
Online Appendix to “The Nature of Firm Growth”
Vincent Sterk r© Petr Sedláček r© Benjamin Pugsley

Contents

A Data appendix 3
A.1 Linking firms and establishments . . . . . . . . . . . . . . . . . . . . 3
A.2 Estimated autocovariance matrices . . . . . . . . . . . . . . . . . . . 5

B Statistical model 8
B.1 Derivation of the autocovariance function . . . . . . . . . . . . . . . . 8
B.2 Estimation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

B.2.1 Estimation on the microdata . . . . . . . . . . . . . . . . . . . 9
B.2.2 Replication using the included autocovariance matrices . . . . 10

B.3 Alternative statistical models . . . . . . . . . . . . . . . . . . . . . . 10
B.3.1 Details on the restricted models in the main text . . . . . . . 10
B.3.2 Additional statistical models summary . . . . . . . . . . . . . 11
B.3.3 Expressions and discussion of each statistical model . . . . . . 15

C Sectoral heterogeneity in the statistical model 24

D Structural model: additional details 28
D.1 Numerical solution of the structural model . . . . . . . . . . . . . . . 28
D.2 Details on the restricted version of the model . . . . . . . . . . . . . . 29

D.2.1 An alternative parametrization of the restricted model . . . . 30
D.3 Details on split-sample results . . . . . . . . . . . . . . . . . . . . . . 33
D.4 Sources of identification of parameters in structural model . . . . . . 36

E Structural model: extensions 38
E.1 Imperfect Information . . . . . . . . . . . . . . . . . . . . . . . . . . 38
E.2 Targeting the Firm Size Distribution . . . . . . . . . . . . . . . . . . 43
E.3 Flexible labor supply . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
E.4 Treatment of “gazelles” . . . . . . . . . . . . . . . . . . . . . . . . . . 48

E.4.1 Different definitions of gazelles . . . . . . . . . . . . . . . . . . 48
E.4.2 Ex-ante vs ex-post gazelles . . . . . . . . . . . . . . . . . . . . 49

1



F Structural model: the importance of ex-ante heterogeneity 50
F.1 Ex-ante heterogeneity and the macroeconomic impact of micro-level

frictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
F.1.1 Adjustment costs: additional details . . . . . . . . . . . . . . . 51
F.1.2 Financial friction: additional details and results . . . . . . . . 51
F.1.3 Costs of entry and of operation . . . . . . . . . . . . . . . . . 54
F.1.4 Aggregate impact of micro-level frictions . . . . . . . . . . . . 55

F.2 Changes in the Nature of Firm Growth: baseline versus restricted model 56

G Results for establishments 59
G.1 Autocovariances for establishments . . . . . . . . . . . . . . . . . . . 59
G.2 Statistical model: results for establishments . . . . . . . . . . . . . . 59
G.3 Structural model: results for establishments . . . . . . . . . . . . . . 63

2



A Data appendix

Our starting point is the U.S. Census Bureau Longitudinal Business Database first
created by Ron S Jarmin and Javier Miranda (2002) and maintained by the Census
Bureau Center for Economic Studies (CES). This establishment-level administrative
database provides near comprehensive coverage of all businesses with paid employees.
Each establishment, i.e., physical location of economic activity, has a unique identifier
that may be used to link them across any time span. Each establishment is also
assigned a firm identifier, which may be used, in the case of multiple locations, to
group establishments within a year at the firm level.

For this paper we use data from 1976 to 2012 for the entire nonfarm private
sector. Both our firm and establishment level results rely on a measure of age. For
establishments, we measure entry (i.e. assign age 0) in the year in which it hires
its first employee, after which it ages naturally. This measure of age is tied to the
physical location and is not affected by business sales or reorganizations. When a
new firm is identified, it is assigned the age of the oldest establishment. Because new
entrants are identified as not operating in any previous years, we use data from 1979
to 2012. This ensures that any establishment or firm in the 1979 birth cohort were
not present in at least 3 prior years.

For each establishment, we assign a longitudinally consistent NAICS6 industry
using the methodology and concordance developed by Teresa C Fort, Shawn D Klimek
et al. (2016). This allows a consistent measure of industry for establishments created
prior to the replacement of the SIC system with NAICS. To assign an industry to each
firm we apply an establishment-payroll weighted hierarchal system that first assigns
the highest payroll 2-digit industry, then the 3-digit industry within the matching
2-digit group and so on until a 6 digit industry is assigned to each firm.

We use for each establishment and aggregated at the firm level as described above,
the total paid employment (annually for the week including March 12), NAICS6
industry and age. For each birth cohort from 1979 to 1993, we link establishment
and firms across each age pair for which it operates.

A.1 Linking firms and establishments

While the LBD is designed to link physical establishments over time, linking at the
enterprise or firm level poses unique challenges. The Census Bureau staff links estab-
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lishments, physical locations of business activity, across years and provides each estab-
lishment a unique identifier that is preserved across establishment reorganizations or
ownership changes. Although taxes are paid at the level of a Employer Identification
Number (EIN), the Census Bureau uses additional data from the quinquennial Eco-
nomic Census and Annual Company Organization survey to both identify individual
establishments and their locations and to identify in the cases of multiple locations
and subsidiaries the highest level of operational control, known as an enterprise. The
measure of enterprises corresponds to our notion of firms, which are defined by the
span of managerial control over their inputs. The creation of the LBD and process
of identifying establishments, linking them over time, and grouping at the enterprise
level are all described by Jarmin and Miranda (2002) and references therein.

We use the unique physical establishment identifier to link establishments across
any time span for which they are operating. The firm identifiers however, are only
unique within an annual cross section. Identifiers are tied to the EIN, which may
change in the case or reorganizations or when the business is officially recognized
in an Economic Census year as having multiple locations. When used to link firms
across time periods, the quality of the match degrades with the length of the time
period, and the matched sample is no longer representative, since it only contains
firms without an organizational change.

To construct firm-level linkages, we first create firm level longitudinal identifiers
that are robust to organizational changes. For any establishment that undergoes a
change in firm id or any establishment at a firm where an establishment undergoes a
change in firm id, we assign new firm identifiers. The new measure works backwards
and preserves the most recent firm id when the firms should be linked. The matching
algorithm relies on administrative records and is detailed in Benjamin W Pugsley and
Harrison Wheeler (2018). There are some certainty cases, such as when a “multiunit”
firm id is assigned where the new firm id can be raked backwards along the previous
firm id spell. In other cases, we rely on the first and last appearance of the firm id to
determine when the firms should be linked and when the break should be preserved.
In cases of mergers, we give preference to the firm with the largest historical payroll.
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A.2 Estimated autocovariance matrices

We pool the 1979 to 1993 birth cohorts linked at the firm level across all firm ages
for which the firm is operating. We refer to this as the unbalanced panel. We
also construct another sample that restricted to include firms that survival at least
19 years. We refer to this as the balanced panel. We estimate the autocovariance
structure separately for each panel.

Letting lnni,a,j,t represent the log employment for firm i of age a in 6-digit NAICS
industry j and year t , we first project log employment on industry j and birth
cohort t − a fixed effects. Then, we construct log employment residuals l̃nni,a,j,t =

lnni,a,j,t− µ̂j− λ̂t−a by subtracting off the estimated fixed effects. This removes effects
for all ages on employment due purely to the industry-specific technology and long-
lasting effects on firms of all ages from business conditions at birth, as documented
e.g., by Petr Sedláček and Vincent Sterk (2017). Removing a joint industry×birth-
cohort fixed effect instead has little effect on our results.

For each panel, we estimate the cross sectional autocovariance by taking age pair
h ≥ 0 and a ≥ h for a ≤ 19:

Ĉov[l̃nni,a,j,t, l̃nni,h,j,t] =
1

Na,h

Na,h∑
i=1

(
l̃nni,a,j,t − l̃nni,a,j,t

)(
l̃nni,h,j,t − l̃nni,h,j,t

)
(A.1)

Here Na,h refers to the number of firms with employment observed both at ages a and
h ≤ a, and · taking the sample mean (of either age a or h residual log employment)
over this group. In terms of composition, for the unbalanced panel, the composition
and number Na,h of firms may change across age different (a, h) age group pairs. For
example, the (1,0) pair will contain a larger set of firms than the (10,0) pair since
more than half of the firms in the (1,0) pair will have exited before they reach age
10. For the balanced panel, the composition of age group pairs and size Na,h may
still slightly fluctuate. They will not be constant because on occasion even surviving
incumbent firms may be missing an employment report.

For reference, we report the estimated autocovariance matrices for firms for both
the unbalanced and balanced panels in Tables A.1 and A.2
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B Statistical model

B.1 Derivation of the autocovariance function

Consider the employment process given in Section I.C in the main text. It is helpful
to write each of its components in its moving average representation:

ui,a = ρa+1
u ui,−1 +

a∑
k=0

ρkuθi

vi,a = ρa+1
v vi,−1

wi,a =
a∑
k=0

ρkwεi,a−k =

j−1∑
k=0

ρkεi,a−k + ρjv

a−j∑
k=0

ρkvεi,a−j−k 0 ≤ j ≤ a.

The last equality splits the moving average into terms before and after a− j and will
be helpful when computing the covariance. The level of log employment of firm i at
age a can be written as:

lnni,a = ρa+1
u ui,−1 +

a∑
k=0

ρkuθi +ρa+1
v vi,−1 +

j−1∑
k=0

ρkεi,a−k +ρjv

a−j∑
k=0

ρkvεi,a−j−k + zi,a. (B.1)

The autocovariance of log employment at age a and h = a− j for j ≥ 0 is:

Cov [log ni,a, log ni,a−j] =

(
a∑
k=0

ρku

)
σ2
θ

(
a−j∑
k=0

ρku

)
+ ρa+1

u σ2
ũρ

a−j+1
u + ρa+1

v σ2
ṽρ

a−j+1
v

+ Cov

[
ρjv

a−j∑
k=0

ρkvεi,a−j−k,

a−j∑
k=0

ρkvεi,a−j−k

]
+ 1{j=0}σ

2
z

=σ2
θ

(
a∑
k=0

ρku

)(
a−j∑
k=0

ρku

)
+ σ2

ũρ
2(a+1)−j
u + σ2

ṽρ
2(a+1)−j
v + σ2

ερ
j
w

a−j∑
k=0

ρ2k
w + σ2

z0
j

This gives Equation (2) in the main text.1

1Because age a and by extension h = a− j are finite, this covariance is well-defined even in the
presence of unit roots. If we had restricted each persistence parameter to be strictly less than one
in absolute value then the covariance expression would further simplify to:

σ2
θ

(
1− ρa+1

u

) (
1− ρa−j+1

u

)
(1− ρu)2

+ σ2
ũρ

2a−j+2
u + σ2

ṽρ
2a−j+2
v + σ2

ερ
j
w

1− ρ2(a−j+1)
w

1− ρ2w
+ σ2

z0
j .
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B.2 Estimation details

B.2.1 Estimation on the microdata

The reduced-form model is estimated using a minimum distance procedure, following
Gary Chamberlain (1984). We formulate its estimation and inference using GMM.
Let ϑ = (ρu, ρv, ρw, σθ, σũ, σṽ, σε, σz) be an arbitrary parameter vector in a compact
parameter space. We define a random variable for firm i when observed at ages a and
a− j:

f(ni,a, ni,a−j, ϑ) ≡ (lnni,a − E [lnni,a]) (lnni,a−j − E [lnni,a−j])−Cov[lnni,a, lnni,a−j;ϑ],

where Cov[lnni,a, lnni,a−j;ϑ] is a scalar computed from the statistical model, Equa-
tion (2) of the main text, with parameters ϑ. Then, for each a = 0, . . . , A and
0 ≤ j ≤ a we stack these random variables to form the random vector of length
K = A(A−1)

2
:

f(ni, ϑ) ≡ [f(ni,a, ni,a−j)] ,

where ni is a vector of firm i (residual) employment at each age a = 0, . . . , A.2

The moment conditions we exploit in the estimation are E [f (ni;ϑ)] = 0. These
are satisfied when the autocovariance matrix of lnni,a for a = 0, . . . , A is equal to
the autocovariance matrix of the statistical model for a particular combination of
parameters ϑ = ϑ0.

To operationalize the estimator we define f̃(ni,a, ϑ) that replaces in f eachE[lnni,a]

with its sample average, and then let

g̃N (ϑ) ≡ 1

N

∑
i

f̃ (ni, ϑ) .

Then, the sample average g̃N(ϑ) of f̃ is the empirical autocovariance structure less the
statistical model’s autocovariance structure for parameter ϑ.3 The estimator solves
minϑ g̃N (ϑ)′Wg̃N (ϑ) , whereW is aK×K weighting matrix. We setW = I, the iden-
tity matrix, so this is an equally-weighted minimum distance (EWMD) estimator.4

2When estimating the model, we use residualized log employment ln ñia as described in Section
A.2.

3We write g̃ this way for simplicity. However, N will actually vary across each element of g̃, since
the number of firm observations may vary across each a and a− j pair.

4A common alternative, c.f., Fatih Guvenen (2009) and Richard Blundell, Luigi Pistaferri and
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The estimator ϑ̂ follows, asymptotically, a normal distribution with a mean equal
to the true value of ϑ and a covariance matrix given by Σ = (D′D)D′ΩD (D′D)−1,
where D = E[∂f(ni,ϑ)

∂ϑ
] and Ω = E[f (ni, ϑ) f (ni, ϑ)′]. We estimate Σ using the sample

analogues D̃ = 1
N

∑
i
∂f̃(ni,ϑ)

∂ϑ
and Ω̃ = 1

N

∑
i f̃ (ni, ϑ)′ f̃ (ni, ϑ).

