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Abstract

This paper shows that employment in cohorts of U.S. firms is

strongly influenced by aggregate conditions at the time of their

entry. Employment fluctuations of startups are pro-cyclical, they

persist into later years and cohort-level employment variations are

largely driven by differences in firm size, rather than the number

of firms. An estimated general equilibrium firm dynamics model

reveals that aggregate conditions at birth, rather than post-entry

choices, drive the majority of cohort-level employment variation, by

affecting the share of startups with high growth potential. In the

aggregate, changes in startup conditions result in large slow-moving

fluctuations in employment.
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1 Introduction

The number of firm startups in the U.S. fell sharply during the Great Re-

cession.1 Given the importance of startups for aggregate job creation, the

decline in entry might create a long-lasting drag on aggregate employment

and output. In this paper, we show that the roughly 2 million startups that

did enter during the downturn are not only less plentiful, but may also be

weaker in their potential to create jobs in the future. Specifically, we docu-

ment that firms born in cohorts with weak job creation upon entry tend to

remain persistently smaller on average, even when the aggregate economy

recovers. Underlying this pattern are changes in the types of startups with

respect to their potential to grow large. Moreover, rather than fading out

over time, decisions taken at the entry phase leave an increasingly large

footprint on the macro-economy as startups age.

Using Business Dynamics Statistics (BDS) we follow cohorts of firms,

starting from their year of entry. The data span all U.S. non-government

sectors and cover the years from 1979 until 2013. We document three

new stylized facts: (i) employment created by startups is volatile and pro-

cyclical, (ii) these variations persist to a great extent as cohorts age, sharply

contrasting with the strong mean-reversion in aggregate employment, and

(iii) the majority of variation in employment across cohorts, conditional on

age, is driven by changes in average firm size rather than in the number of

firms within cohorts.

The empirical patterns suggest that cohorts born at different stages of

the business cycle are composed of different types of firms, giving rise to

long-lasting effects. However, the composition of startups is unobserved

and variations in firm size across cohorts are also driven by post-entry de-

cisions made by a given mix of firms. To disentangle the two and to quan-

tify the impact of composition changes, we estimate a general equilibrium

firm dynamics model with aggregate uncertainty, using both aggregate and

cohort-level data. We find that, because of changes in startup composition,

the number of jobs created by a cohort is largely determined by the cyclical

state of the economy in the year of its entry.

1According to the Business Dynamic Statistics, the number of startups in 2009 was
30% below its pre-crisis level in 2006.
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In the model, firm heterogeneity stems from differences in the demand

for their products. Some firms produce “niche” goods which appeal only

to a small subset of consumers, whereas others produce goods that may

serve mass markets.2 The type of good to be produced is chosen during

the startup phase. Upon entry, demand is constrained by the size of the

firm’s consumer base, which can be expanded at the expense of a convex

marketing cost. A firm’s incentive to do so, however, depends critically on

the type of good it has chosen to produce. This generates heterogeneity

in growth profiles across startups. A coordination friction among aspiring

startups gives rise to an equilibrium with simultaneous entry of firms with

high and low growth potential.3

The composition of startups fluctuates endogenously over the business

cycle in our model. This happens because aggregate shocks affect the prof-

itability of different types of firms asymmetrically. The reason for the latter

is that firm types differ in their optimal expenditure shares devoted to vari-

ous cost components (production, entry and consumer base accumulation).

This, in turn, generates heterogeneity in the sensitivity of firms to different

shocks affecting these costs. We allow for aggregate shocks to each of the

cost categories and estimate their importance from the data.

The estimation reveals that a demand shock, which affects the costs of

consumer base accumulation, is quantitatively the most important driver

of composition fluctuations. A positive demand shock increases the values

of all firm types, but especially the values of the types producing “mass”

goods, which optimally devote a large fraction of expenditures to relaxing

their demand constraints. This induces a shift in the composition of star-

tups towards types which have the potential to grow large. Simultaneously,

aggregate expenditures on marketing increase, whereas firm profits decline.

We document external support for this mechanism by showing that, in the

2By “niche” firms we mean businesses which are not very scalable as the nature of
the good is such that the group of consumers to which they could potentially sell is
small. This definition is broad in scope and may include customized or luxury goods,
but not exclusively so.

3In the data, there are many firms that grow old but never become large. In 2007,
the fraction of firms with 10 or fewer employees among firms between 21 and 25 years
of age was about two thirds. This is also consistent with empirical evidence that many
starting entrepreneurs have low growth expectations, see Campbell and De Nardi (2009)
and Hurst and Pugsley (2011).
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data, years of high advertising expenditures and low profits give rise to

cohorts of startups that grow relatively large.

We also use the estimated model to show that macroeconomic condi-

tions at the startup phase are important in shaping aggregate fluctuations.

In particular, the contribution of startup conditions to aggregate employ-

ment fluctuations evolves similarly to the trend component of the employ-

ment rate, often discarded in business cycle analysis. Our results thus

help to understand the drivers of macroeconomic fluctuations at a more

complete range of frequencies.

An important prerequisite of our analysis is the estimation of the model

using Maximum Likelihood. It is well known that solving heterogeneous

firm models with aggregate uncertainty is a complex problem, because the

aggregate state includes entire distributions of firm-specific variables. A

methodological contribution of this paper is to design a computational

strategy which allows us to solve the model quickly, and thereby enables

us to estimate structural parameters.

The empirical results in this paper complement the analysis in Halti-

wanger, Jarmin, and Miranda (2013), who emphasize the importance of

young firms for aggregate job creation on average. Cyclical patterns in

firm entry are studied in Campbell (1998) and Lee and Mukoyama (2013),

who analyze the behavior of entering and exiting firms in the manufactur-

ing sector. Unlike these studies, we exploit the newly developed BDS data

to follow cohorts of firms as they age, which enables us to investigate how

their later job creation is affected by aggregate conditions at the time of

their birth.4

The model builds on a rapidly growing literature studying the impor-

tance of demand factors in accounting for firm-level and aggregate out-

comes. Foster, Haltiwanger, and Syverson (2016) provide evidence that

size differences between young and old plants cannot be well accounted for

by differences in technological efficiency. They estimate a model which sug-

4Further related studies include Moscarini and Postel-Vinay (2012) and Fort, Halti-
wanger, Jarmin, and Miranda (2013) who study the cyclical sensitivities of large versus
small, and younger versus older firms, but do not focus on startups or cohorts. Decker,
Haltiwanger, Jarmin, and Miranda (2013) use BDS data to document a downward trend
in the pace of business dynamism, and find that a secular decline in the number of star-
tups accounts for much of this trend decline. Bartelsman, Haltiwanger, and Scarpetta
(2009) use a cross-country data set to study average post-entry behavior of young firms.
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gests an important role for demand accumulation over the firm life cycle.

Holmes and Stevens (2012) provide empirical evidence for the presence of

“niche” and “mass” firms even within narrowly defined industries.5 Ab-

bring and Campbell (2005) estimate a model with firm-level demand shocks

and find that pre-entry scale decisions are important for the variation in

sales across existing firms. Other studies in which demand (accumulation)

plays an important role include Arkolakis (2010), Drozd and Nosal (2012),

Gourio and Rudanko (2014), Perla (2015), and Ravn, Schmitt-Grohé, and

Uribe (2006). We integrate a highly tractable notion of consumer demand

accumulation into a model with monopolistically competitive firms, en-

dogenous entry and aggregate uncertainty, as in e.g. Bilbiie, Ghironi, and

Melitz (2012).

