Stock Market Participation, Inequality, and Monetary Policy

February 21, 2024

Davide Melcangi† and Vincent Sterk‡

†Federal Reserve Bank of New York
‡University College London, Department of Economics

Abstract

Recent literature has shown that the fraction of liquidity-constrained households in the population critically determines the mix of transmission channels of monetary policy. In this paper, we bring a different but important dimension of heterogeneity to the forefront: stock market participation. We show that the stock market participation rate not only shapes the mix of policy channels, but also heavily affects the aggregate responses. This happens as direct rebalancing effects and indirect equilibrium effects into investment are both increasing in the number of stock market participants, reinforcing each other. We show this in a quantitative New Keynesian model designed to account for the population share of stock market participants, their position in the income and wealth distribution, and their saving rates. The model implies that, as stock market participation has increased since the 1980s, the power of monetary policy on the real economy has strengthened considerably.

JEL: E21, E30, E50, E58

Keywords: Monetary Policy, Stock Investment, Heterogeneity

*First version: April 2019. Email: Davide.Melcangi@ny.frb.org and v.sterk@ucl.ac.uk. The views expressed in this paper are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank of New York, or the Federal Reserve System. We thank René Chalom, Brendan Moore, and Julie Seager for excellent research assistance. For helpful comments, we thank the editor, Kurt Mitman, as well as three anonymous referees, Gadi Barlevy, Simon Gilchrist, Nils Gornemann, Francois Gourio, David Lucca, Silvia Miranda-Agrippino, Benjamin Moll and Andrea Tambalotti, and various seminar and conference participants.
1 Introduction

It is widely recognized that monetary policy has a highly heterogeneous impact on households across the income and wealth distributions. A recent literature has explored how this heterogeneity matters for the macro economy, highlighting the importance of liquidity-constrained, or “hand-to-mouth” households, for the mix of monetary transmission channels. Because consumption of such households is highly sensitive to changes in income but not to changes in interest rates, the monetary transmission in heterogeneous-household models tends to be driven by indirect equilibrium income effects. This sharply contrasts representative-agent models, in which direct intertemporal substitution effects dominate the transmission of monetary policy, see Kaplan, Moll and Violante (2017). Thus, accounting for heterogeneity radically changes our understanding of the way that monetary policy affects the macro economy.

In this paper, we explore a different dimension of heterogeneity: stock market participation. Monetary policy transmits to the economy not only via consumption decisions made by households but also via their stock investments. A change in interest rates induces households to rebalance their asset portfolios. Moreover, any change in income which ensues in equilibrium may feed back into further investments. These channels have been understood since at least Mundell (1963) and Tobin (1965), and are present in virtually any model with interest-bearing assets and capital investment. However, their quantitative importance remains elusive, since the population share of stock market participants and their characteristics have not received much attention in quantitative models of monetary policy, unlike hand-to-mouth households.1

We argue that stock market participation, and the heterogeneity in consumption/saving behavior between participants and non-participants, is an important determinant of the impact of the monetary policy on the macro economy through investment. Arguably, this dimension of heterogeneity is at least as important as the usual distinction between hand-to-mouth and non-hand-to-mouth households and its impact on the consumption response, as emphasized by e.g. Kaplan, Moll and Violante (2017). In particular, not only does the stock market participation rate affect the mix of policy channels, it also critically determines the magnitudes of aggregate responses to monetary policy. This happens as direct and indirect effects on investment are both increasing in the share of stock market participants. By contrast, transmission via consumption is affected by heterogeneity in an ambiguous way:

1Existing models typically either have a 100 percent stock market participation rate (the “representative agent”) or incorporate heterogeneity but do not aim to match empirical evidence on stock market participants. For instance, Kaplan, Moll and Violante (2017) report a participation rate in the illiquid asset, a mix of housing and stocks, of 80 percent.
while indirect effects are strengthened by the share of hand-to-mouth agents, direct effects are weakened.

We develop a Heterogeneous-Agents New-Keynesian (HANK) model which can account for empirical evidence on the population share of stock market participants, their position in the income and wealth distributions, and their saving behavior. We find that, due to direct effects being reinforced by indirect effects, the overall stock investment channel is quantitatively very powerful, even when accounting for limited participation. Moreover, since stock market participation is endogenous in the model, the strength of these channels is sensitive to changes in the economic environment. Indeed, we find that over the last few decades the stock investment channel has strengthened considerably, as incomes became less equal and stock market participation increased. Intuitively, with a higher stock market participation rate, the direct effects of a monetary policy loosening on investment are larger, as a larger share of the population wants to move wealth from bonds into equity, which spurs additional firm investment. The increase in investment leads to higher aggregate income, which induces further investment into mutual funds. The magnitude of this indirect effect is again increasing in the stock market participation rate. Thus, an increase in participation magnifies the investment response to monetary policy shocks both through direct and indirect channels, which work in the same direction.

Before presenting the model, we provide aggregate time-series evidence which sheds light on the potential importance of stock investments for the pass-through of monetary policy. Specifically, we show that households reduce their net investments into equity-focused mutual funds following a monetary tightening. Facing reduced net inflows, mutual funds in turn reduce the extent to which they channel resources into firms; finally, capital investment also contracts. These patterns are consistent with an important role for stock investments, although the precise importance of this channel vis-à-vis other channels can only be teased out cleanly within a model, as they operate simultaneously.

To discipline the extent of household heterogeneity in the model, we then discuss three key cross-sectional facts. First of all, most households do not participate in the stock market. Therefore, the stock investment channel operates only via a minority of the population, although over time the participation rate has increased. Second, stock market participants are not representative of the population. Indeed, they tend to be located at the upper echelons of the income distribution, see Porterba and Samwick (1995). We document the relation between income and stock market participation in the Survey of Consumer Finances. Third, high-income households save a relatively large fraction of their incomes, as there is a strong negative relation between income and expenditure rates, see also Dynan, Skinner and Zeldes (2004); Krueger, Mitman and Perri (2016); Straub (2017). We use data from
the Consumer Expenditure Survey to discipline this relation in the model.

We design the model to account for these facts. The model incorporates heterogeneity in permanent income, as well as idiosyncratic unemployment risk. Households can save into fully liquid, interest-bearing assets as well as into stock market funds, which are subject to a linear withdrawal tax, and are therefore relatively illiquid. To account for the positive relation between income, stock market participation and saving rates, we introduce an “infrequent” consumption good, which households can enjoy only during specific periods and which enters the utility function as a luxury good vis-à-vis regular consumption. With such consumption goods we have in mind large, but relatively rare expenditures which are typically the preserve of the rich, for example exclusive medical or old-age care, tuition for elite education, starting capital for a private business, or large donations.

The infrequent good creates an additional saving motive, which is particularly relevant to high-income households, given its luxury nature. Hence, the model predicts that high-income households have relatively high saving rates. Moreover, given that infrequent goods are consumed only sporadically, households tend to save for such goods using relatively illiquid assets which offer higher returns, i.e. stocks. Due to this feature, the model is also able to generate a high degree of wealth inequality, and in particular a fat-tailed wealth distribution, as observed in the data.

At any point in time, the population of households in the model can be categorized into three groups who display distinctly different saving behavior. First, there are households who save, but only into liquid, interest-bearing assets. They do so for precautionary reasons, as households face unemployment risk. We label these households “emergency savers” and they react to changes in the interest rate via intertemporal substitution of consumption, the conventional channel in the New Keynesian model. A second group of households has hit a borrowing constraint, due to becoming unemployed. These “hand-to-mouth” households do not respond directly to changes in interest rates, but react heavily to changes in income. The third group of households saves not only in bonds but also into stocks and we label them “stock investors”. They have high incomes and high propensities to save into stocks. The stock investors’ trade-offs regarding the amount of stock purchases are characterized by an Euler equation. This is in line with empirical evidence in Vissing-Jorgensen (2002) who shows that a frictionless Euler equation for stocks fits the micro data well, once the estimation sample is restricted only to those households who participate in the market.

The behavior of the stock investors turns out to be pivotal for the transmission of

\footnote{In the U.S., households face a capital gains tax when selling stocks, which is particularly high when the assets are held for less than a year. Moreover, many U.S. households save in stocks via retirement accounts (IRA or 401(k)), which come with hefty early withdrawal penalties.}
monetary policy to the macro economy. Because they have the option to rebalance the
amount of saving going into stocks versus liquid assets, their consumption is relatively
unresponsive to changes in interest rates. For the same reason, their investment into stocks
tends to react strongly when interest rates change. Moreover, stock market participants
tend to invest marginal income flows into their stock portfolios, which creates the feedback
from household income to investment mentioned above. This feedback, therefore, does
not only operate through indirect consumption responses, typically at the bottom of the
distribution, but mainly through investment responses of wealthy households. This channel
is self-reinforcing and greatly magnifies the effects of monetary policy.

After calibrating the model to the US economy, we simulate the macroeconomic effects
of a monetary policy shock and find that capital investment accounts for much of the
decline in aggregate output, in line with the empirical evidence. We then ask to what
extent these macro responses are driven by the portfolio decisions of stock investors. To
this end, we conduct the following exercises. First, we decompose the response of aggregate
investment and find that rebalancing behavior accounts for a substantial part of its decline.
However, a large remaining part is due to the equilibrium decline in aggregate income,
which further reduces stock investments. We then consider two counterfactual versions
of the baseline model. First, we shut down variations in stock investment, while keeping
the steady-state aggregates and distributions unaltered, monetary policy transmits only
through consumption. In this counterfactual, not only the decline in aggregate output
is much smaller than in the baseline model, but also consumption falls less persistently.
Therefore, the stock investment channel not only matters for aggregate output directly
via investment, but also less directly via consumption. In a second counterfactual model,
households are allowed to reduce their stock investments, but cannot actively rebalance
their portfolio mix. Compared to the baseline, a monetary policy tightening now generates
a milder and less persistent fall in output, despite allowing investment responses to be
propagated via consumption elasticities to income changes. This experiment highlights the
quantitative importance of portfolio rebalancing, as well as the investment-income feedback,
both channels which operate via stock investors, who are at the heart of our baseline model
and calibration strategy.\footnote{For robustness, we consider various other extensions of the model, including one in which firms face financial frictions and household savings can reach firms via both debt and equity markets. We find that results are either not affected at all or somewhat dampened, see Section 4.1 and Appendix C for details.}

In the final part of the paper, we study how the transmission of monetary policy via stock
investments interacts with inequality. In the model, inequality in wealth and consumption
increases following a monetary tightening, and we show that this increase is driven by the
portfolio decisions of stock investors. Vice versa, the presence of inequality matters for the impact of monetary policy on macroeconomic aggregates, since distributional factors determine the rate of stock market participation and the amount of stock investments.

Since inequality has been trending upwards during the last few decades, the model implies that the macroeconomic effects of monetary policy have changed. To study the extent of this change, we compare a version of the model calibrated to the 1980s to a version calibrated to the 2000s.\(^4\) The model endogenously predicts an increase in stock market participation, as incomes in the upper half of the income distribution are lifted. We find that since the 1980s the effects of monetary policy – in particular on investment – have strengthened considerably with the rise in inequality and stock market participation.

We build on a literature that developed New Keynesian models with household heterogeneity and liquidity frictions, which emphasizes households who make a corner decision for liquid assets (i.e. the borrowing-constrained), see Auclert (2019); Debortoli and Galí (2017); Gornemann, Kuester and Nakajima (2016); Hagedorn, Luo, Manovskii and Mitman (2019); Kaplan, Moll and Violante (2017); McKay, Nakamura and Steinsson (2016); McKay and Reis (2016); Ravn and Sterk (2020); and many others. Much of the HANK literature focuses on monetary transmission to aggregate consumption. Exceptions are Luetticke (2021), who emphasizes the importance of heterogeneity for transmission to aggregate investment, and Auclert et al. (2020), who highlight equilibrium spillovers from investment to consumption. Importantly, these studies develop HANK models which are designed to match cross-sectional evidence on consumption behavior, and in particular the share of hand-to-mouth households. However, they do not explore the importance of stock market participation. Indeed, they do not attempt to match empirical facts on the population share of stock market participants, their characteristics, and their saving behavior. Our analysis thus complements the existing literature by showing that this form of heterogeneity is key to understand the power and transmission of monetary policy, and by developing a model which better captures this heterogeneity.\(^5\)

Our analysis also complements a literature which considers the propagation of monetary policy in models with heterogeneity and financial frictions on the firm side, as in e.g. Bernanke, Gertler and Gilchrist (1999) and Ottonello and Winberry (2020). Finally, the presence of the infrequent good relates to studies which consider savings motives that are

\(^4\)Holm (2023) studies the effects of an increase in household income risk on the strength of monetary transmission. In our model experiments, we keep income risk constant, but consider shifts in the distribution of permanent income.

\(^5\)In a similar vein to our analysis, Kekre and Lenel (2022) study how heterogeneity in the “marginal propensity to take risk” can propagate monetary policy effects. They focus on endogenous movements in risk premia, whereas we complement their analysis by matching cross-sectional facts on stock market participation with liquidity frictions and non-homothetic preferences.
not traditionally found in incomplete-markets models, see for instance Ameriks, Briggs, Caplin, Shapiro and Tonetti (2020), Campbell and Hercowitz (2019), and Straub (2017).

2 Insights from two simple models

A key point of this paper is that the stock investment channel is highly sensitive to household heterogeneity, and in particular to stock market participation. This point can be understood by contrasting two highly stylized heterogeneous-agents models, one with a standard consumption channel and another one with the stock investment channel instead. These models are static in nature, for simplicity. In the full quantitative model, both consumption and investment are determined by forward-looking decisions. Moreover, the full model will include investment in both productive and non-productive assets. For now, we consider a much simplified environment. Let \(Y = C + I \), i.e. aggregate income is the sum of consumption and investment expenditures.

In model 1, we focus on monetary transmission via consumption and therefore fix investment \((dI = 0)\). Thus, model 1 abstracts from the stock investment channel. A fraction \(htm \in [0, 1] \) of the population are “hand-to-mouth”, i.e. their consumption is unaffected by interest rates, but responds one-for-one to changes in income.\(^6\) Consumption of the remaining households responds to interest rates according to their Elasticity of Intertemporal Substitution, \(EIS = -\frac{\partial C}{\partial R} > 0 \), but does not react to changes in income.\(^7\)\(^8\) Other than this, the two types are identical. Aggregation gives: \(dC = -\frac{1}{1-htm} \cdot C \cdot EIS \cdot dR + htm \cdot dY \). In the language of Kaplan et al. (2017), the first term captures the “direct effect” of a change in interest rates, whereas the second term captures the consumption response due to “indirect” channels, i.e., a change in income. Solving the model gives the total response of aggregate consumption to the interest rate: \(\frac{dC}{dR} = -EIS \), where we used that \(dC = dY \). It is this decomposition of the consumption response that is often considered in the HANK literature.

In this paper, we are instead primarily interested in the response of capital investment to monetary policy shocks, and how this response interacts with household heterogeneity and stock market participation. In model 2 we therefore focus entirely on investment and assume that households keep consumption fixed (so that \(dC = 0 \)). A fraction \(si \in [0, 1] \)

\(^6\)We assume that hand-to-mouth households' income, as well as stock market investors’ income, perfectly co-move with aggregate income. See Werning (2015) and Bilbiie (2020) for a discussion on the cyclicity of income in HANK models.

\(^7\)We consider a static model and hence the expression for the EIS omits future consumption. One can think of the model experiment as a purely transitory monetary shock, leaving future consumption unaffected.

\(^8\)That is, their Marginal Propensity to Consume (MPC) equals zero. In models with permanent-income consumers, the MPC typically equals the interest rate, and is therefore close to zero at short horizons.
Figure 1: Effect of an interest rate change on aggregate consumption and investment (illustration).

Note: Left panel: elasticity of aggregate consumption w.r.t. the interest rate in simple model 1. Right panel: elasticity of aggregate investment w.r.t. the interest rate in simple model 2.

of the population consists of stock market investors. We denote their interest elasticity of stock investment by $IEI = \frac{\partial I}{\partial R} \left|_R \right. < 0$ and their marginal propensity to invest in stocks by $MPI \geq 0$. Aggregation gives $dI = si \cdot \frac{I}{R} \cdot IEI \cdot dR + si \cdot MPI \cdot dY$. The first term again captures the direct effect, which operates via rebalancing of investments between stocks and interest-bearing assets. Solving the model gives the macro elasticity $\frac{dI}{I} \left|_R \right. = \frac{si}{1-MPI\cdot si} IEI$, using that $dI = dY$.

