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A Model derivations
Households

In this section, we derive the optimal response of households” consumption and labor supply decisions to changes in prices
(subvariety prices, wage and interest rate) near a steady state where subvariety prices are equal within sectors and the real
interest rate satisfies Ry = (1 —J) B. Preferences are weakly separable for subvarieties across sectors, additively separable in
consumption and leisure and additively separable across time. This allows us to characterize households’ decisions in three steps.
We first study the inner intratemporal consumption problem which determines individual demand for subvarieties conditional
on subvarity prices and sectoral expenditure. Second, we determine individual expenditure across sectors and labor supply
conditional on subvariety prices, wage and total (intratemporal) consumption expenditure (outer intratemporal problem). These
first two problems are the same for both unconstrained and Hand-to-Mouth households. Finally, we determine individual
expenditure across time by solving the intertemporal problem of unconstrained households and the decision rule of Hand-to-
Mouth households.

Inner intratemporal consumption problem (valid for unconstrained and HtM households)

We start with the allocation of a household’s expenditures on varieties within a sector. Note that this is an intratemporal problem.
For any such problem, we omit time subscripts in this appendix, unless stated otherwise.

For any sector k, let vx(p;, ex) be the indirect subutility function for a given vector of prices p; and total expenditure ey,
defined as:

v(pper) = maxth (e) st [ pilile(j)dj < e
{ex}

Let di(px(j*), Py ex) be the household’s demand for variety j* and note that this function is C? and symmetric in p,.! As noted
in the main text, we consider a steady state with identical prices within sectors, i.e. pi(j) = Py for all j. Let d,dj denote the
own-price derivative and d;dy be the Gateaux derivative of d; with respect to the price of variety j. By symmetry of the subutility
function Uy, and the fact that prices are the same in equilibrium, it holds in the steady state thatd (px(j*), py, ex) = ex/ Py for any
¢x and d;dy = 9;dy for any two subvarieties. Using the fact that the demand function is homogeneous of degree zero we can
apply Euler’s theorem to obtain:

(0pde) pr i*) + [ (@5e) pe(i)tj + (i) ex = 0.
Applying the symmetry property noted above then gives:
(apdk) Py + Py (a]'dk) + (aekdk) ex = 0.
After rearranging, we obtain the following expression for the derivative of dj with respect to the price of variety j:
1
a]dk = —E)pdk — Fﬁek'

Note that this equation is simply a decomposition of demand for j* to a change in the price of j into substitution and income
effects. This result allows us to derive the first-order change in consumption as:?

dck(]’*) = (apdk) dpk(]*) Jr/ (a]dk) dpk(])d] + aekdkdek,
o 1 N
= (9pete) dpi(j*) - ((apdk> + Pkaedkek) [ vy + e, dide,

- 1 ek
= (9pdx) (dpx(j*) — dPy) + B (dek - Pdek) .

This equation relates changes in subvariety consumption with respect to its own relative price (dpy(j*) — dPy) to the inner
elasticity of substitution €, = —Pydpdj/diwhich is the standard statistic of the firm pricing problem in steady state. Furthermore,
exploiting the fact that d,dis homogeneous of degree —1, symmetric in p; one can again apply Euler’s theorem to obtain:

@ppde) p () + [ @) pr(dj + (@peyde) ex = ~2yet,

=
Py (appdk + apjdk) + (apgkdk) ey = —dpdy,
=
dpd
Ipjdx = _%kk — ¢k (Ope,di) — ppdi-

Using this result: we can derive the following expression for the first-order change in the own-price derivative of sector-k de-
mand:

INote that ¢ lives in L!, since U is (strictly) concave the problem has a unique solution which satisfies the set of first order
conditions. Applying the implicit function theorem — for Banach spaces — shows that ¢y is a C? function of {p,, e }-
ZRecall that, by definition, ¢t (j*) = di(pr(*), Py €x)-



ddpdy, = (dppdy) dpy () + / Apjdk) dpi(j)dj + (Ope,d) dex,

pdk
= @) i (7)+ [ (=2 = et~ i) ()] + (Bpts) e,
- dP;
= (aPPdk) (dpk (] ) - dpk) - apdk?k + (apekdk) (dek - depk) .

This expression will allow us to characterize the changes in elasticities of substitution away from steady state and their impact
on firms’ pricing decisions — through changes in endogenous markups.

Outer intratemporal consumption problem (valid for unconstrained and HtM households)

We now turn to the allocation of expenditures over different sectors. Let P = (p;, p,, ... px) be the full vector of prices and let
v;(P,e) the indirect utility function of the outer problem which can be household-specific, hence we momentarily re-introduce
the subscript i. The problem is to choose expenditure levels across different sectors, conditional on optimally choosing the bundle

of varieties ¢, which we solved for in the previous section. Recall that we assume that U; is increasing, strictly concave and C°.
The problem can be expressed as:

vi (P,e) = max U;(v1(py,e1),va(pye2), ..., vk(pgrex)), s.t. Zek:e.