Our model also relates to neoclassical models of firm dynamics, which

typically feature heterogeneity in firms’ technologies. A workhorse model

is presented in Hopenhayn and Rogerson (1993). Models focusing on entry

and exit decisions in the propagation of shocks include Campbell (1998),

Clementi and Palazzo (2014) and Lee and Mukoyama (2013). In contrast

to these studies, we use our general equilibrium firm dynamics model as an

empirical tool to uncover an unobservable state of the aggregate economy:

the distribution of entrant types with respect to their growth potential.

The remainder of this paper is organized as follows. Section 2 de-

scribes the data and presents empirical stylized facts. The model and its

parametrization are described in Sections 3 and 4, respectively. Section 5

presents the model results and Section 6 provides concluding remarks.

2 Empirical evidence

Startups are widely recognized to be important drivers of aggregate job

creation on average (see e.g. Haltiwanger, Jarmin, and Miranda, 2013).

This section presents three stylized facts regarding cyclical patterns of em-

ployment by young U.S. firms, both at the time of their entry and in later

5Our notion of “niche” goods is somewhat broader than the one of Holmes and
Stevens (2012), who associate the term with goods that require a high degree of cus-
tomization. We think of “niche” goods as all goods for which the attraction of new
customers, beyond a limited initial group, generates only small increases in sales.
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years. Our units of analysis are cohorts, that is, aggregates over firms born

in the same year. Three stylized facts emerge:

Fact 1. Employment created by startups is volatile and pro-cyclical.

Fact 2. Cyclical variations of startup employment persist into later years.

Fact 3. Cyclical variations of cohort-level employment are mainly driven

by fluctuations in firm size, with an increasing importance as cohorts age.

The first stylized fact complements empirical evidence presented in

Campbell (1998) and Lee and Mukoyama (2013). These authors find that

the number of new manufacturing plants and their job creation is pro-

cyclical. Our analysis, by contrast, is not confined to a single industry and

it applies to firms rather than establishments.6 Pugsley and Sahin (2014)

use the BDS to study secular changes in firm demographics and cyclical

behavior of firms conditional on age. To the best of our knowledge, our sec-

ond and third stylized facts have no precedent in the empirical literature.

The end of this section discusses potential explanations for the stylized

facts.

2.1 Data

The BDS database is based on administrative records of U.S. firms covering

98 percent of private employment. This is an important advantage over al-

ternative data sources, especially given our objective to study implications

for aggregate outcomes. We use the available annual information on the

number of firms and their job creation, broken down into age categories,

and for the period between 1979 until 2013.7

The BDS is an annual database which allows us to follow cohorts of

new firms for up to five years after they enter the economy. Thereafter,

the BDS groups firms into age categories spanning five years. Nevertheless,

6An establishment is defined as a single physical location where business is conducted.
A firm is a business organization consisting of one or more establishments that were
specified under common ownership or control.

7The data represent a snapshot taken in March of each year. Availability starts in
1976, but we drop the initial three years following Moscarini and Postel-Vinay (2012),
who cast doubt on the data quality for the years prior to 1979.
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our stylized facts also hold for averages of firms aged 6-10 and 11-15 years.

Appendix A.6 presents further evidence that our stylized facts hold beyond

the age of five, based on micro data underlying the BDS.

Cyclical indicators from sources outside the BDS are constructed as

March-to-March averages, consistent with BDS timing. Throughout the

paper, detrending is conducted using the Hodrick-Prescott (HP) filter with

a smoothing coefficient of 100 for annual data. The Appendix provides

extensive robustness exercises with respect to the detrending method (A.1),

construction of the measure of employment (A.2), the exact timing of firm

entry (A.3), as well as an analysis of establishments (A.5), rather than

firms.

2.2 The cyclicality of startup job creation

Let Ma,t be the number of firms and Na,t total employment in a cohort

of firms of age a in year t. Startups enter with age a = 0. We measure

total employment of a given cohort as the cumulative net job creation since

birth, i.e. Na,t =
∑a

i=0 NJCi,t−a+i, where NJCa,t is the net number of jobs

created in firms of age a in year t.

To visualize the cyclicality of cohort-level employment, Figure 1 dis-

plays employment levels (in deviations from the respective means) of (i)

cohorts of startups, (ii) cohorts of five year old firms, where the time series

is shifted back to the year of their birth and (iii) the aggregate employment

growth rate. Several patterns stand out. First, fluctuations in cohort-level

employment are large, with a volatility exceeding four times the volatility

of aggregate employment growth. Also, the cohort-level volatility does not

appear to diminish with age. Second, job creation by startups and aggre-

gate employment growth move together and drop during recession years,

indicated by shaded areas. The correlation coefficient between entrant em-

ployment and aggregate employment growth (GDP growth) is 0.36 (0.45).

2.3 Persistence in cohort-level employment

To quantify the persistence of cohort-level employment, we compute the

autocorrelation coefficients of total employment by startups in year t with

total employment by the same cohort in year t + a. Figure 2 reports
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Figure 1: Cohort-level employment by year of birth and aggregate employ-
ment growth by year
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Notes: cohort-level employment in percent deviations from the mean across cohorts of
firms of the same age and the year-on-year aggregate employment growth rate. Shaded
areas are NBER recessions. Source: BDS, BLS.

these coefficients, as well as the autocorrelation coefficients for aggregate

employment. For comparability, we take logs and HP de-trend all variables

(i.e. we take out the trend of employment across cohorts of the same age

and of aggregate employment).

Figure 2 shows that at the cohort level, the autocorrelation with startup

employment remains high up to the age of five. Moving beyond the age of

five, we find that the correlation of employment in 11-15 year old firms with

entrant job creation 15 years earlier is 0.56 (not plotted). Thus, cyclical

differences in employment across cohorts persist to a great extent into later

years. In other words, we find little evidence that cohorts with initially low

levels of employment catch up with other cohorts as they age. This lack of

mean reversion contrasts aggregate employment, which displays no positive

autocorrelation beyond a two year horizon.
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Figure 2: Autocorrelations of cohort-level and aggregate employment
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Notes: “cohort-level” refers to autocorrelations of total employment by cohorts of
startups with total employment of the same cohort a years in the future, i.e.
corr(N̂0,t, N̂a,t+a), where hats indicate log deviations from an HP trend taken across
cohorts of the same age.“Aggregate” refers to autocorrelations of aggregate employment
in year t and t + a, i.e. corr(N̂agg,t, N̂agg,t+a), again for data in log deviations from an
HP trend. Source: BDS, BLS.

2.4 Decomposing cohort-level employment variation

Next, we investigate whether the observed variations of cohort-level em-

ployment are driven primarily by changes in the number of firms within

the cohort (the extensive margin), or by average size (the intensive margin,

i.e. the average level of employment per firm).