Figure 1 illustrates the transmission in the two models. The left panel shows that in model 1, a higher share of hand-to-mouth weakens the direct effects of an interest rate change on aggregate consumption, but strengthens the indirect effects, as emphasized by Kaplan et al. (2017). However, on net the two forces cancel out exactly here and the overall response is unaffected by the heterogeneity.

By contrast, the investment response (model 2, right panel) is unambiguously increasing in the share of stock market participants. This happens because an increase in the participation rate strengthens both the direct effects and the indirect income effects, the latter in a highly convex way due to equilibrium feedbacks. Following an increase in interest rates, stock investors rebalance their portfolio away from stocks. This reduces aggregate investment, and therefore aggregate output and income. The reduction in income in turn feeds back into even lower stock investment, and so on. The strength of both the initial effect and the equilibrium feedback is proportional to the stock market participation rate. Thus, when considering the transmission of monetary policy through investment, heterogeneity matters not only for the mix of channels, but also for the aggregate effects.

While in model 2 the amount of investment is essentially supply determined, in the full
quantitative model both demand and supply factors will play an important role. In particular, an increase in aggregate investment reduces the marginal product of capital. This lowers the return on capital investment, and dampens the incentive to invest, as in standard equilibrium models of investment. Finally, note that in model 2, marginal propensities to consume play no role. In the quantitative model, there will be an additional amplification mechanism related to the interaction between investment and liquidity-constrained households with high marginal propensities to consume, as analyzed recently by Auclert et al. (2020).9

3 Empirical evidence

Before introducing the full model, we present empirical evidence on the effects of monetary policy on households’ stock investments, based on a time-series approach. We also discuss empirical patterns regarding heterogeneity in stock market participation and investments across households, which will be used to impose discipline on the full model.

3.1 Time-series evidence

To obtain a better sense of the potential relevance of the stock investment channel, we consider the empirical effects of a monetary policy shock. A key variable of interest is the amount which households invest in stocks. We obtain data on this from the Investment Company Institute (ICI), which collects data on mutual fund flows covering the vast majority of regulated mutual funds in the United States. We consider the net inflow into equity-focused mutual funds, which is defined as the amount of new investment into the fund minus withdrawals.10 Importantly, this variable is not directly affected by changes in stock valuations. Therefore, the variable gives direct insight into the amounts of income which households set aside for stock investment. We scale the variable by the lagged value of total net assets in the funds, but we obtained similar results when results are not scaled.

The empirical methodology follows Miranda-Agrippino and Ricco (2021), who use high-frequency changes in interest rates around FOMC decisions to identify exogenous monetary policy shocks, but correct for information effects using the Fed’s Greenbook forecasts. Responses are then estimated using a Bayesian local projection, based on monthly data over the period 1985-2014.

9See also Bilbile, Kanzig and Surico (2022) for related analysis on this additional mechanism, emphasizing the role of capital income inequality.

10Reported as net new cash flow, it is equal to new purchases of mutual fund shares, plus net exchanges, minus redemptions.
Figure 2: Empirical responses to a monetary tightening.

Note: Horizontal axis is monthly horizon in all panels. “Mutual fund inflow ratio” is the net inflow into equity funds defined as in the text, rescaled by lagged net total assets. All US Equity funds, according to ICI definition. Net purchases of corporate equities by mutual funds come from the Flow of Funds, Table F.223. This variable has been rescaled by a linear trend of nominal GDP and interpolated to monthly using a cubic pchip spline as in Miranda-Agrippino and Rey (2020). IP investment is an index of industrial production components mostly related to capital investment, such as business equipment, oil and gas well drilling and manufactured homes, and defense and space equipment. Source: Federal Reserve Board via Haver Analytics. The remaining series come from Miranda-Agrippino and Ricco (2021) (MR), with the following FRED codes: S&P 500 (S&P 500), Business Loans (BUSLOANS), Industrial Production (INDPRO), Real Nondurable consumption (DNDGRA3M086SBEA), CPI all items (CPIAUCSL), Unemployment rate (UNRATE), Federal Funds Effective Rate (FEDFUNDS). Sample period is 1985:1-2014:12, and a pre-sample 1969:1-1984:12 is used to inform the priors. 12 lags as in MR. The shock is normalized to induce a 100 basis point increase in the effective Fed Funds rate. Shaded areas are 90% confidence bands.

Figure 2 shows the responses of a number of macro and financial variables to a 100bp increase in the Federal Funds Rate. On the macro side, the responses are in line with the conventional wisdom in the literature. A monetary tightening leads to a substantial fall in real activity (industrial production) and in prices, and an increase in unemployment. Nondurable consumption also declines, but much less than the decline in industrial production, which falls by about three to five times as much. This indicates that a large part of the decline in output following a monetary tightening can be attributed to investment into physical capital. We confirm this directly by showing responses of a monthly index of industrial production components mostly related to capital investment, such as business equipment.\footnote{11It is a common finding in the literature that investment responds much more strongly to monetary policy shocks than consumption (see for instance Christiano, Eichenbaum and Evans (2005)). We verified this result also by estimating responses of real private fixed investment, interpolated to have a monthly frequency. While the upon impact effect is more muted, possibly also due to the interpolation, the overall evolution is similar to what shown in Figure 2.}
Particularly informative for the mechanism outlined in this paper, we show in the top left panel how a monetary policy contraction implies a substantial decline in the net inflow of investments into the stock market funds. Thus, a monetary policy shock induces households to either pull out more funds from their stock portfolio and/or invest less into stock market funds. Quantitatively, the response is substantial: the reduction in the net inflow corresponds to more than 1 percent of the total value of the funds. The tightening also leads to a fall in stock prices, as measured by the S&P 500 index, which is consistent with evidence in Bernanke and Kuttner (2005). Finally, we show that the net purchases of corporate equities by mutual funds (i.e. the purchases minus sales) fall in response to a monetary policy contraction. This is consistent with two empirical facts shown in Appendix E.1. First, inflows into equity-focused mutual funds and purchases of corporate equities by mutual funds correlate strongly. Second, saving by mutual funds, i.e. inflows that are not invested, is small and stable over time. In Appendix E.2 we also show that firms reduce equity issuance. This is consistent with empirical evidence by Adra (2021), who shows that contractionary monetary policy shocks cause a decline in IPO activity.

These empirical results suggest the following occurrence of budget flows. Tight monetary policy makes households reduce their investments into equity-based mutual funds, which in turn reduce the extent to which they channel resources into firms. Simultaneously, firms cut on capital investment.\(^\text{12}\) Our quantitative model will be consistent with this chain of events, as all these responses happen jointly and simultaneously, as a result of optimal, forward-looking decision making by households, mutual funds, and firms. Moreover, the reduction in investment in the model will be driven by both demand and supply factors.

Finally, one may wonder if the rebalancing behavior towards interest-bearing assets, e.g. bank accounts, might lead to an increase in bank lending to firms. To assess this possibility we also consider the response of bank loans to businesses, obtained from the Flow of Funds. We find that, following a monetary tightening, business lending actually declines. Thus, the decline in equity available to firms does not appear to be offset by an increase in bank lending.\(^\text{13}\)

3.2 Cross-sectional evidence

While the time series evidence above suggests that stock investments matter for the transmission of monetary policy, their quantitative importance can only be precisely isolated in a model. The simple model described in the previous section suggests that the stock invest-

\(^{12}\)In Appendix E.1 we show that this positive correlation also holds unconditionally, and in fact mutual fund flows lead aggregate capital investment by one quarter.

\(^{13}\)We also find that nonfinancial corporate debt (i.e.: debt securities and loans) falls.
In this subsection, we document a number of cross-sectional patterns which will impose empirical discipline on our full-blown heterogeneous-agents model, presented in Section 4.

3.2.1 Income and stock market participation

We first investigate how stock market participation varies with income in the U.S., and how this relationship has changed over time. To this end, we use data from the Survey of Consumer Finances (SCF). Our measure of stock market participation includes direct ownership of stocks, but also indirect ownership via mutual funds. We focus on the 1989 and 2001 SCF, since during this period there was an important increase in stock market participation. Moreover, 1989 is the first year in the SCF that allows us to construct a measure of stock market participation that includes IRAs and 401k’s mostly invested in stocks, as outlined in Appendix A. Stock market participation plateaued after 2000. Across the population, the stock market participation rate increased from 25 percent in the 1989 SCF to 44 percent in the 2001 SCF. Whilst there was a strong increase, it continued to be the case that the majority of the population does not participate in the stock market.

The left panel of Figure 3 plots income versus stock market participation rate, by labor income decile (indicated by markers). Labor income is measured as wage income after
taxes and unemployment transfers and the horizontal axis indicates the share of aggregate income of the various deciles. The figure shows that stock market participation rate is strongly increasing in income, except for the low end of the income distribution. At the end of the 1980s, the participation rate across income deciles ranged from less than 10 percent to more than 60%. By the 2000s, this relationship had shifted upwards and the participation rate ranged from slightly below 20 percent to about 80 percent.

Closer inspection of Figure 3 reveals that the increase in participation was disproportionately driven by households with incomes above the median. This suggests that the increase in stock market participation might have been related to the increase in income inequality that was observed in the US since the 1980s.

3.2.2 Income and the amount of saving

Having established that the means of saving vary strongly with income, we now turn to the relation between the income level and the fraction of income that goes into saving versus expenditures. To this end, we turn to the Consumer EXpenditure survey (CEX), from which we can compute a household’s expenditure rate, defined as the ratio of consumption to income.

The right panel of Figure 3 plots aggregate expenditure rates for income deciles. The horizontal axis again plots the share of the income deciles in aggregate income. The measure of consumption expenditures is detailed in Appendix A. It includes expenditures made by households on a fairly regular basis, including categories such as food, but also durables such as cars. However, it excludes expenditures which are only incurred infrequently, during specific periods in peoples’ lives, for instance elderly health care or college tuition fees. In the model, both regular and infrequent expenditures will be present, but they will play a separate role.

The panel shows that the expenditure rate is strongly declining in income, which indicates that high-income households save a much larger fraction of their income. This observation echoes previous findings of Dynan et al. (2004) and Straub (2017), who show that the negative relation holds for a wide range of expenditure categories and also using proxies for permanent income rather than current income. The figure also suggests that although stock market participants are only a minority of the population, they do account for a large share of aggregate saving.

We also look at how the relationship between expenditure rates and income has changed.

14 The data for the lowest two deciles overlap precisely since the households at bottom 20 percent all have zero labor income. This group includes retirees, which explains the drop in participation.

15 Such infrequent expenditures accounted for about 20 percent of total expenditures in 1988.
over time. To account for a potential downward trend in consumption over time in the CEX (Aguiar and Bils (2015)), we rescale the expenditure rates by the NIPA aggregate counterpart.\footnote{Each expenditure rate in the right panel of Figure 3 is rescaled by the ratio of aggregate consumption to income ratio in the CEX and the same ratio in the NIPA, at the relevant quarter.} By 2000, the curve had slightly shifted downwards.

4 The full model

Having presented the cross-sectional empirical evidence, we now describe the full model. There is a continuum of households indexed by \(i \in [0, 1] \) and a continuum of goods firms. Other actors in the economy are a central bank, a fiscal authority, a labor service firm and a stock market mutual fund. Time is discrete and indexed by \(t \).

Households. Households differ permanently in terms of their productivity levels as workers, denoted by \(Z(i) \). In addition, they face unemployment risk. When employed, a household freely sets its labor supply, denoted by \(N_t(i) \), but when unemployed a household cannot work in the market, i.e. \(N_t(i) = 0 \). Transitions between employment and unemployment occur according to exogenous probabilities.

Households maximize the expected present value of utility flows, which is given by:

\[
E_0 \sum_{t=0}^{\infty} \beta^t \left\{ \frac{C_t(i)^{1-\sigma_C} - 1}{1 - \sigma_C} + 1_t^H(i) \frac{H_t(i)^{1-\sigma_H} - 1}{1 - \sigma_H} - \zeta \frac{N_t(i)^{1+\kappa}}{1 + \kappa} \right\}, \quad \beta \in (0, 1), \quad \sigma_C, \sigma_H, \varphi, \zeta, \kappa > 0.
\]

Here, \(C_t(i) \) denotes “regular” consumption, \(H_t(i) \) denotes “infrequent” consumption, and \(1_t^H(i) \in \{0, 1\} \) is an indicator function which equals one if the household experiences a period in which infrequent expenditures make a difference to their well-being. We assume that the arrival of such an period is an i.i.d. event which occurs with a probability \(\delta \in (0, 1) \). Moreover, we assume that \(\sigma_H < \sigma_C \), which makes the infrequent good a luxury good. In light of the data, we think of the infrequent good as expenses that tend to be incurred by relatively wealthy households during specific stages of the life cycle, such as high-end health care, elderly care, education fees, see also Straub (2017), and possibly also bequests, see De-Nardi (2004). The presence of such goods creates an additional savings motive, which is most pertinent for highest-income households, given their luxury nature.\footnote{That said, also lower income households make such expenditures in the model, only in much smaller amounts. We will discuss this in detail below.} The third term in the utility function captures disutility from labor supply.
The net non-asset income of a household is given by

\[Y_t(i) = 1^*_t(i) \left[Z(i)\tilde{w}_tN_t(i) + \frac{D_{w,t}}{1-u_t} \right] + (1 - 1^*_t(i))\Theta - T_t, \]

where \(1^*_t(i) \) is an indicator for whether the household is employed or not, \(\tilde{w}_t \) is the wage rate per efficiency unit of labor, \(u_t \) is the unemployment rate, \(\Theta > 0 \) is home production when unemployed and \(T_t \) is a lump-sum government tax. \(D_{w,t} \) are dividends from the labor service firm, to be explained later.

Households can hold one-period nominal liquid assets (\(B_t(i) \geq 0 \)), which one can think of as deposits, and can also hold shares in stock market funds, the value of which is denoted by \(A_t(i) \geq 0 \). Note that the household cannot borrow in any of the two assets. Deposits are fully liquid, whereas liquidation of stock market funds requires a cost given by a fraction \(\tau \in (0,1) \) of the liquidated amount. We model this cost as a tax, as it is meant to capture early withdrawal penalties on retirement accounts as well as capital gains taxes. Importantly, the cost is only paid when liquidating stocks. We do not assume any cost of saving into stocks, as no taxes are levied at that point and transaction fees tend to be small.

The budget constraint of the household, in real terms, is given by:

\[C_t(i) + H_t(i) + A_t(i) + B_t(i) = Y_t(i) + (1 + r_t^A)A_{t-1}(i) + \frac{1 + r_{t-1}^B}{1 + \pi_t}B_{t-1}(i) - X_t(i), \]

where \(r_t^A \) is the ex-post real return on stock market funds, \(r_t^B \) is the nominal interest rate on liquid assets issued in period \(t \), \(\pi_t = \frac{P_t}{P_{t-1}} - 1 \) is the net rate of inflation, and \(X_t(i) \equiv \tau \max\{ (1 + r_t^A)A_{t-1}(i) - A_t(i), 0 \} \) denotes the cost of liquidating stocks.

Timing: the decisions of a household are taken in two stages. In stage 1, the household learns its employment status and decides on the amount of regular consumption, labor supply, bonds and stocks. In stage 2, the household learns whether it has an infrequent expenditure opportunity or not (i.e. it learns \(1^H_t(i) \)), and if so it chooses the amount of such expenditures. In stage 2, the household can re-adjust its bonds and stock holdings, but not regular consumption and labor supply. This two-stage setup circumvents artificial effects on labor supply and consumption when the infrequent expenditure shock occurs.\(^{18}\)

Labor service firms. We introduce nominal wage stickiness. This is not essential for the mechanism, but it helps to generate more realistic cyclical properties of dividends and

\(^{18}\)An alternative setup that achieves this would be to assume a cap on the household’s time endowment and hence on labor supply.
Towards this end, we introduce a labor service firm, owned by the households, which can also be thought of as a labor union. A continuum of monopolistically competitive labor service firms, indexed by \(j \in [0, 1] \), buy effective units of labor at a real price \(\tilde{w}_t \) from the households, differentiate it, and sell it at a real price \(w_t \) to the producers. The differentiation happens according to a Dixit-Stiglitz production function, which implies a labor demand curve \(N_t(j) = \left(\frac{W_t(j)}{W_t} \right)^{-\varepsilon_w} N_t \), where \(\varepsilon_w \) denotes the elasticity of substitution between labor varieties, \(W_t(j) \) is the nominal wage paid by the labor service firm, \(W_t = \left(\int_0^1 W_t(j)^{1-\varepsilon_w}dj \right)^{1-\varepsilon_w} \) is the aggregate nominal wage index, and \(N_t \) is aggregate labor demand. Nominal wage changes come with a quadratic cost of adjustment cost, governed by a parameter \(\gamma_w \).