{e1,e0,...ex}

The associated first-order optimality condition is given by U; e Vk = 1, where 1 = 9,0; is the Lagrange multiplier. The problem
defines a spending function ¢ ; (¢, P) which is C2. Note that by symmetry and since subvariety prices are equal within sectors,
it holds in steady state that 9, (;yvx = 9, (jyVx for any j, /" and e, so we have 9, (yjex (e, P) = 9, (jyex (¢, P) = dp.ex (e, P). The
derivative of the indirect utlhty functlon w1th respect to the price of a variety j 1n sector k is given by:

Ipe(j) i = —9evick(j),

which follows by Roy’s identity, where ci(j) is a shorthand for di(pk(j), pi. exi (e, P)).The expression for the mixed derivative
(which we will employ later on) is given by:
Pkaepk( ) *Pk (agg?) Ck(]) + aeviaeekriaekck(]’)) ,
= — (9ecvier; + 0¢Vi0cCy) -
Given 8 ) ( P)=0 pk ekl (e P) we can now write the change in sector-k expenditures in terms of the change in the sectoral
pr1ces, =Pe= [P
dey; — e D = Z PopexiPy — e ;P + deey ide,
I=1

= (Pcopex,i + deex e — exi) Pe+ Y (Piopexi + deerier) Py — Py + deey (de - Eel,ipl> ,
17k 1

= deey (de - Z%’H) +ei Y o (D) B
1 1

Note that we have }; or; = 0, as ¢ (¢, P) is homogeneous of degree one. In addition, consider the spending responses to a

compensated change in the price of sector k:P, = 1, de = ¢;. Inspecting the budget constraint gives 21 *o (PcOp.e; + deeser) = ek
so we have } ;e;0;, = 0.

Labor Supply (valid for unconstrained and HtM households) We start by solving for the labor supply response
for an agent of type i in period t, which we derive from the first-order optimality condition for labor supply, which is given by

X' (ggl;) = = 9,v;W. Taking a first order approximation of this condition, we obtain:
g (n()\ 1 dn(i) oy N g ‘
X (19(1)> ORIONS ecv;de (i) + ;/ (aepk(j)v> dpr(7)dj | W + 0ev;dW,

X' (n(i)/0(i)) dn(i) [ Oeev; Oee¥; - dw
X0 7800) 0 ‘(aevld“ 2 (5 (“aeek())l’) K

)
= {W— Zaeek(i)ﬁk} — % <é(l) — ZS[ (i) 131> .
k 1




Intertemporal Decision (valid for non-HtM households only)

A household of type i born in t( has initial bond holdings by, (i) = b(i) (1 +Y:5 P]'t%]:P’ with P the steady state price of  and

Py, = [ pi, (j) dj. Using the definition of the indirect utility function v;(P,e), one can write the Lagrangian of the non-HtM

households 1ntertemporal problem as:

e

V@)= max B ) (B(1-0)"* (”i (Prisser5()) = 1 (ntl;(si()i)»

{etysmirsDirsiiteng  s=0

~ b i
+ Or45(i) {bt+s( )+ 1pps (1) Whas Jrng ) Divg s — epps(i) — Hlé:()} ,
S

with the first-order conditions given by

aV (i . .
W B, (1~ ) 00; (Brosserss(0)) — B115(0)] =0,
aetJrs(l)
IV (i) [ / (ﬂt+s(i)> 1 , }
=E; |- - —— + 0 (D)W =0,
ant-l,-s(l) t X 19(1) 19(1) t+5< ) t+s
IV (i) [ Ors (i) : }
bt 1511 (1) t Rits rs+1()
We now linearize the consumption Euler Equation, d,v;; = B(1 — §)R{E; [0,v;41 ], around a stationary steady state with no
uncertainty:
decvide; (i) + Y / (aepk(j>vi) dpes(j)dj = B(1 — 6)dR;d,0;
=
+B(1-0)R (aeev desy1(i +2/ epr(j det+l(])df> ’
0Oee¥; v; .
aee lde +2/< epi () l) _ 4 aee i de t+1 +Z/< epi(j >dpkt+l(])d]/
E i
Jecli P VB = R+ 2 (4 B ex(i)P
90 Zek k,t —2 eer (i) Py = Re + 90 er1(i Zek kt+1 —2 eek (1) P rv1s
ev1 k et k
=
€deeV; [ R NA L edeeti [ . o A
aee . (et - Zskpk,t> — Y 0ee (i) Py = Ri + aee . <€t+1 - ZSkPk,t+1> — Y 0eei () Peria,
eVi © X eUi * k
=
(ét — Zskpk,t> = (étJrl — Zskpk,tJrl) -0 (Rt Zaeek Ttk t+1)
where s; = ¢;(i)/e(i) and the third line uses the fact that Py "”‘7 = — (QeeVjex + 0.V;0cek). We define 0 = —09,0;/e0de0; as the
elasticity of intertemporal substitution.
Note: In the formula above and in the labor supply decision problem, we assumed that the EIS o = —0,v;/e0e.v; is equal

across households. It is always possible to renormalize the intraternporal indirect utility of consumption v; to obtain an arbi-
trary EIS without affecting the allocation of expenditure (at given ¢; (i)) across markets and subvarieties. Indeed, if the util-
ity of the households is renormalized to Y; (U; (U; (c1),...,Uk (ck))), demand for subvarieties d(pi(j*), py, ex) and the sec-
toral expenditure functions ey ; (e, P)remains the same while indirect utility of consumption becomes Y; (v;(e, P)). Defining

1—-1
Y () = (z;l.’l (-, P)) 7/ (1 - %) with P fixed at its steady state value allows us to parametrize the EIS to any value ¢.

Expenditure of Hand-to-Mouth households.