Toward this end, we decompose the natural logarithm of cohort-level

employment as lnNa,t = lnS0,t−a+
a∑
j=1

ln γj,t−a+j +lnM0,t−a+
a∑
j=1

ln δj,t−a+j,

where Sa,t is average firm size within the cohort, Ma,t is the number of

firms, γj,t ≡ Sj,t
Sj−1,t−1

denotes average size growth and δj,t ≡ Mj,t

Mj−1,t−1
denotes

the average firm survival rate. Based on the above expression, the variance

of employment can be decomposed as:

var(N̂a,t) = cov(N̂a,t, Ŝ0,t−a) +

a∑
j=1

cov(N̂a,t, γ̂j,t−a+j)︸ ︷︷ ︸
intensive margin

+ cov(N̂a,t, M̂0,t−a) +

a∑
j=1

cov(N̂a,t, δ̂j,t−a+j)︸ ︷︷ ︸
extensive margin

+ηt,

where a hat indicates deviations from an HP-filter trend of a logged vari-
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able and ηt is a residual term coming from the detrending method.8 The

first two terms on the right-hand side jointly capture the contribution of

the intensive margin (average size) to the total variance. The first term

individually captures the contribution of average size in the year of en-

try alone. The third and fourth terms capture the contributions of the

extensive margin.

The importance of the intensive margin is made clear by Figure 3. The

total shaded area represents the contributions of average size variations to

cohort-level employment fluctuations at different ages. The white area ac-

counts for the contribution of variation in the number of firms.9 Notice that

the contribution of average firm size variation is increasing as the cohort

ages (accounting for about 50% at birth and 63% at age 5). Extending

the analysis to older firms reveals that the average size margin remains

very important in determining variations in employment across cohorts,

accounting for 70% among 11 to 15 year old firms (not plotted).

Within the total shaded area in Figure 3, different shades break down

the contribution of the intensive margin by age, with the lightest shade

denoting startup size. The contribution of the latter to cohort-level em-

ployment variation is large, accounting for 38% for five year old firms.

Before presenting the model, we briefly discuss two potential explana-

tions that are outside our model. One possibility is that, during recessions,

job creation within newborn cohorts declines because of a reallocation of

activity between sectors. Another possibility is that our findings are driven

by fluctuations in the entry of “necessity entrepreneurs”, who start busi-

nesses as a means of escaping unemployment. However, Appendix (A.7)

provides evidence that our stylized facts hold true, with a few exceptions,

also within sectors and that the vast majority of employment variation of

five year old firms is driven by large firms rather than small businesses.

8In our case, the residual η is negligible, not exceeding 0.01% of var(N̂a,t).
9The vast majority of the contribution of the extensive margin is due to fluctuations

in the number of startups. Changes in firm survival rates account on average for only
1% of employment variation among firms aged 1 to 5 years.
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Figure 3: Contributions to variation in cohort-level employment
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Notes: contributions (in percent) of changes in the number of firms and in average firm
size at different ages to the variation in cohort-level employment. Source: BDS.

3 The Model

The empirical evidence presented in the previous section suggests that fluc-

tuations in cohort-level employment are partly driven by changes in the

composition of startups with respect to their growth potential. However,

because firms’ growth potential is unobserved, the data alone do not allow

us to quantify the importance of such composition changes. For the same

reason, the empirical facts can provide only limited information about the

aggregate implications of decisions made at the entry stage.

To address these issues, we propose and estimate a general equilibrium

model of the life cycles of heterogeneous firms which produce differentiated

goods. Demand is restricted by the size of a firm’s consumer base, which

can be expanded by paying a convex marketing cost. Differences in the

growth potential of startups stem from heterogeneity in the demand char-

acteristics of goods. For some goods, demand is concentrated among only a

small subset of consumers (“niche” goods). Other goods, by contrast, can

potentially serve a broad demand base (“mass” goods). Firms which pro-

duce “niche” goods optimally invest little into expansion of the consumer
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base and therefore stay small. The opposite is true for firms which produce

“mass” goods, which grow large over time.

Importantly, startups are free to decide which type of good to produce.

As a result, the composition of startups with respect to their growth po-

tential fluctuates endogenously over the business cycle. This happens as

different firm types optimally allocate their expenditures differently over

each of three cost categories: costs of entry, costs of production and costs

of marketing. Aggregate shocks, which affect these cost categories differ-

entially, then create type-specific fluctuations in firm profitability. This in

turn generates endogenous fluctuations in startup composition.

The model includes several aggregate shocks affecting each of the three

cost categories. We then use aggregate and firm-level data to estimate the

relative importance of these shocks. As a by-product of the estimation,

we back out the entire time-varying distribution of startups with respect

to their growth potential. We exploit this to quantify the importance of

firm entry in determining fluctuations at the cohort level and the aggregate

level, and to understand the drivers of fluctuations in startup composition.

The following subsections describe the model. Detailed derivations and a

formal definition of the equilibrium can be found in Appendix B.

3.1 Household

There is a representative household which owns all firms, chooses consump-

tion of all the goods varieties and supplies labor on a perfectly competitive

market.10 We first describe household preferences and then move on to

optimal household decisions.

3.1.1 Household preferences

The representative household consists of a continuum of members, indexed

by k. Household members have heterogeneous preferences over a continuum

of available goods varieties, indexed by j. In order to enjoy utility from

a particular good, a member has to be made aware that the good exists.

This requires a costly marketing effort by the producer of the good.

10Firm dynamics models with more detailed descriptions of the labor market include
e.g. Elsby and Michaels (2013), Kaas and Kircher (2015), and Sedláček (2015).
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Time is discrete and indexed by t. Let Ωt be the set of available goods

and define Ct =
∫
Ck,tdk as the consumption of the representative house-

hold. Here, Ck,t is the consumption bundle of household member k, which

is given by:

Ck,t =

(∫
j∈Ωt

1k,j,tθ
1
η

k,jc
η−1
η

k,j,tdj

) η
η−1

,

where 1k,j,t is an indicator function equal to one if member k is aware of

good j in period t and zero otherwise. Further, θk,j is a utility weight of

member k for good j, ck,j,t is the quantity of good j consumed by mem-

ber k, and η > 1 is the elasticity of substitution between goods varieties.

Without loss of generality, we assume that the distribution of household

members’ utility weights for a particular good (θk,j) can be summarized

by a cumulative distribution function Fj(θk,j) with support [θmin
j ,θmax

j ], and

θmin
j > 0.

Firms can add household members to their pool of consumers by mak-

ing costly marketing investments, which can be fully directed. Cost mini-

mization then dictates that firms first attract consumers with the highest

valuations for their goods (i.e. highest levels of θk,j). Let the mass of

household members aware of (and thus consuming) good j, be denoted by

sj,t. We will refer to sj,t as the firm’s consumer base. Finally, let us define

the utility weight for good j at the household level as:

κj(sj,t) =

∫ θmax
j

θ(sj,t)

θk,jdFj (θk,j) ,

where θ(sj,t) is the lowest utility weight among all household members who

are aware of good j in period t.

The relevant firm-specific demand characteristics of a good are fully

summarized by the function κj(sj,t). Note that κj(sj,t) is increasing in

the consumer base, sj,t, because each additional consumer demands a pos-

itive amount of good j. However, the extent to which higher levels of

the consumer base increase κj(sj,t) is fully determined by the preference

distribution for good j, Fj(θk,j).

Below we will show that the elasticity of κj with respect to s is a crucial

determinant of a firm’s growth potential. Further, Section 4.1 will clarify

that low elasticities are associated with “niche” goods, for which demand is
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relatively concentrated among a small subset of consumers. For such goods,

gains from demand investment are relatively low. On the other side of the

spectrum are high-elasticity “mass” goods, for which demand investment

generates relatively high returns.

