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Abstract

Unsteady propagating bubbles in an unbounded Hele-Shaw cell are considered nu-
merically in the case of zero surface tension. The instability of elliptical bubbles and
their evolution toward a stable circular boundary, with speed twice that of the fluid
speed at infinity, is studied numerically and by stability analysis. Numerical simu-
lations of bubbles demonstrate that the important role played by singularities of the
Schwarz function of the bubble boundary in determining the evolution of the bubble.
When the singularity lies close to the initial bubble, two types of topological change are
observed: (i) bubble splitting into multiple bubbles and (ii) a finite fluid blob pinching
off inside the bubble region.

Key words: Hele-Shaw flows, free boundary problems, complex variable methods.

1 Introduction

Hele-Shaw flows describe the motion of a viscous fluid sandwiched in a thin gap between
two parallel plates. Since the equations of Hele-Shaw flows are analogous to the equations
of two dimensional (2D) flow in porous media, the solutions and dynamics of free boundary
problems in Hele-Shaw flows have attracted a great deal of interest. Moreover, Hele-Shaw
free boundary flows have revealed unexpected connections to other fields of mathematics and
its applications, for example integrable systems [11, 27] and random matrices [26].

The evolution of the free boundary separating viscous fluid from a region of inviscid fluid
(i.e. a bubble) has been an active area of research interest due to physical applications
such as oil extraction, a study which gave rise to the Polubarinova-Galin equation [29, 10],
where analytical solutions were found for a parametric complex variable polynomial map.
The motion of travelling interfaces were considered by Taylor and Saffman [30, 37] in the
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form of infinitely long travelling fingers constrained by a channel in a Hele-Shaw cell, and
travelling bubbles in a channel with a steady uniform background flow [30, 41, 37]. In both
cases mathematical analysis revealed a continuous family of possible solutions, each member
occupying a different width of the channel. However, in experiments, the observed finger is
half the channel width [37]; the selection of such can be calculated by introducing surface
tension T and then taking the limit as T tends to zero [41, 33, 15]. More recently, the
selection of particular solutions of the solution family has been proposed as a fundamental
stability property of zero surface tension (ZST) Hele-Shaw flows [25, 43]. That selection is
determined entirely by the ZST dynamics has led to much debate in the literature [31, 23,
5, 2, 24, 15]. Moreover, the ZST problem is ill-posed in the sense that small perturbations
may cause large effects in the resulting interface evolution [32, 35]. The present work uses
numerical smoothing to regularise the problem enabling convergent numerical results to be
computed. The choice to use smoothing rather than surface tension offers an alternative way
to understand the selection problem for bubbles in an unbounded Hele-Shaw cell.

Bubble breakup and the associated change in topology has also been of interest in Hele-
Shaw flows [3, 18, 7, 9]. The breakup of a stream of bubbles rising in a Hele-Shaw cell has
also been considered experimentally [20]. The simplest case of the breakup of a single bubble
travelling in an unbounded Hele-Shaw cell appears not to have been studied previously and
is considered here for various initial bubble shapes in the case of ZST. It is shown that
singularities of the Schwarz function of the initial interface play an important role in the
evolution of the interface, in that the bubble ‘avoids’ contact with the singular point.

Many regularised problems of Hele-Shaw flows, e.g. flows including effects such as surface
tension or kinetic undercooling, have invited numerical solutions of the free boundary prob-
lem [22, 14, 8, 12]. Many formulations of the numerical methods are based on boundary
integral equations due to the simplicity of the underlying equations, where, for example, a
spectrally accurate spatial discretisation can be employed [12]. In many cases, the boundary
integral equations are formulated using Green’s second identity and letting the point of ob-
servation approach the interface between the two fluids [14]. Another popular method used
to formulate an integral equation on the free boundary is the vortex sheet method [39, 6].
The approach taken in the present work is also to formulate as a boundary integral equation
in the complex plane using Cauchy’s integral formula.

This paper is organised as follows. The problem is formulated in Sec. 2 and a brief
background on the Taylor-Saffman bubble in an unbounded cell is given. The numerical
procedure is described in Sec. 3. Numerical results are discussed in Sec. 4 and a stability
analysis of elliptical bubbles is presented in Sec. 5, before ending with some concluding
remarks in Sec. 6.

2 Mathematical model

The motion of the interface ∂Ω(t) is determined by hydrodynamics with the fluid occupying
an infinite domain Ω(t) punctured by a simply connected ‘air’ bubble of constant pressure
and boundary ∂Ω(t). In dimensionless form we write the 2D velocity vector as u = ∇φ.
Considering conservation of mass, ∇ · u = 0, the governing equations for the resulting free
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boundary problem are

∇2φ = 0, (x, y) ∈ Ω(t), (1a)

φ = 0, (x, y) ∈ ∂Ω(t), (1b)

vn =
∂φ

∂n
, (x, y) ∈ ∂Ω(t), (1c)

where φ(x, y, t) is a real harmonic function in Ω(t), vn is the normal velocity of ∂Ω(t) and n
the outward pointing unit normal vector on ∂Ω(t) relative to the bubble region. Here, ∂/∂n
denotes the derivative in the normal direction, i.e. ∂/∂n = n·∇. For a bubble in the presence
of a uniform steady background flow with speed V , the above problem is supplemented by
the condition

φ→ V x, as x, y → ±∞, (2)

i.e., without loss of generality, a uniform flow parallel to the x-axis. Therefore, due to
the pressure gradient the bubble translates downstream at speed U(t) which needs to be
determined along with the bubble shape ∂Ω(t). Equations (1b) and (1c) represent the
dynamic and kinematic boundary conditions, respectively.

Setting z = x+iy, the free boundary problem described by (1) and (2) can be reformulated
using complex variable methods and the Schwarz function, S(z, t), of the interface in order
to find exact solutions. The Schwarz function is an analytic function in the neighbourhood
of ∂Ω(t) such that z = S(z, t) on ∂Ω(t), where the bar denotes complex conjugation. The
governing equation derived from (1) given by

∂w

∂z
=

1

2

∂S
∂t
, (3)

is known as the Schwarz function equation, where w = φ + iψ is the complex potential of
the flow and ψ the harmonic conjugate of φ (i.e. the stream function) [13, 11].