HtM households consume all their current income, i.e. they never adjust their bond holdings. This allows one to directly solve
for the real consumption change in period t from the budget constraint in period ¢ only. In addition, a HtM household of type i

born in ty has initial bond holdings by, (i) = b(i) (1 +Y5 “0 il ) . Differentiating

b1 (i) = (bt( () +ne (i) Wr + ng(i)Divk,t - etU))
k



gives:

dR; (b(l) +1’l(i)W—€(i)) + R (dﬂt(i)W—FVl(i)th —I—ng(i)dDivk,t(i) —det(i) +b(i)zglpl,t0> = ZS_ Pl tor
k 1 1

=

R (W"(i) ((1+1P) Wi —% (ét (i) —Zl; 1 (1) Plt) thaeek Pkt) +Z€k i)dDivy (i) — < Zsl Pzt+ZSl Plt)
= ZSIPZ o — Reb (i), |
&

Ryb (i) +R <l[)WTl( Wi + Wn(i Z Sk — Poeex (i) Pkt — Zek Pkt + Wn(i) ngAk,t> + (R—=1)b(i) Zs_lpl,t[)
1

k

-1
(e(i) - ﬁ,"Wno’)) (Rﬁ + Wnli) (wwf — 9 el + zs-kAk,t> X (e (56(0) = 54) + 9Wn(i) (Beei(i) — Feey ) ) Pk>

k
¥ ! 1 S 3
+ (e(i) + UWn(i)) (1 — R> b(i)Y 5 Py — D) =6 (i) — Y _s1 (i) Py .
1 1
Using the definition of V= ﬁ (th —PY E)Teklf’k,t + Y STkAk,t) , we obtain:

)L 0) By = (o) + Fwini)) N (Rb;) + (1 2) W9 = £ (e0) ) = 50 + 9Wn) (Bel) ~ ) Pk>

k

+ (e(i) + an(i))_1 <(1 — ) 251 (Prsy — Pr )

where we have used the fact that the equity share of agent i in sector k is the same as the income share and the change in
aggregate proﬁts is dHt Yo P Yy (pkt + Akt - Qy, Wi — Y lepl t) Y Ex (pkt + Akt - Wt) with A; = (Id — Q)" 'A; so
that dDiv; (i) = WN Zk Ey (Pkt + Akt - Wt) (See subsection on Firm’s Input choice for a definition of (2). 3

Firms

In this section, we derive the sectoral New Keynesian Phillips Curves. In each sector, identical firms with constant return to
scale technology produce subvarieties of good k using labor and a bundle of sector | goods, aggregated by a representative
intermediary as inputs. We first derive the firm’s pricing equation away from steady state as a function of the change in unit
marginal cost. We then study the firm’s intratemporal problem to derive changes in demand for intermediate inputs and labor.
Finally, using market clearing conditions for goods and labor, we derive the sectoral NKPCs in terms of sectoral prices, the
output gap and changes in endogenous markups.

Intermediate inputs producers

We start with competitive intermediaries producing intermediate inputs. They aggregate differentiated varieties into Y; using a
symmetric and CRS technology, and sell them to firms at a price Py:

P = inf [ pe(j)yi(j)di
Yilj] -
s.t.l = ]:Ik(yk)

where FZ is symmetric, increasing, strictly concave, C3 and with % (yx) = 1ify; (j) = 1forall j.* The intermediary problem
defines a unit demand function for subvarieties (indexed by j):

D (pelfl, pr)-

3Note that the real consumption change for HtM agents is given by their MPC times the real income change in a given period
that comes from three channels: interest rate changes, output gap and relative prices.
“The assumption FZ(yx) = lify, (j) = 1 is simply a normalization ensuring that when all prices are equal with py(j) =

Pk Vi, Pe = pr.



Goods varieties firms: price setting

We now turn to the firms producing individual goods varieties. We can re-write the present value of firm profits given in
Equation \ref in terms of the reset price and using the fact that production of firms in k has constant returns to scale:’

pm(a]X)lEt Z At 103 (Pkt(] ) Dy (pk,t(j*)/pk,t+srek,t+erk,t+s> — (1 = T)MCp,t45(j*) Dx (Pk,t(]'*)/Pk,t+s/ek,t+erk,t+s) - Tk,t)
k,t s=!

with Dy (pkrt(j*),pk’t%, ek,t+s/Yk,t+s) = [ di(pe(j*), proex(i))di + DE(peli*], {px}) Yi 1+s and where MCy is the marginal cost, to
be specified below. The first-order optimality condition is given by:
Bt ) AtersO; (Detas () + (Prt () = (1= ) MChpps (7)) 9pDips (7)) = 0.
s=0
Using the derivations in section \ref and aggregating over the distribution of agents, we can express the change in demand, to
a first-order approximation, as:

dDy, ts ( /8 di (i,7°) (dpr (j*) — de,t+S) + e, d (i,7") (dek,t+s (i) — ek(i)pk,t+s) di

+ aPDk (de,t(] ) — dPytys) Yk,t+s + D%(Pk[/'*]r {pk})dYk,H—sr

Pd,D¢ P.d,DE _ .
- ( gc LG+ Dpz 7 ts | (Pree(*) = Prrss)
k k

g [ (egens () = culi)aPrss) di + DE(pulj”) (Vs
k

where 0,D¢ = [0,dy (i,j*) di, DS = [ dy (i,j*) di and we have used that D (pi[j*], px}) = 1 in the steady state. Similarly, for
the second term:

d (0pDypss) = / (Oppdi (1,7°)) (dprs (j°) — dPiprs) — 0pdi(i,5) P ts

+ apedk (irj*) (dek,t+s (l) - ek(i)pk,t—l—s) di+d <apD%Yk,t+s)
Pd,D§ P9, Df
D/S Cr + Dk

= (pkapleg + PkappDkIYk,t+s) (Pt (%) = Prys) — ( LY t+s> Petis

[ Bpeadi (") (et (0) = Cui) AP i+ 3, DY

Taking a first-order approximation of the first-order optimality condition and using the expressions above, we obtain:

d . N 1 .
0=1T: ) Asitsb; {(pk,t(] ) = Prtss) PeOpDy s + P / (deg s (i) — ex(i) Pesys) di + DF (peli*], {pi}dYs, t+s}
s=0