3.1.2 Household decisions

We assume that utility is linear with respect to labor supply, Nt. Following

indivisible labor models, we interpret Nt as the employment rate (see e.g.

Rogerson, 1988). The household maximizes the expected present value of

life-time utility, subject to its budget constraint, taking prices and wages

as given:

max
{Ct,Nt,ck,j,t}∞

t=0

E0

∞∑
t=0

βt
(
C1−σ
t − 1

1− σ
− νZtNt

)
s.t.

∫
k

∫
j∈Ωt

pj,tck,j,tdjdk = PtWtNt + Πt, (1)

where β ∈ (0, 1) is the household’s subjective discount factor, σ > 0 is the

coefficient of risk aversion, ν > 0 is a parameter capturing the disutility

of labor, Zt is a stochastic labor preference shock, Wt is the real wage,

Πt denotes nominal aggregate firm profits, pj,t is the price of good j and

Pt is the aggregate price index. The latter can be shown to be Pt =

(
∫
j∈Ωt

κj(sj,t)p
1−η
j,t dj)

1
1−η .

The resulting optimal employment choice obeys the familiar first-order

condition WtC
−σ
t = Ztν, with Zt driving a wedge between the marginal

product of labor and the intratemporal marginal rate of substitution. This

“labor wedge” is typically thought of as a shock capturing time-varying

labor market frictions and as such it directly affects firms’ wage costs.

The first-order conditions for consumption lead to the following demand

function:

cj,t = κj(sj,t)

(
pj,t
Pt

)−η
Ct. (2)

The above implies that, as in standard models of monopolistically competi-

tive firms, consumer demand for good j depends on aggregate consumption,

Ct, and the relative price, pj,t/Pt. The novel feature of our model is that
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demand is also affected by the firm’s consumer base, sj,t.

3.2 Firms

There is an endogenous mass of firms which supply differentiated goods

varieties on a monopolistically competitive market. We first describe the

behavior of incumbent firms and then discuss the startup phase.

3.2.1 Incumbent firms

Firms operate a technology yj,t = Atn
G
j,t, where yj,t is the amount of output

produced by firm j, nGj,t is the amount of labor used in goods production

and At is aggregate total factor productivity (TFP).11 The sales of the firm

are constrained by the demand function for their good, Equation (2). Each

firm produces a unique goods variety and hence we index both firms and

goods varieties by j. Firms exit with an exogenous, but age-dependent

probability ρa, where a denotes the firm’s age.12

Firms can relax their demand constraints by exerting costly marketing

efforts. Specifically, the consumer base of firm j evolves as:

sj,t = sj,t−1 +Qtgj,t, (3)

where gj,t denotes the amount of marketing and Qt is an aggregate “demand

shock”.13 Given sj,t−1 and gj,t, a decline in Qt reduces the consumer base

sj,t and hence tightens the firms’ demand constraint (2). While we take Qt

as an exogenous object to be estimated from the data, one could think of

11It is straightforward to extend the model to include firm-specific TFP levels, aj ,
such that firm-level output is given by yj,t = Atajn

G
j,t. However, it can be shown that

in our application aj is isomorphic to a scaling factor in the preference distribution Fj
and hence we opt to normalize aj to one for all j.

12Clearly, this assumption is a simplification as exit rates vary over time and to be
related to firm productivity (see e.g. Bartelsman and Doms, 2000). Therefore, Appendix
E.1 shows that allowing for stochastic variation in exit rates consistent with the data does
not substantially affect our results. This is consistent with the variance decomposition
in Subsection 2.4 which implies that variation in exit rates explains on average only 1%
of fluctuations in cohort-level employment for firms aged 1-5 years.

13In our setup, firms use marketing to make consumers aware that a good exists.
We find it natural to assume that consumers do not forget about goods, implying zero
depreciation of the consumer base. Nevertheless, Appendix E.5 shows that similar results
are obtained when we consider positive depreciation.
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it as a shift in consumers’ preferences affecting the susceptibility to firms’

marketing efforts.

We further assume that firms enter with no consumer base and that a

unit of marketing requires an amount of labor given by nMj,t = ζ(gj,t), where

ζ(.) is an increasing and convex function. The convexity of this cost induces

firms to grow only gradually as they age, in line with the positive relation

between the age and size of young firms in the BDS. The adjustment cost

further makes the consumer base a firm-level state variable, as in Gourio

and Rudanko (2014).

Firms maximize the expected present value of real profits:

Vj(sj,t−1,Ft; a) = max
nGj,t,n

M
j,t,pj,t,gj,t,sj,t

[
yj,tpj,t/Pt −Wt

(
nGj,t + nMj,t

)
+ (1− ρa)EtΛtVj (sj,t,Ft+1; a+ 1)

]

subject to (i) their demand constraint yj,t = κj(sj,t)
(
pj,t
Pt

)−η
Yt, where Yt is

aggregate demand, (ii) the evolution of their consumer base, Equation (3),

and (iii) the evolution of the aggregate state of the economy, denoted by

Ft and described later. In the above equation, Vj is the asset value of firm

j and Λt = β( Ct
Ct+1

)σ is the stochastic discount factor of the representative

household.

The optimal pricing decision takes on the familiar form of a constant

markup over the nominal marginal cost of production: pj,t = η
η−1

PtWt/At.

This in turn implies that all firms set the same price. Relative prices can

then be expressed as pj,t/Pt = (
∫
j∈Ωt

κj(sj,t)dj)
1

η−1 . This condition stems

from households’ love of variety and is similar to the “variety effect” in

Bilbiie, Ghironi, and Melitz (2012). In our model, however, this effect

depends not only on the set of available goods varieties, Ωt, but also on the

distribution of firms’ consumer bases.

Finally, the optimal amount of marketing investment satisfies the fol-

lowing first-order condition:

ζ ′(gj,t)

Qt

= εκ,sj,t
nGj,t
sj,t

1

η − 1
+ (1− ρa)EtΛt,t+1

ζ ′(gj,t+1)

Qt+1

Wt+1

Wt

, (4)

where a prime denotes the first derivative and εκ,sj,t ≡
κ′j(sj,t)sj,t

κj(sj,t)
is the elas-

ticity of κj(sj,t) with respect to the consumer base sj,t, which we refer to
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as the marketing elasticity of demand. At the optimum, marginal costs of

expanding the consumer base are equal to the present value of profits that

it generates. Importantly, the latter depends on the marketing elasticity of

demand. Firms with higher elasticities choose to invest relatively heavily

in expansion of the consumer base and hence grow relatively large.

3.2.2 Entry decisions

Having described the behavior of incumbent firms, we now explain the

entry phase and in particular how startups choose the type of good to

produce. For tractability, we restrict the number of goods types to be finite,

indexed by i = 1, 2, ..., I. Underlying this restriction is an assumption that

household preferences for individual goods belong to one of a finite number

of distributions.

In every period, startups can seize a limited and time-invariant number

of business opportunities of each goods type, denoted by ψi. Business op-

portunities are exclusive, allowing for at most one producer each.14 After

paying a stochastic entry cost, labeled Xt, potential startups are free to

choose any of the business opportunities.15 They cannot, however, coordi-

nate among themselves.