We further assume that the government gives a proportional subsidy on the firm’s labor input, denoted by \(\tau_w \), as well as a lump-sum tax \(T_{w,t} \) used to finance the subsidy.\(^{20}\) Dividends of the labor service firm are distributed directly and equally to employed households.\(^{21}\) In real terms they are given by:

\[
D_{w,t}(j) = (w_t(j) - \tilde{w}_t(1 - \tau_w)) N_t(j) - \text{Adj}_{w,t}(j) - T_{w,t},
\]

where \(\text{Adj}_{w,t}(j) = \frac{\gamma_w}{2} \left(\frac{W_t(j) - W_{t-1}(j)}{W_{t-1}(j)} \right)^2 \frac{W_t}{P_t} N_t \) is the wage adjustment cost in real terms, and \(\pi_{w,t} = \frac{W_t}{W_{t-1}} - 1 \) denotes nominal wage inflation. Optimal wage setting leads to the following New Keynesian wage Phillips curve:

\[
1 - \varepsilon_w + \varepsilon_w \frac{\tilde{w}_t}{w_t} (1 - \tau_w) = \gamma_w \left(\pi_{w,t} + 1 \right) \pi_{w,t} - \gamma_w E_t \left[\Lambda_{t,t+1} \frac{N_{t+1}}{N_t} \left(\pi_{w,t+1} + 1 \right) \pi_{w,t+1} \frac{\pi_{w,t+1} + 1}{\pi_{t+1} + 1} \right],
\]

where \(\Lambda_{t,t+1} \) is the firms’ stochastic variables for real flows.\(^{22}\)

Goods firms. There are three types of goods firms: a representative intermediate goods producer, a continuum of monopolistically competitive intermediate goods price-setters, and a competitive representative final goods firm.

The intermediate goods producer operates a production technology given by \(Y_t = K_t^\alpha N_t^{1-\alpha} \).

\(^{19}\) Challe and Giannitsarou (2014) show how nominal wage stickiness can counteract the countercyclicality of profits in New Keynesian models. See also Broer et al. (2020) and Colciago (2011) for further discussion.

\(^{20}\) We will calibrate the subsidy such that dividends of the labor service firm are zero in the steady state.

\(^{21}\) We make this assumption since monopolistic competition in the labor market is primarily a modeling device to introduce nominal wage rigidity. In the literature, this construct is sometimes referred to as a labor union, owned by the workers.

\(^{22}\) Variations in the stochastic discount factor are irrelevant for price and wage setting, since we linearize around a steady state with zero inflation.
The capital accumulation equation reads as follows: $K_{t+1} = (1 - \delta^K)K_t + [1 - \Omega(I_t/I_{t-1})] I_t$, where $\Omega(I_t/I_{t-1}) = \frac{\psi}{2}(\frac{I_t}{I_{t-1}} - 1)^2$ is an investment adjustment cost following Christiano et al. (2005), and $\delta^K \in (0, 1)$ is the depreciation rate of capital. The dividends of the producers are given by $D_{p,t} = \tilde{P}_t K_t^{\alpha} N_t^{1-\alpha} - w_t N_t - I_t$. Producers maximize the expected present value of dividends and discount the future at an stochastic discount factor $\Lambda_{t,t+1}$. The firm’s first-order condition for the optimal amount of investment is forward-looking and given by:

$$q_t = \mathbb{E}_t \Lambda_{t,t+1} \left[(1 - \delta_k) q_{t+1} + \alpha \frac{Y_{t+1}}{I_{t+1}} \right],$$

where q_t is Tobin’s q and $\alpha \frac{Y_{t+1}}{I_{t+1}}$ is the marginal revenue product of capital. Note that the latter can move either because of fluctuations in the capital-to-output ratio, or by the price of intermediate goods. In the absence of investment adjustment costs, it holds that $q_t = q_{t+1} = 1$, and there is a direct link (in expectation) between the marginal revenue product of capital and the Stochastic Discount Factor, $\Lambda_{t,t+1}$.

A continuum of monopolistically competitive intermediate goods price-setters buy the intermediate good Y_t, and differentiate it into varieties indexed by $j \in [0, 1]$. The intermediate goods are assembled by a representative final goods firms into a homogeneous good, according to the production function $Y_t = \left(\int_0^1 Y_t(j) \frac{\varepsilon - 1}{\varepsilon} dj \right)^{\frac{1}{\varepsilon}}$, where $\varepsilon > 1$ is the elasticity of substitution between varieties. Profit maximization of the final goods firms leads to the demand constraint $Y_t(j) = \left(\frac{P_t(j)}{P_t} \right)^{\varepsilon} Y_t$, where $P_t(j)$ is the price of good j and $P_t = \left(\int_0^1 P_t(j)^{1-\varepsilon}dj \right)^{\frac{1}{1-\varepsilon}}$ is the aggregate price index. The final good can be used for regular consumption, infrequent consumption, for capital investment, and for adjustment and liquidation costs.

Intermediate goods price-setters operate a linear technology and face a quadratic cost of price adjustment given in real terms by $Adj_t(j) = \frac{\gamma}{2} \left(\frac{P_t(j) - P_{t-1}(j)}{P_t(j)} \right)^2 Y_t$, where $\gamma \geq 0$ is a parameter which governs the cost of price adjustment. The dividends of the firm are given by (in real terms) $D_{r,t}(j) = \frac{P_t(j)}{P_t} Y_t(j) - \tilde{P}_t Y_t - Adj_t(j)$. Price-setting firms maximize the expected present value of dividends subject to the demand constraint, and discount the future with $\Lambda_{t,t+1}$. We exploit symmetry across firms, and drop the firm index j from now on.

23For an analysis of capital adjustment costs (as opposed to investment adjustment costs) in a heterogeneous-agents New Keynesian model, see Alves, Kaplan, Moll and Violante (2020).
on. The firms’ maximization problem leads to the following New Keynesian Phillips Curve for goods prices:

\[1 - \varepsilon + \varepsilon \tilde{P}_t = \gamma (\pi_t + 1) \pi_t - \gamma E_t \left[\Lambda_{t,t+1} (\pi_{t+1} + 1) \pi_{t+1} \frac{Y_{t+1}}{Y_t} \right], \]

where the price at which intermediate goods producers sell their good, \(\tilde{P}_t \), acts as a marginal cost for intermediate goods price-setters.

Stock market funds. Stock market funds own all types of goods firms. Let \(NI_t \) be the real net flow of household investment into the fund. The flow budget constraint of the fund is given by:

\[Q_{r,t} S_{r,t} + Q_{p,t} S_{p,t} = (D_{r,t} + Q_{r,t}) S_{r,t-1} + (D_{p,t} + Q_{p,t}) S_{p,t-1} + NI_t, \]

where \(S_{r,t} \) (or \(S_{p,t} \)) is the amount of equity shares held by the mutual fund in the representative price setter (goods producer).\(^{24}\) For each type of firm \(i \), \(Q_{i,t} = \sum_{k=1}^{\infty} \Lambda_{t,t+k} D_{i,t+k}, i \in \{ r, p \} \), is the real, end-of-period stock price of the representative firm, after dividend payouts. The stochastic discount factor satisfies

\[1 = E_t \Lambda_{t,t+1} \frac{D_{r,t+1} + Q_{r,t+1}}{Q_{p,t}} \quad \text{and} \quad 1 = E_t \Lambda_{t,t+1} \frac{D_{p,t+1} + Q_{p,t+1}}{Q_{r,t}}. \]

We normalize \(S_{r,t} = S_{p,t} = 1 \). The flow budget constraint then reduces to \(-D_{r,t} - D_{p,t} = NI_t \). Note that \(D \) can be negative. We think of \(-D \) as net equity inflows into the firms. Combining this equation with the firm budget constraint helps understand why in the data there is a strong correlation between capital investment and the inflow into the mutual fund, as documented in Section 3. A reduction in household net investments into the fund, \(NI \), prompts a reduction in net firm equity inflows; eventually, this is associated with a drop in firms’ investment, as we discuss later.

The net mutual fund inflow can be decomposed as:

\[NI_t = \int A_t(i) di - (1 + r^A_t) \int A_{t-1}(i) di, \]

where \(\int A_t(i) di \) is the stock of mutual fund shares held by households in the aggregate, at the end of the period and after the realization of the expenditure shock. The real return generated by the fund satisfies:

\[r^A_t = \frac{D_{r,t} + Q_{r,t} + D_{p,t} + Q_{p,t}}{Q_{r,t-1} + Q_{p,t-1}} - 1. \]

\(^{24}\)Note that equity in the price setters is essentially a non-productive asset, as it values monopolistic rents that cannot be expanded through aggregate investment. In Appendix C.2 we consider an extension with another non-productive asset with a fixed return.
To better understand the role of demand and supply factors in the determination of aggregate investment, consider for simplicity the special case without uncertainty and no investment adjustment costs. We then obtain the following relation between the real return and the marginal revenue product of capital:

\[r_{t+1}^A = 1 - \delta k + \alpha \hat{P}_{t+1} \frac{Y_{t+1}}{K_{t+1}}. \]

Suppose there is a decline in the marginal revenue product of capital, for instance because the demand for intermediate goods is expected to fall (a decline in \(\hat{P}_{t+1} \)) or because an investment boom raises the capital-to-output ratio. In this case, the expected return on mutual fund investment falls, which dampens households’ incentive to invest in the mutual funds, reducing the net inflow into the mutual fund, thereby suppressing investments. In other words, the amount of capital investment that ensues in equilibrium is determined both by demand and supply factors. A tightening in monetary policy creates a shift in the capital supply curve downwards, by inducing households to rebalance. This induces a fall in the amount of capital and an increase in the expected return. The extent of this supply shift is affected by the rate of stock market participation. Moreover, in equilibrium both the capital demand and supply further move due to equilibrium feedback mechanisms, which we will study quantitatively.

Government. We assume that the government is indebted and targets a fixed amount of government debt \(\bar{B} \), letting taxes adjust. The government’s budget constraint is given by:

\[
\frac{1 + r^B_{t-1}}{1 + \pi_t} \bar{B} = \bar{B} + T_t.
\]

Finally we assume monetary policy is set according to a simple rule for the interest rate:

\[
\frac{1 + r_t^B}{1 + \pi} = \left(\frac{1 + \pi_t}{1 + \pi} \right)^\xi + z_t,
\]

where \(z_t \) is an exogenous monetary policy shock which follows an AR(1) process.

Market clearing. Clearing of the market for liquid assets, labor, and goods implies, respectively, that:

\[
\int_i B_t(i) di = \bar{B},
\]

\[
\int_i Z(i) N_t(i) di = \int_j N_t(j) dj = N_t,
\]

\[
I_t + \int_i C_t(i) di + \int_i H_t(i) di + Adj_t + Adj_{w,t} + \int_i X_t(i) di = K_t^\alpha N_t^{1-\alpha} + u_t \Theta,
\]

where \(u_t \) is the unemployment rate. We formally define the equilibrium in Appendix B.
4.1 Extensions

While the baseline model is arguably quite rich, it might still miss some relevant channels. In particular, firms are externally financed exclusively via equity, although in equilibrium retained earnings are an important source of finance for capital investment, as we will show later. Moreover, household saving into liquid assets cannot directly flow to firms. We discuss five possible extensions, all affecting the intermediate goods producers, who own capital.

First, we could allow firms to issue corporate debt, held by the mutual fund. This, however, would not change anything in the model. Since Modigliani-Miller theorem holds, because there are no financial imperfections on the firm side, corporate debt and equity are perfect substitutes. Thus, it is possible to interpret the model more broadly, capturing not only limited stock market participation but also limited corporate bond ownership.25

Second, we could allow firms to borrow in the liquid asset, without the intermediation of the fund but subject to an exogenous borrowing limit. Provided that the interest rate on liquid assets still lies below the firm’s discount factor, as in the baseline, this would also have no effect. Firms’ relatively high discount rate would drive them against the borrowing constraint. Hence, at the margin any financing would happen via equity from the fund.

Third, we consider a financial constraint on the firm side, of the following form: \(M_t \geq \nu (I_t - I_{ss}) \), where \(M_t \) is the amount of corporate cash, \(I_{ss} \) denotes steady-state investment and \(\nu \in [0, 1] \). Corporate cash earns the same real return as deposits held by households, and it is in fixed supply such that \(\int_i B_i(i)di + M_t = \overline{B} \). The financial constraint binds in equilibrium and dictates that, for every additional dollar of investment, the firm needs to hold \(\nu \) dollars of cash. Therefore, a part of equity flows into the firm will result in additional cash holdings rather than capital investment. In Appendix C.1, we show that, depending on the value of \(\nu \), the responses of output and investment to a monetary policy shock are somewhat dampened, but qualitatively similar to the baseline model without the financial constraint. We will discuss this model version further in Section 6.

A fourth possible extension could entail allowing household savings to boost bank lending to firms. While this might deliver similar implications to the cash in advance constraint, it would be at odds with the empirical contraction of business loans following a monetary policy tightening. In contrast, we find that corporate cash falls, in the data as well as in the model.26

25Note that, in this version, household liquid assets and corporate debt are not perfect substitutes, since only the former can be held by the households. In the data, household participation in the market for corporate bonds (be it direct or via mutual funds) is limited, as it is for stocks. Moreover, in the data corporate bonds yields carry spreads relative to short-term government debt. The same would be true in the extended model, due to liquidity frictions.

26We define corporate cash as the sum of currency, checkable deposits, time and saving deposits, and
Finally, one might be concerned that, realistically, not all assets in which households invest are productive, so that not all the increase in investment flows into capital. In this regard, note that it is already the case that in the model one of the two types of assets held by the mutual fund is essentially non-productive (the claims to the profit flows of the monopolistic price setters). In Appendix C.2, we consider an extension in which mutual funds hold another non-productive asset with a fixed return. We show that our main results remain nearly unchanged. Further, in Appendix C.3 we present an exercise exploring how curvature in the utility with respect to the infrequent goods affects results.

5 Calibration and steady-state properties

We now parameterize the baseline model and discuss its qualitative and quantitative properties in the steady-state equilibrium without aggregate uncertainty.

5.1 Calibration

The baseline economy is calibrated to match micro and macro empirical moments in the 1980s. In Section 7.3 we will recalibrate the model to the 2000s and study the effects of the change in the income distribution and stock market participation since the 1980s. The length of a period in the model is set to one quarter. We first discuss the externally calibrated parameters, and then turn to parameters which are jointly calibrated to target moments in the data. Table 1 lists all the parameters while Table 2 shows the model fit. Below we discuss the parameters by category.

I. Preferences. Regarding regular consumption, we assume a risk aversion coefficient of \(\sigma_C = 1 \), a conventional choice in the literature. This choice implies that the parameter controlling the utility curvature with respect to the infrequent good must lie between zero and one, i.e. \(0 \leq \sigma_H < \sigma_C = 1 \), since we assume the infrequent good is a luxury. Empirically, this parameter is difficult to estimate as, by construction, these goods are only consumed rarely. We set \(\sigma_H = 0 \), i.e. we assume linear utility with respect to the infrequent good. This choice helps the model generate a fraction of non-participants in the stock market, as in the data, as well as high saving rates at the top of the income distribution. It also creates computational advantages. We will explain these points below. In Appendix C.3, we study how fluctuations in the marginal utility of luxury goods could affect results. The level parameter pertaining to the utility of infrequent expenditures, \(\varphi \), is internally calibrated, money market mutual fund shares, in the nonfinancial corporate business sector. Monetary policy shocks are identified with the quarterly series from Romer and Romer (2004).
jointly with other parameters and will be discussed further below. The same is true for the subjective discount factor (β). The probability of infrequent expenditure δ is also internally calibrated, exploiting that in equilibrium households fully liquidate their stocks when such a moment occurs (see further discussion below). The Frisch Elasticity of labor supply, $\frac{1}{\kappa}$, is set to 1, following convention in the macro literature. The weight on the labor supply component of utility, ζ, is set such that households work on average 33% of the time.