+ Bt Y A8 (pe(7°) — (1 — 1) MCrp5 (%)) { (PkapPDlE + PkappDkIYk,t+s> (Pri () = Prss) — PkapDk,t+spk,t+s}
s=0

+E; Z At sy (P () — (1= ) MCi i (f {/apekdk (i, ) (dex,rss (1) — ex(i ) Dy, rrs) di+9 Dk dYy t+s}

+ E; Z Atys0% (dpe(77) — (1 = T)dMCi15()) 9p Dy 45
s=0
Grouping the terms together and using the fact that in steady state p(j*) — (1 — ) MC(j*) = lg—’; s D+ (P — (14 1 )MCy) 0y Dy =

P,DS  Po,DI

0, DT ST = —&x and, in the steady state, A ;s = Bs, where we assume that B = (1—-9)B =1/R, we obtain:
3 3

~ -1 P - . -
0= (1-pobx) <2PkapDk,t+s + 5711: <PkappDI€ + PkappDkIYk,t+s)> Prt ()
o s P A
s Y (B0k) ( 2P@pDires + 2 (PdpnDE + PidppDf V) ) Poss
5=0

+ E; i (o)’ / ( ! kapekdk (i,j )) (degpys (1) — (i) Prpys) di + Ey i (BOk)® (& — 1) Dgricy s

5=0 Pk 5=0

5This implies that total costs TC can be written as TCy;(j) = MC (W, P) Dy ;(j).



where nicy ;s = Mck,t+s - pk,t+s is common across firms. Rewriting this expression recursively gives:
Pra(*) = (1— POy) Py
(1—Bb) (6 —1) : 1 B, N | - A
Y / P (& —1) T 1)apekdk (i,7%) ) (dexs (i) — ex (i) Byy) di 4 Dyricy,

_ > L
2P@pDiss + & (PdppDE + Prdpp DE Vs &x (&

+ BOKE: Prs1 ()
Next recall the following definitions:

& = P, In(e) = (- / (ex(j) — &)’ ekE(Z)dH / pkapek(j)ekls?dj) /&,
= Py In(ef),
N (i) aln(ex(i)) _
Yexli) = (1— = (1+aln(6:(m)> /(& —1).

Plugging these definition into the optimal price equation, we obtain:

(1-pox) (& —1) c/ e (D) —ex ()P 0 50 A .
- ~d O E ).
&1 +Sk (1 S%) EISJI g [ Yex(i) Ey i+icky o+ POEPrri1(")

Note that all firms that can reset their prices choose the same p; , and pk/t = (1-6) 15;  + 9k15k,t71- It follows that:

Pt () = (1 — Pbx) Dy +

(1—PBoy) (1—6;) (& —1) c/ dey (i) —e(i) Py . ~
T = S i . ~di + nic, + BIE; T .
kit o, T —1+ Sl(c:gi n (1 _ Sk)fil k| Yex(i) Ey kt PE: 7Ty 411
Defining
1 = (1-B6) (1—6x) (& —1)
k = 9 = C=s _ SI
k e —1+sie + (1-s5) e

we can write the sectoral NKPC as:

. dek i — €k i pk . N ~
Tt = Ak {Sf /’Ye,k(l) 1 () E; ) Y di+ iy 5 + BEtip41-

Goods varieties firms: intermediate input choice

The cost-minimization problem of the firm is given by: minWLi(j) + ¥y P, (j)  st. AcFe(n(), Yo (), Yar (), -, Yik(j)) >
Yk (j)- Since Fy has constant return to scale we can express the change in the marginal cost as:

W PY,
AMC, = Y”kw+2 ik

B, — MCi Ay,

=

MCy = (14 ) (1 — 1) (QN,kW + ZQk,lpl> — Ay,
7

= (QN,kW + ZQk,lpl> — Ak-
l

The subsidy is chosen to eliminate markup distortions in the steady state, i.e. (1+ uy) (1 — %) = 1. Q is the matrix of interme-

P

diate input shares () ; = Y, £), Qn a column vector of length K of labor shares (Qn = 1 — Zl 1 Q). Since Fy has CRS, we

can write demand for input / has Y, ¢ (j) = V1 (P, W) % ) (where Y (P, W) the unit demand for input ! by firms in k is common
to all firms in k) and derive change in aggregate demand for input bundle / as:

ay, N RN Y oA
Yll Z Qi (Vi — Ay) + TTwW + Zﬁkl’k-

P Vi’
vector of wage elasticities and Q;x = ) be the matrix of intermediate shares Since 1nterrned1ary input producers have a

CRS technology we can write the (aggregated) market clearing equation for subvariety k as Y = slgék +(1- sg)Yk.We have,
denoting D [s°] and D [PY] as the diagonal matrices with share of consumption demand and sectoral revenue on the diagonal

Ylm aylm Py ~ Z Ylm aylm
m

Let 7 be the matrix of aggregate input price elasticities such that 7;; = =Y ¥ P 371 be the column

(sk =7 Y and P.Y;), Y,C, A, P the column vectors of sectoral output, consumption, TFP shocks and prices:



D[s)C+ (Id—D[s]) (Q (Y- A) + TwW +TP),

ﬁ’<>

(Id —DlPY] 'QTD [PY]) Y =D[s]¢ - D[PY] ' QTD[PY] A + TwW + TP.
where we use the fact that [(Id — D [s]) Q] = %YYZ = I;’;Q‘ Q. Note that Tyy = (Id — D [s]) Tw and similarly 7 =
(Id—D[s]) T.
Labour Demand Response