Therefore, not all startups will succeed because multiple competitors

may attempt to seize a single business opportunity. We assume that the

probability of successfully starting up is increasing in the number of busi-

ness opportunities, but decreasing in the number of startup attempts (sim-

ilar to models of innovation such as Klette and Kortum, 2004; Saint-Paul,

2002). In particular, the success probability is given by mi,0,t/ei,t, where

mi,0,t = ψφi e
1−φ
i,t is the number of new firms and φ ∈ (0, 1). Free entry then

gives rise to the following condition:

Xt =
mi,0,t

ei,t
Vi (0,Ft; 0) , for i = 1, 2, .., I. (5)

14Exclusivity of business opportunities can arise e.g. from the ownership of patents,
or market size limitations coupled with fixed costs in production. For tractability we do
not model these factors explicitly.

15The entry cost is to be paid before entry and is denominated in units of the house-
hold’s consumption bundle. Appendix B.1 shows that the firm’s demand function then

becomes yj,t = κj(sj,t)
(
pj,t
Pt

)−η
Yt.
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The above implies that, in equilibrium, aspiring startups are indifferent

between goods types. The reason is that goods types with higher firm values

also generate more intense competition for available business opportunities,

lowering the success probability.

It is straightforward to show that the elasticity of the number of star-

tups within a type, mi,0,t, with respect to the startup value of that type,

Vi (0,Ft; 0), is given by 1−φ
φ

. Thus, endogenous fluctuations in the compo-

sition of startups arise to the extent that values of firms producing different

types of goods fluctuate differently over the business cycle. On the con-

trary, fluctuations in the entry cost do not generate any direct composition

effects because all firms are affected symmetrically.

3.3 Aggregate shocks and market clearing

There are four aggregate shocks in the model, namely shocks to productiv-

ity (A), demand (Q), entry costs (X) and labor preferences (Z). We assume

that all four aggregate shocks follow AR(1) processes in logarithms:

ln Jt = (1− ρJ) ln J + ρJ ln Jt−1 + εJt , for J = A,Q,X,Z, (6)

where ρJ is a persistence parameter and εJt are i.i.d. innovations distributed

normally with mean zero and standard deviation σJ . J denotes the mean

of the given shock process and it is normalized to one for all shocks except

for the entry cost shock. The parametrization of the latter is discussed in

the calibration section.

Before describing the market clearing conditions, we exploit that all

firms producing the same type of good i and of the same age a make

identical decisions. Accordingly, we replace the firm index j by the type

and age indices i and a. The labor market clearing condition can then be

written as:

Nt =
I∑
i=1

∞∑
a=0

mi,a,t

(
nGi,a,t + nMi,a,t

)
, (7)

where mi,a,t is the mass of firms of type i and age a. Because entry costs

are assumed to be paid in terms of the aggregate consumption bundle, the
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aggregate resource constraint can be written as:

Ct +Xt

I∑
i=1

ei,t = Yt, (8)

where aggregate demand is given by Yt =
∑

i

∑
ami,a,tyi,a,tpi,a,t/Pt. The

law of motion for the mass of firms by age and good type can be written

as:

mi,a,t = (1− ρa−1)mi,a−1,t−1 for a = 1, 2, ... and i = 1, 2, .., I. (9)

Finally, the aggregate state consists of the mass of firms of each age-

type combination, the consumer capital levels of these firms in the previous

period, as well as the values of the stochastic aggregate shocks, i.e. Ft =[
At, Qt, Xt, Zt, {mi,a−1,t−1, si,a−1,t−1}i=1,..I,a=1,2,...

]
.

3.4 Endogenous fluctuations in startup composition

This subsection explains intuitively why the composition of startups fluc-

tuates endogenously in the model. Appendix B.3 provides formal results

for a special case of the model which allows for closed-form solutions.

The free entry conditions (5) makes clear that incentives to start up

firms producing particular goods types depend on the relative profitability

(firm value) of such businesses. Therefore, the composition of startups

changes endogenously to the extent that values of firms producing different

types of goods are differently sensitive to aggregate shocks.

In the estimated model, a quantitatively important reason why the

relative values of different firm types fluctuate over time, is that the profits

of “mass” firms are relatively sensitive to demand shocks. This happens

because demand shocks shift the effective cost of consumer base expansion

and “mass” firms optimally devote relatively large fractions of resources to

this cost category. The latter result can be understood from Equation (4)

and dates back to Dorfman and Steiner (1954), who show that the optimal

marketing (advertising) expenditure share is proportional to the respective

elasticity of demand, which is relatively high for “mass” firms.
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4 Quantitative Implementation

We parameterize the model using a combination of Maximum Likelihood

(ML) estimation and matching of moments in the (BDS). This section

describes the calibration and estimation of model parameters and dis-

cusses properties of the model along dimensions not directly targeted in

the parametrization.

The aggregate state of the model includes the entire firm distribution,

creating a challenge in solving the model numerically. Our proposed so-

lution strategy is based on first-order perturbation around the stationary

equilibrium (i.e. around the steady-state growth paths of firms) and on

imposing a maximum firm age of K = 50 years. This makes the aggregate

state finite and enables us to solve the model relatively quickly even tough

the model consists of more than 900 state variable and all shocks have

continuous support. We are also able to track the aggregate state entirely,

given the approximated policy functions, instead of being forced to revert

to iterative methods in the spirit of Krusell and Smith (1998), which rely

on an approximation of the aggregate state.

Detailed descriptions of the solution and estimation methods, as well as

robustness exercises with respect to the calibrated model parameters, are

presented in Appendix D.

4.1 Parameters calibrated to match moments

We set the model period to be one year, in line with the frequency of the

BDS data. While the values of individual parameters typically influence

the behavior of the entire model, it is instructive to discuss them separately

in relation to the specific moments that we target. For clarity, we divide the

calibrated parameters into three groups. We start with parameters specific

to firm types. Next, we proceed to parameters common to all firms and

finally to parameters pertaining to the household. All model parameters

are summarized in Table 1.
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4.1.1 Firm-type parameters

Heterogeneity across firms derives from differences in consumer demand,

summarized by the function κi(s), which is increasing in firms’ consumer

base (s) and directly affects firms’ demand constraints. The function κi(s)

depends, in turn, on the underlying distribution of household members’

preferences for good type i.

Given that we cannot observe the preference distributions directly, we

opt for a parsimonious approach and specify the aggregated preference

function as κi(s) = κis
µi , with κi, µi > 0. The firm’s elasticity of demand

with respect to the consumer base is then given by εκ,si,t = µi. The condition

for optimal marketing investment (4) makes clear that this elasticity is

a crucial determinant of the firm’s returns to marketing, and thus of its

incentive to grow large as it ages.

To illustrate how the demand function is related to the distribution

of preferences over individual goods, Figure 4 plots κi(s) and Fi for two

parameterizations. In the first case, there is no preference dispersion, i.e. Fi

is degenerate around a single point. As a result κi(s) is linearly increasing

in the consumer base s, i.e. µi equals one. We refer to this type of good

as a “mass” good, since the marginal consumer attracted by additional

marketing brings in the same amount of demand as existing consumers.

As a result, the returns to marketing do not fall as the firm grows larger.

The second case illustrates a parametrization for which µi is smaller

than one: a “niche” good.16 In this case, the associated preference distri-

bution Fi features a certain degree of dispersion. Recall that firms first

attract consumers with the highest valuations (levels of θ). In the illus-

tration, the valuations of these initial consumers for the “niche” good are

similarly high as for the “mass” good. Thus, for low levels of s the to-

tal demand for the “niche” and the “mass” good is similar. However, the

marginal amount of demand coming from additional consumers falls rapidly

in case of the “niche” good, but not in case of the “mass” good. As a result,

“niche” firms face relatively low returns to marketing and optimally stay

smaller.

