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1.1 Free boundary problem

• Flow of viscous fluid ‘sandwiched’ between two parallel plates

• Fluid air interface: Hele-Shaw free boundary problem

∇2φ =
N∑
j=1

Qjδ(x − xj , y − yj), (xj , yj) ∈ Ω(t),

φ = Ψ(x , y), (x , y) ∈ ∂Ω(t),

vn =
∂φ

∂n
= ∇φ · n, (x , y) ∈ ∂Ω(t).

see e.g. Entov & Etingof (EJAM, 2007)

• Qj - strength hydrodynamic singularities, n - unit normal vector on
∂Ω(t), Ψ - external potential, φ - velocity potential (u = ∇φ)



1.2 Schwarz function approach

• In complex variables z = x + iy , conformally map the unit ζ-disk to
the domain Ω(t)

• One can calculate the Schwarz function of the curve ∂Ω(t) by

g(z , t) := z̄ = f (ζ, t) = f̄ (1/ζ, t), z ∈ ∂Ω(t) ⇐⇒ |ζ|2 = 1

• It has been shown (McDonald, EJAM, 2011) the following generalised
Schwarz function equation holds on the entire domain Ω(t):

∂F

∂z
=
∂Ψ

∂z
+

1

2

∂g

∂t



1.3 Schwarz function equation remarks

∂F

∂z
=
∂Ψ

∂z
+

1

2

∂g

∂t

• The above equation is useful since it must hold in the limit where
singularities of F ′(z) are approached

• So ġ must have the same structure of singularity as other terms ⇒
find g(z , t), i.e. the shape of the boundary

• Driving singularities of F (z) and initial boundary shape, g(z , 0),
complete initial description

• In the absence of external fields i.e. Ψ ≡ 0 , equation reduces to that
previously used, see e.g. Cummings et al. (EJAM, 1999), Abanov et
al. (Physica D, 2007)



1.4 Well known example

• Slightly deformed circular fluid blob driven by a hydrodynamic sink of
strength Q at z = 0 (here Ψ ≡ 0)

• Polynomial map: z(ζ, t) = a(t)
(
ζ + b(t)

n ζn
)

• Schwarz function: g(z , t) = −an+1b
n

1
zn + a2

(
1 + b2

n

)
1
z + O(1)

• As z → 0, F (z) = Q
2π log(z) ⇒ F ′(z) = Q

2πz

• Compare terms of O(z−1), O(z−n) in Schwarz function equation:

d

dt

[
a(t)2

(
1 +

b(t)2

n

)]
=

Q

π
,

d

dt

[
a(t)n+1b(t)

]
= 0



1.5 Well known example (cont.)

For n = 2, Q = −1, a(0) = 0.9, b(0) = 0.1
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2.1 Formulation Boundary Integral Method

• Suppose you are given initial boundary ∂Ω(0) and its velocity, i.e.
x1
j = x(0), y 1

j = y(0), u1
j = u(0) and v 1

j = v(0), for j = 1, . . . ,N

• Step in time by advection

dx

dt
= u,

dy

dt
= v (1)

i.e.
xk+1
j = xk

j + uk
j ∆t, yk+1

j = yk
j + vk

j ∆t

• Require 2 equations for the 2 unknowns uk+1
j and vk+1

j



2.2 Formulation Boundary Integral Method (cont.)

• (i) Consider simple smooth curve ∂Ω(t) of fluid blob driven by
hydrodynamic singularity

• Suppose we choose a point zm = xm + iym on the ∂Ω(t) and consider
the following integral (boundary integral equation)

I =
1

2πi

∫
∂Ω(t)

u(z)− iv(z)

z − zm
dz =

1

2
{u(zm)− iv(zm)}+

∑
j

[
Res

(
u(z)− iv(z)

z − zm
; zj

)]
(2)



2.3 Formulation Boundary Integral Method (cont.)

• (ii) Along ∂Ω(t) given φ = Ψ and since u = φx and v = φy then
(dynamic condition)

u
dx

ds
+ v

dy

ds
= Ψx

dx

ds
+ Ψy

dy

ds
(3)

s - arclength parameter

• Since xk+1
j , yk+1

j (and their derivatives) are known, discretise and

solve (2) and (3) for uk+1
j and vk+1

j .