II. Technology. Turning to technology, the elasticity of production with respect to capital, α, is set to 0.33, while the depreciation rate of capital is set to 0.025 (10% per year). The latter is in line with the average ratio of gross fixed capital formation over nonfinancial assets in the US business sector between 1950 and 2017. Following much of the New Keynesian literature, we set demand elasticity ϵ to 10, implying a profit share of 10%. The price adjustment cost parameter, γ, is set to imply an average price duration of about three quarters in the Calvo equivalent of the model. The wage stickiness parameters is calibrated to imply an average duration of one year, corresponding to annual wage contracts. Finally, we set the wage subsidy $\tau_w = \frac{1}{\epsilon_w}$, such that $w = \tilde{w}$ and $D_w = 0$ in steady state. We calibrate the parameter on the investment adjustment costs, ω, to match the empirical response of aggregate output.\footnote{A monetary policy shock that increases the interest rate by 100 basis points decreases aggregate output in the model and industrial production in the data by 1.6% in the first quarter.}
Table 1: Parameter values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Target/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Preferences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_C</td>
<td>curvature regular consumption</td>
<td>1</td>
<td>convention</td>
</tr>
<tr>
<td>σ_H</td>
<td>curvature infrequent consumption</td>
<td>0</td>
<td>see text</td>
</tr>
<tr>
<td>φ</td>
<td>level infrequent expenditure</td>
<td>2.215</td>
<td>internally calibrated</td>
</tr>
<tr>
<td>δ</td>
<td>prob. infrequent expenditure</td>
<td>0.024</td>
<td>liquidation rates</td>
</tr>
<tr>
<td>κ</td>
<td>inverse Frisch elasticity</td>
<td>1</td>
<td>convention</td>
</tr>
<tr>
<td>ζ</td>
<td>disutility of labor</td>
<td>10.5</td>
<td>avg hours worked: 1/3</td>
</tr>
<tr>
<td>β</td>
<td>subjective discount factor</td>
<td>0.98</td>
<td>internally calibrated</td>
</tr>
<tr>
<td>II. Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>capital share</td>
<td>0.33</td>
<td>labor share: 63%</td>
</tr>
<tr>
<td>ϵ</td>
<td>elasticity of substitution goods varieties</td>
<td>10</td>
<td>profit share: 10%</td>
</tr>
<tr>
<td>ϵ_w</td>
<td>elasticity of substitution labor varieties</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>price adjustment cost</td>
<td>51.92</td>
<td>avg. price duration: 3q</td>
</tr>
<tr>
<td>γ_w</td>
<td>wage adjustment cost</td>
<td>101.89</td>
<td>avg. wage duration: 4q</td>
</tr>
<tr>
<td>τ_w</td>
<td>wage subsidy</td>
<td>0.1</td>
<td>wage dividends: 0</td>
</tr>
<tr>
<td>δ_k</td>
<td>depreciation rate capital</td>
<td>0.025</td>
<td>investment (FoF)</td>
</tr>
<tr>
<td>ω</td>
<td>investment adjustment costs</td>
<td>0.028</td>
<td>output IRF</td>
</tr>
<tr>
<td>III. Policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ξ</td>
<td>coefficient Taylor rule</td>
<td>1.5</td>
<td>convention</td>
</tr>
<tr>
<td>π</td>
<td>long-run inflation target</td>
<td>0</td>
<td>net inflation rate: 0</td>
</tr>
<tr>
<td>IV. Asset Markets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ</td>
<td>liquidation cost mutual fund shares</td>
<td>0.286</td>
<td>internally calibrated</td>
</tr>
<tr>
<td>\overline{B}</td>
<td>supply liquid assets</td>
<td>0.056</td>
<td>real interest rate: 0.01</td>
</tr>
<tr>
<td>IV. Idiosyncratic income</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{ue}</td>
<td>unemployment outflow probability</td>
<td>0.8</td>
<td>job finding rate</td>
</tr>
<tr>
<td>p_{eu}</td>
<td>unemployment inflow probability</td>
<td>0.042</td>
<td>unemployment rate: 0.05</td>
</tr>
<tr>
<td>Θ</td>
<td>home production</td>
<td>0.6</td>
<td>internally calibrated</td>
</tr>
<tr>
<td>Z_i</td>
<td>permanent productivities</td>
<td>[1.440 1.444 1.448 1.452 1.456 1.843 1.919 1.972 2.083 2.265]</td>
<td>internally calibrated</td>
</tr>
</tbody>
</table>
III. Policy. We assume that the central bank targets a steady-state rate of inflation of zero percent. The elasticity of the nominal interest rate with respect to inflation in the Taylor rule, ξ, is set to 1.5, in line with values typically considered in the New Keynesian literature and empirical estimates.

IV. Asset markets. The liquidation cost τ and the supply of liquid assets, \overline{B} are internally calibrated (see below).

V. Idiosyncratic income. We set the job-finding probability (p_{ue}) to 80%. The probability of becoming unemployed (p_{eu}) is calibrated such that the steady-state unemployment rate is 5%. The remaining parameters pertaining to idiosyncratic income are internally calibrated.

VI. Internally calibrated parameters. We internally calibrate the probability of an infrequent expenditure δ, the liquidation cost τ, the discount factor β, home production when unemployed Θ, the utility parameter for infrequent expenditures φ, and the supply of liquid assets, \overline{B}. In addition, we calibrate the productivity types. Below we discuss the moments that we target in the calibration, relating them to the parameters which are most closely related.

Regarding τ, we rely on information on effective liquidation cost for direct and indirect ownership of stocks. Liquidating directly held stocks in the US entails a capital gains tax that varies between 0% and 20%. Using the average duration implied by the calibrated value of δ, and the steady state return on illiquid assets, the implied average τ is 0.21.\footnote{Consider $\$1$ that is invested in stocks and kept invested for 44 quarters. The quarterly return on that investment is a steady state r_α of 1.63%. A 20% capital gains tax implies $\tau = \frac{0.2(1.0163^{44}-1)}{1} = 0.207$.} Liquidation cost for stocks indirectly held through 401k or IRA accounts is, however, much higher. Besides a 10% penalty from early withdrawal, the liquidated amount is subject to income taxation. The highest marginal income tax rate was 70% in 1980 and 39.6% in 2000. As a result, we target an average liquidation cost of 30%, in between our estimates for directly and indirectly held stocks.

Considering δ, we target a liquidation probability such that on average liquidation occurs every 10 years. This target is based on various sources pointing at the average time households hold a stock market account. Argento, Bryant and Sabelhaus (2015) find a 8.6% annual penalized withdrawal rate from 401k account. Other research finds that the likelihood of withdrawing from 401k accounts before 59.5 years of age varies greatly over time and individuals’ age, but it is no more than 9% at annual rate. Calvet, Campbell and Sodini (2009) investigate individual portfolio dynamics using Swedish data. They find an average exit rate from risky assets markets of 3.1% a year between 2000 and 2002. This would imply a quarterly withdrawal rate of 0.008. Taken together, these estimates imply...
a high average duration of mutual fund accounts. We pick a parameter towards the lower bound of these estimates, to take into account that direct ownership of stocks is likely to have a much shorter duration than indirect ownership.

The discount factor β, home production when unemployed Θ, the slope of utility derived from infrequent expenditures ϕ and the supply of liquid assets, B, are jointly related to the following four targeted moments: (i) the capital output ratio, (ii) the real interest rate, (iii) the ratio of total household assets to output, (iv) the average consumption loss after 6 months of unemployment. The empirical capital output ratio is computed as the ratio between business-sector nonfinancial assets over GDP, averaged between 1950 and 2017. The real interest rate is targeted to be 1 percent per year. Total household assets are instead computed as households’ net worth minus consumer durables. In the baseline calibration we target the average between 1950 and 1990. We further target a 16% consumption loss after 6 months of unemployment, in line with evidence in Browning and Crossley (2001).

The final part of the calibration regards the permanent income types. We include 10 productivity types in total. Given our focus on the upper half of the income distribution, we use 5 types for the top quartile of income (each with a population share of 5 percent), and 5 types for the bottom three quartiles (each with a population share of 15 percent).

We set their productivity levels such that, in equilibrium, households in the top quartile of income participate in the stock market. This target is based on data from the 1989 SCF, as shown in Figure 3a. The productivities of the five types at the top are set such that we match their expenditure rates in 1988, as shown in Figure 3b. The productivities of five bottom types are equally spaced between about 20 percent above the home production and 20 percent below the productivity of the fifth type from the top.

Table 2 shows the fit of the model with respect to the targeted and untargeted moments. The model generates an immediate consumption loss upon unemployment which is in line with empirical findings by Ganong and Noel (2019). The aggregate ratios of consumption expenditures to after-tax labor income are close to the NIPA equivalent in 1988. Given limited stock market participation, the high saving rates of the stock investors help to replicate the empirical ratio of investment to GDP. Finally, we note that the implied steady state real return on mutual fund shares, r_A, is 1.63 percent per quarter, or 6.7 percent per year.

29Consistent with the CEX data, income is measured as the average over the past year. Also, income is defined as labor income after taxes and transfers, both in the model and in the data. We also account for the fact that home production when employed, Θ, is not entirely accounted for by transfers in the CEX. Hence, we make use of the fact that, in 1988, average transfers in the CEX were 12 percent of average after-tax labor income. We rescale income of the unemployed in the model by this common factor. This implies that 16 percent of Θ is accounted for as transfers and thus included in our computations of income.
Table 2: Model fit.

<table>
<thead>
<tr>
<th></th>
<th>Model</th>
<th>Data</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. targeted:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital to output ratio</td>
<td>1.80</td>
<td>1.87</td>
<td>Flow of Funds</td>
</tr>
<tr>
<td>Households assets to output ratio</td>
<td>3.34</td>
<td>3.35</td>
<td>NIPA</td>
</tr>
<tr>
<td>Consumption loss 6 months after job loss</td>
<td>16.2%</td>
<td>16%</td>
<td>Browning and Crossley (2001)</td>
</tr>
<tr>
<td>Average duration of stock market holding</td>
<td>1/0.024</td>
<td>1/0.025</td>
<td>see text</td>
</tr>
<tr>
<td>Average liquidation cost</td>
<td>0.29</td>
<td>0.30</td>
<td>see text</td>
</tr>
<tr>
<td>Expenditure rates (top 5 demi-deciles)</td>
<td>[0.44 0.53 0.58]</td>
<td>[0.44 0.52 0.58]</td>
<td>CEX/NIPA</td>
</tr>
<tr>
<td></td>
<td>0.61 0.70</td>
<td>0.61 0.66</td>
<td></td>
</tr>
<tr>
<td>Stock market participation rate</td>
<td>24.4%</td>
<td>24.9%</td>
<td>SCF</td>
</tr>
<tr>
<td>II. Not targeted:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption loss upon unemployment</td>
<td>8%</td>
<td>6%</td>
<td>Ganong and Noel (2019)</td>
</tr>
<tr>
<td>Investment to output ratio</td>
<td>0.18</td>
<td>0.19</td>
<td>Flow of Funds</td>
</tr>
<tr>
<td>(\frac{C}{wN - T})</td>
<td>0.87</td>
<td>0.91</td>
<td>NIPA</td>
</tr>
<tr>
<td>(\frac{C+H}{wN - T})</td>
<td>1.25</td>
<td>1.20</td>
<td>NIPA</td>
</tr>
</tbody>
</table>

Note: \(C \) stands for aggregate regular consumption expenditures, \(H \) aggregate infrequent consumption expenditures and \(wN - T \) aggregate after-tax labor income. See Appendix A for data description. Capital and household assets ratios are relative to annual output.

5.2 Saving behavior

We now discuss the saving behavior of the households in the model and shed more light on the ability of the model to account for the empirical relation between income, expenditure rates and stock market participation.

The left panel of figure 4 shows the relation between income and stock market participation in the model. Only households in the upper quarter of the income distribution participate in the stock market. The relation with income is sharper than in the data, but nonetheless captures a very salient empirical pattern.\(^{30}\) In addition, the model predicts that 39% of aggregate labor income goes to stock market investors, remarkably close to the empirical counterpart (41%). This moment is important to determine the contribution of the indirect income effect to aggregate responses. The right panel of figure 4 shows the relation between income and expenditure rates in the model. The model generates the declining, convex relation present in the data (see Figure 3), even though in the calibration only the expenditure rates in the top quartile of the distribution were directly targeted.

The model also generates a large degree of wealth dispersion. In particular, it generates

\(^{30}\)To weaken the correlation between income and stock market participation, one could introduce for example heterogeneity in the ability to invest (financial literacy), although this would be unlikely to have strong implications for the key mechanisms at play in the model.
Figure 4: Stock market participation and expenditure rates by income decile in the model.

Note: Monte Carlo simulation of the stationary distribution over 200,000 households. Each dot is a decile of after-tax labor earnings, including unemployment benefit as explained in the main text. For each decile, we compute the stock market participation rate in the left panel, and the ratio of average consumption to average after-tax labor earnings in the right panel. Expenditure rates are computed using regular consumption C. The horizontal axis plots the deciles of after-tax labor earnings as a fraction of its aggregate value.

a fat right tail, a well-known feature of the data which standard incomplete-markets models fail to generate. In fact, the model even somewhat overpredicts the degree of wealth inequality at the top as shown in Table 3, which compares the model-generated wealth distribution to an empirical counterpart from the SCF.

How does the model generate these patterns? To understand this, it is important to recall the luxury nature of the infrequent expenditure good. This implies that there is a level of regular consumption at which households become satiated. As we will show formally below, household consumption never exceeds this satiation level. Once the satiation point is reached, any additional income is put into saving, generating low expenditure rates, which then become decreasing in income as observed in the data. Moreover, beyond the satiation point households do not further increase their liquid assets. Instead, they invest all marginal income into stocks. While being relatively costly to liquidate, stocks generate higher returns in equilibrium and therefore offer a relatively attractive way of long-term saving.

Stocks are liquidated when an infrequent expenditure moment arises, and thus the amount of time until liquidation is exponentially distributed. Until liquidation, stock market wealth grows exponentially at a rate of at least r^A (and even more so during periods when a household actively adds to its stock market wealth), giving rise to a fat-tailed wealth distribution, see e.g. Jones (2015). Therefore, the model endogenously generates a high degree of wealth inequality that is not inherited from the income distribution or targeted in
Table 3: Wealth inequality

<table>
<thead>
<tr>
<th></th>
<th>Model</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>90th-10th percentile log range</td>
<td>7.17</td>
<td>5.63</td>
</tr>
<tr>
<td>Share of wealth held by top 10%</td>
<td>90.9%</td>
<td>77.5%</td>
</tr>
<tr>
<td>Share of wealth held by top 1%</td>
<td>50.2%</td>
<td>35.7%</td>
</tr>
<tr>
<td>Share of wealth held by top 0.1%</td>
<td>23.8%</td>
<td>12.6%</td>
</tr>
</tbody>
</table>

Note: Monte Carlo simulation of the stationary distribution over 200,000 million households. Wealth in the model is defined as the end of period sum of liquid and illiquid assets b and a. In the data, it is the sum of stock holdings (defined, as previously, as direct holding of stocks plus 401k and IRA mostly in stocks), checking and saving accounts, MM mutual funds, certificates of deposits and U.S. saving bonds in the 1989 SCF. Quantile ranges are differences of percentiles of logged variables.

Without satiation, in contrast, employed households would accumulate savings up to a certain target level of saving, and subsequently have a zero saving rate. Our model is therefore in line with empirical findings by Fagereng, Holm, Moll and Natvik (2019b): first, even at the top of the wealth distribution, median net saving rates are positive. Second, gross saving rates increase with wealth. Third, the gap between gross and net saving rates opens up with wealth.