Explicit solutions can be sometimes found by studying the singularity structure of (3)
via a time dependent conformal map from an auxiliary ζ-plane to the physical z-plane. This
gives an initial value problem in terms of the unknown time dependent parameters of the
conformal map [21, 16]. For simply connected domains describing bubbles in an unbounded
Hele-Shaw cell, either the interior or exterior of the unit ζ-disc can be mapped conformally
on to the viscous fluid region by z = f(ζ, t), where the fluid interface is given by |ζ| = 1.
Hence, the Schwarz function of the interface is defined as S = z = f(1/ζ, t), and (3) can be
analytically continued away from the interface to hold over Ω(t). This idea has been used to
derive explicit solutions, e.g. the evolution of fluid blobs due to hydrodynamic singularities
[13] or even external fields [21] and is also used here to understand the evolution of bubbles.

2.1 The Taylor-Saffman bubble in an unbounded cell

Taylor and Saffman considered the now well-known problem of translating symmetric bubbles
in a Hele-Shaw cell, in which the viscous fluid region is constrained by a parallel sided channel
[37]. They found a family of solutions governed by the bubble speed and maximum bubble
width. Previous to this, Saffman and Taylor considered the motion of an infinitely long
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bubble in the channel (the Saffman-Taylor finger), where the observed selected solution is
half the width of the channel [30].

Taylor and Saffman claim that in the case of a small bubble in a channel (or equivalently
an unbounded cell) [37], surface tension effects are comparable with changes in fluid pressure
near the bubble interface and it is the surface tension that makes the perimeter of the bubble
as short as possible, therefore making the bubble circular, which necessarily travels at speed
twice the background flow, i.e. U = 2V . Following the works of Taylor and Saffman
[30, 37], many works have been carried out on the so called selection problem numerically,
experimentally and theoretically, some of which are cited here [41, 33, 34, 25, 43] (see also
references therein).

An alternative theory in which surface tension plays no role in the selection mechanism
of a finger of half the channel width has been proposed by Mineev-Weinstein [25]. Mineev-
Weinstein uses stability analysis to show that the half-width finger is the only attractor for
time-dependent solutions which remain non-singular for all time.

The above result has recently been extended to finite bubbles travelling in a channel [43],
where it is shown that the bubble with U = 2V is selected as it is a fixed point attractor
of the ZST translating bubble problem. In an unbounded Hele-Shaw cell, or small bubble
limit in a channel geometry, this corresponds to the circular bubble. In this paper the ZST
problem for unsteady bubbles in an unbounded cell is studied numerically. The selection
problem is considered as well as cases of bubble breakup.

2.2 The elliptical bubble: a steady shape solution to the Hele-
Shaw free boundary problem

The elliptical bubble is a steady solution of the Hele-Shaw free boundary problem in an
unbounded cell, and so is any rotation of the ellipse due to the rotation invariance of steady
Hele-Shaw flows [38]. That is, the map given by

z(ζ, t) = C + eiθe
(
aζ +

b

ζ

)
(4)

is a solution to the Hele-Shaw problem, where the time-varying parameters a, b and θe are
real such that b 6= 0, and in general C is complex valued. Here, (4) represents a conformal
map from the interior of the unit ζ-disc, D = {ζ : |ζ| ≤ 1}, to the exterior of the bubble, i.e.
the flow domain Ω(t). The interface ∂Ω(t) is mapped from ∂D = {ζ : |ζ| = 1}. The speed of
the bubble can be found using the Schwarz function approach as follows. First, considering
the map (4), the Schwarz function of ∂Ω(t) is given by

S(ζ, t) = z(1/ζ, t) = C + e−iθe
(
a

ζ
+ bζ

)
. (5)

As ζ = 0 maps to infinity, from (4) we see that as z →∞

ζ =
beiθe

z − C
+O((z − C)−3), (6)
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and thus the time derivative of the Schwarz function in (5) as z →∞ is given by

∂S
∂t

(z, t) =
dC

dt
+
a

b
(z − C)

d

dt
(e−2iθe) + e−2iθe

d

dt

(a
b

(z − C)
)

+O((z − C)−1). (7)

If the background flow is given by a uniform flow of speed V , then as z → ∞ the complex
potential takes the form w = V z. Since the Schwarz function equation (3) must hold over
Ω(t), from (7), as z →∞ at O(1) and O(z)

d

dt

(
C − e−2iθe

a

b
C
)

= 2V, (8a)

d

dt

(
e−2iθe

a

b

)
= 0. (8b)

In addition to (8a) and (8b), the bubble area, A, must also be conserved where

A =

∣∣∣∣ 1

2i

∮
∂D

zzζdζ

∣∣∣∣ = π
∣∣a2 − b2

∣∣ , (9)

is calculated using the complex form of Green’s theorem. That is, |a2−b2| = A/π is constant
and together with (8b) implies that a, b and θe are constant. Employing (8b) in (8a), and
taking the real and imaginary parts gives

ĊR −
a

b

(
ĊR cos(2θe) + ĊI sin(2θe)

)
= 2V, (10a)

−ĊI −
a

b

(
ĊI cos(2θe)− ĊR sin(2θe)

)
= 0, (10b)

where CR and CI denote the real and imaginary parts of C(t), respectively. Here, the dot
denotes derivative with respect to time. Solving (10) for ĊR and ĊI , and integrating, gives

C(t) =
2V t

1− a2/b2

(
1 +

a

b
cos(2θe) + i

a

b
sin(2θe)

)
, (11)

where U = Ċ gives the bubble velocity. That is, the angle at which the bubble propagates
steadily with respect to <(z) is given by tan−1 (((a/b) sin(2θe))/(1 + (a/b) cos(2θe))), which
agrees with the result given by Tian and Vasconcelos [38]. Note that for a circular bubble
a = 0 and from (10a) and (10b) U = 2V i.e. the bubble propagates in the purely real
direction with twice the background flow speed. The stability of the steady shape elliptical
solutions are tested numerically in Sec. 4.1.