We can similarly write demand for labor for a firm j in sector k as ny(j) = Ny (P, W)Z4 Y} k( ) . Differentiating and aggregating this
function, we can express the percentage change in aggregate labor demand as:

N =N (V= A)+ TYW + TVP),

where sN = {var\?l\(]j)dj, anK } TN = [E)ln In (V1) oy Opp(w) In (NK)} 7}1 = Oin(p) In (N). One can show that the
change in labor demand will only depend on the change in consumptlon and productivities as follows:

. -1 A . R N\ a AN NS
N =sN ((Id —p[pPY] 'QTD [py}) (D 5] =D [PY] 1 QTD [PY] A + TwW + TP) — A+ THW + TNP> ,
-1 . . . -1 . .
=N ((Id —D[PY] Q™D [PY}) (D [s] — A)) +sN (m’w +TNP + (Id -DIPY]'Q™D [PY}) (TwW + TP)) .
Note that, as (1 + p¢) (1 — ) = 1, we have
~1
[WNi, ..., WNK] (Id —~DIPY]'QTD [PY]) = [PYy, ..., PYk],
Ay NkW + Y 1o Y1k W = 0,
I
An () NiPr + Y 0n(p) Vi Pt = 0,
m
where Id denotes the diagonal matrix. We thus obtain:
. -1 A
N =sV (Id —DPY]'QTD [PY}) (D[s°) ¢ — A)
. o P Yy 4
= ng (Ek — Pk) — Z%Ak

k k

Aggregate Consumption Response

We can derive aggregate spending in sector k by simply aggregating individual decisions:
A . 1 .
Bo-Pi= / dey (i) — e (i) Py,
= / E, Oeey (i (e — 251P1> di + Zsklpl/
where S = [ pr;(i "( )dz is the aggregate compensated price elasticity of sector k with respect to P;.

Labour Market Clearing

Let us re-introduce time subscripts. Recall that:

(i) =v {Wt - ;aeek<i)pk,t} - % (ét (i)=Y s (D) pl,t) :

Aggregating over all households we obtain:

deey (i)diby > f / Mx}s) (ét (i) = Y5 (i) P,,t> di.

!



So labor market clearing becomes:
s NP A s PeYy -
deey (1)dily s =Y si() Py ) di=)_ 5k (Ee — Pey) — TAk,t
k
= Z ( aeek( ) (é (i) — Zsl(i)pl,t> di + Zsk,lpl,t> - ~F Akt
k

! 1

W, —

gek dlpkt + Z PiYi 4 Akt = (/ ? (Zaeek(i) + IPOV'\(ZZ()I)> (ét(i) — ES[(i)EJ) di + Z (ngsk,l> pl[t) ,

_/ < lPW.i)aé)) <ét(i) _Zl:sl(i)ﬁl,t> di,

where we have used the fact that )y exox; (i) = 0 for all ,i so Y 5,5k ; = 0. Finally, recall the definitions:
A= (Id— Q) 'A,,

A (02 ~ —_— A ~
V= <¢Wt — ) deer s + ngAk,t> ,
k k

o+
where the last line uses the fact that [Ey, ..., Ex] (Id — Q) ! = [PYy, ..., PkYk].So we have:
- o e(i) YWn(i) wn( N i
Vi = o+y¢) E (1 " e(i)o 251 i dH_ / ee}c@dlpk,t'

Defining the natural level of aggregate demand as the level that prevails in the absence of markups distortions we obtain our

formula for the output gap:
5 o
V¥ e ((Zlﬁaeek + 5k> Akt)

see the optimal policy section for a justification of the efficiency of Y*;. Note that in the absence of markup distortions it holds
that B ; = W; — Ay ;. We will show later, that the output gap shows up in the social welfare function.

Production Efficiency (Detour)

In this section we briefly show that our set of steady state subsidies ((1 + p) (1 — 7¢) = 1) renders production efficient in the
steady state. Production is efficient if the steady state consumption bundle {Cq, ..., Cx }is produced at minimum labor cost.

L=Y s (yk + (I (Ni) W + Zaln(P,)ln (M) pz) ,
X

wayh W poyh .
(Id—D[PY] QT PY) —{ Yo } + {2 ;Mﬁgk} .
1

Therefore:

Wo'
Esk On(wyIn (Ng) +sN (Id—D[PY]_l()TD[Py])l{Z y]rk} —0,
i

Zs{jalnm)zn (Ng) +sN(1d—DpY] ' QD [PY]) ! {Z
k

SosN(Id—D[PY] ' QTD[PY]) ! = [P;Y;/WN], which gives WNi = PY — ¥ PYj, or (1+ ) (1 — 1) = 1 forall k.



Sectoral NKPC
Recall that

. dek i — €k i pk . R ~
Tl p = Ak {S;(E/%,k(l) 1 () E; 0L, di+micyys o + BEt7Tkp 41,

micky = (QN,kWt + ZQk,lpl,t> — Ary — Py,
1

1= b (- T (s ).

de s (i) — ex (i) Dy = ey (i (det Zez Plt> + e (1) Y pii (D) Dy
]

Combining these equations, we obtain:

- 1 1\ -~ — A - ) o " ~
Tep = M {S;g/\/lk,t + QN ((r + ) e+ Qi) 0eer (Prp+Aps) +) QP — Agy — Pk,t} + BEt7t p 41,
] ]

4

- 1 1 ~ — A ~ A ~ . - R . -
= Ax {S%Mk,t + QN (a + ) e+ Qni Y 0eer (Prp+ Ay — (Pp + Ary)) + Yy (P + Ae — (Pee + Axy)) } + BEt 7T 41,
] ]