• Obtain N equations from (2) by placing N midpoints, zm, on
equispaced mesh around ∂Ω(t) and N equations from (3) at mesh
points ⇒ solve linear system of 2N equations at each time step.



2.4 Flow near a wall, equal dumbbell
Non-trivial example:

Fluid Blob Movie

Exact = dashed red, Numerical = solid blue, Q = π at z = ±1
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2.5 Numerical model & free boundary problem

Numerical model relates to problem as:

∇2φ =
N∑
j=1

Qjδ(x − xj , y − yj), (xj , yj) ∈ Ω(t)

φ = Ψ(x , y), (x , y) ∈ ∂Ω(t)

vn =
∂φ

∂n
= ∇φ · n, (x , y) ∈ ∂Ω(t)

X (1) Advection, step
boundary in time

X (2) Boundary
integral equation

X (3) Dynamic
boundary (pressure)
condition



3.1 Flow due to an electric point charge (i)

• Consider a circular fluid blob of conducting fluid centred at z = 0
with radius R, subject to an electric point charge at z = 0, where

Ψ =
E

4π
log(zg) (1)

• Here g(z , t) = R2/z is the Schwarz function of ∂Ω(t) and E ∈ R

• The Schwarz function equation becomes

∂F

∂z
=

1

2

∂g

∂t
+

E

4π

(
1

z
+

gz
g

)
(2)

• As z → 0, considering singularities of O(z−1) above gives Ṙ = 0

• We have a steady solution in which the fluid blob remains circular
with constant radius R0 = R(0)

• Turns out the flow is stable for E < 0.



3.2 Flow due to an electric point charge (ii)

• Consider a circular fluid blob centred at z = ε ∈ R subject to an
electric point charge at z = 0, then for small ε

g(z , t) = ε+
R2

z − ε
(3)

• Considering structure of the singularities of O(z−1) and O(z−2) on
both sides of the Schwarz function equation yields:

RṘ = 0, (4a)

R2ε̇

2
+ εRṘ − E

4π
ε = 0, E < 0 (4b)

• Hence, Ṙ = 0, so R(t) = R0, where R0 is the radius of the initial blob
=⇒ consistent with conservation of area, and (4b) gives

ε(t) = ε0 exp

(
E

2R2
0π

t

)
. (5)

• For small ε, the fluid blob remains circular throughout the motion and
its centre emigrates towards the position of the point charge



3.3 Checking analytical result

Circular blob with point charge strengths: (i)E = −π
2 , (ii) E = −π, (iii) E = −2π
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( i)

( iii)

ǭ(t )
ǫ(t )

ε(0) = 0.1, R0 = 1
Excellent agreement!
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( iii)

( ii)

( i)

ǭ(t )
ǫ(t )

ε(0) = 0.5, R0 = 1
What’s happening?

N.B. Calculate ε(t) as the centre of mass of numerical solution



3.4 Numerical results as ε(0) ≈ R0

Placing electric charge close to the initial boundary e.g. ε(0) = 0.8, R0 = 1

Fluid Blob Movie

Eventual symmeterising about the location of the point charge, here
E = −2π at z = 0
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Media File (video/avi)



3.5 Numerical results as ε(0) ≈ R0 (cont.)

Placing electric charge close to the initial boundary e.g. ε(0) = 0.8,R0 = 1
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4.1 Remarks

• Superimposing sink & electric charge, extracting all fluid from a
deformed circular blob?

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Cusp formation at time t∗ ≈ 1.22

Q = −1
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Q = −1, E = −2π

• Flow stable for point charge E < 0, symmeterising effect about its
location

• ∂Ω(t) remains smooth for flows driven by solely by electric point
charge

• Possible applications in (i) theory of fluid flows in microfluidic devices
- manipulation of fluid blobs via electric fields, (ii) fluid extraction
problems - prolonging cusps (contamination)
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