3 Numerical model

The velocity potential of the flow is decomposed as φ = φ̃ + φ̂ where the velocity potential
due to the given background flow is φ̂(z, z, t), and φ̃(z, z, t) is the potential part due to
the presence of the bubble. The velocity ũ = ∇φ̃ is a solenoidal, irrotational vector field
which describes the local evolution of the bubble interface as a result of the background flow,
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û = ∇φ̂. The total fluid velocity is given by the sum u = ũ + û. In order to solve (1), the
free boundary problem is written in terms of φ̃, i.e.

∇2φ̃ = 0, z ∈ Ω(t), (12a)

φ̃ = −φ̂, z ∈ ∂Ω(t), (12b)

vn =
∂

∂n

(
φ̃+ φ̂

)
, z ∈ ∂Ω(t), (12c)

where φ̂ = V x = V (z + z)/2 and

φ̃→ 0, as z →∞. (13)

The numerical method is to first solve (12a) and (12b) to find ṽn at any instance given Ω(t),
and then to advect the interface by the kinematic condition (12c). Explicit time notation is
suppressed for brevity in what follows.

3.1 Mathematical formulation

Equations (12a) and (12b) can be formulated as a boundary integral equation (BIE) by
considering the Cauchy transform of the complex velocity potential w̃′(z) = ũ(z)− iṽ(z) for
z ∈ ∂Ω. Here, prime denotes derivative with respect to z. The formulation and algorithm
follows previous work [16] with some modifications, which are derived here for completeness.
Since w̃′(z) is an analytic function for all z in the fluid domain, Ω, considering the Cauchy
transform and applying the Cauchy integral formula yields

1

2iπ

∫
∂Ω

ũ(z)− iṽ(z)

z − zm
dz = −1

2
(ũ(zm)− iṽ(zm)) , zm ∈ ∂Ω. (14)

Here, ∂Ω describes a simple closed contour in the complex plane. The parameterisation is
such that the contour is traversed in the anticlockwise direction and the minus sign on the
right hand side of (14) accounts for the viscous fluid region lying on the exterior (to the
right) of ∂Ω. Parameterising the interface with the arc length, s, i.e. z(s) = x(s) + iy(s)
where x2

s + y2
s = 1 (the subscript s denoting differentiation with respect to s) and taking the

unit normal, n(s) on ∂Ω, pointing into Ω, then

(ũ(s)− iṽ(s))
dz

ds
= ṽτ (s) + iṽn(s), z(s) ∈ ∂Ω, (15)

where ṽτ and ṽn denote the tangential and normal velocity of a fluid particle on the interface.
The normal and tangential vectors (n and τ) on the interface are defined as (ys,−xs) and
(xs, ys), respectively. Differentiating (12b) along the interface gives the boundary condition
in terms of tangential velocity ṽτ , i.e.

ṽτ (z) = −v̂τ (z) = − ∂

∂τ
(V x), z ∈ ∂Ω, (16)

and so ṽτ is known on ∂Ω. Using (15) and (16) allows (14) to be written in terms of the
unknown normal velocity ṽn, i.e.

−
∫ L

0

−v̂τ (s) + iṽn(s)

z(s)− z(sm)
ds = −iπ (−v̂τ (sm) + iṽn(sm))

(
dz

ds
(sm)

)−1

, (17)
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where L denotes the total arc length of the contour ∂Ω and the integral on the left hand
side is a Cauchy principle value integral.

Equation (17) satisfies (12a) and (12b), hence, one can solve the real part of (17) for ṽn
from which the total fluid velocity u = ũ + û can be constructed on ∂Ω. When the fluid
velocity is found, the interface is advected according to (12c), i.e.

dx

dt
= u. (18)

3.2 Numerical procedure

At time t = tj, the numerical solution to the BIE (17) is considered when the interface ∂Ω
has total arc length L. All quantities are taken at time tj unless stated otherwise. On the
interval [0, L], N + 1 equispaced mesh points are constructed such that

S1 = 0, (19a)

Si+1 = Si + ∆S, i =, 1 . . . , N, (19b)

where the mesh size is given by

∆S =
L

N
=
SN+1

N
, (20)

and N midpoints are defined as

Si+ 1
2

= Si +
∆S

2
. (21)

Equation (17) is re-arranged in the form

−
∫ L

0

iṽn(s)

z(s)− z(sm)
ds− πṽn(sm)

(
dz

ds
(sm)

)−1

= g(z(sm)), (22)

where g(z(sm)) is a known function given by

g(z(sm)) = −
∫ L

0

v̂τ (s)

z(s)− z(sm)
ds+ iπv̂τ (sm)

(
dz

ds
(sm)

)−1

, (23)

and sm is chosen to coincide with Sm+ 1
2
.

New variables for the discretisation of ∂Ω are defined as

Zi = z(Si), i = 1, . . . , N + 1, (24)

and the unknown quantities to be found are

αi = ṽn(Si), i = 1, . . . , N + 1. (25)

The periodic conditions ZN+1 = Z1 and αN+1 = α1 hold since ∂Ω is assumed to be a simple
closed contour at each time step. Let the right hand side of (22) be Gm = g(Zm+ 1

2
). The

quantity ṽn(sm) = ṽn(Sm+ 1
2
) = αm+ 1

2
is approximated linearly between neighbouring points,

i.e.

αm+ 1
2

=
1

Zm+1 − Zm

[(
Zm+1 − Zm+ 1

2

)
αm +

(
Zm+ 1

2
− Zm

)
αm+1

]
. (26)
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The integrals in (22) are approximated using the trapezium rule. Since the singular points
sm are taken to coincide with the midpoints of the mesh, Sm+ 1

2
, the integral is evaluated

by ignoring the singularities with an accuracy no less than that of a non-singular integral
[42, 4]. Taking into account the periodicity on the interface, the integral in discrete form is
approximated as

−
∫ L

0

iṽn(s)

z(s)− z(sm)
ds ≈

N∑
j=1

iαj
Zj − Zm+ 1

2

∆S, m = 1, . . . , N. (27)

The derivatives in (22), i.e. zs(sm), are approximated via a fourth order centred finite
difference formula. Thus, employing (26) and (27) in (22), and taking the real part, gives a
system of N linear equations for the unknown αi, for i = 1, . . . , N , which can be written in
matrix form as

Mα = G. (28)

The matrix equation (28) is solved giving the normal velocity (the vector α) of fluid particles
on ∂Ω coinciding with the mesh at time t = tj.