¥
with
~__ a4P E
My = Z/’Ye, E Pkl( )diP,
Mkt—/'Yek aekE ( ZS Plt>
Finally, defining

K = Ay (;_ + l,ll7> (1 + o_il)lprk)

=2 U+¢/7b,k(i)Mdi,

R—-1 o WN
1+% W (i
Mllcj,tEME,t_l_i/’ka() ()dlyt/
R

1+£ Wn (i
Mk,tEMII:,t+MII<D,t+1 U/’ka() ()dytr
R

K
NH: =) (0ee; —51) (P + Ay,
i=1

K K
Pt = Py — Y 5:0) + (Acy — Y _5141),
1=1 I=1
—_ K —_ —_
Pt = QN Pri — Y Quy (Pry — Pry)
=1

and noting that Oy Z{il dee; + Z{il O = 1, gives the formula in the model equation appendix. To obtain the equations of the
main text without the Input-Output structure, we simply set QO = 1, s,f =1and Py; = Px;, and obtain:

Ty = Kk Ve + A (NHe + My p — Pry) + BEi 7t p41-

Evolution of arbitrary demand indices

In this section, we derive the dynamic equations characterizing the evolution of averages of individual households expenditures
for arbitrary weights, taking into account the death/birth process. These equations can be used to compute the full distribution
of consumption expenditures. In the next two subsection, we also use these equations to derive the dynamic equation for the
output gap and for the endogenous markup wedge

Denote by C; (w) = [ w( ( —Yys (i) b t) di an arbitrary demand index with weight w. Moreover, denote by C}’ ; (w) =

J (1 —=¢@)w(i) (et (i) =Y s1(d) Pl t) di the contribution of unconstrained (=non-HtM) households to the demand index. We
have:



E/Cyq (w) = (1-0)CY (w)+(1—5)f7/(1—§0( ( Z3e€k 7fkt+1> d1+5Ct+1( )

Here, we use the individual Euler equation, as derived above:

(ét - Zslpl,t> =E; <ét+l - Zslpl,tH) — 0E; (Rt Zaeek Ttk t+1>
l
for households “born” before t + 1. C*° 111 (w) is the consumption of the households born at t + 1. Note that the lifetime budget
constraint of the households born at + with wealth b(i) (1 +3Y5 pl,t) is
=1

© 1 (p(i) 4 NP o L . A
Zslplt =E; Z RS <§{)Rt+s + Wn (i) (Wigs — firrs) + dDivps (i) — e(i) Zsk<l)Pk,t+s> —e(i) ) g <€t+s Zsk i) Dy t+s>
k s=0

Using labor supply decisions and dDiv; (i) = Ei (P + Ay — W) we obtain:

=1

ZSlPlt+ ( (i) + wwn( )) ;)ﬁ (ét+s Zsk pkt+s> =
]Etsg);s <g)ﬁt+s + (1 + f) Wn (i) Drs — 1 (ei) (s(i) = 56) + $Wn(i) (Deeri) — Beer ) ) Perys - (1 = ) Y s plm)

k 1

<~
(e(z’)ﬁfwmi))zw(aﬂ L Pms):

E; Z = < (Res = Tpigssn) + (L D)W@) Drs = 1 (e€0) (54(0) = ) + 9Wn(i) (eei(i) — ) ) ﬁkm) .

k
Using the Euler equation, ¢y — Y 55 (i) Py iy = & — Y sk (i) B s + 0By Zg‘;ol (Rets — Yk 9ee (i) x t1511) SO we obtain:

=Y si(i) Py =
k

1 o0 ; . NN 4
KB Y o (”;) (Ress = Teppsss1) + (1+ L) Wn(i) Dy - X2 (600) (5 =50 + pWin(i) (2cer(i) 9cer) Pkm)

[e9)

1 .
— oE; Zo T <Rt+s Zaeek 1) 7t t+s+1>
s=

Averaging across households with the arbitrary weights w, we have:

~ 1 1 .
Ctu'o( w) — R]EtNCtH( )= _‘TEIEt/(l—GU( ( Zaeek 7fkt+1> di+

Q=9 (1-%) (b() ., b o NN N
| — i T (R (Re = Tapuzi) + (1 IWn()Pers = 1 (e (sili) = 55) + pWn(i) (deeci) — deci.) ) Pk,t> di.
Defining C*° (w) = C*° (w) — C¥ (w), we have:

1)
E/Ciiq (w) = G (w) +‘71Et/(1 — ¢ (i)) ( Zaeek 7Tkt+1> d1+ (5Cf+01( w),



1 1
CI (@) — ZEACID, (@) + Ci () — Bl () =

(41 .
B / (1— ¢ (i) w(i) (1 R) <b1(21) (Rt = epipr1) + (1 + 15) Wn(i)Pr — Y (e(i) (s (i) — 5k) + pWn(i) (aeek(i) fajek)) Pk,t> di

e(i) + Lwn(i) P

1 .
—UﬁlEt/(l — ¢ (i) < Zaeek 7Tkt+1> di,

G (@) - g B @)+ (1- 1) & (@) =

— o () wl(i -1 ]
. a (PQ) ()(1. }) (bg) (Ro— reppr) + (1 +l£) Wn(i) 91— 3 (e(i) (si(i) = 5¢) + pWn(i) (aeek(i)—aeek))ﬁk,t> di.

e(i) + %Wn(z) T
Now we consider the contribution of the HtMs, we have:

E(CHM (w) = (1 - 6) CH™M (w) + 6CPMO (w)

+(1-0)E, / % {Afamz + <1 + f) Wi (i) A 1 — ; (e(i) (s¢(i) — ) + pWn(i) (aeek(i) - @k)) nkm} di