B.2.2 Replication using the included autocovariance matrices

Finally, note that the point estimates can be computed using just the empirical au-
tocovariance matrices we provide without accessing the underlying microdata.5 With
W = I, the estimator simply chooses parameters to minimize the squared distance
between the model’s autocovariance matrix and the empirical autocovariance matrix.
This can also be implemented for any other statistical model whose parameters are
identified from its covariance structure, and we explore some alternatives in the next
section. The codes to estimate the benchmark and alternative models from just the
reported autocovariance matrices are included in the replication files.

Inference, however, requires estimating the Jacobian matrix D̃ at the optimum
and the variance of the GMM model Ω̃ on the microdata, both for the particular
statistical model f . Thus, the standard errors in Tables 1 and G.3 can only be
replicated using the microdata. These programs are archived by the Census Bureau
and may be requested for any sworn researcher with an approved LBD project.

B.3 Alternative statistical models

B.3.1 Details on the restricted models in the main text

In the main text and its discussion of Figure 3, we consider 4 restricted versions of the
baseline model. The purpose of these restrictions is to show the importance of each
component of the baseline model. For reference, in Table B.1 we report the EWMD
parameter estimates under these restrictions using the autocovariance of both the full
and balanced panels.

Ian Preston (2008), is diagonally-weighted minimum distance (DWMD) that adjusts only for the
heteroskedasticity induced by the different number of observations used to calculate each moment.
We include the EWMD results because we cannot release the exact number of observations used in
each moment. In practice, there is little difference between the EWMD and DWMD estimates.

5Tables A.1 and A.2 provide the empirical autocovariance of firm-level (residual) log employ-
ment, unbalanced and balanced panels, respectively. Tables G.1 and G.2 are the establishment-level
counterparts.
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Table B.1: EWMD parameter estimates of restricted models in main text Figure 3

(1) (2) (3) (4) (5)
Case I. Case II. Case III. Case IV.

Base u = z = 0 w = z = 0 v = 0 z = 0

A. Unbalanced Panel

ρu 0.2741 0.9718 0.7138 0.1695 0.2439
ρv 0.8536 0.9718 — — 0.8009
ρw 0.9458 0.9718 — 0.9182 0.9303
σθ 0.5339 — 0.2939 0.6408 0.5627
σu 1.4837 — 1.555 3.7862 1.6747
σv 0.6928 0.8865 — — 0.7608
σε 0.2858 0.2902 — 0.3199 0.316
σz 0.2863 — — 0.2663 —

RMSE 0.0151 0.0427 0.1212 0.0347 0.0239

B. Balanced Panel

ρu 0.2184 0.9771 0.9476 0.123 0.1973
ρv 0.8323 0.9771 — — 0.8045
ρw 0.9625 0.9771 — 0.9435 0.9521
σθ 0.5545 — 0.0853 0.6465 0.5678
σu 1.7425 — 1.0277 5.0117 2.0373
σv 0.6951 0.8304 — — 0.7446
σε 0.2548 0.2676 — 0.2766 0.2778
σz 0.2716 — — 0.2754 —

RMSE 0.012 0.0368 0.0839 0.0333 0.0212
Note: EWMD estimation of the restricted models presented in Figure 3 (panels I. to IV.) using
210 empirical moments from Census LBD. Column (1) baseline estimates; column (2) I. no ex-
ante profiles, just single initial condition; column (3) II. no ex-post shocks; (4) III. restricted ex-ante
profile with single initial condition; (5) IV. no i.i.d. component (σz = 0). RMSE reports

√
SSR/210

where SSR is the equally weighted sum of the 210 squared residuals.

B.3.2 Additional statistical models summary

Our baseline model captures the information in the empirical autocovariance function
well and has the benefit of parsimony and a structural interpretation in an industry
dynamics equilibrium under some fairly rigid assumptions. However, there are nu-
merous other statistical models that can also be estimated, and some have structural
shock counterparts that have been suggested in the prior literature. Like our base-
line, given the orthogonality restrictions on the shocks and their functional forms, the
parameters of these alternative statistical models are identified from the empirical
autocovariance function.
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We estimate 8 additional alternative models using the same equally weighted
minimum distance (EWMD) procedure that minimizes the squared distance between
the statistical model and the empirical autocovariance function (separately for the
unbalanced and balanced panel). Including the benchmark, we consider the following
models:

1. Benchmark process (Generalized AR(1) in main text)

2. Generalized AR(1) with unit root in w process

3. Generalized AR(1) with stationary w process and additional random walk x

term

4. Generalized AR(1) with age dependent shocks εa

5. AR(1) with non stationary initial condition as in Hopenhayn and Rogerson
(1993)6

6. Separate AR(1) and FE terms in lnn with non stationary initial condition for
AR(1) term

7. AR(1) dynamic panel data model

8. AR(2) dynamic panel data model

9. ARMA(1,1) dynamic panel data model

We report the estimation results in Table B.2, where the column numbers corre-
spond to the model number in the list of alternatives. For reference, we report each
model’s autocovariance function required for the minimum distance estimation below
in Section B.3.3 where we also include in Figures B.2 to B.4 plots of each additional
model’s estimated autocovariance structure plotted against the data.

As a parsimonious representation of the full autocovariance function, our baseline
process performs better than many common alternatives in terms of model fit. Several
observations are in order.

First, our benchmark process does not estimate any permanent ex-post shocks.
This is a feature of the data, not the process. Because it matches the autocovariance

6Note that this version is identical to model I in Section I.D, Figure 3. We repeat it here because
it is a popular specification in the literature.
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Table B.2: EWMD estimation of alternative firm employment processes

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Dynamic Panel Data Models

Base RW RW+Base Age Dep. AR(1) AR(1) + FE AR(1) AR(2) ARMA(1,1)

A. Unbalanced Panel

ρu 0.2741 0.6567 0.2741 0.0001 0.9718 — — — —
ρv 0.8536 0.9485 0.8536 0.8299 0.9718 0.9493 — — —
ρw/ρ 0.9458 1 0.9457 0.9585 0.9718 0.9493 0.9718 0.6518 0.9754
ρ2 — — — — — — — 0.3117 —
σθ 0.5339 0.2061 0.5339 0.6752 — 0.5932 0.0000 0.0000 0.0035
σu 1.4837 0.3389 1.4837 — — — — — —
σv 0.6928 0.8631 0.6928 0.7615 0.8865 0.6168 0.8865 1.1749 0.8410
σε 0.2858 0.1968 0.2858 0.2716 0.2902 0.3140 0.2902 0.3763 0.4749
σx — — 0.0020 — — — — — —
σz 0.2863 0.3867 0.2862 0.2984 — — — — —
γ — — — — — — — — -0.4237

RMSE 0.0151 0.0292 0.0151 0.0082 0.0427 0.0405 0.0427 0.0353 0.0346

Ex-ante var (%)
5 years 57.12 64.71 57.12 19.33 55.88 54.53 55.88 54.33 49.42
10 years 46.90 50.45 46.90 19.89 37.18 41.02 37.18 36.74 34.45
20 years 41.21 32.75 41.21 24.67 19.50 31.38 19.50 19.67 19.49
50 years 38.79 14.62 38.79 31.86 2.87 26.27 2.87 3.03 4.15

B. Balanced Panel

ρu 0.2184 0.5853 0.2199 0.0002 0.9771 — — — —
ρv 0.8323 0.9608 0.8245 0.8123 0.9771 0.9716 — — —
ρw/ρ 0.9625 1 0.9491 0.9694 0.9771 0.9716 0.9749 0.684 0.9756
ρ2 — — — — — — — 0.2817 —
σθ 0.5545 0.2142 0.5572 0.6669 — 0.3781 0.0179 0.0316 0.0181
σu 1.7425 0.7402 1.7305 — — — — — —
σv 0.6951 0.7709 0.6992 0.7605 0.8304 0.7309 0.8420 1.1019 0.8004
σε 0.2548 0.2020 0.2407 0.2476 0.2676 0.2732 0.2641 0.3313 0.4429
σx — — 0.0945 0.2760 — — — — —
σz 0.2716 0.3313 0.2660 — — — — — —
γ — — — — — — — — -0.4394

RMSE 0.0120 0.0191 0.0119 0.0083 0.0368 0.0367 0.0367 0.032 0.0289

Ex-ante var (%)
5 years 58.30 63.42 58.47 17.83 57.63 57.22 59.03 58.82 52.37
10 years 47.09 47.83 47.64 18.12 39.60 40.53 41.97 43.53 39.05
20 years 39.72 29.48 40.11 21.54 22.20 25.48 27.32 31.59 27.25
50 years 34.93 11.22 31.5 27.39 4.32 11.96 19.82 30.32 21.84

# Params 8 7 9 27 3 4 4 5 5
Note: EWMD estimation of each process using 210 empirical moments from Census LBD unbalanced
and balanced panels. Column (1) presents the estimates from the main text; column (2) imposes a
unit root in the w term; column (3) imposes stationary (in the long run) w term with ρw < 1 and
adds a unit root shock x′ = x + ξ; column (4) allows the “ex-post” shocks εia to depend on age—
reported σε is the average of σεa for a = 0, . . . , 19, see Figure B.5—and normalizes σu = 0; column
(5) presents the estimates for an AR(1) with an initial condition as in Hopenhayn and Rogerson
(1993); column (6) presents the estimates for a process with an AR(1) and a FE term where the FE
term is not included in the AR(1); columns (7) to (9) present the estimates for alternative dynamic
panel data models of log employment allowing for a non stationary initial condition lnn−1. RMSE
reports

√
SSR/210 where SSR is the equally weighted sum of the 210 squared residuals. It does

not adjust for the number of estimated parameters. Number of parameters reports the number of
unrestricted parameters estimated in each process.13



function over a finite horizon, there is no need to require a-priori a bounded autoco-
variance function in the limit. While our estimated shocks are persistent, the data
strongly reject a unit root. Imposing a unit root (column 2) significantly degrades the
model fit. Even when augmented with both a unit root and a stationary persistent
process for wa (column 3), matching the autocovariance requires near zero volatility
unit root term. This finding may be of independent interest since it suggests a trade-
off when identifying firm dynamics by matching “early” life cycle dynamics as we do
using the autocovariance function and long run restrictions such as the matching the
ergodic size distribution.

Next, the canonical process in the literature struggles to match the covariance
structure. This process (column 5) fit is considerably worse compared to the baseline,
with a root mean squared error that is two to four times as high as that in our
baseline). In this process, any ex-ante heterogeneity imparted by the initial condition
vanishes over time, so all firms expect to be the same in the long run. Without any
permanent ex-ante differences, matching long-run autocovariances with an AR(1)
requires a very persistent process that imposes a nearly linear increase in variance
and decay in autocovariance.

Interestingly, even when augmented with a separate fixed effect term (column 6) or
specified as a dynamic panel (column 7), both of which allow long-run heterogeneity,
there is little improvement in fit. The reason is there is not enough flexibility to
match the age dependence in autocovariance we observe in the data. For example,
the correlation of employment now with employment 5 years prior is much higher for
a 10 year old firm than for a 5 year old firm. Higher order terms, such as the AR(2)
(column 8) recommended by Yoonsoo Lee and Toshihiko Mukoyama (2015) to match
the dynamics of plants in the manufacturing sector, allow some additional flexibility
in the rate of decay in autocovariance, but do little to improve the overall fit. Allowing
the ex-post shocks to be serially correlated (column 9) using an ARMA(1) also does
little to improve the fit.

One obvious way to improve on our model fit, at the cost of introducing many free
parameters, is to relax the restriction on homoskedastic ex-post shocks ε. Introducing
age-dependent shocks (column 4) can, unsurprisingly, produce a near perfect model
fit. Yet, even with this flexibility in the ex-post component, the model still needs
ex-ante profile heterogeneity. After 50 years, the ex-ante components are explaining
about 30 percent of the variation.
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The importance of ex-ante profile heterogeneity is a robust feature of the data. To
better compare across models, in Figure B.1, we plot for each model the fraction of
variance explained by the ex-ante component over the life cycle. This plot fills the in
horizons in between the ages listed in Table B.2 and is the counterpart to Figure 4 from
the main text. We observe that regardless of process, ex-ante characteristics explain
a significant fraction of early lifecycle employment dispersion. For the processes that
are best able to match the shape of the autocovariance function (see Figures B.2
to B.4 and discussion below), they also attribute a nearly identical share of long-
run variance to ex-ante characteristics reinforcing our findings for the benchmark
generalized AR(1) process.

1. Baseline
2. RW
3. Baseline + RW
4. Age Dep
5. HR

6. HR + FE
7. Panel AR(1)
8. Panel AR(2)
9. Panel ARMA(1,1)

(a) Unbalanced panel

1. Baseline
2. RW
3. Baseline + RW
4. Age Dep
5. HR

6. HR + FE
7. Panel AR(1)
8. Panel AR(2)
9. Panel ARMA(1,1)

(b) Balanced panel

Figure B.1: Each model’s “ex-ante” share of variance for each firm age

B.3.3 Expressions and discussion of each statistical model

We derive the autocovariance function for each statistical model. First, we consider
alternative sets of restrictions on the generalized AR(1) process. Next, we consider
alternative dynamic panel data models. Since not all dynamic panel data models are
restricted cases of our generalized AR
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1. Benchmark model. The autocovariance function of benchmark model is de-
rived in Section A.2 and is repeated here:

Cov [log ni,a, lnni,a−j] = σ2
θ

(
a∑
k=0

ρku

)(
a−j∑
k=0

ρku

)
+σ2

ũρ
2(a+1)−j
u +σ2

ṽρ
2(a+1)−j
v +σ2

ερ
j
w

a−j∑
k=0

ρ2k
w +σ2

z0
j.