Since in the case of translating bubbles, the area of the bubble is conserved in time, the
solution α is purged at each time step following the method given by Kelly and Hinch [14],
where we set

αi = αi −
(∮

∂Ω

ṽn(s) ds

)(∮
∂Ω

ds

)−1

≈ αi −
1

L

N∑
i=1

αi, i = 1, . . . , N, (29)

ensuring the total fluid flux across ∂Ω due to the velocity field ũ is zero. Largely, the use of
(29) had little effect since the solution to (28) conserved mass to a good approximation.

It remains to compute the evolution of ∂Ω in time given the vector α. The evolution can
be approximated at the following time step tj+1 = tj + ∆t as

z(Si(tj + ∆t), tj + ∆t) ≈ z(Si, tj) + ∆t

[
∂z

∂s
(Si, tj)

dSi
dt

+
∂z

∂t
(Si, tj)

]
= z(Si, tj) + ∆tż(Si, tj),

(30)

where ż is the complex velocity of the interface. Since (12c) must be satisfied, and the
interface evolves according to its normal velocity, the interface velocity is reconstructed from
the total fluid velocity u(Si, t) = ũ(Si, t) + û(Si, t). The mesh points Zi = z(Si, t) ∈ ∂Ω can
be treated as Lagrangian particles and (30) is written in the form

<(Znew
i ) = <(Zi) + u(Si, tj)∆t, i = 1, . . . , N, (31)

=(Znew
i ) = =(Zi) + v(Si, tj)∆t, i = 1, . . . , N, (32)

where Znew
i ∈ ∂Ωnew, and ∂Ωnew is the new position of the interface ∂Ω at t = tj + ∆t. A

modified Euler (i.e. a second order Runge-Kutta) method is employed, as by Baker [4], such
that the time stepping method is approximately O((∆t)2) accurate.

Once ∂Ωnew is found, the new total arc length Lnew is computed from the mesh points
Znew
i , i = 1, . . . , N + 1, which are then redistributed to an equispaced mesh by cubic spline
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interpolation. Setting Zi = Znew
i (i.e. ∂Ω = ∂Ωnew, L = Lnew) and applying the above

procedure again completes the algorithm for computing the interface at later times. Since
the time stepping procedure is explicit in time, a stability constraint applies [6] in the form
∆t ≤ c(∆S)n, for some positive number n.

3.3 Numerical instabilities

The numerical method gives rise to ‘spurious oscilations’ similar to those reported in other
BIE methods [19, 1, 6, 17], and these errors may grow in time as the interface evolves [1].

Atchison and Howison [1] note the introduction of small wavelength instabilities into the
solution of the numerical problem are a result of rounding errors and approximate solution
techniques, and show that the frequency of the error oscillations scale with N . The difficulty
being the more mesh points that are included (i.e. increasing N) shorter wavelength errors
are permitted, and it is these which grow fastest in time [30, 1]. To eliminate oscillatory
errors the solution requires filtering. In the current algorithm, filtering is carried out at each
time step by solving a modified matrix equation which gives a sufficiently smooth solution
as required by the physical problem. Specifically (28) is modified to [28, 40]

(M>M + γH)α = M>G. (33)

Here H is the matrix representation of a third order difference operator [40] and γ denotes the
smoothing parameter, where 0 < γ <∞ such that (33) gives a sufficiently accurate solution
compared with an otherwise oscillatory solution from (28). Usually, increasing values of
γ increases the smoothing effect on the solution. The filtering technique employed here is
analogous to that of spectral methods [6], for example, where the Fourier series is truncated
and modes for the high frequency, small amplitude oscillations are neglected.

3.4 Numerical tests

The numerical method outlined above was tested against some exact, known solutions of the
Hele-Shaw flow problem. These include the growth of finite fluid blobs by hydrodynamic
singularities, e.g. sources or sinks (where the background flow potential φ̂ is modified ap-
propriately), and for flows driven by external background fields [16]. The numerical results
give excellent agreement with the exact solutions. Furthermore, in the unstable regime, e.g.
when the interface (given by a polynomial map) of a fluid blob is driven by a sink, the
numerical solutions agree with exact solutions before cusp formation. In all the numerical
results presented here, the smoothing parameter γ = 1 gives sufficiently smooth and accurate
results. Also, the results are independent of this choice of γ i.e. doubling or halving of γ
leaves the numerical results essentially unchanged.

The numerical method is tested against the exact solution for a translating circular
bubble in a uniform flow given in (11). In the case of a circular bubble, a = 0 and U = 2V .
The background flow is given by (12c), i.e. û = (V, 0). The exact normal velocity on
the interface is u · n = (u, v) · (ys,−xs), where the circular interface is parametrised with
arc length, traversed in the anticlockwise direction. Subtracting the velocity due to the
background flow on the interface gives the exact solution for the normal velocity due to the
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Figure 1: The decrease in RMSE of the normal velocity of a circular bubble of unit radius
as the number of mesh points is increased from N = 100 to N = 5000. In all tests, the
algorithm is run for one fixed time step ∆t = 0.001.

bubble, i.e.

Ṽn = (u− û) · n
= ((2V, 0)− (V, 0)) · (ys,−xs)
= V ys

= V cos Θ,

(34)

where s ≡ Θ for a circular bubble of unit radius. The numerical solution of (22) is denoted
by ṽn. Fig. 1 shows the convergence of the solution ṽn towards the exact solution Ṽn, as
the number of mesh points N is increased, over one time step. The root mean square error
(RMSE) is given by

1

N


√√√√ N∑

i

[
ṽn(Si)− Ṽn(Si)

]2

 . (35)

Here, the background flow speed is set to be V = 1. As expected, the errors decrease
approximately as O(1/N3), as measured by the RMSE. This is because the largest errors
occur in approximating the integral in (22) by the trapezium rule.