—a-0E [ (;”i{;‘;@)() {(1- %) bmeisn

R (U DyWn(i)aDi = X (600) (510 — 50 + pwii) (ex(i) - 0z nk,m} di

+1
R k

- %Et / 45?&% {_ (1 - 113) b(i)m’”'t“} i
n (1 _ 1) E, m {Rti L1+ %)Wn(i)j)t - ; (e(0) (s() = 5i) + pWn (i) (3eex (i) — Beex ) ) ﬁkt} di
+ (1 - 11{) E, / % {_ (1 - 11{> b(z‘)Pcpi,t} d
+E, / o (i ( ll’wﬂ( )) B (1 _ ;) b(i)di (Pcpi,t - ;Pcpi,m)
Defining /"™ (w) = CHMO (w) — CH™M (w), we have:

B CHAM () = CHOM () + 2 B, CHM0 (w )HEt/e(i;"(i{,f"“){—(1—;>b<i>ncpi,t+l}di

+ = Wn(i)
(i) w(i) . b ¥ e N . N .
E | <§0+¢w<> {ARtHR 0+ DWna - F (e(i) (si(i) = 5 + 9Wn(i) (eeili) — dee) ) nk,m} di,
C™ ) - 25 - FECH (w) + (1 - ;) CHiM (o) =

1 ¢ (i) w(i) b o P A , N . ~ 53—\ 5 .
(1 - R) E | S+ En) {R (R = izea) + (1 )W )9; = 1 (e (si(i) = 85) + pWn(i) (deeci) — deci) ) Pk,t} di.

Putting everything together, we obtain:



E;Ci i1 (w) = Ct (w) + 0y / (1-¢() ( Zaeek T t+1> di . ) ]EtCtH )+
"/ M (ARt“R + 1+ PWn()ATi1 = 1 (e0) (5 =50) -+ pWn() (i) =B ) ”k,t+1) di
g (oWl (L
" / e(i) + EWn(i) <<1 )b )”CWH) di,

& (@)~ =5 B @)+ (1- ¢ ) & (@)

_ ezj)(ll }P;Vn (bg) (Re = epipsn) + (1 + ‘(f) Wn(i)D; — ; (e (si(i) = 5) + pWn(i) (ee(i) — deei) ) 1%) di
with

w(i)(1 - g)
e(i) + %wn(i))

w) = -9 [ ( b(i)diPeyi,

Euler Equation for the output gap. We now derive the evolution of the output gap. Recall the definition Vi == Y*,
with Y = ﬁ (th Pk Tﬂkpkt + Y i 5k Ax t) . Using the labor market condition, )7t can be expressed in terms of a demand

index C; (w), with w(i) = () + ﬁ%fv) V= tT+l/7Ct ( ZW%) - m Y | ( : )) deex(i)diDy ;. Therefore, applying
the formulas derived above, we have:

(i)
. . + .
EVi1 =V = ‘7/ (1—9¢(i) M ( Zaeek 7Tkt+1> di =

o+
) W N LR
_ o—a_—ipl/};/ (E(El) V\’]11(\,)> aeek(l)dlnk,t+1+my?+1
+- 7 g / (){AR b a4 W) sy }di
oty . ¢ H1RE )TN AV

- B e {Z (%P tsi) — 50+ 9 P et - ) ) g + (1- ) 2 ncpi,t+1} i,
¥

. 1 " 1\ . e(i)  Wnl(i) N
Yy — mmtyﬁrl + (1 - R) Yt + T, ;/ (E WN ) aeek(l)dlpk,t -

(Tj-lp <1 - 11{> / (l%(;) (Rt = Tepir1) + (1 + i) Mxl](\;) Dy — ; (Eg) (sk(7) — k) W](\]) (agek( ) — aeek)> Isk/t> di.
Using
/%d = /;eg)(sk(z) —5;)di=0
we obtain:
3)?—R<11_5)Et37?+1+(1—11{) yt-l-a(ipl/);/ <€(Ei)— I(\]))aeek()dlpkt—
( ; (aeek( ) — ﬂk) pk,t) di,
- 71&34“

R(1-9)



Using JJ = 0 and ( 57 > 1, we have VP = 0 for all t. Defining ¢f = [ ¢(i dz oN = [o(i V\Z(\;) di, we obtain:

(1 - qDN) (EtYep1 — W) = (1 - QON) ¢ (Rt - ;aeeknk,wrl)

{R( (ARpt1 — o (R=1)Ry) — % ; ((Sk(i) — 8k) — 0 (deex (i) — aTek)) 7Tk,t+1} di

—E; / qur(#z { (1 - 11{) &El) (Tepijt+1 = OTOnepit+1) } di

By definition, we have r; = 1 (E;Y* 1 — ;) sorf = lEtwlTp ((Zk Poeer + §k) (Agkt+1— Aky) ). The evolution of the output
gap V=Y — )Z* is given by:

(1 - GDN) (EtDis1 — M) = (1 - (PN> olE; (Rt - ;@kﬂkﬂl - 7’?) +

]Et/ ﬁ(lz {b(g (AR — o (R—1)R)) — ? ; ((sk(i) —5) — o(Oeer (i) — @k)) nkm} di

] 1\ b(i .
a ]Et/ Z(i—(:; { (1 N R) % (nCPi/f'*‘l - Unmcpi,t+1) } di,

which gives the equation of the main text.
Euler Equation for ./\/lth. Using w(i) = %,k(i)agek(i) %, we obtain:
M /\
Ei My — M, = Z‘Tkz M (Re = 7p) + Mkt+1

f [ zﬁ“ aﬁfa,f; zs:) s (1) [ (o0 00

e(i)o e(i)o

+Z / ( 'Yelk+ V\?((?I)c 15)) ( (R —R z)kb( )sl _ eé:) (51(0) — 5) + ng(i)lp (ajel aee,(i)>>> dirt g

with

s = [ ) DD iy i
(i)