Note that this function allows for random walks in each of the terms u, v, and w,
i.e., ρw, ρv and ρw are not required to be strictly less than 1. These estimates are in
column (1) in Table B.2 and the implied autocovariance function is plotted against
the empirical autocovariance function in Figure B.2 panels (a) and (b).

2. Permanent shocks. If we restrict ρw = 1 so that the ex-post term is a random
walk then the MA representation from Equation (B.1) is:

lnni.a =
a∑
k=0

ρkuθi + ρa+1
u ui,−1 + ρa+1

v vi,−1 +

j−1∑
k=0

εi,a−k +

a−j∑
k=0

εi,a−j−k + zi,a.

The autocovariance function is:

Cov [log ni,a, log ni,a−j] =σ2
θ

(
a∑
k=0

ρku

)(
a−j∑
k=0

ρku

)
+ σ2

ũρ
2(a+1)−j
u + σ2

ṽρ
2(a+1)−j
v

+ (a− j + 1)σ2
ε + σ2

z0
j.

We report the estimated parameters of this process in column (2) of Table B.2. The
implied autocovariance function is plotted against the empirical autocovariance func-
tion in Figure B.2 panels (c) and (d).

3. Permanent and persistent shocks. We consider a variant on this process
(not just a restriction) where lnnia has both a persistent w and permanent x ex-post
component

lnni,a = ui,a + vi,a + wi,a + xi,a + zi,a

with ρw < 1 and
xi,a = xi,a−1 + ξi,a.
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Then the moving average representation is:

lnni,a =
a∑
k=0

ρkuθi+ρ
a+1
u ui,−1+ρa+1

v vi,−1+

j−1∑
k=0

ρkwεi,a−k+ρ
j
w

a−j∑
k=0

ρkwεi,a−j−k+
a∑
k=0

ξi,a−k+zi,a.

The autocovariance function is:

Cov [log ni,a, log ni,a−j] = σ2
θ

(
a∑
k=0

ρku

)(
a−j∑
k=0

ρku

)
+ σ2

ũρ
2(a+1)−j
u + σ2

ṽρ
2(a+1)−j
v

+ ρjw
1− ρ2(a−j+1)

w

1− ρ2
w

σ2
ε + (a− j + 1)σ2

ξ + σ2
z0
j.

We report the estimated parameters for this process in column (3) of Table B.2.
The implied autocovariance function is plotted against the empirical autocovariance
function in Figure B.2 panels (e) and (f).

4. Age dependent shocks σεa. We relax the assumption in the benchmark model
that σ2

ε does not vary by age and instead estimate the model with the following
alternative parameters σ2

ε0, . . . , σ
2
εA. This additional flexibility also replicates some of

the features of the “ex-ante” profile—the first three terms of Equation (B.1)—so we
normalize σu = 0. With these changes, the autocovariance process is:

Cov [log ni,a, log ni,a−j] =σ2
θ

(
a∑
k=0

ρku

)(
a−j∑
k=0

ρku

)
+ σ2

ṽρ
2(a+1)−j
v + ρjw

a−j∑
k=0

ρ2k
w σ

2
ε,a−j−k + σ2

z0
j.

We report the estimated parameters for this process in column (4) of Table B.2. In
the table we report for σε, the mean over all ages σε =

∑19
a=0 σεa. Figure B.5 plots

this volatility by firm age. The implied autocovariance function is plotted against the
empirical autocovariance function in Figure B.3 panels (a) and (b).

5. AR(1) with non stationary initial condition (Hopenhayn and Rogerson,
1993). This AR(1) is a special case of Equation (B.1) with constant σε, no i.i.d.
component, i.e. σz = 0, no permanent ex-ante heterogeneity θi = θ ( σθ = 0),
ui,−1 = 0 (σũ = 0), and common persistence ρu = ρv = ρw = ρ < 1:

lnni,a = θ + ρ lnni,a−1 + εi,a
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for a ≥ 0 with lnni,−1 = vi,−1. Ex-ante heterogeneity is present only through this
initial condition and fades over time. The autocovariance function is:

Cov [log ni,a, log ni,a−j] = σ2
ñρ

2(a+1)−j + σ2
ερ

j 1− ρ2(a−j+1)

1− ρ2
.

We report the estimated parameters for this process in column (5) of Table B.2.
The implied autocovariance function is plotted against the empirical autocovariance
function in Figure B.3 panels (c) and (d). For the balanced panel, the estimated
autocovariance function is also plotted as case I of Figure 3 in the main text.

6. Separate AR(1) and FE terms. We also estimate a restricted version of
Equation (B.1) that includes an AR(1) term as above and a separate fixed effect
term. Relative to above, the instead sets ρu = 0 and σθ ≥ 0, with the autocovariance
function

Cov [log ni,a, log ni,a−j] = σ2
θ + σ2

ñρ
2(a+1)−j + σ2

ερ
j 1− ρ2(a−j+1)

1− ρ2
.

We report the estimated parameters for this process in column (6) of Table B.2.
The implied autocovariance function is plotted against the empirical autocovariance
function in Figure B.3 panels (e) and (f). Note that this process is not a dynamic
panel data model since the FE is not part of the AR term. Next we consider dynamic
panel data models, which incorporate the fixed effect in the AR or ARMA term.

Dynamic panel data models. A dynamic panel data model is

lnni,a =
L∑
l=1

ρl lnni,a−l + θi +
K∑
k=0

γkkεi,a−k (B.2)

for a ≥ 0 with initial condition lnn−1 ≡ ln ñ and where ln θi and ln ñ are iid with
Var [θi] = σ2

θ , Var [ln ñ] = σ2
ñ, Var [εa] = σ2

ε , and γk ≥ 0. Note that in some special
cases of this dynamic panel data model, namely L = 1 and K = 0, then Equation
(B.2) is a special case of Equation (B.1) with ui,−1 + vi,−1 = ln ñ and ρu = ρv = ρw =

ρ1 < 1. We estimate several common specifications of Equation (B.2). Although
there are a variety of linear estimators for some of these models, to be consistent with
our main results, we continue to use the nonlinear minimum distance estimator that
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chooses parameters to match the empirical autocovariance function.

7. AR(1) dynamic panel. In this specification L = 1 and K = 0, so that it is as
noted above a special case of (B.1). The autocovariance function is

Cov [lnni,a, lnni,a−j] = σ2
θ

1− ρa+1

1− ρ
1− ρa−j+1

1− ρ
+ ρ2(a+1)−jσ2

ñ + σ2
ερ

j 1− ρ2(a−j+1)

1− ρ2
.

We report the estimated parameters for this process in column (7) of Table B.2.
The implied autocovariance function is plotted against the empirical autocovariance
function in Figure B.4 panels (a) and (b).

8. AR(2) dynamic panel. We relax the AR(1) restriction on the dynamics and
now set L = 2, then

lnni,a = ρ1 lnni,a−1 + ρ2 lnni,a−2 + θi + εi,a, (B.3)

for a ≥ 0 with lnn−1 = ln ñ and lnn−2 = 0. Inverting to the MA representation with
the initial condition is tricky. Instead we express it an AR(1) in za = (lnna, lnna−1)ᵀ.
Then for a ≥ 0

zi,a = Azi,a−1 +Bθi + Cεi,a

where

A =

[
ρ1 ρ2

1 0

]
B =

[
1

0

]
C =

[
1

0

]
with z0 = (lnn0, ln ñ)ᵀ and initial condition z−1 = (ln ñ, 0)ᵀ. Then

(I − AL) zia =Bθi + Cεia

(I + AL+ . . .+ AaLa) (I − AL) zia = (I + AL+ . . .+ AaLa) (Bθi + Cεia)

zia =Aa+1zi,−1 + θi

a∑
k=0

AkB +
a∑
k=0

AkCεia−k

Using this MA representation, the autocovariance function may be determined by

Cov [zi,a, zi,a−j] = Aa+1

[
σ2
ñ 0

0 0

]
Aᵀa+1−j+σ2

θ

(
a∑
k=0

Ak

)
BBᵀ

(
a−j∑
k=0

Aᵀk

)
+σ2

ε

a−j∑
k=0

AkCCᵀAᵀk+j.
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We are specifically interested in the upper left element of this matrix

Cov [lnni,a, lnni,a−j] = e′Cov [zi,a, zi,a−j] e

where e = (1, 0)ᵀ. We report the estimated parameters for this process in column (8)
of Table B.2. The implied autocovariance function is plotted against the empirical
autocovariance function in Figure B.4 panels (c) and (d).

9. ARMA(1,1) dynamic panel. We next relax the assumption of iid persistent
shocks and allow for serial correlation, so L = 1 and K = 1. Then

lnni,a = ρ lnni,a−1 + θi + εi,a + γεi,a−1 (B.4)

for a ≥ 0 with εi,−1 = 0. The moving average representation is:

lnni,a =
a∑
k=0

ρkθi + ρa+1 ln ñi +
a∑
k=0

ρk (εia−k + γεi,a−k−1)

=
a∑
k=0

ρkθi + ρa+1 ln ñi +
a∑
k=0

(
ρk−1 (ρ+ γ)

)k>0
εi,a−k

Then the autocovariance function for a, j ≥ 0 is:

Cov [lnni,a, lnni,a−j] = σ2
θ

1− ρa+1

1− ρ
1− ρa+1−j

1− ρ
+ σ2

ñρ
2(a+1)−j (B.5)

+

[(
ρj−1 (ρ+ γ)

)j>0
+ 1a≥1 (γ + ρ)2 ρj

1− ρ2(a−j)

1− ρ2

]
σ2
ε

We report the estimated parameters for this process in column (9) of Table B.2.
The implied autocovariance function is plotted against the empirical autocovariance
function in Figure B.4 panels (e) and (f).
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(a) 1. Benchmark for unbalanced panel (b) 1. Benchmark for balanced panel

(c) 2. “Ex-post” random walk for unbalanced panel (d) 2. “Ex-post” random walk for balanced panel

(e) 3. Benchmark plus random walk for unbalanced
panel

(f) 3. Benchmark plus random walk for balanced panel

Figure B.2: Empirical autocovariance and estimated model fit for models 1 to 3
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(a) 4. Age dependent shocks for unbalanced panel (b) 4. Age dependent shocks for balanced panel

(c) 5. AR(1) for unbalanced panel (d) 5. AR(1) for balanced panel

(e) 6. Plus separate FE term unbalanced panel (f) 6. Plus random walk for balanced panel

Figure B.3: Empirical autocovariance and estimated model fit for models 4 to 6
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(a) 7. AR(1) dynamic panel model for unbalanced (b) 7. AR(1) dynamic panel model for balanced

(c) 8. AR(2) dynamic panel model for unbalanced (d) 8. AR(2) dynamic panel model for unbalanced

(e) 9. ARMA(1,1) dynamic panel model for unbalanced(f) 9. ARMA(1,1) dynamic panel model for unbalanced

Figure B.4: Empirical autocovariance and estimated model fit for models 7 to 9
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(a) Unbalanced (b) Balanced

Figure B.5: Alternative estimates of shock volatility by firm age σεa

C Sectoral heterogeneity in the statistical model

We now repeat by sector the estimation for a large set of roughly 2-digit NAICS sec-
tors and for a high-tech sector composed of industries with a high intensity in STEM
occupations (drawing from manufacturing, information, and administrative support
NAICS sectors, see Daniel E Heckler, 2005). For each sector, we follow the proce-
dure in Appendix Section A.2 to estimate the sector-specific residual autocovariance
matrix, and then follow the procedure in Section B.2 to estimate the parameters of
the sector-specific model. We present these estimates in Tables C.1 and C.2 for firms
and establishments, respectively.