16The scaling parameter of the “niche” good, κj , is set such that low levels of the
consumer base generate similar demand as with the “mass” good.
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Figure 4: Demand heterogeneity illustration
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Notes: illustration of demand heterogeneity between “mass” and “niche” goods. The
left panel depicts the demand function κ(s). The right panel shows the CDF of the
associated preference distribution F (θ). The “mass good is characterized by µ = 1,
while the “niche” good has an elasticity of µ = 0.65. The level of κi of the “niche” good,
relative to the “mass” good, is set to 6.

In light of the above discussion, we pin down firm-type parameters by

targeting moments of the firm size distribution observed in the BDS data.

Towards this end, we consider I = 9 firm types, which is the number of

size groups available in the BDS database, where we group the three largest

size categories into one.

The parameters pertaining to firm (goods) types include κi, µi and also

the mass of business opportunities for each firm type, ψi. First, assuming

that old firms had enough time to grow towards their optimal size to reveal

their type, we use the firm size distribution of 21 to 25 year old firms to

pin down κi and ψi (up to a scaling factor Ψ). While the former essentially

shifts the scale of production, the latter determines the fraction of firms in

each size category.

To pin down the levels of µi, we exploit the fact that this parameter

affects firms’ growth profiles. Because we cannot observe growth profiles of

individual firm types in the BDS, we use information on the average growth

profile in the economy, i.e. average firm size by age.17

17Specifically, we use the BDS information on 0 (startups), 1, 2, 3, 4, 5, 6 to 10,
11 to 15 and 16 to 20 year old firms. Appendix C shows that the calibrated values of
marketing elasticities of demand in the benchmark model fall well within the range of
empirical estimates found in existing studies. For some firm types, µi is larger than
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Figure 5: Average size by age: data and model
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Notes: average firm size by age in the data and the “benchmark” model and an alterna-
tive calibration with “homogeneous µ” (i.e. all firms have identical marketing elasticities
of demand), calibrated to match entrant size.

To highlight that average size by age reveals information about het-

erogeneity in the elasticities µi, Figure 5 shows average size by age in the

data, the benchmark model and in an alternative model version in which

all firm types face a “homogeneous µ” (calibrated to match average entrant

size). The figure shows that a model in which all firms grow at the same

pace cannot generate the relatively flat average growth profile observed in

the data. The success of the benchmark model rests on small firms, which

constitute the majority of all businesses, reaching their optimal size rela-

tively quickly. Thereafter, the average growth profile is shaped by (rare)

fast-growth firms which gradually gain on importance in the aggregate as

they become large employers.

4.1.2 Parameters common to all firms

Parameters that are common across all firm types are the exogenous firm

exit rate, ρa, the elasticity of substitution between goods varieties, η, the

marketing costs function ζ(g), the mass of potential startups, Ψ, the mean

one. It is straightforward to show that this arises if marketing investments attract not
only new consumers, but to some extent also raise the demand coming from existing
consumers.
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of the entry cost shock, X, and the elasticity of the number of startups

with respect to firm values φ.

To capture the age-dependency of exit rates observed in the data, we

let the exit probability be ρa = ξ0 + ξ1
a

. For firms below the maximum age

(a < K), the parameters ξ0 and ξ1 are chosen to closely match the empirical

exit rates conditional on age in the BDS. The elasticity of substitution η is

set to 11, implying a 10% markup over the wage, a common target in the

literature. The marketing cost function is assumed to be quadratic with a

level normalized to 1, i.e. ζ(g) = g2/2.18 The reason for the latter is that

the level of adjustment costs is not separately identifiable from the level of

demand in our model. The implied average costs of marketing investment

amount to 2.7 percent of gross profits. This is similar to the estimated 3

percent costs for (capital) investment in Cooper and Haltiwanger (2006).

The last three parameters in this category pertain to firm entry. The

measure of business opportunities is normalized such that Y equals one

in the steady state. From the free entry condition (5) it is clear that the

level of the entry cost determines the probability of successfully starting

up a business of a given type (for a given firm value). Interpreting this

probability as the within-year survival rate, X is set such that the model

matches the average success probability in the data.19 Finally, we set φ,

which controls the strength of startup composition effects, such that the

model matches the volatility of entrant size observed in the BDS.

4.1.3 Household parameters

Household preference parameters are chosen in line with conventional val-

ues in the macro literature. The household’s discount factor, β, is set to

0.96, corresponding to an annual real interest rate of four percent. The

18In Appendix E.2 we explore adjustment cost functions with different degrees of
curvature and show that similar results are obtained.

19Toward this end, we draw on information from the Business Employment Dynamics
(BED). Unlike the BDS, the BED has quarterly information (for establishments), start-
ing in 1992Q3, allowing us to calculate the survival rate of establishments younger than
one year. We calculate the within-year survival rate assuming that the quarterly survival
rates are constant in a given year. Table 1 reports the implied type-specific probabilities
of successfully starting up, rather than the type-specific measures of business opportuni-
ties (ψi) which are difficult to interpret and which depend on the normalization constant
Ψ.
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household’s coefficient of relative risk aversion, σ, is set to one, implying

log utility with respect to consumption. Finally, the disutility of labor, ν,

is backed out from the household’s labor supply condition with the wage

normalized such that pj/P = η/(η − 1)W = 1.

4.2 Parameters estimated using Maximum Likelihood

The remaining parameters pertain to the four exogenous aggregate shocks

and they are estimated using Maximum Likelihood. We estimate the model

using four data series: aggregate real GDP, the aggregate employment rate,

the number of startups and the average size of five year old firms. The

number of startups and firm size of five year old firms is taken from the

BDS. All time series are in logs and linearly detrended. The estimated

parameters are reported in Table 1 and they are in line with estimates in

the literature. Further discussion of the estimation (results) can be found

in Appendix D.4.

While real GDP is primarily informative about aggregate TFP, aggre-

gate employment is closely related to the labor preference shock. Even

though all shocks affect the number of startups, the model matches this

variable exactly due to the presence of the entry cost shock. Finally, using

the average size of five year old firms helps to pin down fluctuations in the

demand shock (Q).

To understand the last point, the left panel of Figure 6 shows impulse

response functions of average size of firms between 0 and 5 years of age

to a positive demand shock. While average size increases at all ages upon

impact, there is an “echo” effect, creating sequential upwards spikes in

average size for the age categories 1 to 5 years. These spikes reflect the

fact that the composition of the cohort born in the initial year of the shock

is skewed towards “mass” firms, which grow to be relatively large. While

echo effects are also created by other shocks, these effects are quantitatively

smaller. Thus, using information on the size of firms several years after

birth helps to discipline the relative strength of the demand shock, and

implicitly the importance of composition effects.

