 37" tot= %.



blob_wall.avi
Media File (video/avi)


Numerical model relates to problem as:

v" (1) Advection, step
, boundary in time
Vo= Qdlx—x,y—y), (x¥)€Qt)

j=1

v" (2) Boundary

o =V(xy), (xy)e€ot) integral equation

v = % —Véon, (xy) € a(t)
! v" (3) Dynamic

boundary (pressure)
condition



e Consider a circular fluid blob of conducting fluid centred at z =10
with radius R, subject to an electric point charge at z = 0, where

V= g log(zg) (1)

o Here g(z,t) = R?/z is the Schwarz function of 9Q(t) and E € R

e The Schwarz function equation becomes

oF 10 E /(1 g
R

dz 20t 4w

S+E )

e As z — 0, considering singularities of O(z~1) above gives R = 0

e We have a steady solution in which the fluid blob remains circular
with constant radius Ry = R(0)

e Turns out the flow is stable for E < 0.



o Consider a circular fluid blob centred at z = € € R subject to an
electric point charge at z = 0, then for small €
R2

g(z,t) =€+

(3)

o Considering structure of the singularities of O(z™!) and O(z72) on
both sides of the Schwarz function equation yields:

RR =0, (4a)

Z — €

R2¢ . E
— " 4+eRR— —¢=0, E 4b
> +e i 0, <0 (4b)

e Hence, R =0, so R(t) = Ry, where Ry is the radius of the initial blob
= consistent with conservation of area, and (4b) gives

e(t) = eo exp <2/L?E§7rt> . (5)

e For small ¢, the fluid blob remains circular throughout the motion and
its centre emigrates towards the position of the point charge
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€(0)=0.1, Ry =1 €(0) = 0.5, Ry =1
Excellent agreement! What's happening?

N.B. Calculate €(t) as the centre of mass of numerical solution



Placing electric charge close to the initial boundary e.g. €(0) = 0.8, Ry =1

Fluid Blob Movie

Eventual symmeterising about the location of the point charge, here
E=-2nratz=0



blob_elec.avi
Media File (video/avi)


Placing electric charge close to the initial boundary e.g. ¢(0) =0.8, Ry =1

t =1.05

t =0.06 t =0.75 t=3
Eventual symmeterising about the location of the point charge, here
E=-2ratz=0



e Superimposing sink & electric charge, extracting all fluid from a
deformed circular blob?

1 08 06 04 02 0 02 04 06 08 1

Cusp formation at time t* = 1.22 Exatracting more fluid, final time t = 3
Q=-1 R=-1E=-2n1



e Superimposing sink & electric charge, extracting all fluid from a
deformed circular blob?

e Flow stable for point charge E < 0, symmeterising effect about its
location

e 0€Q(t) remains smooth for flows driven by solely by electric point
charge

e Possible applications in (i) theory of fluid flows in microfluidic devices
- manipulation of fluid blobs via electric fields, (ii) fluid extraction
problems - prolonging cusps (contamination)
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