The importance of ex-ante heterogeneity in dispersion of employment by firm
age is widespread across all sectors. Tables C.1 and C.2 also report the fraction of
variance in log employment at ages 5, 10, 20, and 50 accounted for by the ex-ante
component; Figures C.1 and C.2 show the share for all ages in between. Across all
sectors, the sector-level patterns are consistent with the overall pattern in Figure
4. Even quantitatively the results at each horizon are very similar across sectors,
with the exception of the Arts/Entertainment (NAICS 71) and Accomodationa/Food
(NAICS 72) service sectors in which ex-ante heterogeneity plays a more pronounced
role at all horizons. The distinction between firm and establishment also makes little
difference except for the manufacturing (NAICS 31-33) and retail trade (NAICS 44-
45) sectors where ex-ante heterogeneity plays a significantly more important role at
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Table C.1: EWMD estimation of firm employment processes by sector

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

CON MFG WHL RET TWH INF FIR PRO ADW HLT AES AFS OTH HTC

A. Unbalanced Panel

ρu 0.2579 0.2197 0.3082 0.1368 0.2170 0.3476 0.3289 0.5579 0.3249 0.4252 0.2026 0.0876 0.3064 0.5430
(0.0055) (0.0074) (0.0095) (0.0050) (0.0107) (0.0274) (0.0083) (0.0099) (0.0111) (0.0078) (0.0145) (0.0048) (0.0064) (0.0168)

ρv 0.8118 0.8616 0.8816 0.8495 0.8348 0.8699 0.8575 0.9660 0.8367 0.8918 0.7878 0.8249 0.8954 0.9207
(0.0084) (0.0052) (0.0080) (0.0052) (0.0221) (0.0271) (0.0069) (0.0012) (0.0124) (0.0035) (0.0327) (0.0087) (0.0039) (0.0100)

ρw 0.9585 0.9553 0.9568 0.9495 0.9697 0.9484 0.9455 0.9564 0.9424 0.9324 0.9593 0.9657 0.9503 0.9599
(0.0007) (0.0009) (0.0010) (0.0006) (0.0007) (0.0032) (0.0012) (0.0010) (0.0014) (0.0011) (0.0018) (0.0010) (0.0007) (0.0016)

σθ 0.5274 0.6406 0.4940 0.5803 0.6666 0.5184 0.4432 0.2664 0.5414 0.3748 0.7278 0.8528 0.4211 0.3636
(0.0042) (0.0071) (0.0084) (0.0040) (0.0109) (0.0269) (0.0063) (0.0068) (0.0096) (0.0063) (0.0141) (0.0049) (0.0053) (0.0153)

σũ 1.0730 2.4100 1.4090 2.2690 1.5670 1.3520 1.0880 0.8131 1.1600 1.0830 1.9110 4.7060 1.1410 0.8727
(0.0921) (0.0867) (0.0760) (0.0937) (0.2078) (0.3235) (0.0770) (0.0265) (0.1896) (0.0316) (0.3346) (0.2760) (0.0373) (0.0816)

σṽ 0.6394 0.8147 0.6624 0.5988 0.5704 0.7845 0.6850 0.6435 0.8274 0.8258 0.6698 0.6408 0.6287 0.6764
(0.0172) (0.0126) (0.0165) (0.0088) (0.0411) (0.0703) (0.0166) (0.0054) (0.0368) (0.0081) (0.0728) (0.0172) (0.0064) (0.0205)

σε 0.2678 0.3149 0.3014 0.2561 0.2904 0.3653 0.2710 0.2702 0.3426 0.2932 0.2553 0.2306 0.2564 0.3324
(0.0012) (0.0014) (0.0016) (0.0004) (0.0006) (0.0064) (0.0014) (0.0014) (0.0019) (0.0011) (0.0023) (0.0019) (0.0008) (0.0025)

σz 0.3758 0.3178 0.2828 0.2891 0.2993 0.3212 0.2637 0.2869 0.3266 0.2608 0.3507 0.3266 0.2587 0.3028
(0.0019) (0.0036) (0.0037) (0.0018) (0.0063) (0.0142) (0.0028) (0.0021) (0.0046) (0.0016) (0.0078) (0.0029) (0.0014) (0.0058)

RMSE 0.0154 0.0155 0.0139 0.0128 0.0186 0.0204 0.0151 0.0171 0.0219 0.0168 0.0188 0.0160 0.0117 0.0206

Ex-ante var (%)
5 years 52.19 57.5 53.71 56.18 59.17 50.58 55.48 58.49 52.98 57.29 65.92 70.83 55.63 54.76
10 years 42.95 46 41.81 46.25 48.23 39.37 44.65 47.36 42.98 45.07 57.69 62.43 43.49 43.25
20 years 36.61 38.71 34.17 40.15 39.41 32.97 38.55 36.32 37.58 38.39 51.09 55.05 35.88 34.2
50 years 33.29 35.49 30.85 37.71 33.46 30.71 36.47 28.77 35.8 36.95 47.29 50.02 33.21 30.02

B. Balanced Panel

ρu 0.2125 0.1873 0.2606 0.1102 0.1747 0.2818 0.2609 0.2410 0.2447 0.2614 0.1967 0.0953 0.2460 0.3501
(0.0056) (0.0073) (0.0086) (0.0047) (0.0114) (0.0224) (0.0084) (0.0049) (0.0116) (0.0065) (0.0151) (0.0048) (0.0054) (0.0127)

ρv 0.8002 0.8406 0.8215 0.8271 0.8371 0.8604 0.8627 0.7949 0.8122 0.8406 0.7516 0.8239 0.8591 0.7697
(0.0055) (0.0050) (0.0062) (0.0039) (0.0102) (0.0097) (0.0046) (0.0056) (0.0087) (0.0033) (0.0257) (0.0061) (0.0034) (0.0132)

ρw 0.9642 0.9784 0.9793 0.9574 0.9734 0.9806 0.9558 0.9576 0.9576 0.9644 0.9436 0.9482 0.9533 0.9777
(0.0008) (0.0011) (0.0010) (0.0009) (0.0018) (0.0031) (0.0012) (0.0009) (0.0015) (0.0008) (0.0035) (0.0016) (0.0008) (0.0014)

σθ 0.5546 0.6578 0.5236 0.5938 0.6823 0.5626 0.4712 0.5513 0.5768 0.4567 0.7413 0.8533 0.4663 0.5148
(0.0043) (0.0070) (0.0068) (0.0038) (0.0117) (0.0222) (0.0066) (0.0041) (0.0095) (0.0045) (0.0146) (0.0053) (0.0041) (0.0102)

σũ 1.5170 2.5780 1.5120 2.9790 2.0710 1.5300 1.3010 1.4010 1.5650 1.3500 2.0660 4.7560 1.3710 1.0310
(0.0475) (0.0933) (0.0537) (0.1145) (0.1337) (0.1092) (0.0481) (0.0373) (0.0879) (0.0361) (0.2003) (0.2075) (0.0325) (0.0823)

σṽ 0.6770 0.7726 0.7154 0.6398 0.7331 0.7393 0.6663 0.6685 0.7938 0.7182 0.7199 0.6771 0.6187 0.8322
(0.0085) (0.0083) (0.0105) (0.0054) (0.0160) (0.0090) (0.0079) (0.0088) (0.0166) (0.0061) (0.0447) (0.0092) (0.0048) (0.0294)

σε 0.2591 0.2648 0.2476 0.2418 0.2805 0.2837 0.2560 0.2552 0.3126 0.2322 0.2844 0.2606 0.2476 0.2892
(0.0013) (0.0022) (0.0020) (0.0012) (0.0033) (0.0054) (0.0017) (0.0013) (0.0028) (0.0012) (0.0051) (0.0021) (0.0011) (0.0030)

σz 0.3555 0.2698 0.2694 0.2539 0.2944 0.3234 0.2491 0.2441 0.3138 0.2523 0.3285 0.2676 0.2438 0.2827
(0.0015) (0.0033) (0.0029) (0.0017) (0.0052) (0.0087) (0.0025) (0.0020) (0.0042) (0.0018) (0.0075) (0.0030) (0.0016) (0.0053)

RMSE 0.0156 0.0125 0.0126 0.0099 0.0153 0.0193 0.0122 0.0142 0.0194 0.0114 0.0182 0.0146 0.0106 0.0199

Ex-ante var (%)
5 years 53.17 62.06 57.59 58.21 59.86 56.4 55.93 59.54 52.44 57.08 64.49 70.6 55.72 55.3
10 years 43.34 49.47 44.87 47.63 47.83 43.06 43.98 49.47 41.77 44.68 57.12 62.59 44.35 43.38
20 years 36.19 39.31 34.62 40.56 38.28 32.45 36.57 42.39 34.96 36.48 52.15 56.96 37.4 33.58
50 years 31.92 31.72 26.49 37.03 31.45 24.26 33.34 38.73 31.61 31.92 50.23 54.54 34.49 26

Note: EWMD estimated parameters using residual log firm employment autocovariance matrix for
each of the following sectors (NAICS codes): construction (23), manufacturing (31-33), whole-
sale trade (42), retail trade (44-45), transportation and warehousing (48-49), information (51),
finance insurance and real estate (52-53), professional/business/technical services (54), adminis-
trative/support/waste management services (56), health care and social assistance services (62),
arts/entertainment/recreation (71), accommodation and food services (72), other services (81); high
tech sector spans multiple NAICS sectors based on intensity of STEM occupations (see Hecker 2005)
and includes NAICS 3341, 3342, 3344, 3345, 5112, 5161, 5179, 5181, 5182, 5415, 3254, 3364, 5413,
5417. GMM standard errors in parenthesis. RMSE reports

√
SSR/210 where SSR is the equally

weighted sum of the 210 squared residuals.
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Table C.2: EWMD estimation of establishment employment processes by sector

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

CON MFG WHL RET TWH INF FIR PRO ADW HLT AES AFS OTH HTC

A. Unbalanced Panel

ρu 0.2540 0.1987 0.2144 0.1894 0.3741 0.2435 0.3002 0.4845 0.2818 0.3430 0.1989 0.1047 0.2640 0.4610
(0.0057) (0.0052) (0.0066) (0.0044) (0.0277) (0.0298) (0.0061) (0.0094) (0.0096) (0.0061) (0.0127) (0.0039) (0.0058) (0.0160)

ρv 0.8498 0.8564 0.9058 0.9142 0.9664 0.9497 0.8710 0.9572 0.8667 0.8947 0.8613 0.9161 0.9030 0.9508
(0.0074) (0.0049) (0.0058) (0.0032) (0.0023) (0.0095) (0.0058) (0.0013) (0.0102) (0.0028) (0.0296) (0.0047) (0.0035) (0.0034)

ρw 0.9579 0.9492 0.9482 0.9150 0.9678 0.9430 0.9231 0.9587 0.9282 0.9170 0.9496 0.8787 0.9474 0.9599
(0.0006) (0.0009) (0.0011) (0.0014) (0.0013) (0.0031) (0.0013) (0.0008) (0.0017) (0.0011) (0.0031) (0.0033) (0.0008) (0.0014)

σθ 0.5461 0.8086 0.6204 0.5640 0.4335 0.6476 0.5041 0.3308 0.6150 0.4360 0.7742 0.8076 0.4567 0.4437
(0.0048) (0.0061) (0.0087) (0.0050) (0.0320) (0.0607) (0.0058) (0.0082) (0.0109) (0.0056) (0.0141) (0.0058) (0.0055) (0.0189)

σũ 1.1880 2.9750 2.0410 2.2710 0.7248 2.0390 1.3070 0.8554 1.3920 1.4430 2.3090 4.8360 1.2660 1.0440
(0.0821) (0.0827) (0.0799) (0.0531) (0.1174) (0.2674) (0.0791) (0.0329) (0.2064) (0.0320) (0.2749) (0.1800) (0.0396) (0.0749)

σṽ 0.6213 0.7767 0.7158 0.6502 0.9314 0.9299 0.7776 0.7564 0.8931 0.8504 0.5627 0.6502 0.6488 0.8611
(0.0135) (0.0093) (0.0098) (0.0043) (0.0206) (0.0396) (0.0141) (0.0066) (0.0295) (0.0062) (0.0501) (0.0071) (0.0053) (0.0154)

σε 0.2690 0.2950 0.2959 0.2588 0.3086 0.3614 0.2810 0.2744 0.3651 0.3002 0.2527 0.2777 0.2545 0.3333
(0.0010) (0.0011) (0.0012) (0.0010) (0.0026) (0.0049) (0.0012) (0.0013) (0.0023) (0.0010) (0.0039) (0.0022) (0.0007) (0.0027)

σz 0.3727 0.3063 0.2631 0.2726 0.3003 0.3204 0.2627 0.2816 0.3261 0.2495 0.3453 0.2864 0.2588 0.2947
(0.0019) (0.0029) (0.0024) (0.0011) (0.0051) (0.0073) (0.0018) (0.0019) (0.0037) (0.0013) (0.0066) (0.0023) (0.0012) (0.0050)

RMSE 0.0149 0.0121 0.0119 0.0094 0.0137 0.0202 0.0145 0.0178 0.0206 0.0154 0.0149 0.0126 0.0098 0.0192

Ex-ante var (%)
5 years 54.5 68.87 61.97 64.61 64.54 63.16 61.38 62.23 56.46 59.49 70.16 73.38 57.97 62.73
10 years 44.71 59.95 50.52 55.94 50.77 51.34 51.74 49.53 46.52 48.02 62.78 68.59 45.89 49.89
20 years 38.06 53.83 42.81 50.93 36.13 41.31 47.12 37.12 41.72 42.15 57.35 66.3 38.14 38.08
50 years 34.76 51.26 40.06 49.92 24.74 36.57 46.26 29.55 40.69 41.2 54.95 65.93 35.59 31.56

B. Balanced Panel

ρu 0.2101 0.2034 0.1703 0.1124 0.1761 0.2759 0.2791 0.2336 0.2137 0.2339 0.2050 0.0641 0.2312 0.2728
(0.0054) (0.0055) (0.0057) (0.0037) (0.0089) (0.0342) (0.0066) (0.0043) (0.0091) (0.0053) (0.0130) (0.0039) (0.0048) (0.0090)

ρv 0.7928 0.8370 0.8318 0.8370 0.8624 0.9539 0.8825 0.7875 0.8169 0.8336 0.8015 0.8445 0.8642 0.7823
(0.0055) (0.0036) (0.0041) (0.0025) (0.0066) (0.0056) (0.0037) (0.0051) (0.0068) (0.0027) (0.0177) (0.0043) (0.0029) (0.0096)

ρw 0.9634 0.9665 0.9703 0.9296 0.9594 0.9683 0.9397 0.9505 0.9492 0.9445 0.9317 0.8850 0.9471 0.9586
(0.0008) (0.0012) (0.0010) (0.0010) (0.0017) (0.0026) (0.0010) (0.0009) (0.0016) (0.0009) (0.0035) (0.0025) (0.0008) (0.0016)

σθ 0.5794 0.7940 0.6671 0.6105 0.7506 0.5742 0.4910 0.6082 0.6534 0.4941 0.7735 0.8479 0.4928 0.6998
(0.0043) (0.0063) (0.0057) (0.0030) (0.0106) (0.0588) (0.0057) (0.0039) (0.0087) (0.0038) (0.0132) (0.0043) (0.0038) (0.0099)

σũ 1.5360 2.6660 2.3820 3.4540 2.7970 2.1030 1.5940 1.5410 1.8330 1.6040 2.2930 7.3850 1.5060 1.6560
(0.0479) (0.0686) (0.0744) (0.1034) (0.1312) (0.2590) (0.0378) (0.0372) (0.0886) (0.0387) (0.1572) (0.4094) (0.0332) (0.0718)