Below the satiation level, households do not invest into stocks, although they may own stocks that were purchased previously but not yet liquidated. Households with low levels of permanent productivity never reach the satiation point. Hence, they have relatively high expenditure rates and do not participate in the stock market.

It can further be shown that in the calibrated model the following properties hold. First, all households who lose their job spend their liquid savings within the first quarter of unemployment and hence become borrowing-constrained, see Appendix B for the condition under which this is the case. This is true even when their stock wealth is high. The model is thus able to generate “wealthy hand-to-mouth households”. Second, households liquidate stocks only when an infrequent expenditure opportunity arises, which gives rise to high saving rates at the top of the income and wealth distribution, leading to high wealth inequality. Third, when an infrequent expenditure opportunity arises, households spend all their liquid savings and stocks on the infrequent good. Due to this property, the wealth distribution is stationary. In Appendix B we present analytical conditions which can be used to verify if this is the case, given a certain calibration. There, we also discuss the details of the numerical solution strategy.

In the literature, high wealth inequality is sometimes generated by including an income process which includes a special, transitory income state with exceptionally high income, which in turn generates a strong precautionary saving motive among those with high income. This type of income process however is considered at odds with the data.

In the calibrated model households in the upper quartile of the productivity distribution reach the satiation point already in the first quarter of employment, but this is not necessarily the case in general.
Why is there a satiation point in consumption? The presence of the satiation point can be observed from the first-order conditions. Given $\sigma_H = 0$ and the three properties described above, the Euler equation associated to the liquid asset is given by:

$$C_t(i)^{-\sigma_c} \geq \delta \varphi + (1 - \delta) \beta \mathbb{E}_t \left\{ \frac{1 + r_t^B}{1 + \pi_{t+1}} C_{t+1}(i)^{-\sigma_c} \right\},$$

See Appendix B for a derivation. The condition binds with equality when the household is not liquidity-constrained. In that case, the marginal cost of saving, i.e. the marginal utility with respect to regular consumption, is equal to the benefit, given by the right-hand side. With probability δ, an infrequent expenditure will be made at the end of the period, in which case the households will spend the liquid asset and receive a utility flow φ. With the complement probability, the household will have more liquid wealth at the beginning of the next period. Note that when we set $\delta = 0$ (no infrequent expenditures) this equation reduces to a standard Euler equation for nominal, liquid assets.

The first-order condition for households saving into stocks can be expressed as:

$$C_t(i)^{-\sigma_c} \geq \delta (1 - \tau) \varphi + (1 - \delta) \beta \mathbb{E}_t (1 + r_{t+1}^A) C_{t+1}(i)^{-\sigma_c}$$

The right-hand side equals the benefit of saving into stocks. If the household liquidates, which happens with probability δ, it pays a liquidation cost equal to a fraction τ of the liquidated amount. The remainder is spent in the infrequent good, delivering a utility flow φ per unit.

The equation binds when households save into stocks; in this case, the right-hand side does not depend on any individual-specific variable, implying a satiation level for consumption $C_t(i)$.

Vissing-Jorgensen (2002) shows that a standard Euler equation for stocks fit the data well, once the sample is restricted to include only stock market participants. This is also the case in our model.\footnote{33To see this, note that we can iterate the equation forward to obtain $C_t(i)^{-\sigma_c} = \delta (1 - \tau) \varphi \left\{ 1 + \mathbb{E}_t \sum_{j=1}^{\infty} (1 - \delta)^j \prod_{k=1}^{j} (1 + r_{t+k}^A) \right\}$. Here, $\delta (1 - \delta)^j$ is the probability that a household will liquidate in j periods from the present, because of the arrival of an infrequent expenditure opportunity. Moreover, $\prod_{k=1}^{j} (1 + r_{t+k}^A)$ is the compounded gross stock return up to that point.}

\footnote{34Quantitatively, the constant $\delta (1 - \tau) \varphi$ is less than 5 percent of the marginal utility of (regular) consumption. It is small because the probability of an infrequent expenditure, δ, is low. Indeed, in the model, we estimate a sensitivity of regular consumption growth to growth in the real return on the mutual fund equal to 0.97, very close to the parametrized EIS. Note further that the constant term $\delta (1 - \tau) \varphi$ drops out when linearizing the equation.}
6 Heterogeneous responses to changes in interest rates and income

Before analyzing quantitatively how changes in monetary policy affect equilibrium outcomes in the model, we discuss qualitatively how different groups of households respond to changes in interest rates and income. This helps to better understand the direct and indirect channels of monetary policy, and the relation between the full model and the simple model discussion in Section 2. To this end, it is useful to divide the population into three categories:

1. **Hand-to-mouth**: households who are liquidity constrained,

2. **Emergency savers**: households who are not liquidity-constrained, and save only into liquid assets,

3. **Stock investors**: households who are not liquidity-constrained, and save into both liquid assets and stocks.

In the calibrated model, the hand-to-mouth households are all unemployed, i.e. they are at the bottom of the labor income distribution (although they may have substantial income from stock ownership). Emergency savers are all employed but are not at the satiation point for consumption and liquid assets, either because they belong to a productivity type which never gets satiated or because they have not yet accumulated enough liquid wealth to be satiated. Finally, stock investors are all employed and have reached the satiation point. The distribution of households across the three categories is endogenous, and that individual households may switch between categories over time.

The three categories of households respond very differently to changes in interest rates and income. Consumption of the hand-to-mouth does not react to changes in interest rates, but is highly sensitive to changes in income. This is due to the binding liquidity constraint. By contrast, consumption of the emergency savers does respond to changes in interest rate, via an intertemporal substitution channel. On the other hand, their consumption is relatively insensitive to marginal fluctuations in income, as they can adjust their liquid saving. The distinction between these two household types has been emphasized extensively in the literature. Kaplan et al. (2017) point out that the presence of hand-to-mouth households weakens the direct effect of monetary policy on aggregate consumption, but strengthens the indirect consumption effects, see also Section 2.

Our analysis instead highlights the stock investors and their role in the aggregate investment response. At the margin, these households can freely allocate their saving between stocks and liquid assets. It turns out that they respond to monetary policy in yet a very
different way than the other two categories. In particular, they respond to changes in interest rates via a portfolio rebalancing channel. We can derive the following result (see the Appendix B for a proof):

Proposition 1. (direct effect on investment) For any stock investor it holds that (i) \(\frac{\partial C_t(i)}{\partial r_t} = \frac{\partial N_t(i)}{\partial r_t} = 0 \) and (ii) \(\frac{\partial B_t(i)}{\partial r_t} = -\frac{\partial A_t(i)}{\partial r_t} > 0 \).

The proposition states that consumption and labor supply of the stock investors do not react directly to a change in the interest rate. The reason is that these households are at the satiation point of consumption. Instead, they respond to an increase in the interest rate by investing more into liquid assets and less into stocks. This does not mean that they liquidate stocks; they simply invest less into their stock market funds. Quantitatively, the strength of the rebalancing response depends on a number of factors, including the liquidity frictions present in the model, the degree of risk aversion, and the extent of idiosyncratic income risk. Among stock investors, the rebalancing response is heterogeneous, due to heterogeneity in permanent income.

The rebalancing behavior has direct implications for aggregate investment. Using the budget constraints of the mutual fund and of the intermediate goods producer we can derive the following expression for the partial-equilibrium change in aggregate investment with respect to a change in the gross nominal interest rate:

\[
\frac{\partial I_t}{\partial r_t} = \int_{i \in si} \frac{\partial A_t(i)}{\partial r_t} di,
\]

where \(i \in si \) denotes a stock investor. The term on the right-hand side is the total rebalancing response of stock investors, which depends directly on the population share of stock investors.

Aside from this direct rebalancing effect, monetary policy also affects aggregate investment via an indirect income effect. Consider an unanticipated and transitory income flow, denoted \(\tilde{Y}_t \), adding to the right-hand side of the household budget constraint. We can derive the following result:

Proposition 2. (indirect effect on investment) For any stock market investor it holds that (i) \(\frac{\partial C_t(i)}{\partial \tilde{Y}_t} = \frac{\partial N_t(i)}{\partial \tilde{Y}_t} = \frac{\partial B_t(i)}{\partial \tilde{Y}_t} = 0 \) and (ii) \(\frac{\partial A_t(i)}{\partial \tilde{Y}_t} = 1 \).

See the Appendix B for a proof. Proposition 2 states that stock investors invest marginal income flows entirely in their stock portfolios, i.e. their marginal propensity to invest in stocks equals one. This property follows again from the fact that the stock investors are at
the satiation point of consumption, which is associated with their high saving rates. From the combined budget constraints, it now directly follows that:

$$\frac{\partial I_t}{\partial Y_t} = \int_{i \in si} \frac{\partial A_t(i)}{\partial Y_t} di = si,$$

i.e. the indirect income effect on aggregate investment is simply equal to the population share of stock investors, si. In the model extension with a financial friction on the firm side, as discussed in Section 4.1 and Appendix C.1, the above result generalizes to $\frac{\partial I_t}{\partial Y_t} = \frac{1}{1+\nu} si$, where $\frac{1}{1+\nu} \in [\frac{1}{2}, 1]$ is the fraction of equity inflows into firms which results in additional capital investment, with the remaining fraction that flows into firm cash holdings. The breakdown of the one-for-one link between equity inflows and capital investment helps understand why responses are dampened in the extension, relative to the baseline model.

Taken together, the two results suggest the following transmission channel: an increase in the interest rate directly induces stock investors to rebalance their saving away from stocks, which depresses aggregate investment. This in turn leads to a fall in aggregate income, to which stock investors respond by further cutting on stock purchases. This feeds back into a further decline in investment, and so forth. This conceptually follows the transmission channel that is at play in the second simple model of Section 2. In that setup, however, investment is essentially supply determined and static. In the full quantitative model, instead, the chain of events just described happens simultaneously as a result of optimal, forward-looking decisions by households and firms, with demand and supply factors both playing an important role.35 The next section unpacks various channels and their quantitative importance.

7 Quantitative results

We now present simulations of the full model, in order to quantify the importance of the investment channel of monetary policy, and of the underlying effects. We then study the importance of the channel for inequality, and also how distributional trends have affected the power of monetary policy.

35For instance, a decline in investment may be dampened by an increase in the marginal product of capital, reducing expected stock returns. On the other hand, a decline in aggregate demand may amplify a fall in investment.
7.1 Aggregate effects of a monetary policy shock

We first consider the aggregate effects of an unexpected monetary policy shock, creating a jump in z_t which is then gradually reversed, with a persistence coefficient of 0.5. The shock is scaled such that the annualized nominal interest rate increases by 100 basis points on impact.

We show the responses of the main aggregate variables in Figure 5, and discuss them in light of the data. Recall that the adjustment cost has been calibrated such that the model generates a fall in output of 1.6 percent, as in the empirical responses shown in Figure 2. In the model, consumption falls by about 0.75 percent, which is comparable to the decline in consumption in the data, although somewhat larger than the point estimates. Given that the output response in the model is driven by consumption and investment, this implies that the model does a reasonable job in predicting the relative importance of consumption versus investment. If anything, the model somewhat overstates the importance of consumption. Even so, there is a still large decline in investment, of about 6.3 percent.

The response of the nominal price level in the model is somewhat larger than the point estimate in the data, although the latter is surrounded by a large degree of statistical uncertainty. Stock prices fall much less in the model than in the data. Perhaps this is not too surprising, since models of the macro economy typically have difficulties in generating realistic asset prices. Kekre and Lenel (2022) argue that the introduction of heterogeneity
Decomposition of aggregate output and investment. To understand the transmission of monetary policy in the model, we now deconstruct the responses of aggregate output and investment, see Figure 6. The left panel shows that investment accounts for most of the decline in aggregate output, leaving a relatively modest role for consumption, as discussed above. To understand the drivers of the investment response, we decompose it using the flow budget constraint of the intermediate goods producer, which implies investment can be decomposed as the sum of financing flows ($NI_t + D_{r,t}$, i.e. the amount mutual funds have available for investments, which equals their net inflow plus price-setter dividends), and the intermediate producers’ operating income before depreciation ($\tilde{P}_tY_t - w_tN_t$). The middle panel of Figure 6 shows that both margins decline following a monetary tightening. That is, following a monetary tightening mutual funds invest less into firms, due to a decline in stock investments by households. In addition, revenues of the firms fall more than their wage costs, i.e. operating income declines. The latter margin captures general equilibrium effects and turns out to be quantitatively important.
Finally, we focus our attention on the gross inflow from households to the fund, and use the households’ aggregated budget constraint to decompose it as:

\[IN_t = \left(\int_{i \in S} Y_t(i) \right) - \left(\int_{i \in S} C_t(i) \right) - \left(\int_{i \in S} (B_t(i) - \frac{1 + r_{t-1}^B}{1 + \pi_t} B_{t-1}(i)) \right), \]

where \(S \) is the set of stock investors. The right panel of Figure 6 reveals that the rebalancing behavior of the stock investors accounts for roughly 40% of the initial decline in the investment inflow. Intuitively, the increase in the real return on liquid assets induces stock market investors to tilt their portfolios away from mutual fund shares.

The remainder of the fall in inflows is mostly driven by an “indirect effect” due to decline in income; changes in consumption of the stock investors play almost no role. Intuitively, the monetary contraction reduces aggregate demand, and hence aggregate income. As explained in the previous section, stock investors respond to a decline in income by reducing their investment into stocks. This response creates a powerful equilibrium feedback effect, as the decline in aggregate income triggers a further fall of investment demand, which triggers a further decline in aggregate demand and income, and so on.

The indirect investment effect complements the indirect feedback between investment and consumption, via income, recently analyzed by Auclert et al. (2020) and Bilbiie et al. (2022). We highlight the quantitative importance of the investment channel. To appreciate the centrality of the stock investors in this feedback loop, note that the decline in aggregate income itself is mostly driven by investment. Also, note that the stock investors receive a disproportionate share of aggregate labor income as they are more productive. The fact that the investment channel operates via households at the top of the income distribution makes it quantitatively sizeable. Below we show how the investment-income feedback loop interacts with portfolio rebalancing.

Implications for other aggregate variables. Having shown that the stock investment channel is important for aggregate output and investment, we now turn to its relevance for other macroeconomic variables. To this end, we consider two counterfactual versions of the model. First, we fix households’ saving into the mutual fund at their steady-state values, dropping the Euler equations for stock purchases. We thereby shut down variations in investment into stocks completely, as well as any equilibrium amplification effects that operate via stock purchases. At the same time, we keep the steady-state aggregates and

36The net inflow into the fund, \(NI_t \), subtracts outflows to \(IN_t \).
The responses to a monetary policy tightening in this counterfactual model are shown by the dashed red lines in Figure 7. Since mutual fund inflows account for almost all of the investment response in the baseline, the investment response is very muted compared to the baseline. As a result, this experiment effectively also shuts down a consumption channel by which high-MPC households amplify the investment response, as recently studied by Auclert et al. (2020). Indeed, while the decline in consumption is initially similar to the baseline, it reverts back to the steady state more quickly. Milder responses of consumption and especially investment imply that the decline in aggregate output is much smaller in the counterfactual, and less persistent, even though the increase in the nominal interest rate is actually larger than in the baseline. Finally, note that the inflation dynamics are also quite different. Without the investment channel, the initial drop in inflation is much smaller, but the decline is more persistent.

In the counterfactual described above, both direct rebalancing and indirect income effects of stock investments by households are shut off, as the mutual fund inflow is entirely fixed. In a second counterfactual, we shut down the direct rebalancing effect, but do not fix the inflow. Specifically, we now force stock investors to keep the composition of their saving distribution precisely the same as in the baseline model.\(^{37}\)

\(^{37}\)That is, households’ saving into the mutual fund are set to the choice they would have made in the absence of aggregate shocks, but given their histories of idiosyncratic shocks. Note that investment can still fluctuate due to time-variation in mutual fund outflows. This effect, however, is very small and therefore aggregate investment remains almost constant in the counterfactual model.
gross inflows constant at its steady state level, while leaving the inflow itself free to move. That is, households can still adjust the amount of saving, but no longer the composition.\footnote{In practice, we replace the illiquid asset Euler equation of each stock investors with the following condition: $B_t(i) NI_t(i) = B_{t+1}(i) NI_{t+1}(i)$, where $NI_t(i) = A_t(i) - (1 + r^A_t) A_{t-1}(i)$}

The dash-dotted black lines of Figure 7 show responses in the second counterfactual. Unlike in the first counterfactual, there is now a substantial decline in aggregate investment, although it is still much smaller than in the baseline. Thus, whereas the direct rebalancing channel drives some of the decline in the baseline model, much of this decline is due to equilibrium income effects, confirming the results obtained earlier from the decompositions. The consumption response, on the other hand, is similar across the two counterfactuals. The rebalancing channel thus has limited quantitative implications for consumption.