The impulse responses also make clear that the echo effects gain on

strength as the affected cohort ages, because the greater share of “mass”
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Figure 6: Impulse response functions and volatility of firm size by age

Notes: left panel shows impulse response functions of average size, by age, to a positive
one-standard-deviation demand shock in percent deviations from steady state. The right
panel shows average size volatility by age in the “data”, “model” and in a model where
composition is fixed (“model without composition”).

firms steepens the growth profile of the cohort. This means that composi-

tion effects leave their mark by creating a positive relation between age and

the volatility of average firm size. The right panel of Figure 6 illustrates

that the estimated model captures well this empirical pattern of volatility

of average firm size by age (only averages over five cohorts are reported for

firms older than six years, as in the BDS). To highlight the role of composi-

tion effects, the right panel of Figure 6 also depicts the volatility of average

size by age when the composition of startups is held fixed. Without fluctu-

ations in the composition of startups, the volatility of average size declines

with age.20

Finally, even for firms older than five years, which were not used in

the calibration or estimation procedure, the model correctly predicts an

increasing pattern of volatility of average size. The extent of this increase

is actually somewhat smaller than in the data. This reassures us that

the estimated degree of composition changes, which drives the increasing

pattern of average size volatility, is rather conservative.

20This is also true if we re-estimate the model. In computing this decomposition, only
the startup composition is held fixed at its steady state, but all other variables are left
to adjust.
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Table 2: Firm dynamics in the data and model

data model

A: Employment dynamics of young firms
Fact 1: corr(N0,∆N) 0.39 0.46
Fact 2: corr(N0, N5) 0.59 0.62

Fact 3: var(S0−5)
var(N5) 70% 72%

B: Employment dynamics of old firms
corr(N0, N11−15) 0.86 0.73
corr(∆ log(N11−15),∆ log(S11−15)) 0.88 0.82

Notes: untargeted model statistics and their empirical counterparts. corr(., .) denotes
the correlation, var(.) denotes the variance and ∆ is the first-difference operator. Na and
Sa denote, respectively, employment and average size in firm cohorts of age a, N denotes

the aggregate employment rate and var(S0−5)
var(N5)

denotes the fraction of total cohort-level

employment variation among five year old firms attributed to variations in average size.

.

4.3 Model properties

This subsection assesses the model’s performance along several dimensions

not directly exploited in the estimation and provides external support for

the demand channel in the data.

4.3.1 Firm dynamics

Table 2 displays several model statistics and compares them with their

empirical counterparts. Panel A shows that the model is successful in

matching the empirical stylized facts described in Section 2.

Panel B of Table 2 shows that the predictions of the model are close to

the data also for dynamics of firms older than five years. First, we show

that cohort-level employment at entry is correlated with employment of the

same cohort even 11-15 years later (summed over the appropriate five-year

window).21 Second, to gauge the extent to which variation in employment

of old firms is related to changes in firm size, we correlate changes in cohort-

level employment (in percent) with changes in the average size within these

cohorts. This relation is highly positive both in the data and in the model.

Finally, we compare the model’s predictions on real wages to the data.

21We choose to report correlations for the age group 11-15 year old firms as a compro-
mise between a higher firm age and a long enough time-series. Correlations for young
firm age groups are also close to those in the data.
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The correlation between the real wage in the model and the data is 0.53.

Also, the volatility of the real wage relative to output is close to that in

the data (0.71 in the model versus 0.61 in the data). The pro-cyclicality of

wages, however, is too strong in the model relative to the data, a common

finding in business cycle models without wage rigidities.22

4.3.2 Inspecting the demand channel

This subsection provides external support for the demand channel which,

as will be quantified in the next section, is the key driver of endogenous

composition changes of startups.

A positive demand shock eases the expansion of firms’ sales capacities.

Firms types that need a larger consumer base to reach their efficient scale

benefit relatively strongly from the positive demand shock. This creates

stronger incentives to start up “mass” goods producing firms. At the same

time, aggregate profits decline, as firms seize the opportunity to invest

in consumer base expansion at a low cost. In the estimated model, the

correlation between average firm size of five year old firms in year t and

aggregate marketing expenditures (profits) relative to GDP at the time of

birth of the firm cohort, i.e. year t− 5, is 0.75 (−0.60).

Figure 7 corroborates this prediction in the data by plotting aggregate

advertising-to-GDP and profits-to-GDP together with average firm size of

five year old firms, where the latter has been shifted back to the respective

year of birth. In the data, the correlation between the size of five year old

firms in year t and aggregate advertising expenditures (profits) relative to

GDP in year t − 5 is 0.60 (−0.53). Both correlations are reasonably close

to the aforementioned counterparts in the model.

In addition to the presented aggregate evidence, Appendix A.10 pro-

vides empirical support for the proposed mechanism using 4-digit industry

data from the Quarterly Workforce Indicators linked with the input-output

tables of the Bureau of Economic Analysis. Specifically, we show that, as

predicted by our model, industries with relatively high marketing expendi-

22The correlation between output and real wages is 0.96 in the model and 0.41 in
the data. In the data, we measure the real wage as real hourly compensation in the
non-farm business sector.
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Figure 7: Demand channel in the data

Notes: advertising-to-GDP ratio (ranging from 1979 to 2010 and taken from Hall, 2014),
the profit share (ranging from 1979 to 2012 and computed as corporate after tax profits
divided by nominal GDP) and average size of five year old firms (BDS) shifted back to
the year of startup (and thus ranging from 1979 to 2008).

ture shares tend to display stronger cohort effects.23

5 Model results

The purpose of the model is to quantify fluctuations in the composition

of startups with respect to their growth potential and to investigate to

what extent such changes shape cohort-level and aggregate dynamics. Our

first goal is to establish the importance of the year of birth in determining

a cohort’s success in providing jobs in later years and to understand the

underlying sources of variation. Next, we investigate the importance of

startup conditions for aggregate outcomes.

23While the QWI allows for a fine sectoral disaggregation, its time and spacial coverage
are relatively sparse, preventing the construction of aggregate time series as observed in
the BDS. We therefore use the BDS for our main analysis.
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5.1 The importance of startup conditions for cohort-

level fluctuations

At any age after birth, a cohort’s employment level is to some extent deter-

mined by the economic state in the year of birth. The remainder is because

of shocks that realized after birth. Disentangling the relative importance of

these two contributors empirically is difficult, if only because the aggregate

state may include unobservable variables.

Within our estimated model, however, we can quantify the contribution

of the economic state at birth precisely. Let us first define cohort-level

employment as Na,t ≡
∑I

i=1mi,a,tni,a,t. We can then decompose cohort-

level employment as Na,t = Et−a [Na,t] + Ña,t, where the first term is the

expectation of Na,t conditional on information available in the year of birth

and Ña,t is the prediction error. The latter is a function of only the shocks

realized in the years after birth, which are orthogonal to the state in the

year of birth. Using this orthogonality, we can decompose the unconditional

variance of Na,t as:

V ar (Na,t) = V ar (Et−a [Na,t])︸ ︷︷ ︸
aggregate state at birth

+ V ar
(
Ña,t

)
︸ ︷︷ ︸

shocks after birth

The top left panel of Figure 8 plots the results of the variance decom-

positions for cohorts up to twenty years after birth. The importance of

the aggregate state at birth is overwhelming, contributing to more than

90 percent of the employment variance, regardless of age. A very similar

pattern is found for cohort-level average size (middle left panel), which is

consistent with average size being a strong driver of the employment pat-

terns. However, for the average size of an individual firm of a certain type,

the state at birth loses importance in the years following entry (bottom left

panel). This happens as composition effects are not directly relevant. The

persistence that remains is driven by the inherent persistence of the shock

processes and by the endogenous part of the aggregate state.