σṽ 0.6923 0.8595 0.7421 0.6609 0.8159 1.0260 0.6842 0.7062 0.8403 0.7700 0.6765 0.7252 0.6392 0.8730
(0.0088) (0.0071) (0.0069) (0.0041) (0.0119) (0.0355) (0.0057) (0.0087) (0.0140) (0.0055) (0.0318) (0.0071) (0.0045) (0.0192)

σε 0.2597 0.2551 0.2404 0.2282 0.2974 0.3056 0.2538 0.2631 0.3183 0.2441 0.2797 0.2500 0.2485 0.3083
(0.0013) (0.0020) (0.0017) (0.0010) (0.0031) (0.0046) (0.0012) (0.0014) (0.0027) (0.0011) (0.0045) (0.0013) (0.0010) (0.0030)

σz 0.3562 0.2638 0.2441 0.2431 0.2724 0.2527 0.2449 0.2294 0.3164 0.2442 0.3267 0.2524 0.2408 0.2314
(0.0015) (0.0030) (0.0026) (0.0013) (0.0052) (0.0072) (0.0016) (0.0022) (0.0041) (0.0016) (0.0063) (0.0015) (0.0014) (0.0059)

RMSE 0.0148 0.0118 0.0093 0.0073 0.0135 0.0167 0.0084 0.0138 0.0174 0.0110 0.0149 0.0087 0.0093 0.0170

Ex-ante var (%)
5 years 54.94 72.93 66.29 64.98 64.9 69.27 61.9 63.41 56.65 59.13 68.7 75.72 58.25 64.99
10 years 45.34 63.06 54.92 56.86 53.65 54.87 51.21 54.17 46.68 48.42 62.31 71.49 47.3 54.91
20 years 38.23 54.75 45.69 52.71 45.62 39.73 44.99 47.92 40.64 42.57 58.58 70.1 40.85 47.41
50 years 34 49.17 39.23 51.69 41.5 29.76 43.21 45.13 38.18 40.54 57.52 69.99 38.54 43.35

Note: EWMD estimated parameters using residual log establishment employment autocovariance
matrix for each of the following sectors (NAICS codes): construction (23), manufacturing (31-33),
wholesale trade (42), retail trade (44-45), transportation and warehousing (48-49), information (51),
finance insurance and real estate (52-53), professional/business/technical services (54), adminis-
trative/support/waste management services (56), health care and social assistance services (62),
arts/entertainment/recreation (71), accommodation and food services (72), other services (81); high
tech sector spans multiple NAICS sectors based on intensity of STEM occupations (see Hecker 2005)
and includes NAICS 3341, 3342, 3344, 3345, 5112, 5161, 5179, 5181, 5182, 5415, 3254, 3364, 5413,
5417. GMM standard errors in parenthesis. RMSE reports

√
SSR/210 where SSR is the equally

weighted sum of the 210 squared residuals.
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the establishment level, which is consistent with these sectors’ higher concentration
of multi-establishment firms.
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Figure C.1: Ex-ante share of firm-level variance in log employment by sector
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Figure C.2: Ex-ante share of establishment-level variance in log employment by sector
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D Structural model: additional details

D.1 Numerical solution of the structural model

Let us define µ̂ (S) ≡ µ(S)
Me , which evolves as:

µ̂ (S′) =

∫
(1− x (s))F (S′|s) ((1− δ)µ̂ (ds) +G (ds)) .

and note that in the stationary equilibrium µ (S′) = µ (S). The labor market clearing
condition in the stationary equilibrium can now be written as:

N̄ = M e

(
η

η − 1

)−η
w−ηY ϕ̃+M ef̃ +M ef e,

where ϕ̃ ≡
∫
ϕ (s) µ̂ (ds) and f̃ ≡

∫
f (1− x (s)) ((1− δ)µ̂ (ds) +G (ds)). Note fur-

ther that pi = η
η−1

and that the wage is given as

w = P−1 =
η − 1

η
(M eϕ̃)

1
η−1

We solve the model using the following algorithm (following Hopenhayn and
Rogerson, 1993):

1. Solve for Q ≡ w−ηY from the free entry condition (i.e. guess Q, solve for the
firm value functions, evaluate the free-entry condition, update the guess for Q
and iterate until the condition holds with equality).

2. Normalize M e = 1, simulate the model and compute µ̂ (S) , ϕ̃ and f̃ .

3. Solve for M e from the labor market clearing condition. Compute w, Y , and Y
N
.

The state variables for an individual firm, in addition to its type θi, consist of
the separate components of its demand fundamental: ui,t, vi,t, wi,t, and zi,t.7 As
mentioned in the main text, we restrict ρv = ρw, in which case the firm only needs to
keep track of the sum vi,t + wi,t, rather than the two terms separately.

We allow for 31 grid points (equally spaced between −3 and 4) for the permanent
component of the demand fundamental, θ. Similarly, we allow for 31 grid points

7Note that zi,t is purely transitory and therefore its past values do not affect the decision of the
firm.
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(equally spaced between −5 and 7) for the initial condition ui,−1. Finally, the process
for wi is discretized using the method of K Geert Rouwenhorst (1995) allowing for
31 grid points. The related initial condition vi,−1, is drawn from those gridpoints.
We use value function iteration to solve the firm’s maximization problem on the grid
specified above.

In simulating the economy, we use 100, 000 startups (i.e. firms which endoge-
nously decide to remain in operation in the first period) and we follow these until the
age of 20, consistent with the autocovariance data. Aggregate model variables are
constructed using all surviving firms in the model.

D.2 Details on the restricted version of the model

In Section III of the main text, we introduce a restricted version of the baseline model.
The restricted model imposes ρu = ρv = ρw = ρ along with θi = µθ and ui,−1 = 0.
Together these imply that the demand fundamental follows the widely-use AR(1)
process with noise. As described, we reparametrize the model in the main text by
targeting the same size and exit profiles, but replacing the autocovariance moments
with the estimated persistence and volatility of an AR(1) for log employment as is
common in the literature. We report here the details of this parametrization and its
model fit.

Table D.1 shows the parametrization for both the baseline and the restricted ver-
sion of the model. Figure D.1 depicts the model fit for the average size and exit pro-
files, which are targeted, and the autocovariance, which was not. The autocovariance
is implicitly targeted through matching the persistence and dispersion parameters of
the AR(1) for log employment. Reassuringly, the model-implied autocovariacne ma-
trix is also very similar to the “reduced-form” counterpart shown in Section I.D when
restricted to an AR(1) process. We show below that we find nearly identical results
if we were instead to explicitly target the autocovariance matrix.
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Table D.1: Parameter values

parameter baseline restricted
β discount factor 0.96 0.96
η elasticity of substitution 6.00 6.00
f e entry cost 0.44 0.20

f fixed cost of operation 0.539 0.241
δ exogenous exit rate 0.041 0.062
µθ permanent component θ, mean −1.762 0.284
σθ permanent component θ, st. dev. 1.304 0
σũ initial condition u−1, st. dev. 1.572 0
σṽ initial condition v−1, st. dev. 1.208 3.058
σε transitory shock ε, st. dev. 0.307 0.253
σz noise shock z, st. dev. 0.203 0.260
ρu permanent component, persistence 0.393 0.974
ρv transitory component, persistence 0.988 0.974

Note: Top three parameters are calibrated as discussed in the main text. The remaining parameters
are set as described above.Figure D.1: Restricted model and data
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Notes: Model fit (autocovariances of firm-level employment, life-cycle size and exit profiles) of the
“restricted” model calibration. Counterpart to Figure 5 for the baseline model.

D.2.1 An alternative parametrization of the restricted model

The main text uses the life-cycle profiles of average size and exit rates together with
the estimated dispersion and persistence of a simple AR(1) process for firm-level
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employment to parametrize the restricted model. While the calibration targets of
average size and exit profiles are identical between the baseline and restricted models,
one may wonder whether targeting the full autocovariance structure, as in the baseline
model calibration, in place of the parameters of an AR(1) for employment would
deliver similar results. In fact it does, because the restrictions on the process for the
demand fundamental that rule out the heterogeneity in ex-ante profiles imply that it
cannot take advantage of the additional information contained in the autocovariance
matrix.

To see this, we recalibrate the restricted model using exactly the same targets as
the baseline. These consist of the 210 moments in the upper triangle of the 20 × 20

autocovariance matrix, 20 moments in the average size profile (age 0 to 19), and 19
moments in the exit profile (age 1 to 19). The calibrated parameters change very little
from the case in the main text that is calibrated to match the parameters of an AR(1)
in log employment in place of the autocovariance matrix. Table D.2 compares the
main text calibration of the restricted model against this alternative parametrization.
The most notable change is in the dispersion of initial values, which falls somewhat.

Table D.2: Parameter values in the restricted model under two parameterizations

parameter as in main text alternative
β discount factor 0.96 0.96
η elasticity of substitution 6.00 6.00
f e entry cost 0.20 0.20

f fixed cost of operation 0.241 0.241
δ exogenous exit rate 0.062 0.062
µθ permanent component θ, mean 0.284 0.284
σθ permanent component θ, st. dev. 0 0
σũ initial condition u−1, st. dev. 0 0
σṽ initial condition v−1, st. dev. 3.058 2.800
σε transitory shock ε, st. dev. 0.253 0.241
σz noise shock z, st. dev. 0.260 0.260
ρ persistence 0.974 0.973

Note: Top three parameters are calibrated as discussed in the main text. The remaining parameters
are set such that the restricted model matches the same targets as the baseline.

Figure D.2 shows the model fit. The lower dispersion of initial conditions enables
the model to match the level of the autocovariances slightly better, but it comes at
a cost of missing some of the age-dependence of exit rates. Otherwise the targets
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Figure D.2: Model fit: restricted version under the alternative parametrization
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Notes: The figure shows model fit (autocovariances of firm-level employment, life-cycle size and exit
profiles) of the “restricted” model under the alternative parametrization.

are matched in a very similar manner as those under the parametrization used in the
main text and displayed in Figure D.1.

Finally, Table D.3 shows the impact of financial frictions in the restricted model
used in the main text and that under the alternative parametrization. Again, the
results are very similar.

The similarity of the results to the parametrization in the main text follows be-
cause, conditional on a restricted shock process, the autocovariance matrix of em-
ployment provides little additional information over and above the persistence and
dispersion of the AR(1) employment process. The restricted process simply does
not have enough flexibility to match the autocovariance matrix. As discussed in the
main text and the discussion of identification in Appendix D.4, the baseline model’s
ex-ante profiles feature (i) long-run (“steady state”) differences between firms that al-
low it to match the long-horizon autocovariances (and which are identified by them);
and (ii) transitory factors that allow it to adjust to fit the curvature of the autoco-
variances (which helps identify the dispersion and persistence of initial conditions).
By contrast, lacking these features, the only way for the restricted process to match
the long-horizon autocovariances (and therefore the persistent and large heterogene-
ity across firms in the long-run) is through the persistence of ex-post shocks, but
this works against the relatively fast decline in the correlation of employment over
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Table D.3: Aggregate impact of financial frictions in the restricted model under two
parameterizations (percent change)

output wage size exit firms
restricted model

as in main text −1.4 −0.8 +31.4 +3.8 −24.3
alternative parametrization −1.4 −1.0 +30.9 +7.3 −23.9

Notes: Long-run impact of introducing financial frictions in the restricted model under two
parametrizations: that in the main text and the alternative. The latter uses exactly the same
targets as the baseline model. The former uses life-cycle size and exit profiles, but instead of the
autocovariance of employment, it targets the persistence and dispersion from an AR(1) firm-level
employment estimation. The financial constraint (ζ) is set to zero in both cases. Reported values
are relative to the model without frictions. Output refers to aggregate production, wage is the real
wage rate, size is average firm size, exit is the average exit rate and firms refers to the number of
incumbent firms.

the early part of firms’ lifecycles. The AR(1) in log employment, which effectively
matches the unconditional serial correlation of employment, is already extracting the
relevant (for the restricted process) information in the full autocovariance matrix.

D.3 Details on split-sample results

This Appendix presents details on the parametrization and fit of the model in the
split-sample analysis presented in Section IV of the main text. Tables D.4 and D.5
show the parameter values for the two subsamples and Figures D.3 and D.4 document
the model’s fit across the two subsamples. From the two tables, it is apparent that
most of the parameters remain relatively stable across the two sub-samples. However,
the distribution of the permanent component θ, a key determinant of long-run size,
is estimated to have changed. In particular, both the mean and the dispersion have
declined going from the early to the late sample.

Skewness. Interestingly, despite that endogenous firm selection is the only source of
skewness of firm growth rates in the model, our framework does well in accounting
for the average level of skewness and especially its changes over time. In particular,
Ryan Decker, John Haltiwanger, Ron Jarmin and Javier Miranda (2016) document
an average skewness of firm-level growth rates of 13 percent between 1979 and 2011.8

Furthermore, they show that skewness declined by about 43 percent when comparing
8The authors measure skewness as the ratio of the 90 to 50 and 50 to 10 percentiles of the growth

rate distribution for all firms in their sample.
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Table D.4: Parameter values (early sample)

parameter value
set a priori

β discount factor 0.96
η elasticity of substitution 6.00
f e entry cost 0.447

estimated
f fixed cost of operation 0.545
δ exogenous exit rate 0.042
µθ permanent component θ, mean −1.770
σθ permanent component θ, st. dev. 1.322
σũ initial condition u−1, st. dev. 1.540
σṽ initial condition v−1, st. dev. 1.208
σε transitory shock ε, st. dev. 0.304
σz noise shock z, st. dev. 0.153
ρu permanent component, persistence 0.394
ρv transitory component, persistence 0.987

Notes: parameter values. Top three parameters are calibrated as discussed in the main text. The re-
maining parameters are set such that the model matches the empirical autocovariance of employment
and the age profiles of average size and exit rates from age 0 to 19.