The effect of filtering on the numerical solution is presented in Fig. 2, where the solution
ṽn is given as a function of the angle Θ = arg(z(s)), for a circular bubble translating in a
uniform flow. In the absence of filtering, the errors in approximating the right hand side
of (22) give oscillatory solution about the corresponding smooth solution. When the filter

10



−1

−0.5

0

0.5

1

0 π/2 π 3π/2 2π

Θ

ṽ
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Figure 2: Oscillations of (unfiltered) numerical solution ṽn after one time step with N = 140,
∆t = 0.001, superimposed on the smooth (filtered) solution where the smoothing parameter
is γ = 0 (unfiltered) and γ = 1 (filtered), respectively. The solution presented corresponds
to a circular bubble of unit radius in a uniform background flow with V = 1.

is applied (by choosing a finite, non-zero value of γ), the smooth solution gives excellent
agreement with the expected solution, in this case given by Ṽn = V ys = cos(Θ).

4 Bubbles in a Hele-Shaw cell: Numerical results

4.1 Attraction of elliptical bubbles to a circular bubble

Consider initial elliptical bubbles given by the conformal map (4) from D in the ζ-plane, to
the exterior of the bubble, Ω(0), in the z-plane, in an unbounded Hele-Shaw cell. The time
evolution of the interface produced by the numerical results is given in Fig. 3 for three values
of θe, all with same area and aspect ratio. In all cases, the bubble evolves rapidly (within
a distance of 2–3 major axis lengths) to the circular solution, and then translates steadily
with speed U = 2V .

The velocity of the centre of mass of the bubble can be calculated given the normal
velocity on the interface by [36]

żcm =
1

A

∫ L

0

zu.n ds, (36)

where żcm denotes the velocity of the of the centre of mass in complex form. The speed of
the centre of mass can thus be calculated as vcm = |żcm|. The velocity in (36) is computed
numerically at each time step. The real and imaginary (i.e. x and y) components of żcm,
and the speed of the centre of mass vcm are plotted as functions of time in Fig. 4. As
expected, elliptical bubbles with semi-major axis aligned in the direction of the background
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(b) θe = π
4
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(c) θe = π
2

Figure 3: Evolution of initially elliptical bubbles with semi-major axis inclined at three
different angles θe to the positive real axis. In each case the interface evolves into a circle.
The initial interface is given by (4) with a = 1, b = 1/3 and C = 0. The results presented are
for N = 400, ∆t = 0.001 and V = 1. The corresponding time of the interface are displayed
below and above the snapshots.

12



flow (θe = 0) decelerate to the steady solution U = 2V as they become circular. It was noted
by Taylor and Saffman [37] that bubbles elongated in the direction of the flow travel with
increased speed i.e. greater than 2V . Elliptical bubbles with semi-major axis perpendicular
to the background flow accelerate (c.f. Fig. 4, θe = π/2) to U = 2V while becoming circular.

If 0 < θe < π/2 then the bubble interface adjusts to the steady circular solution as
=(żcm) → 0. Therefore, starting with initially elliptical interface with arbitrary inclination
to the uniform background flow, the bubble evolves to the steady circular solution as t→∞
travelling with speed U = 2V , parallel to the background flow —see curves in Fig. 4 with
θe = π/4.

It is interesting to note that for a short time after t = 0 the bubble speed adjusts only
slowly as the interface remains approximately elliptical before instability sets in. Figs. 5(a)
and 5(b) show a close-up of the evolution of vcm(t) for small time and corresponding snapshots
of the interface, respectively. This delay before instability is possibly a numerical effect and
is now investigated.

Fig. 6 shows dependence of bubble speed for various values of mesh points, N . When
N is increased (time step ∆t remaining fixed), the solution approaches the circular solution
more rapidly. This may seem counter intuitive, however Atchison and Howison [1] speculate
that increasing N introduces shorter wavelength instabilities which grow the fastest, thus
increasing resolution leads to a more rapid growth in instability. This result holds true for
increasing N with ∆t/∆S fixed.

4.2 Initial interface leading to bubble breakup

Here we consider bubbles with ‘simple’ but non-elliptical initial fluid-bubble interfaces in
uniform background flow, and show how the initial geometry of the bubble may predict
breakup by considering singularities of the Schwarz function of the initial interface.

Recall, the evolution of the interface can be expressed in complex form by the Schwarz
function equation (3). It is well known (as demonstrated later in this section) that (3) implies
singularities of the Schwarz function of the initial map remain fixed in the fluid domain and
that these cannot cross the boundary of the bubble. This will lead to bubble deformation
as the singular points are approached. This is investigated numerically.

Consider a bubble in a uniform flow with initial interface given by the rational map

z =
a0 + a1ζ + a2ζ

2

ζ + b0

, (37)

which for particular parameters ai and bi, i = 0, 1, 2, gives a univalent map from D to the
exterior of a crescent shaped bubble. Here we will take ai, bi, to be real valued so that
the bubble is symmetric about <(z). For simplicity, we fix the coefficients a0 = −0.375,
a1 = −0.15, a2 = 0.25 and vary b0 in order to generate different initial shapes. It is required
that |b0| < 1 for univalency. The map (37) has a singularity at ζ = −b0, which is mapped to
infinity in the z-plane.

Since ζζ = 1 on ∂D, the Schwarz function of the interface, ∂Ω(0), is given by

S =
a0ζ

2 + a1ζ + a2

ζ + b0ζ2
. (38)
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Figure 4: Velocity of the centre of mass in the (a) real and (b) imaginary directions of the
numerical solutions presented in Fig. 3 for the different elevation angles, θe, of elliptical
bubbles. In (c) the overall speed vcm is displayed.
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Figure 5: Small time evolution of an initially elliptical bubble. The initial interface is given
by (4) with a = 1, b = 1/3, C = 0 and with θe = 0. The results presented are for N = 400,
∆t = 0.001 and V = 1. Evolution of the speed of the centre of mass of the bubble is shown
in (a) with snapshots of the bubble interface shown in (b).
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Figure 6: Effect of increasing the number of mesh points, N , on vcm of an initially elliptical
bubble as the interface evolves to the stable circular bubble travelling with speed U = 2V .
The initial bubble is given by (4) with a = 1, b = 1/3, C = 0 and θe = 0. For the results
presented, ∆t = 0.001 and the background flow has speed V = 1.