7.2 The effects of monetary policy on inequality

Having studied the macroeconomic effects on monetary policy, we now explore the role of stock investors for the impact of monetary policy changes on inequality.

The top panels of Figure 8 show the responses to a monetary policy shock of inequality in consumption and wealth, both measured as the log difference between the 90th and the 10th percentile of the distribution.

In our baseline model, each of the two measures of inequality increases following a monetary tightening. The increase in consumption inequality is consistent with empirical evidence in Coibion, Gorodnichenko, Kueng and Silvia (2017). Regarding wealth inequality, we estimated the empirical response to a monetary policy shock ourselves, using new data from the Distributional Accounts, provided by the Federal Reserve Board. The results, shown in Appendix E, are in line with the model: a monetary tightening raises financial wealth inequality substantially.\footnote{Quantitatively, the increase in wealth inequality in the data is somewhat smaller than in the model, which might have to do with the fact that the decline in stock prices in the model is smaller than in the data.}

To explore the role of the investment channel in driving the inequality responses in the model, we consider again the two counterfactual versions previously described. Figure 8 shows that, eliminating the investment channel entirely, both measures of inequality actually decline. Inequality also falls when stock investors are not allowed to actively rebalance their portfolios, albeit more mildly. Thus, the stock investment channel is the key reason why a monetary tightening increases inequality in the baseline model. To help understand why this is the case, Figure 8 also shows responses for the emergency savers and the stock investors. The bottom right panel shows the responses for liquid assets held by the two groups. In the
baseline, stock investors increase their liquid wealth holdings, as they rebalance away from stocks following an increase in the interest rate. These liquid assets are sold to them by the emergency savers, who thus dissave in liquid wealth and hence become less wealthy. Given that emergency savers are mostly located in the bottom half of the wealth distribution, and stock investors in the upper half, wealth inequality increases. This effect dominates the fall in illiquid wealth for stock investors, which is quantitatively less sizable, because the fall in the savings into the fund is small relatively to the stock of wealth. In the counterfactuals without the investment channel, the rebalancing effect does not occur and wealth inequality falls.

The differential consumption responses of the two groups, shown in Figure 8, explain why consumption inequality increases too. Stock market investors are at the satiation point in consumption and therefore adjust their consumption only mildly when monetary policy tightens. The slight decline that does occur is due to the fact that stock returns are expected to increase in the medium run. By contrast, consumption of the emergency savers drops much more sharply and hence the distribution of consumption spreads out. First, they respond to the increase in interest rates by substituting consumption intertemporally. Moreover, they further reduce consumption through an indirect income effect. In the counterfactual version of the model with fixed inflow, stock investors are not allowed to absorb the monetary policy shock through a portfolio rebalancing. In turn, they aggressively cut on consumption, even more than emergency savers. This implies consumption inequality falls,
Table 4: Shift of the income distribution: model fit

<table>
<thead>
<tr>
<th></th>
<th>Model 1980s</th>
<th>2000s</th>
<th>Data 1980s</th>
<th>2000s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expenditure rates (top demi-deciles)</td>
<td>[0.44 0.53 0.58]</td>
<td>0.61 0.70]</td>
<td>0.49 0.52 0.59</td>
<td>0.61 0.66]</td>
</tr>
<tr>
<td>Average liquidation cost</td>
<td>0.29</td>
<td>0.20</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>Households assets to output ratio</td>
<td>3.34</td>
<td>3.89</td>
<td>3.35</td>
<td>3.98</td>
</tr>
<tr>
<td>Stock market participation rate</td>
<td>24.4%</td>
<td>34.2%</td>
<td>24.9%</td>
<td>43.8%</td>
</tr>
<tr>
<td>90th-10th percentile wealth</td>
<td>7.17</td>
<td>7.73</td>
<td>5.63</td>
<td>6.38</td>
</tr>
<tr>
<td>$\frac{C}{wN−T}$</td>
<td>0.87</td>
<td>0.75</td>
<td>0.91</td>
<td>0.89</td>
</tr>
<tr>
<td>$\frac{C+H}{wN−T}$</td>
<td>1.25</td>
<td>1.24</td>
<td>1.20</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Note: The first two rows define the moments explicitly targeted in the calibration exercise for 2000. C stands for aggregate regular consumption expenditures, H aggregate infrequent consumption expenditures and $wN−T$ aggregate after-tax labor income. See Table 2 for data sources and Appendix A for a data description.

as shown in the top left panel. Moreover, it implies that stock investors become net sellers of liquid assets, inducing a mild fall in wealth inequality too. The counterfactual version without active rebalancing, instead, depicts an intermediate picture. Stock investors can absorb part of the income shock by reducing their stock purchases, but cannot rebalance towards liquid assets. As a result, they need to cut consumption roughly as much as emergency savers do. Hence, both consumption and wealth inequality are barely affected by a monetary policy tightening when the stock investment rebalancing channel is absent.

7.3 Increased stock market participation and the power of monetary policy

During the late 1980s and the 1990s, there was a large increase in stock market participation, as shown earlier. Moreover, over this period there was a strong shift of the income distribution, pushing up incomes mostly at the upper half of the distribution. We now explore how these changes have altered the impact of monetary policy on the macro economy. In particular, we recalibrate the model to the year 2000 and study how the effects of monetary policy change, relative to the 1980s version of the model.

To recalibrate the model, we note that the expenditure rate at the 75th percentile of income in the 1980s was about 0.65, as employed in the calibration. In 2000, that expenditure rate was associated with the 65th percentile of income. We use this statistic to discipline our increase in income, and show that we are able to generate a sizable increase in stock market participation.
Specifically, we pick permanent productivities such that 35% of the households are potentially satiated. We recalibrate permanent productivities in order to match the CEX (NIPA-adjusted) expenditure rates at the top 35% of income in 2000. \(^{40}\) We then fix all the remaining parameters to their 1980s values with two additional exceptions. First, we decrease \(\tau\) to 20%. This is motivated by the fact that equity mutual fund expense ratios have been steadily falling over time. Second, we adjust \(\bar{B}\) to leave the real return on liquid assets unchanged. The new equilibrium real return on stocks is 1.30%.

Table 4 shows how our experiment performs with respect to empirically observed trends. In the first two rows we show the calibration targets, while below we report the over-identified moments. First, we note that the model is able to generate a sizable increase in the stock market participation rate, although we fall short relatively to the data. It is reasonable to expect that additional factors other than shifts in the income distribution have also contributed to this trend. \(^{41}\) Moreover, the model generates the increase in the ratio of household net worth to GDP that has taken place since the late 1990s. Wealth inequality goes up in the model as well as in the data, albeit by a smaller amount. Finally, the shift in the income distribution is consistent with a higher share of infrequent consumption expenditures to income. \(^{42}\)

\(^{40}\)In particular, we target the top 7 demi-deciles. Then we pick 7 permanent productivities associated with satiated people and assign 5% employment population share each.

\(^{41}\)In particular, it seems likely that increased awareness on the tax benefits of 401k accounts (and other retirement accounts) played a role as well. The use of such accounts started with the discovery of a tax loophole in the 1980s.

\(^{42}\)The recalibration also implies an increase of the investment to GDP ratio of 2 percentage points. In unreported results we recalibrate \(\delta_k\) to keep the ratio constant. While the overall output response to a monetary policy tightening is slightly dampened, this comes entirely from consumption, since investment falls even more. Hence, our finding that the investment channel strengthens as inequality increases is confirmed.
Table 5: Model responses to a monetary policy tightening: income distribution experiment

<table>
<thead>
<tr>
<th></th>
<th>1980s</th>
<th>2000s</th>
<th>2000s (rescaled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal interest rate (bp)</td>
<td>100</td>
<td>39</td>
<td>100</td>
</tr>
<tr>
<td>Output (%)</td>
<td>-1.60</td>
<td>-1.84</td>
<td>-4.71</td>
</tr>
<tr>
<td>Consumption (%)</td>
<td>-0.75</td>
<td>-0.64</td>
<td>-1.64</td>
</tr>
<tr>
<td>Investment (%)</td>
<td>-6.26</td>
<td>-7.41</td>
<td>-18.9</td>
</tr>
<tr>
<td>Price level (%)</td>
<td>-0.26</td>
<td>-0.35</td>
<td>-0.89</td>
</tr>
</tbody>
</table>

Note: First quarter response. The responses of the nominal interest rate and the inflation rate are annualized.

Figure 9 shows how the model is consistent with two empirical facts shown in Section 3. First, the increase in stock market participation rate is driven by the upper middle-class. Second, the relationship between expenditure rates and income shifts downwards and stretches horizontally as income inequality increases.

Table 5 compares the impact of a monetary policy shock on macroeconomic variables in the 1980s and the 2000s version of the model. In the latter version, the decline in aggregate output is substantially larger, even though the increase in the nominal interest rate is much smaller. The larger decline in output is driven by investment, since consumption response is slightly smaller than under the 1980s calibration. Finally, inflation falls more in the 2000s version, which explains why the nominal interest rate increases by less, given the interest rate rule. A stronger stock market investment is consistent with empirical evidence in Paul (2020) who finds that, during the 1990s, there was a pronounced increase in the response of stock prices to monetary policy shocks. In our model, stock prices also respond by more in the 2000s calibration.43

Thus, the investment channel has strengthened considerably since the 1980s, which can be understood from the increase in the stock market participation rate over that period. The latter is in turn driven by the change in the distribution of permanent income. Therefore, we find that changes in income inequality can directly impact on the power of monetary policy, as such changes affect the stock market participation rate.

8 Conclusion

Heterogeneity is increasingly recognized as a key determinant of macroeconomic outcomes and policy transmission, but it comes in many forms. Existing literature has developed

43Other empirical literature has often compared pre- and post-1980 periods, and investigated changes in the responses to monetary policy shocks, as well as in the conduct of monetary policy itself (see Boivin et al. (2010) for a review of the literature). We focus on a later comparison (1988 vs 2000) and use the model to tease out the impact of increased stock market participation on monetary policy transmission.
quantitative models to accurately capture the extent of hand-to-mouth consumption behavior. However, there are undoubtedly other new dimensions of heterogeneity to be uncovered which could have a first-order impact on the macro economy.

In this paper, we put forward stock market participation as a key dimension of household heterogeneity and developed a model to capture the presence and characteristics of stock market participants. Our key finding is that transmission of monetary policy is directly affected by this form of heterogeneity, not just in terms of the mix of underlying channels but also in terms of the aggregate effects. Indeed, we found that the rise in stock market participation observed over the last few decades has strengthened the effects of monetary policy on the real economy. Vice versa, we found that the presence of heterogeneity in stock holdings also matters for the effects of monetary policy on inequality. We encourage further empirical research on the chain of financial flows via which saving by households into mutual funds ultimately leads to investment into physical capital by firms, and hope that our model provides a useful framework guiding such research.

It would also be interesting to explore how heterogeneity in stock investment matters for the transmission of other policies and macroeconomic shocks. For instance, our results suggest that tax incentives to buy and liquidate stocks may have an important effect on the business cycle and policy transmission. The same may be true for changes in stock market participation due to demographics. We leave exploration of these issues for future research.

A Data

We use three main data sources: the Consumer Expenditure Survey (CEX), the Survey of Consumer Finances (SCF) and the National Income and Product Accounts (NIPA).1

The model is calibrated to \textit{regular} consumption expenditures, which we obtain by dropping the following categories from total expenditures. In NIPA, we do not include health care services (e.g.: outpatient services), education services (e.g.: higher education tuition fees) and social services (the sum of child care, social assistance (i.e.: homes for the elderly) and social advocacy). We also exclude financial services and insurance expenditures, given their peculiar trend increase during the period of financial liberalization. We apply the NIPA definitions to the CEX as closely as possible. We also exclude imputed rent from consumption. Mortgage interest is deducted from imputed rent in NIPA, hence we exclude this category both in the NIPA and the CEX. We also disregard pension and social insurance contributions, both from the CEX and NIPA (in the latter they are subtracted from personal income).

In the NIPA, we define income as the sum of wages and salaries, and personal current transfer receipts. Then we subtract personal current taxes, which are mainly made up of federal and state income taxes. Similarly, our definition of income in the CEX is salary

1Data on mutual fund inflows is taken from the Investment Company Institute (ICI), as explained in the main text.
income plus other income\(^2\) and food stamps, to which we subtract federal, local and state taxes (net of refunds).

All our variables in the CEX are deflated by CPI and winsorized at the top and bottom 1%. Whenever computing moments of the distribution or aggregates, we use CEX population weights. Income information is asked in the second and fifth interview of the CEX, and refers to the previous 12 months. We follow the same approach in the model. Moreover, when constructing Figure 3b, we restrict the sample to interviews 2 and 5.

We use the SCF to document facts on stock market participation. We define as stock market participant a household that reports in the SCF at least one of the following: a positive amount of directly held stocks, an IRA account that is “mostly in stocks”, a 401k account that is “mostly in stocks”. To be in line with CEX and the model, income in the SCF is defined as wage income, plus unemployment transfers minus federal income tax. The resulting after-tax income is censored at 0, because negative values represent federal taxes not paid on wage income, such as early 401k withdrawals.

B Model details

Household’s decision problem

Consider the household’s decision problem in stage 1 of a period (i.e. after aggregate shocks and labor market shocks have realized, but before the household has learned whether has an infrequent expenditure opportunity, i.e. \(1_H^t(i)\)). The maximization problem can be formulated as:

\[
V_t(A_{t-1}(i), B_{t-1}(i), Z(i), 1_t^e(i)) = \max_{C_t(i), N_t(i)} C_t(i)^{1-\sigma_C} \left(1 - \frac{\zeta N_t(i)^{1+\varphi}}{1+\kappa} \right) + \mathbb{E}_t \tilde{V}_t(C_t(i), N_t(i), A_{t-1}(i), B_{t-1}(i), Z(i), 1_t^e(i), 1_H^t(i))
\]

Here, \(\tilde{V}_t\) denotes the value in stage 2, i.e. when the household has learned \(1_H^t(i)\), which can be expressed as:

\[
\tilde{V}(C_t(i), N_t(i), A_{t-1}(i), B_{t-1}(i), Z(i), 1_t^e(i), 1_H^t(i)) = \max_{A_t(i), B_t(i), H_t(i), X_t(i)} \varphi 1_H^t(i) H_t(i) + \beta \mathbb{E}_{t+1} V_{t+1}(A_t(i), B_t(i), Z(i), 1_{t+1}^e(i))
\]

\(^2\)This includes supplemental security income, Railroad retirement income, unemployment and welfare compensation, other money income such as cash scholarships.
\[C_t(i) + H_t(i) + A_t(i) + B_t(i) = Y_t(i) + (1 + r_t^A)A_{t-1}(i) + \frac{1 + r_t^B}{1 + \pi_t}B_{t-1}(i) - X_t(i) \]
\[Y_t(i) = \mathbf{1}_t(i) \left[Z(i)\tilde{\omega}_tN_t(i) + \frac{D_{w,t}}{1 - u_t} \right] + (1 - \mathbf{1}_t(i))\Theta - T_t \]
\[X_t(i) = \tau \max \{ (1 + r_t^A)A_{t-1}(i) - A_t(i), 0 \} \]
\[A_t(i), B_t(i), H_t(i), \geq 0, \]

where \(\mathbb{E}_t \) denotes the expectations operator conditional on information available in stage 2, where we have used the assumed linear utility with respect to the infrequent good (see section 5.1 for a discussion on this).