Figure D.3: Targeted moments: data and structural model (early sample)
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Notes: Top panel: Autocovariances of log employment between age a = h+ j and age h ≤ a in the
data and the model, for a balanced panel of firms surviving up to at least age a = 19. Bottom left
panel: Average employment by age a (unbalanced panel). Bottom right panel: exit rate by age a.
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Table D.5: Parameter values (late sample)

parameter value
set a priori

β discount factor 0.96
η elasticity of substitution 6.00
f e entry cost 0.434

estimated
f fixed cost of operation 0.530
δ exogenous exit rate 0.043
µθ permanent component θ, mean −1.846
σθ permanent component θ, st. dev. 1.303
σũ initial condition u−1, st. dev. 1.563
σṽ initial condition v−1, st. dev. 1.209
σε transitory shock ε, st. dev. 0.301
σz noise shock z, st. dev. 0.195
ρu permanent component, persistence 0.393
ρv transitory component, persistence 0.987

Notes: parameter values. Top three parameters are calibrated as discussed in the main text. The re-
maining parameters are set such that the model matches the empirical autocovariance of employment
and the age profiles of average size and exit rates from age 0 to 19.

Figure D.4: Targeted moments: data and structural model (late sample)
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Notes: Top panel: Autocovariances of log employment between age a = h+ j and age h ≤ a in the
data and the model, for a balanced panel of firms surviving up to at least age a = 19. Bottom left
panel: Average employment by age a (unbalanced panel). Bottom right panel: exit rate by age a.
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the first and last half of their sample. Our baseline specification delivers an average
skewness of 5 percent over the entire sample period. Importantly, the changes in
firm selection estimated in our split sample analysis imply a decline in skewness of
firm-level growth rates of 35 percent.

D.4 Sources of identification of parameters in structural model

Section I.D in the main text provides a mapping between parameters of the shock
process and the empirical autocovariance matrix. The structural model adds more
complexity, including an endogenous exit decision and therefore we revisit this type of
mapping in this Appendix. Specifically, starting from the parametrization described
in the main text, we decrease each parameter of the shock process (one-by-one) by 5

percent. Then, we solve the model under the new parametrization and compute the
implied autocovariance matrix.

Figure D.5 depicts a “heat map” of absolute changes in the autocovariance matrix
of log employment relative to the baseline parametrization. To ease the exposition
we set the lowest 75 percent of changes to zero. Therefore, dark blue means that a
particular parameter has relatively little impact on that part of the autocovariance,
while bright yellow indicates that it is important. The shape of the heat map follows
that of the autocovariances depicted in the main text with age on the horizontal axis
and lag length on the vertical axis. For instance, point (19,19) denotes the covariance
between log employment at startup (age 19 minus lag length 19) and at age 19.

There are several points to highlight. First, long-horizon autocovariances (bottom
right part of the heat map) are key for identifying the dispersion of ex-ante hetero-
geneity, σθ as highlighted in the main text. On the other hand, the persistence and
variance of transitory shocks (ρw and σε) are more important for shorter-horizon au-
tocovariances at older ages (top right part of the heat map). Second, while there
is heterogeneity in the sensitivity of the autocovariance matrix to the different pa-
rameters, there is relatively little overlap across them. This is suggestive that the
arguments in Section I.D’s statistical framework carry over to the structural model.
Third, the figure suggests that all parameters of the structural shock process could
be identified through the autocovariance, even though we utilize more information
stemming from targeting also the average size and exit life-cycle profiles.
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Figure D.5: Autocovariance matrices: baseline and restricted version
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E Structural model: extensions

E.1 Imperfect Information

A key goal of this paper is to quantify the importance of ex-ante versus ex-post
heterogeneity. In the model, ex-ante heterogeneity is formed by a smooth, firm-specific
demand profile, which is determined by three stochastic parameters, all drawn upon
entry (ũi, ṽi, and θi). Ex-post heterogeneity is induced by firm-specific stochastic
shock innovations which hit the firms during subsequent years (εi,t and zi,t). In our
baseline model, we assume that the various stochastic draws are contemporaneously
revealed to the firm. That is, upon entry the firm learns its entire ex-ante profile,
whereas shocks are revealed in the later periods, once they hit the firm. In this
section, we explore the importance of the timing of information, conducting the two
exercises described in Section II.D.

Exercise 1: learning by an outside observer. Our first exercise is to quantify
the amount ex-ante heterogeneity from the perspective of an outside observer who
cannot observe the individual state variables driving firm-level demand, but only the
firm’s overall demand level, ϕi,t.9 To proceed, we derive Bayesian learning formulas
which the agent optimally uses to learn about the underlying state variables. To this
end, let us define the following variable:

gi,t ≡ lnϕi,t − ρw lnϕi,t−1

=θi + εi,t + zi,t − ρwzi,t−1 + (ρv − ρw)vi,t−1 + (ρu − ρw)ui,t−1 for t = 1, ..., T

(E.1)

We can now write the likelihood of the observed data (ΦT = {φ1, ..., φt}), conditional
on the (beliefs about the) unobserved draws χi = (θi, ṽi, ũi)

′ as

L(ΦT |χi) ∝ exp

{
−1

2

1

σ2
g

T∑
t=1

(gi,t −H ′tχi)
2

}
,

9Given that in the baseline model there are no adjustment costs, we could alternatively assume
that the agent instead observes the firm’s employment, and obtain the same results.
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where

Ht =

 h1,t

h2,t

h3,t

 =

 1 + (ρu − ρw)
∑t−1

j=1 ρ
j
u

(ρv − ρw)ρtv

(ρu − ρw)ρtu


and

σ2
g = σ2

ε + σ2
z(1− ρ2

w)

The prior distribution is the unconditional distribution of the stochastic draws, i.e. a
multivariate normal given by:

P (χi) = N(Mχ,Σχ)

where the mean is Mχ = (µθ, µṽ, µũ)
′ and the variance is

Σχ =

 σ2
θ 0 0

0 σ2
ṽ 0

0 0 σ2
ũ


Therefore, the posterior distribution of the unobserved draws, conditional on the data
and the prior is also a multivariate normal given by

P (χ|ΦT ) ∝ L(ΦT |χi)P (χi) = exp

{
− 1

2σ2
g

T∑
t=1

(gi,t −H ′tχi)
2

}
exp

{
−1

2
(χi −Mχ)Σ−1

χ (χi −Mχ)′
}
,

which can be re-written as:

P (χ|ΦT ) ∝


exp

{
−1

2

[
1
σ2
g

∑T
t=1 (gi,t −H ′tχi)

2 + 1
σ2
θ
(θi − µθ)2

]}
exp

{
−1

2

[
1
σ2
g

∑T
t=1 (gi,t −H ′tχi)

2 + 1
σ2
ṽ
(ṽi − µṽ)2

]}
exp

{
−1

2

[
1
σ2
g

∑T
t=1 (gi,t −H ′tχi)

2 + 1
σ2
ũ
(ũi − µũ)2

]}
 =

 P1(χ|ΦT )

P2(χ|ΦT )

P3(χ|ΦT )


Given this expression, one can derive the optimal learning formulas the uncertainty
about all three ex-ante components:

σ(θ|ΦT ) =
σ2
gσ

2
θ

σ2
θTh

2

1,t + σ2
g

(E.2)
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Figure E.1: Unresolved uncertainty about ex-ante component of growth path
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σ(ṽ|ΦT ) =
σ2
gσ

2
ṽ

σ2
ṽTh

2

2,t + σ2
g

(E.3)

σ(ũ|ΦT ) =
σ2
gσ

2
ũ

σ2
ũTh

2

3,t + σ2
g

(E.4)

The standard deviation of lnϕex−antet = ui,t + vi,t, conditional on observing demand
up until period t and conditional on Bayesian learning, can now be expressed as:

σ(lnφex−anteT |ΦT ) = ρ2T
u σ(ũ|ΦT ) + σ(θ|ΦT )

(
T−1∑
j=0

ρju

)2

+ ρ2T
v σ(ṽ|ΦT )

Figure E.1 shows how quickly uncertainty about the entire ex-ante growth profile
gets resolved. The figure is based on the parameter estimates from the structural
model. We show the uncertainty about the ex-ante growth path, in percent of prior
uncertainty, for four different cases: after 1, 3, 5 and 10 years of operation.

Clearly, despite not observing the ex-ante profile directly, the outside observer
nevertheless learns about it very quickly. Between 50 and 70 percent of the prior
uncertainty gets resolved already after just one observation. This increases to about
85 percent after 5 years of observations. Intuitively, there is a large amount of het-
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erogeneity in ex-ante growth profiles, which tend to dominate the dynamics during
the first few years. This allows the observer to learn about the profiles very quickly.

Exercise 2: learning by firms. Next, we consider a version of the model in which
firms themselves have limited information. This affects their continuation decisions,
and hence all the equilibrium outcomes. We therefore re-calibrate the entire model.

Given the importance learning in the first year upon entry, we assume that firms
cannot observe their individual state variables (as the outsider in Exercise 1) only
at startup. Therefore, the firm uses Bayesian learning formulas similar to the ones
derived above. At age 1, however, the state variables are fully revealed to the firm.
This alleviates the additional computational burden brought about by additional state
variables introduced because of the optimal learning formulas. We believe this is a
reasonable assumption since Exercise 1 indicates that most learning occurs in the
very first year.

We can apply the Bayesian updating formulas previously, but with one difference.
Since one of the transitory shocks, ε, is persistent, firms also need to update their
beliefs about this first draw. This implies a direct extension of the Bayesian updating
formulas to include ε1 as another “initial draw” to learn about.

The posterior distributions for the four components the firm needs to learn about
can be written as:
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P (θi|ϕi,1) ∼N(µ(θi|ϕi,1), σ(θi|ϕ2
i,1))

µ(θi|ϕi,1) =
σ2
θ [ϕi,1 − ρvµ(ṽi|ϕi,1)− ρuµ(ũi|ϕi,1)− µ(εi,1|ϕi,1)] + σ2

zµθ
σ2
z + σ2

θ

σ(θi|ϕi,1)2 =
σ2
zσ

2
θ

σ2
z + σ2

θ

P (ũi|ϕi,1) ∼N(µ(ũi|ϕi,1), σ(ũi|ϕ2
i,1))

µ(ũi|ϕi,1) =
σ2
ũi

[ϕi,1 − ρvµ(ṽi|ϕi,1)− µ(θi|ϕi,1)− µ(εi,1|ϕi,1)] + σ2
zµũ

σ2
z + σ2

ũ

σ(ũi|ϕi,1)2 =
σ2
zσ

2
ũ

σ2
z + σ2

ũ

P (ṽi|ϕi,1) ∼N(µ(ṽi|ϕi,1), σ(ṽi|ϕ2
i,1))

µ(ṽi|ϕi,1) =
σ2
ṽ [ϕi,1 − ρuµ(ũi|ϕi,1)− µ(θi|ϕi,1)− µ(εi,1|ϕi,1)] + σ2

zµṽ
σ2
z + σ2

ṽ

σ(ṽi|ϕi,1)2 =
σ2
zσ

2
ṽ

σ2
z + σ2

ṽ

P (εi|ϕi,1) ∼N(µ(εi|ϕi,1), σ(εi|ϕ2
i,1))

µ(εi|ϕi,1) =
σ2
ε [ϕi,1 − ρvµ(ṽi|ϕi,1)− ρuµ(ũi|ϕi,1)− µ(θi|ϕi,1)] + σ2

zµε
σ2
z + σ2

ε

σ(εi|ϕi,1)2 =
σ2
zσ

2
ε

σ2
z + σ2

ε

Based on these formulas we re-solve and -calibrate the model. Figure E.2 shows
the targets, including the exit profile by age. The model with learning generates more
exit in year 1 than the baseline, as firms learn about their fundamentals. Overall, the
fit appears slightly worse than our baseline model, supporting the full information
assumption in our baseline. Table E.1 shows the parameter values in the baseline
model and in the version with learning; overall these turn out to be similar.

How much does the learning assumption matter for the main results? Figure E.3
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Figure E.2: Model fit: model with learning
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shows the contribution of ex-ante heterogeneity in the variance decomposition, but
now in the model with learning. Results are very similar to the baseline. Thus, while
assumptions regarding information and learning in principle matter for our results,
the quantitative impact appears very limited.

E.2 Targeting the Firm Size Distribution

When parametrizing the baseline model, we do not directly target the size distribu-
tion. Figure 6 in the main text shows that, overall, the model nonetheless provides a
reasonable fit of the firm size distribution. An exception is that the model somewhat
understates the importance of the right tail of the size distribution for old businesses.

In this appendix, we re-calibrate the model targeting the firm size distribution as
well, in addition to the autocovariance matrix and the size and exit profiles. As shown
by Figure E.4, this version provides a better fit of the size distribution. Figure E.5
shows that the model still provides a reasonable fit to the remaining targets, although
the fit is somewhat inferior to the baseline. This suggests that there is a non-trivial
trade-off in matching the size distribution and the remaining targets.