The function (38) has two singularities. Here, the only relevant singularity is at ζ = 0 since
it is the only one that lies inside D, i.e. it is mapped to the fluid domain as displayed in
Fig. 7. Note that this singular point is downstream of the initial bubble position in the
z-plane.

As ζ → 0, the map (37) gives

z =
a0

b0

(
1 +

[
a1

a0

− 1

b0

]
ζ

)
+O(ζ2), (39)

hence, expanding S to leading order yields

S =
a2

ζ
+ (a1 − a2b0) +O(ζ)

=
a0a2

b0

(
a1

a0

− 1

b0

)
1

(z − a0/b0)
+ (a1 − a2b0) +O(z − a0/b0).

(40)

It is clear that the Schwarz function has a singularity at the point z0 = a0/b0 = z(0), as
expected. Differentiating (40) with respect to time gives

∂S
∂t

=

(
a0a2

b0

[
a1

a0

− 1

b0

])
d

dt

(
a0

b0

)
1

(z − z0)2
+
d

dt

(
a0a2

b0

[
a1

a0

− 1

b0

])
1

(z − z0)

+
d

dt
(a1 − a2b0) +O(z − z0), (41)
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Figure 7: Initial bubble shape given by (37), and location of the Schwarz function singularity
(38) with a0 = −0.375, a1 = 0, a1 = −0.15, a2 = 0.25, and b0 = −0.5. The singularity is
marked by a cross and is mapped from the interior of D to the initial fluid domain, Ω(0).

i.e. Ṡ has singularities at z0 of first and second order due to the initial shape describing
the interface of the bubble. Since the background flow is a steady uniform flow (no sources,
sinks or dipoles), ∂zw is analytic in Ω(t), and since (3) holds away from ∂Ω(t), (41) implies
d ((a1a2/b0)− (a0a2/b

2
0)) /dt = 0 and d(a0/b0)/dt = 0. The latter implies ż0 = 0, i.e. z0 is

constant, and so the singularity of S remains stationary. Since this point must always lie
in the fluid domain, the bubble boundary cannot cross z0. That is, the interface will evolve
such that z0 is avoided.

Fig. 8 shows the evolution of initial crescent shaped bubbles given by the map (37) for
various values of b0, where the background flow has speed V = 1. In all cases the front
and rear of the bubble interface become progressively close until they collide after which it is
expected that the bubble will ‘split’ symmetrically. We do not extend the numerical solutions
beyond this time. As the front of the initial bubble becomes less convex with respect to the
interior of the bubble (and direction of the flow) the bubble splits at more than one location,
as can be seen in Fig. 8(e). Furthermore, as the front of the initial bubble shape changes from
convex to concave, the numerical results suggest the bubble no longer splits, as is the case
of Fig. 9 where b0 = −0.1. In the same limit of (40) the singularity of S is located further
away from the starting location of the bubble. Instead of splitting, the bubble evolves to
a circle, similar to the behaviour of the elliptical bubble observed in Sec. 4.2 (which have
Schwarz function singularities at infinity). That is, in Fig. 9 the interface passes over the
location of the singularity of the Schwarz function from the initial interface. Mathematically
this is not permitted but it may be explained because of numerical instabilities which force
the solution rapidly to a circular interface and that numerical effects (e.g. instabilities and
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filtering) cause information on the initial Schwarz function singularity to be lost. The larger
the distance the bubble has to travel before encountering the Schwarz function singularity
the greater these numerical effects are.

Now consider an initially crescent shaped bubble which is asymmetric in <(z). Fig. 10
shows the evolution of a bubble with initial interface given by (37) rotated through an angle
θ = −π/4 (i.e. we replace z by e−iθz) with b0 = −0.8. Although the singularity of the
corresponding Schwarz function of the initial interface lies directly downstream of a portion
of the bubble, it can be seen that the bubble evolves to the circular solution in a manner so
as to avoid contact with the singularity z0. If the angle of rotation is reduced to θ = −π/8,
as in Fig. 11, the bubble will split asymmetrically before the interface reaches z0.

It is possible to use (37) to find an exact solution for the evolution of a Hele-Shaw bubble.
The four unknown parameters a0, a1, a2 and b0 are governed by four ODEs, two of which come
from (41); namely that the strength and location of the singularity of the Schwarz function
at z = z0 are constant. A further two independent ODEs can be derived by considering the
behaviour of the Schwarz function (38) as z →∞ and applying (3) with ∂zw → V +O(z−2)
in the same limit. Equating terms of O(1) and O(z−1) yields the additional two ODEs,
the latter of which is equivalent to bubble area conservation (see also Sec. 5 for a similar
derivation). These ODEs can then be integrated numerically to find a0, a1, a2 and b0 given
their initial values. This has, in fact, been done and the results (not shown) differ from those
in Figs. 8–10: while they confirm that the Schwarz function singularity plays an important
role in the bubble evolution in that they are avoided by the bubble boundary, cusps form and
the solution breaks down in finite time. It is evident that the present numerical procedure
provides sufficient smoothing to prevent such cusps forming and that instead breakdown
here occurs via bubble breakup.

4.3 Finite blob pinch off within a bubble

Here we present numerical results showing a different type of change in bubble topology.
Consider the map given by

z =
α0 + α1ζ

(ζ + β1)(ζ + β2)
, (42)

giving a crescent shape shown by the dashed line in Fig. 12(a). The coefficients αi, βi,
i = 0, 1, 2, are real and such that (42) maps D to the exterior of the bubble. Here, the map
has a singular point lying inside D, namely ζ = −β1 where −1 < β1 < 1 so that the map
remains univalent on D, and one singular point outside D at ζ = −β2, i.e. |β2| > 1.