Suppose now that the three outcomes stated in Section 5.2 hold (below we will present conditions to verify this). In that case, the first-order conditions for consumption and labor supply chosen in stage 1 can be expressed as:
\[C_t(i) = \mathbf{1}_t(i) \left(\mathbb{E}_t\lambda_t(i) \right)^{\frac{1}{\gamma}} + (1 - \mathbf{1}_t(i)) \left(\frac{1 + r_t^B}{1 + \pi_t}B_{t-1}(i) + \Theta - T_t \right), \]
\[N_t(i) = \mathbf{1}_t(i) \left(\frac{1}{\zeta}Z(i)\tilde{\omega}_t\mathbb{E}_t\lambda_t(i) \right)^{\frac{1}{\kappa}}, \]

where \(\mathbb{E}_t\lambda_t(i) \) is the expected value of the Lagrange multiplier of the budget constraint in stage 2 (which depends on the realization of \(\mathbf{1}_t(i) \)). Note that in the first condition, the term \(\frac{1 + r_t^B}{1 + \pi_t}B_{t-1}(i) + \Theta - T_t \) is the consumption of an unemployed household, which equals after-tax home production plus any available liquid wealth (implying that the agent hits the liquidity constraint).

Now consider stage 2. The first-order condition for liquid assets, \(B_t(i) \), can be expressed as:
\[\lambda_t(i) \geq \mathbf{1}_t^H(i)\lambda_t^H(i)^{1} + (1 - \mathbf{1}_t^H(i))\lambda_t^H(i)^{0}, \]
\[= \mathbf{1}_t^H(i)\varphi + (1 - \mathbf{1}_t^H(i))\beta\mathbb{E}_t \frac{\partial V_{t+1}(i)}{\partial B_t(i)}, \]

where we have used that in the event of \(\mathbf{1}_t^H(i) = 1 \) any marginal wealth is spent on the infrequent good, delivering a marginal utility flow \(\varphi \), whereas under the complementary event \(\mathbf{1}_t^H(i) = 0 \), marginal wealth is saved.\(^3\) Under the three conditions, this equation binds

\(^3\) Stock market investors save into both liquid assets and stocks. Portfolio optimization implies that for
with equality for those households who are employed.

Taking expectations of the above equation at stage 1 gives:

$$E_t \lambda_t(i) \geq \delta \varphi + (1 - \delta) \beta E_t \frac{\partial V_{t+1}(i)}{\partial B_t(i)}.$$

Now consider the envelope condition:

$$\frac{\partial V_t(\cdot)}{\partial B_{t-1}(i)} = \frac{1 + r_{t-1}^B}{1 + \pi_t} E_t \lambda_t = \frac{1 + r_{t-1}^B}{1 + \pi_{t+1}} C_t(i)^{-\sigma_c}.$$

Plugging in the envelope condition in the first-order condition for $B_t(i)$, after leading it one period, gives the following Euler equation for consumption/liquid assets:

$$C_t(i)^{-\sigma_c} \geq \delta \varphi + (1 - \delta) \beta E_t \frac{1 + r_{t}^B}{1 + \pi_{t+1}} C_{t+1}(i)^{-\sigma_c},$$

which binds with equality for the employed, under the 3 conditions. The unemployed households choose $B_t(i) = 0$.

Next consider the choice for illiquid assets (stocks). The first-order condition for consumption/illiquid assets can be expressed as:

$$E_t \lambda_t(i) \geq \delta (1 - \tau) \varphi + (1 - \delta) \beta E_t \frac{\partial V_{t+1}(i)}{\partial A_t(i)},$$

which binds with equality for those households who are saving into stocks, i.e. stock market investors.

Now consider the envelope condition for those households:

$$\frac{\partial V_t(\cdot)}{\partial A_{t-1}(i)} = (1 + r_t^A)(1 - \tau) \varphi + (1 - \delta)(1 + r_t^A)\beta \frac{\partial V_{t+1}(\cdot)}{\partial A_t(i)},$$

$$= (1 + r_t^A)\delta (1 - \tau) \varphi \left(1 + E_1 \sum_{j=1}^{\infty} (1 - \delta)^j \prod_{k=j}^{j} (1 + r_{t+k}^A)\right),$$

$$= E_t \lambda_t(s)(1 + r_t^A),$$

where in the third equality, $E_t \lambda_t(s)$ denotes the expected Lagrange multiplier of stock market investors. The second equality makes clear that $\frac{\partial V_t(\cdot)}{\partial A_{t-1}(i)}$ is the same for all households. These households all have the same level of consumption, which is at its satiation point, and therefore also have the same value of the Lagrange multiplier. Leading the above equation
by one period and plugging it into the first-order condition for \(A_t(i) \) gives:

\[
E_t \lambda_t(s) = \delta(1 - \tau)\varphi + (1 - \delta)\beta E_t \lambda_{t+1}(s)(1 + r_{t+1}^A)
\]

Using that \(E_t \lambda_t(s) = C_t(s)^{-\sigma c} \), we arrive at the following Euler equation for stocks, for the stock market investors:

\[
C_t(s)^{-\sigma c} = \delta(1 - \tau)\varphi + (1 - \delta)\beta E_t(1 + r_{t+1}^A)C_{t+1}(s)^{-\sigma c}
\]

(B.3)

By definition, the remaining households do not invest in stocks, i.e. they set

\[
A_t(i) = (1 - 1_t^H(i))(1 + r_t^A)A_{t-1}(i).
\]

Verifying the conditions in Section

We now present conditions to verify whether the three outcomes stated in Section 5.2 indeed hold in a steady state.\(^4\) We consider each of the conditions in turn:

1. **Upon job loss, households fully liquidate their liquid assets, hitting the borrowing constraint in the first quarter of unemployment.** For this condition to hold it must be the case for any household it holds that

\[
\left(1 + \frac{r^B}{1 + \pi}B_{t-1}(i) + \Theta - T\right)^{-\sigma c} > \beta(1 - \delta)\frac{1 + r^B}{1 + \pi} \left(p^{UE}(C_{t+1}^{i_t(i)=1,B_t(i)=0}(i))^{-\sigma c} + (1 - p^{UE}) (\Theta - T)^{-\sigma c}\right) + \delta\varphi
\]

If this condition holds, then the household immediately hits the borrowing constraint. Here, \(C_{t+1}^{i_t(i)=1,B_t(i)=0}(i) \) is the consumption level of the household if it flows from unemployment into employment with zero liquid assets.

2. **Households do not liquidate any stock market wealth, unless they are presented with an infrequent expenditure opportunity.** For this property to hold it must be the case that even the households with the lowest levels of consumption do not wish to liquidate any stocks, which implies the following condition:

\[
(1 - \tau)(\Theta - T)^{-\sigma c} < \frac{\partial V(\cdot)}{\partial A(i)} = C(s)^{-\sigma c}.
\]

3. **When presented with an infrequent expenditure opportunity, households fully liquidate**

\(^4\)Since we consider small perturbation shocks, these conditions will also hold in a neighborhood of the steady state. Below we also use that \(D_w = 0 \) in the steady state.
their stock market wealth and liquid assets. For this to be the case, the following two conditions must hold

\[\beta (1 + r^B) (\Theta - T)^{-\sigma_c} < \varphi \]

\[\frac{\partial V(\cdot)}{\partial A(i)} = C(s)^{-\sigma_c} < \varphi (1 - \tau) \]

The first condition states that even for the households with liquid wealth levels close to zero, the marginal utility from spending this wealth on an infrequent good exceeds the marginal utility of saving this wealth. Given that the marginal utility of consumption is declining in consumption, and consumption is increasing in wealth, the same holds true for households with higher levels of liquid assets. The second condition states that the marginal value of stock market wealth is always lower than the marginal value of liquidating wealth and spending it on the infrequent good. This is true regardless the level of stock market wealth, given that the marginal value of stock wealth always equals the marginal value of everyday consumption of the satiated households.

Proof of proposition 1 and 2

Proof. Proposition 1. (i). Households do not invest in stocks unless they are at the consumption max, so it holds that \(C_t(i) = C_t(s) \). The first-order condition for illiquid assets, Equation (B.3), pins down \(C_t(s) \) as a function of only expected returns on capital, so consumption is pinned down irrespective of the interest rate \(r^B_t \). From the first-order condition for labor supply it then directly follows that \(\frac{\partial N_t(i)}{\partial r^B_t} = 0 \). (ii). From the first-order condition for liquid assets, Equation B.2, it follows that \(\frac{\partial B_t(i)}{\partial r^B_t} > 0 \). Given that \(\frac{\partial C_t(i)}{\partial r^B_t} = 0 \) and that \(r^B_t \) does not enter the period-t budget constraint, it follows the budget constraint that \(\frac{\partial B_t(i)}{\partial r^B_t} = -\frac{\partial S_t(i)}{\partial r^B_t} \).

Proof. Proposition 2. Households do not invest in stocks unless they are at the consumption max, so it holds that \(C_t(i) = C_t(s) \). The first-order condition for illiquid assets, Equation (B.3), pins down \(C_t(s) \) as a function of only expected returns on capital, so consumption is pinned down irrespective of the marginal income change \(\bar{Y}_t \). From the labor supply equation, this implies that also \(N_t(s) \) is independent of the income change. Evaluating the liquid assets Euler equation for stockholders, we notice that \(\frac{\partial B_t(s)}{\partial \bar{Y}_t} = 0 \). Hence,

\[\text{To see this, note that the Euler equation is given (in steady state) by} \]

\[C(s)^{-\sigma_c} = \delta \varphi + (1 - \delta) \beta \mathbb{E}_t \frac{1 + r^B}{1 + \pi} \left((1 - p^{EU}) C(s)^{-\sigma_c} + p^{EU} (B(s) + \Theta - T)^{-\sigma_c} \right) \]. Since \(C(s) \) does not react to the income
it follows from the budget constraint that $\frac{\partial A_t(s)}{\partial Y_t} = 1$.

\[\square \]

Equilibrium

Given the laws of motion for the exogenous states \(\{z_t, 1^e_t, 1^H_t\} \) and government policies \(\{T_{w,t}, T_t\} \), the competitive equilibrium is defined as the joint law of motion for households' choices \(\{C_t(i), H_t(i), N_t(i), B_t(i), A_t(i)\}_{i \in [0,1]} \), producer choices \(\{N_t, I_t\} \), aggregate quantities \(\{Y_t, D_{p,t}, D_{r,t}, D_{w,t}\} \) and prices \(\{r^A_t, r^b_t, \pi_t, P_t, \pi_{w,t}, w_t, \bar{w}_t, Q_{p,t}, Q_{r,t}, q_t\} \), such that, in any period \(t \):

1. Each household \(i \in [0,1] \) maximizes the stage 1 and stage 2 value functions, outlined at the beginning of this appendix, subject to the constraints outlined there.

2. Labor service firms maximize wage dividends subject to the wage adjustment cost; final goods firms maximize profits; intermediate goods producers maximize the expected present value of dividends subject to their flow budget constraint; intermediate goods price-setters maximize the expected present value of dividends subject to the demand constraint, and price adjustment costs.

3. Stock market funds satisfy their flow budget constraint and the pricing condition on their real return.

4. The government budget constraint and the monetary policy rule hold.

Numerical solution method

We solve the model as follows. First, we find the steady state of the model, where the decisions of the households are solved using optimality conditions. We then verify that the tractability conditions mentioned above hold. The tractability conditions do not only allow us to draw the analytical findings shown in the paper, but they also permit to solve the model using a perturbation method. Following Cui and Sterk (2021), we keep track of the wealth distribution in a parsimonious and yet accurate way. We group employed agents into cohorts that are indexed by the employment spell in the previous quarter. Within any cohort, a fixed fraction has become unemployed in the current quarter and behaves identically. Similarly, all agents that remain employed behave identically within a certain cohort. We set a total of 50 cohorts (i.e.: quarters) and group together the households with more than 50 quarters of employment spell. We verify that results are

change, $B(s)$ does not react either.
not sensitive with respect to this choice. Conceptually, each cohort corresponds to a state variable characterizing the wealth distribution.

C Extensions

C.1 Firm-level financial friction

In this section we expand on the third extension presented earlier in section 4.1, and show the quantitative role played by the new channels introduced by the firm-level cash in advance constraint. Dividends of the producers are now given by:

$$D_{p,t} = \tilde{p}_t K_t^\alpha N_t^{1-\alpha} - w_t N_t - I_t - M_t + \frac{1 + r_{t-1}}{1 + \pi_t} M_{t-1}.$$

Note that, now, issuance of equity (a decline in $D_{p,t}$) can be absorbed by both investment (I_t) and cash holdings (M_t). The firm maximizes:

$$\max_{N_t, I_t, K_{t+1}, M_t} \mathbb{E}_0 \sum_{t=0}^{\infty} \Lambda_{0,t} D_{p,t}$$

subject to

$$K_{t+1} \leq (1 - \delta_k) K_t + \left[1 - \frac{\omega}{2} \left(\frac{I_t}{I_{t-1}} - 1\right)^2\right] I_t,$$

$$\nu (I_t - I_{ss}) \leq M_t,$$

where I_{ss} is the steady state level of investment and $\nu \in [0, 1]$. We note that the first-order conditions for K_{t+1} and N_t are not affected, relative to the baseline model. The two constraints bind with equality.\(^6\) The first-order conditions for I_t is:

$$-1 + q_t \left(\begin{bmatrix} 1 - \frac{\omega}{2} \left(\frac{I_t}{I_{t-1}} - 1\right)^2\end{bmatrix} - \omega \left(\frac{I_t}{I_{t-1}} - 1\right) \frac{I_t}{I_{t-1}}\right) + \mathbb{E}_t \Lambda_{t,t+1} q_{t+1} \omega \left(\frac{I_{t+1}}{I_t} - 1\right) \left(\frac{I_{t+1}}{I_t}\right)^2 - \nu \mu_t = 0$$

\(^6\)The firm minimizes cash holdings since the return on cash lies below the return on capital investment and the firm’s discount rate.
where q_t and μ_t are the Lagrange multipliers on the capital accumulation and financial constraint, respectively. The first-order condition for M_t is:

$$-1 + \mathbb{E}_t \Lambda_{t,t+1} \frac{1+r_t^B}{1+\pi_{t+1}} + \mu_t = 0.$$

Combining the two constraints gives:

$$-\nu \left(1 - \mathbb{E}_t \Lambda_{t,t+1} \frac{1+r_t^B}{1+\pi_{t+1}}\right) + q_t \left(1 - \omega \left(\frac{I_t}{I_{t-1}} - 1\right)^2 \right) - \omega \left(\frac{I_t}{I_{t-1}} - 1\right) \left(\frac{I_t}{I_t-1}\right) + \mathbb{E}_t \Lambda_{t,t+1} q_{t+1} \omega \left(\frac{I_{t+1}}{I_{t-1}} - 1\right) \left(\frac{I_{t+1}}{I_t}\right)^2 = 1$$

Intuitively, there is now an additional cost to investment: the firm has to hold some cash, which earns a below-market return, since $\Lambda_{t,t+1} \frac{1+r_t^B}{1+\pi_{t+1}} < 1$.

By combining the firm’s budget constraint (expression for dividends), the financial constraint, and the mutual fund’s budget constraint, it follows that, holding all else constant, $dNI_t = dM_t + dI_t = (1+\nu)dI_t$. That is, for every additional dollar of investment the firm must hold ν dollars of cash. Regarding the discussion on Proposition 2 in Section 6, we obtain in this model extension that $\frac{\partial I_t}{\partial e_{Y_t}} = \frac{\partial I_t}{\partial N_{I_t}} \frac{\partial N_{I_t}}{\partial e_{Y_t}} = \frac{1}{1+\nu} s_i$. For $\nu = 0$ we obtain $\frac{\partial I_t}{\partial e_{Y_t}} = s_i$, as in the baseline model, whereas for the extreme case with $\nu = 1$ (all investment needs to be fully backed by cash) we obtain $\frac{\partial I_t}{\partial e_{Y_t}} = \frac{\partial I_t}{\partial N_{I_t}} \frac{\partial N_{I_t}}{\partial e_{Y_t}} = \frac{1}{2} s_i$. Figure C.1 compares the extreme case with $\nu = 1$ to the baseline. As expected, the financial friction dampens the investment response initially, but makes the response more persistent. Qualitatively, however, results are similar to the baseline model.

C.2 Investment in non-productive assets

As noted in the main text, our baseline model already implies that the mutual fund invests in unproductive capital. Indeed, the mutual fund invests in shares of “intermediate goods price-setters”, that are in essence nonproductive assets, because price setters simply extract monopolistic rents from consumers and pay them out as dividends.