Figure E.6 shows the variance decomposition for the alternative calibration, as
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Table E.1: Parameter values (model with learning)

parameter baseline learning
set a priori

β discount factor 0.96 0.96
η elasticity of substitution 6.00 6.00
f e entry cost 0.44 0.44

used to target moments
f fixed cost of operation 0.539 0.542
δ exogenous exit rate 0.041 0.035
µθ permanent component θ, mean −1.762 −1.882
σθ permanent component θ, st. dev. 1.304 1.319
σũ initial condition u−1, st. dev. 1.572 1.601
σṽ initial condition v−1, st. dev. 1.208 1.218
σε transitory shock ε, st. dev. 0.307 0.314
σz noise shock z, st. dev. 0.203 0.184
ρu permanent component, persistence 0.393 0.394
ρv transitory component, persistence 0.988 0.981

Notes: parameter values. Top three parameters are calibrated as discussed in the main text. The re-
maining parameters are set such that the model matches the empirical autocovariance of employment
and the age profiles of average size and exit rates from age 0 to 19.

Figure E.3: Variance decomposition: model with learning
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Figure E.4: Size distribution: alternative calibration
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Notes: Employment shares by firm age and size (employment). Values are expressed as percentages
of total employment in firms between 0 to 19 year old firms, both in the data and the model. Data
are obtained from the Business Dynamics Statistics, an aggregated and publicly available version of
the LBD over the corresponding time period.

Figure E.5: Remaining targets: alternative calibration
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Figure E.6: Variance decomposition: alternative calibration
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well as the baseline. Importantly for our main message, the figure shows that the
decomposition when also targeting the size distribution is almost identical to the
baseline.

E.3 Flexible labor supply

The baseline model in the main text assumes fixed labor supply. In this appendix we
relax that assumption. Specifically, we now assume that preferences include not only
consumption (as in our baseline), but also labor supply (employment):

U0 =
∞∑
t=0

βt

[
Ct − υ

N1+ψ
t

1 + ψ

]
,

where υ scales the disutility of labor and ψ is the inverse of the Frisch elasticity of labor
supply. This setup delivers the familiar optimal labor supply decision of households
which equates the real wage (recall that preferences are linear in consumption) and
the marginal disutility of labor:

Wt

Pt
= υNψ

t .

In the version with flexible labor supply, this condition replaces our baseline assump-
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Table E.2: Late vs Early sample aggregate changes (in %)

fixed LS flexible LS
output −4.5 −6.6
employment 0 −4.4
real wage −4.0 −4.4

tion that N = 1. Moreover, we calibrate the flexible labor supply version by setting υ
such that N = 1 (This is a standard calibration strategy). Since no other part of the
model is affected by the introduction of flexible labour supply, it follows that the ag-
gregate outcomes and distributions in the two models coincide precisely. Therefore,
all the main results in Section II remain unchanged, since they are obtained from
decompositions or partial-equilibrium exercises.

Some of the other results may be affected, however. We now explore how flexible
labor supply affects the results of the split sample analysis of Section IV.10 In partic-
ular, using the flexible labor supply assumption above we re-estimate the model on
the early and late samples of the data. In doing so, we set υ such that N = 1 in the
early sample and we assume ψ = 1 (and thus also a Frisch elasticity of 1), which is
in the middle of the range of estimates in the literature.

As mentioned earlier, because we are targeting average size life-cycle profiles (to-
gether with exit rates and the autocovariance matrix), only aggregate results are
affected. In particular, Table E.2 shows the changes in aggregate values, going from
the early to the late sample (in percent of early sample values), for our baseline (fixed
labor supply) and the alternative (flexible labor supply). The results show that with
flexible labor supply, the estimated decline in aggregate output is stronger. This
is because the real wage falls going from early to the late sample which, in turn,
discourages households from supplying labor.

10For the micro frictions exercises in Section IV, the issue is less pressing, since these are illustrative
examples in which we compare two versions of the model (the baseline and one with a restricted
shock process), but both under the same assumption on labor supply.
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E.4 Treatment of “gazelles”

The main text defines gazelles as those startups with an ex-ante projected growth rate
of at least 20 percent annually, over the first five years, and an expected employment
level of at least 10 workers at some point during their lifetimes. Under this definition,
we find 5.4% of startups are gazelles. In this appendix, we analyze different definitions
of gazelles and to what extent gazelles defined on ex-ante projected growth profiles
actually achieve their potential.

E.4.1 Different definitions of gazelles

There are other ways of defining gazelles which can be found in the literature. For
instance, Jorge Guzman and Scott Stern (forthcoming) define “high-growth” firms as
those which achieve a “growth outcome”. The specific growth outcome in their paper
is an initial public offering (IPO) or an acquisition “at a meaningful positive valuation
within 6 years of registration”. This particular definition results in high-growth firms
accounting for 0.1% of all businesses in their sample.

Despite the fact that the two approaches are not directly comparable, we investi-
gate whether more narrowly defined gazelles in our framework still retain the power to
impact aggregate outcomes. To do so, in addition to the gazelles defined in our main
text, we define three other sets of gazelles: i) super-gazelles, ii) ultra-gazelles and iii)
value-gazelles. Super-gazelles and ultra-gazelles are defined in the same way as our
baseline gazelles using employment growth rates. However, the average growth rates
are set such that the resulting group of firms accounts for 1% and 0.5% of startups
in the case of super- and ultra-gazelles, respectively.11 Value-gazelles are defined in a
way that attempts to mimic the definition of Guzman and Stern. Specifically, these
are the firms which fall into the top 0.1% of firm values at the age of five.

Figure E.7 replicates our results of Figure 12 in the main text, but adds super-,
ultra- and value-gazelles. Interestingly, ultra- and value-gazelles have very similar
growth profiles, despite not being the same firms (the group of ultra-gazelles is six
time larger with 85% having firm values below the lowest firm value in the group of
value-firms). The figure also highlights that even gazelles defined more restrictively
can still have an aggregate impact. Specifically, value-gazelles, which are close to
those defined in Guzman and Stern and account for only 0.1 percent of all startups

11The associated average growth rates are 41% and 47%, respectively.
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still have a noticeable impact on average firm size.

Figure E.7: The importance of high-potential startups
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Note: Average size by age, unbalanced panel, in the baseline and three counterfactuals.

E.4.2 Ex-ante vs ex-post gazelles

While we define gazelles based on their ex-ante potential, the rest of the literature does
so based on ex-post realizations. In what follows, we compare the two approaches.
Specifically, we classify firms as (regular-, super- or ultra-) gazelles using the defini-
tions described above both based on their ex-ante predicted growth profiles, but also
based on their ex-post realized growth profiles. We can then identify to what extent
ex-ante identified gazelles live up to their potential and also realize their high growth
and, conversely, how often do “regular” firms defy ex-ante expectations and realize
high rates of growth ex-post. Table E.3 below summarizes the results.

The results show that about one third of ex-ante identified gazelles fail to realize
their potential and grow at rates below 20 percent annually in their first five years.
This failure rate increases as the definition of gazelles becomes more stringent. Con-
versely, there is a small fraction of firms which are not identified as gazelles ex-ante,
but which nevertheless manage to grow at very high rates. For the case of gazelles,
this share is almost 13 percent, but it drops to only about 3.5 percent in the case
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Table E.3: Living up to potential and defying odds

living up to potential defying ex-ante odds
gazelles 67.9% 12.7%
super-gazelles 62.0% 4.7%
ultra-gazelles 58.5% 3.4%

Note: “Living up to potential” provides the share of ex-ante identified gazelles which manage to
realize their potential and grow at the pre-defined rate also ex-post. “Defying ex-ante odds” provides
the share of firms which are not classified as gazelles ex-ante (and are also overcome the lower limit
of 10 workers at some point over their life-cycle) which end up growing at the pre-defined rates ex-
post. The pre-defined growth rates for gazelles, super- and ultra-gazelles are, 20, 41 and 47 percent,
respectively.

of ultra-gazelles. Therefore, Table E.3 shows that ex-ante characteristics identified
through our framework are very powerful in predicting actual growth outcomes.

By comparison Jorge Guzman and Scott Stern (2015) propose a measure of “en-
trepreneurial quality” using an array of observable characteristics at the time of
startup (e.g. location, whether a business holds a patent, the name of the firm etc).
They report that “77% of all growth firms are in the top 5% of our estimated growth
probability distribution” and that “the average firm within the top 1% of estimated
entrepreneurial quality has only a 14% chance of realizing a growth outcome”. While
a direct comparison is difficult as we adopt a different methodology, our framework
implies that 87% of all high-growth firms were identified as high-growth ex-ante and
that 68% of ex-ante identified high-growth firms realize their growth potential.

F Structural model: the importance of ex-ante het-

erogeneity

F.1 Ex-ante heterogeneity and the macroeconomic impact of

micro-level frictions

This section provides further details to the analysis of adjustment cost in Section III.
It also shows results for other frictions: a change in the entry cost and in the fixed
cost of operation.
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F.1.1 Adjustment costs: additional details

The main text considered a model extended to include an adjustment cost to demand
accumulation. All the parameter values for the baseline and the restricted version
of the model are the same as in Table D.1. In addition, we introduce adjustment
costs s.t. average costs paid by adjusting firms are 1 percent of their output. For the
baseline and the restricted version of the model, this amounts to κbaseline = 0.045 and
κrestricted = 0.037, respectively.

While the main text considers the baseline parametrization and then introduces
adjustment costs, we have also investigated the impact of the presence of adjustment
costs on the estimates of our structural parameters (not shown). In other words,
using the same parametrization strategy as in the main text we have re-estimated the
structural model in the case of positive adjustment costs, amounting to 1 percent of
output of adjusting firms.

Intuitively, the dispersion of the permanent component of the demand fundamen-
tal, σθ is somewhat narrower than in the benchmark model. This is because part
of the cross-sectional dispersion in firm sizes at old ages is now also driven by ad-
justment costs and not only firm types. Nevertheless, the variance decomposition of
the cross-sectional variation in firm size into the contributions of ex-ante and ex-post
factors is very similar to the baseline. Therefore, while adjustment costs introduce
an additional margin of adjustment, they do not alter the main qualitative or quan-
titative conclusions regarding the relative importance of ex-ante heterogeneity and
ex-post shocks.

F.1.2 Financial friction: additional details and results

The main text considered a model extended to include a financial friction. Here, we
provide additional details and results for this version of the model. In the model with
a financial friction, we assume that firms can hold a risk free asset, denoted bi, which
can also be held by the households. Market clearing therefore implies that the asset
pays a net real interest rate r = 1

β
−1 in the steady state. However, the firm is subject

to a borrowing limit:
bi ≥ ζ

where ζ ≤ 0. If at any point in time the firm cannot meet this limit, it is forced to
exit. Upon entry, a firm receives an initial equity injection to cover the entry cost,
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but no additional equity injections are possible.
When a firm exits with positive assets (bi ≥ 0), then these assets are returned

to the owners. If a firm exits with debt (bi < 0) then the owners must settle the
remaining debt. In this setting, the shadow value of wealth within a firm always
exceeds the interest rate r = 1

β
− 1. That is, the firm does not pay dividends until it

exits.
More formally, a firm is forced to exit if end-of-period asset holdings drop below

ζ, i.e. if
b′ = (1 + r) b+ π − d < ζ

where d ≥ 0 is a dividend paid out to the firm owners. To simplify notation, we omit
the firm index i. The timing within a period is as follows:

1. The firm decides whether or not to exit voluntarily or pay the fixed cost and
continue. If the firm exits, it pays a final dividend d = (1 + r) b to the owners
of the firms (the households).12

2. The demand fundamental s′ is realized

3. The firm decides on a plan for n, d, π and b′ (in the current period)

4. The financial constraint is enforced:

(a) The firm is forced to exit if the plan does not satisfy b′ ≥ ζ. In that case,
the firm owners must settle a remaining debt and pay −b+ f .

(b) If the firm is allowed to continue, the firm implements its plan and contin-
ues on to the next period.

Given that r = 1
β
− 1, one can verify that (i) a continuing firm always sets d = 0,

since the shadow value of firms inside the firm exceeds the value outside the firm,
(ii) a firm chooses n to statically maximize π(s) in precisely the same way as in the
model without financial frictions. Intuitively, maximizing profits increases the wealth
of the firm, which in turn makes it less likely that the constraint will bind.

12Note that this dividend may be negative. In that case the households settle the remaining debt
of the firm, i.e. pay − (1 + r) b.
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It follows that, given b, there is a threshold level on the demand level such that
the firm ends up being forced to exit (due to the financial constraint) if and only if:

ϕ(s′) < ϕ(b).

In what follows, we let I(ϕ(s′), b) be an indicator function which equals one if the
firm satisfies the financial constraint and zero otherwise.

Given these preliminaries, now consider the stage-1 value of a firm excluding its
financial wealth, V (s, b).13 This value is given by:

V (s, b) = max

{
E
[
π(s′) + β (1− δ)

∫
V (s, b′)I(ϕ(s′), b)F (ds′|s))

]
, 0

}
where

π(s′) = ϕ(s′)

(
η

η − 1

)−η
w−ηC

b′ = (1 + r) b+ π(s′)

Above, the expression for π(s′) statically maximizes profits, precisely as in the base-
line. The constraint below is the evolution of firm wealth, using that the firm does
not pay dividends until it exits.

Financial frictions: additional results The main text reported results for the
case when ζ = 0. Figure F.1 below shows the long-run effects on output and the
number of firms of a range of different values for ζ. The impact is expressed in terms
of deviations from the respective frictionless version of the model.

A number of results stand out. First, for a range of values of φ, the introduction
of the financial friction only very small effects. Second, for a given value of ζ the
losses created by the financial frictions tend to be larger in the baseline model than in
the version with an AR(1) process. At the maximally tight constraint (ζ = 0) of this
exercise, the output loss is almost three times as large as in the restricted version.

A key reason for this is that in the frictionless version of the baseline model, there
are firms which choose not to exit despite making losses for extended periods of time.