The Schwarz function of ∂Ω(t) in this case is given by

S =
α0ζ + α1

(1 + β1ζ)(1 + β2ζ)
, (43)

which gives one singularity for S in the fluid domain at position z(−1/β2) lying on the real
axis, downstream of the initial bubble, shown in Fig. 12(a) for t = 0, marked by a cross.
Again, we denote this point by z0, and by a similar argument presented in Sec. 4.3, z0 can
be shown to be constant.

Fig. 12 shows the evolution of a bubble with initial interface given by (42) with α0 =
α1 = −0.25, β1 = −0.3 and β2 = 1.15 subject to a background uniform flow of unit speed,
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(a) b0 = −0.6, te = 0.4875
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(b) b0 = −0.5, te = 0.405
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(c) b0 = −0.4, te = 0.43
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(d) b0 = −0.3, te = 0.43
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(e) b0 = −0.2, te = 0.555

Figure 8: Snapshots of the bubble interface at the initial time t = 0 (dashed) and when
the interface collides with itself at time t = te (solid). Here, the results presented are for
N = 400, ∆t = 0.0005 and V = 1.
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Figure 9: Evolution of an initially crescent shaped bubble given by the map (37) with
b0 = −0.1 and corresponding Schwarz function singularity in Ω(0) is marked by a cross. The
results presented are for N = 400, ∆t = 0.0005 and V = 1. The corresponding time of the
interface are displayed below and above the snapshots.
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Figure 10: Evolution of an initially crescent shaped bubble given by the map (37) with
b0 = −0.8 rotated by angle θe = −π/4. The results presented are for N = 400, ∆t = 0.0005
and V = 1. The corresponding time of the interface are displayed below and above the
snapshots. The Schwarz function singularity in Ω(0) is marked by a cross.
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Figure 11: Snapshot of the bubble interface at t = 0 (dashed) and t = 0.445 (solid), where
the initial interface is given by the map (37) with b0 = −0.8, rotated by angle θe = −π/8.
The corresponding Schwarz function singularity in Ω(0) is marked by a cross. The results
presented are for N = 400, ∆t = 0.0005 and V = 1.

i.e. V = 1. As the bubble translates downstream, the ‘horns’ of the crescent become
smoother and begin to close at the front of the bubble. Subsequently, a region of fluid is
trapped by the engulfing bubble and the interface of the bubble collides with itself, beyond
which it is expected the trapped fluid blob pinches off and the bubble forms a ring around
the interior, disconnected fluid blob. The interior blob is centred on the Schwarz functions
singularity, z0 = z(−1/β2) —see Fig. 12(b). Since the pressure in the bubble region remains
constant, the blob inside the bubble is expected to remain stationary once pinched off as
no information of the background flow reaches its interface, whilst the outer interface is
expected to translate downstream until the interior blob collides with the rear of the bubble,
eventually reattaching with the main body of fluid. As t→∞, we speculate that the bubble
attracts to the aforementioned circular solution, travelling at speed twice the background
flow.

5 Stability of elliptical bubbles

As noted in Sec. 1, Vasconcelos and Mineev-Weinstein [43] have given a stability analysis
for time-dependent solutions (which survive for all time) describing bubbles in finite width
channels. They show that the bubble with speed U = 2V is the only stable attractor for
these solutions. In the small bubble limit, in which the bubble is far from the channel walls,
this corresponds to a circular bubble (in an unbounded Hele-Shaw cell). In this section an
alternative stability analysis is given in which an elliptical bubble is shown to be unstable to
a particular type of perturbation (this being sufficient to guarantee that it is unstable) and
that it evolves toward a circle.
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Figure 12: Snapshot of bubble interface at t = 0 (dashed) and t = 0.06625 (solid), where
the initial interface is given by map (42) with α0 = −1, α1 = −1, β1 = −0.3 and β2 = 1.15.
The corresponding Schwarz function singularity in Ω(0) is marked by a cross. Close-up of
the blob pinched off by the surrounding bubble is shown in (b). Results are presented for
N = 400, ∆t = 0.00025 and V = 1.

Consider the stability of the steady translating elliptical bubble solutions to a certain
class of perturbations having the form

z = c+ aζ +
b

ζ − ε
, (44)

where, now, the exterior of the unit ζ-disc is mapped to the exterior of the perturbed elliptical
bubble (i.e. the flow domain Ω(t)), and the time-varying parameters are such that ε is small,
a 6= 0, b and c are real. If ε ≡ 0, note that (44) is the map describing an elliptical bubble.
The Schwarz function of the interface is given by

S = c+
a

ζ
− b

ε
+
b

ε

1

1− εζ
. (45)

In the limit z →∞ it can be shown from (44) and (45) that

S = c− b

ε
+

1

z

(
a2 − ab

ε2

)
+O(z−2). (46)

Applying the Schwarz function equation (3), as z →∞, yields

d

dt

(
c− b

ε

)
+
d

dt

(
a2 − ab

ε2

)
1

z
+O(z−2) = 2V. (47)

22



The equality of the above equation gives at O(1) and O(z−1)

d

dt

(
c− b

ε

)
= 2V, (48a)

d

dt

(
a2 − ab

ε2

)
= 0. (48b)

Now, S has a singularity lying at ζ = 1/ε exterior to the unit ζ-circle (i.e. in the pre-image
fluid domain), about which the Schwarz function has leading order behaviour as z → z0 of
the form

S = −
(
ab

ε2
− b2

(1− ε2)2

)
1

(z − z0)
+ c+ aε− b

ε

− b2ε

a(1− ε2)3 − bε2(1− ε2)
+O(z − z0), (49)

where z0 = z(ε−1) = c+ a/ε+ bε/(1− ε2). Differentiating with respect to time yields

∂S
∂t

= −dz0

dt

(
ab

ε2
− b2

(1− ε2)2

)
1

(z − z0)2 −
d

dt

(
ab

ε2
− b2

(1− ε2)2

)
1

(z − z0)

+
d

dt

(
c+ aε− b

ε
− b2ε

a(1− ε2)3 − bε2(1− ε2)

)
+O(z − z0). (50)

Since the velocity potential must be analytic in the fluid domain Ω(t), i.e. there exist no
hydrodynamic singularities in the flow, and since the Schwarz function equation, Ṡ = 2∂zw,
must hold over the fluid domain, then as ζ → 1/ε

d

dt

(
ab

ε2
− b2

(1− ε2)2

)
= 0, (51a)

d

dt

(
c+

a

ε
+

bε

1− ε2

)
= 0. (51b)

Along with the above equations, the area of the bubble must also be conserved. The area
can be calculated using Green’s theorem, with integration around the unit ζ-circle to yield

A =
1

2i

∮
∂D

zzζdζ = π

(
a2 − b2

(1− ε2)2

)
. (52)

Note that (51a) is a linear combination of (48b) and (52), and so provides no new infor-
mation on the evolution of the parameters ε, a, b and c. Therefore, there are four equations,
namely (48a), (48b), (51b) and (52) governing the evolution of the map (44) for the perturbed
ellipse.