Additional insight into the drivers of cohort-level persistence is obtained

by quantifying the contributions of the four aggregate shocks (right panels

of Figure 8). The demand shock stands out as the dominant driver of not

only cohort-level employment and average size, but also of average size
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Figure 8: Model variance decompositions
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Notes: contributions of the aggregate state at birth and post-entry shocks (left panels)
and the contributions of the four aggregate shocks (right panels) to variation in cohort-
level employment (top row), cohort-level average size (middle row) and individual-firm
average size (bottom row).
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Figure 9: Contribution of average size to employment variation in model
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employment as a percentage of its total variance. Data are obtained from the estimated
model. The red solid line, “startup conditions only”, plots the covariance between
cohort-level employment and average firm size obtained by fixing firm-level employment
within age/type brackets to its steady-state value, scaled by the total variance of cohort-
level employment.

of an individual firm. In other words, it plays a crucial role not only in

shaping conditions at entry, but also later in firms’ lives. In particular, the

shock explains about 90 percent of average size variation of an individual

firm at startup and about 60 percent at age 20.

Using our model, we can also shed more light on the variance decom-

position presented in Section 2, which quantifies the relative contributions

of the intensive and extensive margins to cohort-level employment fluctu-

ations in the data. Specifically, we quantify how much of the observed

contribution of the intensive margin is due to changes in startup condi-

tions only. We do so by exploiting that, as a by-product of the estimation

procedure, we obtain model-predicted time paths for all model variables.

This includes unobservables, such as the entire distribution of firms across

age and type bins, and hence enables us to conduct decompositions that

cannot be done using data alone.

First, we revisit the variance decomposition of cohort-level employment,

as is done in Figure 3, but this time using the model-predicted time paths

over the sample period rather than actual data. Figure 9 compares the

variance decomposition in the data (left panel) to its counterpart in the
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model (right panel). Overall, the model-implied decomposition is close to

its empirical counterpart, even though it was not directly targeted.24

Next, we further decompose the contribution of the intensive margin

using the following formula:

Sa,t =

∑
imi,a,tni,a,t∑

imi,a,t

=

∑
imi,a,tni,a∑
imi,a,t︸ ︷︷ ︸

startup conditions only

+

∑
imi,a,t(ni,a,t − ni,a)∑

imi,a,t

,

where Sa,t is average size of firms of age a in period t, expressed as the

weighted average of firm employment levels (ni,a,t) across the different firm

types i, and where ni,a are the associated steady-state values. The com-

ponent labeled “startup conditions only” represents a time series which

isolates fluctuations in average firm size resulting from only startup com-

position changes, which is achieved by fixing firm-specific employment lev-

els to their steady-state values, conditional on type and age.25 As before,

we then quantify the contribution of such composition changes to cohort-

level employment variation by computing the covariance of this time series

with cohort-level employment, scaled by the variance of cohort-level em-

ployment.

The contribution of changes in startup composition to fluctuations in

cohort-level employment is depicted by the solid line in Figure 9 (“startup

conditions only”). In the year of entry, only about 13 percent of cohort-level

employment fluctuations are due to compositional effects, substantially less

than the overall contribution of the intensive margin. The importance

of changes in composition, however, grows markedly with age. By the

age of five, composition accounts for more than 50 percent of cohort-level

employment fluctuations.

24In the model, size growth in year 1 covaries slightly negatively with cohort-level
employment and it therefore decreases the overall contribution of the intensive margin.

25Note that mi,a,t is fully determined in the year of birth, as the exit rate is constant
in the model.
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5.2 The importance of startup conditions for aggre-

gate fluctuations

We now use the estimated model to better understand how startup deci-

sions affect aggregate employment dynamics. First, we isolate aggregate

employment fluctuations driven only by cyclical changes in the number of

startups in the various firm types, i.e. by aggregate fluctuations in startup

conditions. Second, we investigate to what extent the demand shock im-

pacts on aggregate employment dynamics.

To quantify the extent to which employment fluctuations are driven

by changes in startup conditions, we again exploit the model-predicted

time-varying distribution of firms across types and ages and the associated

employment levels. Specifically, we decompose aggregate employment as

follows:

Nt =
∑
a

∑
i

mi,a,tni,a,t =
∑
a

∑
i

mi,a,tni,a︸ ︷︷ ︸
startup conditions only

+
∑
a

∑
i

mi,a,t(ni,a,t − ni,a).

This formula allows us to construct a time series for a component of aggre-

gate employment which isolates variation purely due to fluctuations in entry

into the various type bins. Again, this achieved by setting employment lev-

els, conditional on age and type, to their steady-state values, although this

time we aggregate over all firms rather than firms in specific cohorts. We

again refer to this time series as “startup conditions only”, because entry

decisions depend purely on economic conditions in the year of startup.

Figure 10 shows that the contribution of startup conditions to aggregate

employment fluctuations is large. Interestingly, the series resembles a slow-

moving trend in aggregate employment. In fact, the correlation between

the component of aggregate employment isolating “startup conditions only”

and the HP-trend in aggregate employment is 0.65 for a smoothing coeffi-

cient of 100 and 0.73 for a smoothing coefficient of 6.23, the latter following

Ravn and Uhlig (2002).26 Thus, startup decisions appear to be important

also for understanding the low-frequency movements of aggregate employ-

26The estimation uses linearly detrended employment rate data. However, the linear
trend is very modest and therefore comparing the “startup conditions only” series with
the HP-filter trend of the data used for estimation delivers very similar results.
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Figure 10: Employment rate: data and estimated contribution of startup
conditions
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Notes: “startup conditions only” refers to the time series for the employment rate that
is constructed by fixing the age/type firm sizes to their respective steady state values.
“No demand shocks” is constructed by feeding all the estimated shocks through the
model, except for the demand shocks which are set to zero.

ment, often ignored in business cycle analysis.

Finally, given the importance of the demand channel for cohort-level

outcomes, we investigate to what extent demand shocks explain dynamics

at the aggregate level. Towards this end, we fix the aggregate demand shock

to be equal to zero in our model, but leave the remaining estimated three

shocks untouched. Figure 10 shows the resulting time path of aggregate

employment (“no demand shocks”).

Without demand shocks, which are particularly important for changes

in the composition of firms with respect to their potential to grow large, the

resulting time series for aggregate employment is roughly 10 percent less

volatile than the actual employment rate observed in the data. Moreover,

in certain periods, demand shocks were particular important. On the one

hand, demand shocks, and the associated shift towards high growth poten-

tial firms, served to increase aggregate employment by 0.5−1 percent at the

end of the millennium. On the other hand, the opposite happened during

and in the aftermath of the Great Recession, where aggregate employment

would have fallen by about 1 percentage point less had it not been for the
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demand shock. Thus, the estimated model predicts that demand shocks

have had important effects not only on cohort-level outcomes, but also on

the aggregate economy.

6 Conclusion

This paper exploits the recent opportunity to break down aggregate em-

ployment data into cohort-level observations, in order to improve our under-

standing of fluctuations in macroeconomic aggregates. New stylized facts

direct our attention to the birth stage of entering firms and in particular

to the composition of startups with respect to their growth potential. Our

results indicate that cohorts of large firms tend to be born during periods

of booming consumer demand, when it is relatively easy for firms to acquire

new customers. Moreover, the impact of entry decisions not only persists

as cohorts mature, but their magnitude increases over time since firms with

highly scalable businesses need time to reach their full potential. Hence,

compositional differences across cohorts become increasingly pronounced

with age, accounting for slow-moving but large fluctuations in aggregate

employment.
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