In this section we extend the model further to include another nonproductive asset which has a dividend which is entirely fixed over time (this differentiates it from the dividend of the price setters, which fluctuates endogenously over time due to fluctuations in aggregate demand and price setting choices). Concretely, we assume there is another type of firm in the economy, which produces with a separate stock of capital, which is in fixed supply (no q-theory mechanism). The production function of this firm is given by $Y_{l,t} = \tilde{\psi} S_{l,t}$. Mutual
funds can now invest also in the shares of these funds. For maximum comparability with the baseline model, we modify the extended model to have the same steady state as the baseline. We do so by introducing a dividend tax for the monopolistic price setters, along with the new asset. The budget constraint of a mutual fund now extends to:

\[
Q_{r,t} S_{r,t} + Q_{p,t} S_{p,t} + Q_{l,t} S_{l,t} = ((1 - \tau) D_{r,t} + Q_{r,t}) S_{r,t-1} + (D_{p,t} + Q_{p,t}) S_{p,t-1} + \left(\tilde{\psi} + Q_{l,t}\right) S_{l,t-1} + NI_t
\]

where \(S_{l,t} \) is the amount of shares the fund owns in the new firms, \(\tilde{\psi} \) is the dividend paid by this new asset, and \(\tau \) is the rate at which the monopolistic dividends are taxed. We assume that the government uses the tax revenues for expenditures which do not deliver utility. It can then be verified that by setting \(\tau = \frac{\tilde{\psi}}{D_r} \), the steady state of the model remains unchanged, except for steady-state share prices.\(^7\) The stochastic discount factor satisfies \(1 = \mathbb{E}_t \Lambda_{t,t+1} \frac{\tilde{\psi} + Q_{l,t+1}}{Q_{l,t}} \) and note that the price of the new asset, \(Q_{l,t} \), fluctuates along with the discount factor. As before, we normalise \(S_r = S_p = S_l = 1 \). The real return generated by the mutual fund is now given by \(r^A_t = \frac{D_{r,t} + Q_{r,t} + D_{p,t} + Q_{p,t} + \tilde{\psi} + Q_{l,t}}{Q_{r,t-1} + Q_{p,t-1} + Q_{l,t-1}} - 1 \). We calibrate \(\tilde{\psi} \) such that value of the newly introduced asset is about 20 percent of total stock market wealth.\(^8\) Figure C.2 shows the impulse responses under the extension (red dashed line) and the baseline (blue line). Overall, the responses are very comparable to those in

\(^7\)Intuitively, by introducing the tax, the total amount of dividends received by the mutual fund remains unchanged. Since share prices drop out of the fund’s budget constraint in equilibrium, the remainder of the steady state of the model remains unchanged as well.

\(^8\)
the baseline model although, interestingly, both asset prices and investment actually fall somewhat more in the extended model.

C.3 Fluctuations in the marginal utility of luxury goods

As discussed in Section 5.1, we assume linear utility with respect to the infrequent good (i.e.: $\sigma_H = 0$), as this helps the model generate empirical regularities and it also creates computational advantages. If we were to introduce some curvature in the luxury good, this will imply that the richest household will reach a point at which they reach a zero saving rate, which appears in contrast with the data. One might nonetheless be concerned that – due to the satiation property – the model generates too low MPCs, which might exacerbate the investment channel. Note however that even among the households at the satiation point, the average MPC is positive due to the consumption of luxury goods, and given by δ which is 2.4 percent quarterly in the calibrated model and about 9.3% annually.\(^9\) This MPC is even somewhat higher than the MPC for unconstrained agents in a typical model,

\[\tilde{\psi} = \frac{D_r,SS}{2} = 0.0685, \] implying that $\tau = 0.5$. Results are comparable for different values of $\tilde{\psi}$.

\(^9\)The timing of the model is such that a fraction δ of savings is spent within the same period.
which is usually close to the interest rate. Overall, we think that a linear utility in luxury goods is a reasonable assumption for our baseline model.

Nonetheless, in this section we explore how fluctuations in the marginal utility of luxury good might affect the transmission of monetary policy in the model. In particular, it may be the case that when households save less into stocks after a monetary contraction, they will spend less on luxury goods, which would increase the marginal utility of luxury goods (when there is curvature), and thereby would dampen the decline in stock market saving. To get a sense of the potential magnitude of this effect, we make the marginal utility of luxury goods a diminishing function of the level of luxury consumption at the aggregate level. Concretely, let the marginal utility of luxury good, in logs, be given by \(\ln \phi_t = \ln \phi_t + \varrho (\ln H_t - \ln H) \), \(\varrho \leq 0 \), where \(H_t \) is the aggregate consumption of luxury goods and \(H \) is its steady-state level. By construction, this modification of the model leaves the steady state unchanged. However, by setting \(\varrho \leq 0 \) we can let the marginal utility of stock investment fall during times of high aggregate consumption. We calibrate \(\varrho = \sigma_C = -1 \), i.e. the same degree of diminishing utility in regular consumption, which is arguably an upper bound for the degree of diminishing utility of the luxury good.

Figure C.3 shows the responses in this extension, and compares them to the baseline model. It turns out that the differences are tiny. Intuitively, most of the luxury consumption happens far away into the future, due to the infrequent nature of these goods. This can be seen from the household’s Euler equation for saving into the mutual fund. Thus, households care mostly about the marginal utility in the medium to long run, when the effects of current monetary policy shocks will have largely died out, since monetary policy shocks are transitory. As a result, the decision to save into stocks is quantitatively not much affected.

\[\text{The advantage of making this assumption at the aggregate level is that we can avoid altering the steady state, including the high saving rates among rich households. It also allows for maximum comparability with the baseline model.} \]

\[\text{We think of this analysis as an ad hoc exercise to understand how diminishing utility to luxury goods might affect aggregate dynamics. One could however microfound this setup as a multi-sector model in which the luxury goods sector is subject to diminishing returns in production.} \]
Figure C.3: Model responses to a monetary policy tightening: curvature in utility

Note: Horizontal axes denote quarters. Shock hits in quarter 0.

D Representative-agent models

A. Standard representative-agent model. In this section we consider a representative agent model. The representative household’s decision problem reads:

$$\max_{C_t, K_{t+1}, I_t, N_t} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left\{ \frac{C_t^{1-\sigma_C} - 1}{1 - \sigma_C} - \zeta N_t^{1+\kappa} \right\}, \quad \beta \in (0, 1), \quad \sigma_C, \zeta, \kappa > 0.$$

s.t.

$$C_t + I_t + B_t = \bar{w}_t N_t + r_t^K K_t + \frac{1 + r_{t-1}^B}{1 + \pi_t} B_{t-1} - T_t + D_{w,t} + D_t$$

$$K_{t+1} = (1 - \delta^K) K_t + [1 - \Omega(I_t/I_{t-1})] I_t$$

Thus, the household now directly owns the capital and the equity in the firms. Hence, there is no mutual fund. For simplicity there is a single type of intermediate goods firms. The first order condition for investment, however, is the same as in the main text, with investment subject to adjustment costs Ω. To keep this model as standard as possible, we fix the supply of liquid assets to zero. Note also that there is no unemployment in this model. The first-order conditions for K_{t+1}, B_t, and N_t, respectively to the above decision
The remainder of the model is the same as the baseline. We recalibrate the depreciation rate of capital, δ_k, such that the capital-output ratio is the same as in the baseline heterogeneous-agent model. Moreover, we adjust ζ such that the household works 33% of the time.

B. Representative-agent model with infrequent expenditures, liquidation costs.

We now consider a representative agent which includes infrequent expenditures and liquidation costs, as in the baseline, but abstracts from heterogeneity. To this end, we assume that the household consists of a continuum of members. After production and consumption of frequent goods has taken place, the household members separate and each receive an equal fraction of the households assets, i.e. an equal share to the household’s liquid assets, the capital, and firm equity. Then, a fraction δ of the members receives an infrequent expenditure opportunity. Acting in their own interest, a member will liquidate all its asset claims and spend the proceeds on the infrequent good. However, liquidation of firm equity and capital requires a liquidation cost, equal to proportion τ of the liquidated amount, as in the baseline. When making central decisions, the household takes the utility of infrequent expenditures into account. The decision problem reads (assuming linearity w.r.t. the infrequent good, as in the baseline):

$$\max_{C_t, H_t, K_{t+1}, I_t, N_t} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left\{ \frac{C_t^{1-\sigma_C} - 1}{1 - \sigma_C} + \varphi H_t - \zeta \frac{N_t^{1+\kappa}}{1 + \kappa} \right\}, \quad \beta \in (0, 1), \quad \sigma_C, \zeta, \kappa > 0.$$
Note: Horizontal axes denote quarters following the shock. We recalibrate δ_k in the standard representative agent model to 0.0208, such that the capital output ratio is the same as in the benchmark model. We also recalibrate the disutility of labor, ζ, to 6.39, such that households work one third of the time. The recalibrated parameters are 0.0221 and 9.87, respectively, in the extended representative agent model. The shock in the baseline model is scaled such that the annualized nominal interest rate increases by 100 basis points on impact. The same shock is fed to the other models.

where the two last constraint capture, respectively, the behavior of the household members, after they have split, and the liquidation cost. Substituting out H_t and X_t, we can write the problem as:

$$\max_{C_t, K_{t+1}, I_t, N_t} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left\{ \frac{C_t^{1-\sigma}}{1-\sigma} + \varphi \delta (B_t + (1 - \tau) K_{t+1} + (1 - \tau) Q_t) - \zeta \frac{N_t^{1+\kappa}}{1+\kappa} \right\},$$

$$s.t.$$

$$C_t + \delta B_t + \delta (1 - \tau) (K_{t+1} + Q_t) + I_t + B_t - \bar{w}_t N_t - \tau^K K_t - \frac{1 + \tau^B K_{t+1} + T_t - D_{w,t} - D_t}{1 + \pi_t} = 0$$

$$K_{t+1} - (1 - \delta^K) K_t - [1 - \Omega (I_t / I_{t-1})] I_t = 0$$

This decision problem gives rise to the following first-order conditions for K_{t+1}, B_t, and N_t.

\[\text{with } \beta \in (0, 1) \text{ and } \sigma_C, \zeta, \kappa > 0.\]
respectively:

\[(1 + \delta(1 - \tau)) C_t^{\sigma C} = \beta E_t \left(\left(1 - \delta^K \right) \frac{q_{t+1}}{q_t} + \frac{r_{t+1}^{K}}{q_t} \right) C_{t+1}^{\sigma C} \right) + \delta \varphi (1 - \tau),
\]

\[(1 + \delta) C_t^{\sigma C} = \beta E_t \left(\frac{1 + r_t^B}{1 + \pi_{t+1}} C_{t+1}^{\sigma C} \right) + \delta \varphi,
\]

\[\bar{w}_t C_t^{\sigma C} = \zeta N_t^{\kappa}.
\]

The remainder of the model is the same as the standard representative agent model. We recalibrate \(\delta_k \) and \(\zeta \) here as well.

Figure D.1 compares the impulse responses in our benchmark, heterogeneous-agent, model with the two representative agent versions of the model. First, we note little difference between the standard representative agent model, and the extended version that features infrequent expenditures and liquidation costs. In both models, the nominal interest rate drops following a monetary contraction. The representative agent model implicitly assumes a stock market participation rate of 100%. This is behind a much larger response in investment, compared to the baseline heterogeneous-agent model.

E Additional empirical results

E.1 Mutual fund flows and capital investment

In Section 3 we have shown how a tightening of monetary policy makes households reduce their investments into equity-based mutual funds, which in turn reduce the extent to which they channel resources into firms, which finally cut on capital investment. In this Section we assess whether the connection holds more generally. To this end, Figure E.1 plots the dynamic correlation between mutual fund inflows from the ICI, and real aggregate capital investment from the National Income and Product Accounts.

Figure E.1 shows that the two variables correlate positively. Considering the dynamic patterns, we observe that mutual fund flows lead aggregate capital investment by one quarter.

In addition, we present unconditional evidence on the relation between mutual funds and their equity investments. Figure E.2 plots three series, all scaled by a linear trend in GDP for comparability. The first two series are the mutual fund inflows and net purchases of corporate equities by mutual funds. Both line series line up closely, both in term of the level and the dynamics, with a correlation coefficient of 0.83. This is the case despite the fact that the two data series are from two entirely different data sources: the net inflow
Figure E.1: Equity fund inflows and physical capital investment: dynamic correlations.

![Correlation Graph]

Note: Sample: 1984Q1:2014Q4. “Mutual funds inflow ratio” is the net inflow into equity funds defined as in the text, rescaled by lagged net total assets. Source: Investment Company Institute. Both the inflow and total net assets are aggregated from monthly to quarterly frequency, and then we consider the ratio of net inflow to total net assets lagged by one quarter.

is from the Investment Company Institute, whereas the net equity purchases are from the Flow of Funds. In the same figure, we also plot saving by mutual funds. If a fund were to hold an inflow in the form of cash, this would show up as saving in the Flow of Funds. The measure is typically close to zero. These facts are consistent with the idea that equity-focused mutual funds actually invest additional net inflows, as opposed to hoarding it in the form of cash.

E.2 Gross equity issuance

In Figure E.3 we show that gross equity issuance falls in response to a monetary policy tightening.

E.3 Empirical impulse responses to monetary policy shocks: inequality

We follow Cloyne, Ferreira and Surico (2020) and estimate the following equation:

\[X_t = \alpha_0 + \alpha_1 trend + B(L)X_{t-1} + C(L)S_{t-1} + u_t \]

where \(X_t \) is the variable of interest (i.e.: wealth inequality). The monetary policy shocks are denoted by \(S \). We use Cloyne et al. (2020) updated version of Romer and Romer (2004)

In the following figure we show that, in the data, financial wealth inequality increases following a monetary policy tightening. As shown in section 7.3, the model can generate this thanks to the investment channel of stock market participation.13

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure_e_2}
\caption{Inflows, purchases, and savings by mutual funds.}
\end{figure}

Source: Investment Company Institute, FRED.

Note: “Net Inflow” is the net inflow into equity funds defined as in the text. The raw measure is monthly and has been aggregated to quarterly frequency. “Net purchases of corporate equities”, by mutual funds, come from Flow of Funds data, Table F.223: Mutual Funds; Corporate Equities; Asset, Transactions. “Saving” also come from the Flow of Funds data, Table F.122: Mutual Funds; Undistributed Corporate Profits; Gross Saving; Net Saving, Transactions. All variables have been scaled by a linear trend of nominal GDP.

13The findings shown in figure 8 are confirmed when defining financial wealth inequality in the same way as in the data, see figure E.4.
Figure E.3: Empirical responses to a monetary tightening: gross equity issuance

Note: Horizontal axis is monthly horizon in all panels. Gross equity issuance is “Gross Equity Issuance of Domestic Nonfinancial Corporations”, obtained from Haver Analytics and sourced from the Flow of Funds. This variable has been rescaled by a linear trend of nominal GDP, and interpolated to monthly using a cubic pchip spline as in Miranda-Agrippino and Rey (2020). In the estimation, we also control for the same variables used in Figure 2. Sample period is 1997:3-2014:12, and a pre-sample 1969:1-1997:2 is used to inform the priors. 12 lags as in Miranda-Agrippino and Ricco (2021). The shock is taken from Miranda-Agrippino and Ricco (2021) and normalized to induce a 100 basis point increase in the effective Fed Funds rate. Shaded areas are 90% confidence bands.

Cloyne, James, Clodomiro Ferreira, and Paolo Surico, “Monetary policy when households have debt: new evidence on the transmission mechanism,” The Review of Economic Studies, 2020, 87 (1), 102–129.

Figure E.4: Monetary policy shocks and wealth inequality

Note: Dynamic effects of a 100 basis point unanticipated interest rate increase. Data is from the Federal Reserve Board Distributional Financial Accounts. We construct financial wealth as the sum of Checkable deposits and currency, Time deposits and short-term investments, Money market fund shares, U.S. government and municipal securities, Corporate equities and mutual fund shares, and Equity in noncorporate business. Inequality is defined as the log difference between wealth held by bottom 50% and wealth of 90-99th percentiles of the population. 11 lags on both the dependent variable and the shocks. Grey areas are bootstrapped 90% confidence bands.