In the case of =(ε) 6= 0, b is no longer real in general and the set of equations governing
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Figure 13: Evolution of an initially perturbed elliptical bubble given by the map (44) with
c(0) = 0, a(0) = 1, b(0) = 1/3, ε = −0.3803 and the background flow with speed V = 1.
The cross denotes the location of the Schwarz function singularity of the initial interface.
The corresponding time of the interface are displayed below and above the snapshots.

the evolution of the time dependent parametric map (44) are

d

dt

(
c− b

ε

)
= 2V, (53a)

d

dt

(
a2 − ab

ε2

)
= 0, (53b)

d

dt

(
c+

a

ε
+

bε

1− |ε|2

)
= 0, (53c)

a2 − |b|2

(1− |ε|2)2
=
A

π
. (53d)

Again, there exists an extra equation corresponding to (51a), namely

d

dt

(
ab

ε2
− |b|2

(1− |ε|2)2

)
= 0. (54)

It can be seen that (54) is a linear combination of (53b) and (53d). Therefore, (53) gives a
set of three complex equations and one real equation for the complex parameters c, b and
ε, and the real parameter a. Now, as the bubble travels in the positive <(z) direction, as
t→∞, c→∞. From (53c), ε→ 0 as t→∞ to balance c terms. The alternative possibility
of a and b → ∞ can be ruled out by virtue of (53b) and (53d). Equation (53b) in turn
implies that b → 0 and hence (53d) implies a → constant as t → ∞. Using (53a), (53c)
further implies that ε → −a/ (c+ [bε/(1− |ε|2)]−K) ∼ −a/t, where K is constant, i.e. ε
approaches zero from below. Equation (53b) implies that b ∼ ε2 as t → ∞, that is b must
approach zero at least as t−2 as t→∞. Finally, (53a) implies c→ 2V t as t→∞. Thus the
bubble becomes circular, travelling at speed twice the background flow.

Fig. 13 shows the evolution of an initially elliptical, perturbed bubble given by the map
(44) where the time dependent coefficients are found by solving the nonlinear set of coupled
equations (53a), (53b), (53c) and (53d), numerically.

The numerical simulations in Sec. 4.1 demonstrate the evolution of an initially elliptical
bubble to a circular bubble where the transition of shape takes place over a short distance,
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Figure 14: Evolution of an initially perturbed elliptical bubble given by (44) with c(0) = 0,
a(0) = 1, b(0) = 1/3 and ε(0) = −0.2113. Comparison between numerical simulation (solid)
and solution to the set of equations (53) (dashed) are shown at multiple snapshots. The
corresponding times are displayed below and above the interface snapshot pairs. Numerical
results (solid) are presented for N = 200, ∆t = 0.001. The background flow speed is set to
V = 1.

no more than 2–3 semi-major axis lengths of the initial bubble shape. That is, an otherwise
steady shape solutions evolves to the circular bubble due to the numerical instabilities,
which are implicit at each time step of the numerical algorithm (c.f. Sec. 3.3). The rapid
evolution towards the steadily translating circular bubble, as soon as the numerical instability
perturb the interface, can be seen in Fig. 6. Therefore, with the added effects of numerical
instability, it is expected that numerical simulations with initial bubble interface given by
(44) would exhibit an enhanced rate of evolution to the circular bubble as compared with
evolution governed by the set of coupled equations given in (53). Figure (14) shows a
comparison between numerical results and evolution governed by the set of equations (53).
It is observed that the numerical simulation evolves to the circular bubble more quickly, as
expected. However, it is important to emphasise that in both cases, the dynamics of the
interface are such that the bubble perimeter becomes circular, i.e. the parameters b and ε of
(44) decay to zero as t→∞.

6 Conclusions

A boundary integral formulation and numerical method for the study of Hele-Shaw bubble
evolution in an unbounded cell is presented in Sec. 3.1 by considering the decomposition of
the velocity potential into the background flow plus a ‘local’ solenoidal part.

In Sec. 4.1 the numerical results demonstrate that for initially elliptical bubbles, the only
(attractive) solution as t→∞ is a circular bubble travelling at a steady speed of twice the
background flow V . Since surface tension effects are not included, the results are related to
the analytical results of Vasconcelos and Mineev-Weinstein [43] for the selection problem in
a channel geometry, where it is shown that the selected bubble also propagates with speed
2V . A stability argument in Sec. 5 based on a perturbed ellipse provides further evidence
the circular bubble with speed U = 2V as being the stable attractor. However, it should be
noted that the filtering method has a smoothing effect akin to surface tension. Thus it is
not clear if the numerical results support the ZST selection mechanism, or if the selection is
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a result of the filtering mechanism itself.
In Sec. 4.2 and 4.3 it is shown for some initial shapes of ∂Ω(0), it is possible that the

evolution of ∂Ω(t) results in one of two types of topological change. In the former, the
numerical results suggest the bubble may split, becoming multiply connected. In the latter,
the bubble encloses a region of viscous fluid, i.e. a singly connected viscous fluid domain
eventually becomes two disconnected regions. The numerical results suggest the singularities
of the Schwarz function of the initial interface play an important role on the evolution of the
interface, since mathematically the boundary cannot cross the singularity.
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