13The firm value including financial wealth would be given by Ṽ (s, b) = V (s, b)+(1+r)b. Because
of properties (i) and (ii) discussed above, any solution which maximizes V (s, b) also maximizes
Ṽ (s, b).
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Figure F.1: Effect of the financial friction
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Note: the long-run effects of the introduction of the financial on aggregate output and the number
of firms, relative to the model without financial frictions.

They do so because of high, long-run, potential. With the financial friction in place,
however, such firms are no longer allowed to survive. The restricted version of the
model features much fewer of such firms, because in that economy all firms are “the
same in the long run”. Indeed, Figure F.1 shows that in the baseline, the effect on
the number of firms is much larger than in the restricted version.

F.1.3 Costs of entry and of operation

In this subsection, we investigate the aggregate consequences of two other micro-level
frictions: a change in the entry cost and in the fixed cost of operation. As with the
firm-level adjustment costs discussed in the main text, our baseline economy behaves
in a quantitatively different manner in response to these two frictions compared to
the restricted version of the model.

The common source of these differences is the distribution of firm values which dif-
fers between the two economies. Importantly, this happens despite the two economies
having essentially an identical firm size distribution. In contrast to firm sizes, which
often are a calibration target but which do not matter for firm decisions per se, firm
values are crucial for forward-looking firm-level decisions such as entry and exit. In
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turn, the distribution of (expected) firm values then crucially impacts the equilibrium
wage (via the free entry condition) and through it the rest of the aggregate economy.

F.1.4 Aggregate impact of micro-level frictions

Before providing a quantitative evaluation of the sensitivity of the baseline economy
and the restricted version of the model to the two micro-frictions, let us first discuss
the importance of the distribution of firms for these results. As mentioned above,
changes in average (expected) firm values influence the equilibrium wage through the
free entry condition. In turn this impacts average firm sizes and given the assumption
of fixed labor supply also the number of firms. Therefore, the elasticity with which
(average) firm values respond to changes in a given parameter (or variable) x, εV ,x =
∂V
∂x

x
V
, is key for our results. This elasticity can be decomposed as follows

εV ,x = εVi,x + Cov [εVi,x, Vi] . (F.1)

where εVi,x is the average sensitivity of firm values with respect to x and Cov [εVi,x, Vi]

is the extent to which these individual elasticities covary with firm values.
Importantly, both terms in (F.1) will in general depend on the distribution of firm

values. While we have documented that the restricted version of the model and our
baseline have very similar distributions of firm sizes, this does not imply the same
for the distribution of firm values. Indeed, the baseline economy has much more
dispersed distribution owing to the presence of (permanent) ex-ante heterogeneity.

In other words, even though the firm size distribution is often a calibration target,
it does not matter for firm decisions per se. In contrast, the distribution of (unob-
served) firm values, which crucially depend on the nature of the underlying firm-level
driving forces, is what influences forward-looking firm decisions (such as exit and
entry) and in turn aggregate equilibrium outcomes.

Table F.1 documents the quantitative impact of the two considered changes in
micro-frictions. In both cases, the behavior of the restricted version of the model
is considerably different from that of the baseline economy. Interestingly, the two
micro-frictions have qualitatively different implications for the two economies. While
the baseline economy is less sensitive to an entry cost increase, it is somewhat more
sensitive to a change in fixed costs of operation. The macro effects of these changes
are non-trivially determined by the interaction between the distribution of firm values
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Table F.1: Aggregate impact of entry and operation costs (percent change)

output wage size exit firms
Entry cost

baseline economy −5.6 −6.0 +11.5 −2.7 −10.0
restricted economy −11.4 −6.3 +15.2 −1.4 −13.0

Operation cost
baseline economy −2.1 −2.1 +50.8 +4.1 −33.7
restricted economy −1.9 −1.6 +30.6 +0.9 −23.6

Notes: Long-run impact of increasing entry costs (top panels) and fixed costs of operation (bottom
panels) in the baseline economy and in the restricted version where ρu = σθ = σũ = 0 and ρv = ρw.
In both economies costs are increased by 50 percent. Reported values are relative to the respective
values prior to the increase. Output refers to aggregate production, wage is the real wage rate, size
is average firm size, exit is the average exit rate and firms refers to the number of incumbent firms.

and the general equilibrium effects which arise from firms’ responses.

F.2 Changes in the Nature of Firm Growth: baseline versus

restricted model

In this Appendix, we revisit the split-sample analysis of Section IV in the restricted
model from Section III, which does not properly account for ex-ante heterogeneity.
As is highlighted in the main text for the case of the macroeconomic impact of micro-
level distortions, also in the case of the split-sample analysis the baseline and the
restricted versions of the model deliver starkly different conclusions. In particular,
while aggregate output falls from the early to the late period in the baseline model,
it increases in the restricted model.

The reason for this stark qualitative difference lies again in the sensitivity of the
two economies to changes in structural parameters. However, this time we are not
targeting a particular change in structural parameters (as we do e.g. in Section III),
but instead we effectively target a decline in average firm size. Recall that the life-
cycle profile of average firm size is a target in the estimation. Matching the observed
flattening of the life-cycle size profile results in a roughly 11% decrease in average
firm size in both the baseline and the restricted model.

However, this common decline in average firm size is associated with different
changes in the underlying distribution of the demand fundamental across the two
models. The baseline model is characterized by a considerably larger drop in average
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demand fundamentals (about 20% compared to about 5% in the baseline model). In
addition, this average size decline is accompanied by an increase in the number of
firms (about 10% in both models).

The two effects above, a change in average demand and the number of firms,
jointly determine the response of the real wage. This can be seen from the following
(given that the nominal wage is normalized to 1 and that prices are set as a constant
markup over marginal costs)

w = P−1 =
[∫

Ω
ϕip

1−η
i di

] η
η−1 =

[∫
Ω
ϕi

(
η
η−1

)1−η
di

] η
η−1

=
(

η
η−1

)−η
(Mϕ)

η
η−1 ,

where M is the mass of firms and ϕ = 1/M
∫

Ω
ϕdi is average demand. Therefore,

the response of the wage depends on the relative extent of the changes in ϕ andM . In
the case of the baseline model, the drop in ϕ outweighs the increase in the number of
firms and therefore the wage declines. The opposite happens in the restricted model.

Finally, the change in the wage is directly related to aggregate output because
labor supply is fixed (and therefore labor income changes one-for-one with the wage)
and because all costs are expressed in labor units (and therefore consumption is equal
to output).

To understand which parameters are behind the above results, let us look at the
changes estimated across the two subsamples and the two model versions. In the
baseline model, 7 parameters change noticeably when going from the early to the late
sample. We will group these into three sets of changes:

1. cf declines and δ rises,

2. σε decreases, while σũ and σz increase,

3. µθ and σθ decrease.

Changes in both (1) and (2) reduce average firm size (as in the data) but increase
aggregate output. To understand this, note that changes in (1) result in a shift
away from endogenous to exogenous firm exit. This enables firms with relatively low
demand to survive, reducing average firm size. At the same time, however, firms with
(temporarily) low demand are able to survive and grow in the future. The latter also
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Figure F.2: Response of average size profile to a 10% decrease in µθ
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incentivizes firm entry. Similarly, changes in (2) reduce the risk of firm exit for older
firms (once initial conditions have died out) and as such these effects have similar
implications as changes (1).

Therefore, the key changes in understanding the decline in aggregate output are
the decline in µθ and σθ. Both lower average firm size and output as they reduce the
growth potential of startups.

Interestingly, the reduced form model displays very similar changes in structural
parameters as the baseline. The notable difference are the changes in (3). First,
σθ = 0 in the restricted model and therefore a change in µθ impacts all firms in the
same way. As a result, average firm size in the restricted model is very sensitive to
changes in µθ.

We illustrate this in Figure F.2 which shows the percentage change in the average
size life-cycle profile in response to a 10% decrease in µθ in both the baseline and
the restricted model. While in the baseline model is characterized by a roughly 5%

decrease in average firm size over the life-cycle. This relatively moderate decline is
driven by the fact that much of the life-cycle profile in the baseline model is determined
by a relatively small number of high-growth firms. In other words, the life-cycle profile
is largely determined by σθ, rather than µθ.
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On the other hand, the restricted model displays a much stronger decline which
increases with firm age. This is because all firms are affected by the change in µθ and
this effect enters multiplicatively (and in exponents) into firm size. This is also why
the estimated change in µθ is very small across the two subsamples in the restricted
model.

G Results for establishments

Below we report results for establishments. We find very similar results as for firms,
with a somewhat higher degree of ex-ante heterogeneity among establishments.

G.1 Autocovariances for establishments

We report in Tables G.1 and G.2 the content of the autocovariance matrices when es-
timated for establishments instead of firms for the unbalanced and balanced samples,
respectively

G.2 Statistical model: results for establishments

The main text reported only results for firms. Here we report also results for establish-
ments. Figure G.1 presents our main piece of empirical evidence: the cross-sectional
autocovariance structure of logged employment, conditional on age (a). The figure
presents this information for both establishments (top panels), and for firms (bottom
panels), as well as for a balanced panel, containing businesses surviving at least up
to age 19, and an unbalanced panel, including all businesses in our data set. Clearly,
differences in autocovariances between the balanced and unbalanced panels originate
primarily from different cross-section dispersion by age, while the autocorrelations
are remarkably similar across the two panels.

The corresponding parameter estimates are shown in Table G.3. For comparison,
the table also shows the estimates for firms. Figure G.2 shows that the model fit is
very good for both establishments and firms.

Finally, Figure ?? compares the fraction of the total variance that is accounted
for by the ex-ante component between firms and establishments. As in the main text,
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Figure G.1: Standard deviations and autocorrelations of log employment by age
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Note: The left panels show cross-sectional standard deviations of log employment by age (a) for
establishments (top left panel) and firms (bottom left panel). The right panels show cross-sectional
correlations of log employment between ages a and age h ≤ a for establishments (top right panel)
and firms (bottom right panel). “Balanced” refers to a panel of establishments (firms) which survived
at least up to age 19, while “unbalanced” refers to a panel of all establishments (firms).

the thick lines denote the age groups used in the estimation, i.e. age zero to nine-
teen, whereas thin lines represent an extrapolation for businesses at age 20 or above
using the point estimates. The figure shows that for businesses in the year of startup
(age zero) the ex-ante component accounts for about 85 percent of the cross-sectional
variance in size for both firms and establishments. The remainder is due to ex-post
shocks that materialized in the first year. Considering older age groups, the contri-
bution of ex-ante heterogeneity declines, but remains high. At age twenty, ex-ante
factors account for 47 percent of the size variance among establishments, and around
40 among firms. In the data, more than seventy percent of the businesses are twenty
years old or younger. Our results show that, among these businesses, ex-ante factors
are a key determinant of size. Increasing age towards infinity, the contribution of ex-
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Table G.3: Parameter estimates from reduced-form model

ρu ρv ρw σθ σũ σṽ σε σz

Estabs 0.206 0.842 0.949 0.603 2.046 0.738 0.255 0.262
(0.002) (0.001) (0.001) (0.001) (0.017) (0.002) (0.001) (0.001)

Firms 0.218 0.832 0.963 0.555 1.743 0.695 0.255 0.272
(0.002) (0.001) (0.001) (0.002) (0.015) (0.002) (0.001) (0.001)

Note: Equally-weighted minimum distance estimates of Equation (2) for both establishments and
firms using the balanced panel. See Appendix Table B.2 panel A for estimates using unbalanced
panel.

Figure G.2: Autocovariance matrices: statistical models versus data
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Note: Autocovariance of log employment between age a = h+ j and age h ≤ a in the data, and in
the baseline model. Results are shown for firms and establishments using the balanced panel.

ante heterogeneity stabilizes at around 45 percent for establishments and 35 percent
for firms. Therefore, even among very old business as ex-ante factors contribute to a
large chunk of the dispersion in size.

G.3 Structural model: results for establishments

This Appendix provides results for the structural model using establishment-level
data. Table G.4 shows the parameter estimates and Figure G.4 depicts the model fit.

Figures G.5 and G.6 then establish that, also for establishments, ex-ante factors
are a dominant force when it comes to the cross-sectional variation in employment
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Figure G.3: Contribution of ex-ante heterogeneity to cross-sectional employment dis-
persion
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Note: Contribution of the ex-ante component, lnnEXAi,a , to the cross-sectional variance of log employ-
ment, by age. Thin lines denote age groups not directly used in the estimation. The decomposition
is based on Equation (2) with j = 0.

Figure G.4: Targeted moments: data and structural model (establishments)
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Notes: Top panel: Autocovariances of log employment between age a = h+ j and age h ≤ a in the
data and the model, for a balanced panel of firms surviving up to at least age a = 19. Bottom left
panel: Average employment by age a (unbalanced panel). Bottom right panel: exit rate by age a.

and the establishment selection by age, respectively.
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Table G.4: Parameter values (establishments)

parameter value
set a priori

β discount factor 0.96
η elasticity of substitution 6.00
f e entry cost 0.448

estimated
f fixed cost of operation 547
δ exogenous exit rate 0.044
µθ permanent component θ, mean −1.758
σθ permanent component θ, st. dev. 1.309
σũ initial condition u−1, st. dev. 1.541
σṽ initial condition v−1, st. dev. 1.206
σε transitory shock ε, st. dev. 0.303
σz noise shock z, st. dev. 0.211
ρu permanent component, persistence 0.393
ρv transitory component, persistence 0.987

Notes: parameter values. Top three parameters are calibrated as discussed in the main text. The re-
maining parameters are set such that the model matches the empirical autocovariance of employment
and the age profiles of average size and exit rates from age 0 to 19.
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Figure G.5: Contribution of ex-ante heterogeneity to cross-sectional employment dis-
persion (establishments)
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and to the ex-post component.

Figure G.6: Exit rates (establishments)
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