Note that MP, = ME, — (i) V\xN di}}, so using the equation for the output gap, we have:

D D '\
EM g — M, = Z‘Tkl — M) + ]EthtJrl

1-—
/< T ( i) (g (1(1__(PZ)L))VVVVTII\§i)/<<p(i)I’(2) di))di]EtARtH
- &= ; / e 1= ) (o) - O [ ()22 ) ai) 1} diir o
- iz [ rix{ (o0 0 -~ O5 ¢ZZ))W”(') / qo(z')? (5) = 1)) | i

2 st {5y (o) (i - 7) -

(i)? (aeel (i) — aTe,) di) } Ay 1,



MR, — (1_15)R]EfM2,t+1 = /ﬁk@%di (Rt - ;glEtﬂz,t+1>
T [t (e(EZ) (51— 1) + 4 0D (e i) - ael)> Py, — S M,
with




B Model equations

Below we present the equations of the full linearized model with an interest rate rule. Derivations are provided in the
previous appendix.

Coefficients - households Individual coefficients:

sk(i) = ik((ii))

i) = G i) (n+ - ) where 200 = Tl

pk,l(i) = ap,ek(i)/Pk + el(i)/Plaeek( )/Pk M= (Sl(l) —1- ]I[k = l]) n
Gk(i) _ _aek(i,j) pk(]) (HARA) a + i
opk(j) cx(irf) ex (i)
S(Z) aek( ) pk(]) (HARA) bk
Ipk(j) €x(i) cx (i)

i = (=40 200)) o= -8

"R e(i)o
MPC(i) @(i)MPC (i)™ + (1 — ¢(i))MPC(i)"
Yox(i) = MPC(i)" yex(i)deex (i) / 5k
Tor (i) MPC (i) ™Moy, i (i)0eex (i) /5

1r(i) = @1 (@) + (1 — @) vhi(0)
where the second equality sign imposes the assumed preferences in the calibration.
Aggregate coefficients:
s - B _ Jealid
© T E T Je(iydi
s = /( ¢(i)) e(i) e(i) ..
(1—=9F)E e(i)
dee] = / (1)8 ex(i)di
)
)

e = [0-90

1

) e (i

p=)E
g = e,%()e (i)di "2V +Z—
k k
& = <—/(€() ze" d+/ E( >/ek“’§“>Z’;
€ = E
k PrYy

Sk1 = /?Ve,k(i)Pk,l(i)di



_ Je()e(i)di
pF = E

S Sl

WN
A = o fra =GP aawnatii-5a g5 [ T2 o (o (1) +o (1-9')
1

p(1-9)
Coefficients - firms
W N
@) =
Nk PeY,
Dk
O = .
o PrYy
O = (Id-—0)™!
e = €
where Id is the identity matrix.
Coefficients - equations NKPC:
N - (=80 ) &1
Ok & —1+ste+ (1—sC)ef
1 1 oy
ke = M=+ ) (OQng+sg——T
‘ "(v ¢>< Y ety ")

R o+9¢ [, . Wn(),.

Other:
anm e = 55 [ (a0 (o0 — GO [ (o050 ) ai) ) ai
dhtm iy = = [l (1—11{> (¢<i>b§> —(1<1_ _(sz)q))vv\%i) / (q)u)b‘g)) di) sidi

“ [ 80 (00 050 = B PR 900 a0~

E
—% / Vo (7) vai;z(\;) ¥ (go(i) (Beel(i) _@0 _ 11—_ 4;)(;’)

mO_ry = /'yl’,‘,k(i)b(i)di
mo_Py = — [0 (E(Ei)(sl(i)—§l)~|—¢vxlz(\;) (aeel(i)—aeez>>di

wap i, = (o (3 3) (1 6°) 67 (1-07) - (¢ ") (o3 5)




Sectoral equations. For every sector k = 1, ..., K we have:
Tt = pk,t - pk,t—l
M = 1+ Ax (QN,kNHt +sp Mys — Pk,t) + B(1 — 6)Esmi 11
My = TYF+ M+ MP,
Mg, = ;Sk,l (B — D)

. ) . .
]EtMII(:,)t+1 - Mllcj,t = O'Ii\/lfuRt - Zo-li}l/l,unlrt_‘—l + m]EtMg,t+1 + dhtm_Rk (]Eth+1 - Rt)
l

+ Z dhtm_nk’lIEtT[l,tJrl
!

1 A A R-1
Mg,t—l — 71Et,/\/lglt = mO0_ry (Rt,1 — IEtncpi,t) + EmO_Pk,lPl,tfl - 7MkD,t,1
(1-6)R 7 R
75k,t = (pk,t - pcpi,t) - (plj,t - pc*pi,t)
Pt = OniPrt— Y Qi (P — Prs)
1
p]:it = _Ak,t

Ay = pAri1+exs
Ay = Y QA
1

Aggregate equations
V= Edia— 0B (R — Twepipsr — 77)
1 o ((pE — N

(EtRiy1 — (140 (R—=1)) Ry) + ) ygap_htm_r; - 7Tz,t+1>
1

1-¢No+yp |\ R-1
Ppo= ! Z e + 51 ) (BeAp i — Ary)
§ c+y g
<1 — <\
Vo= D(veta) A,

NHt = Z (aeel - §,) (pl,t - plft)
1

Pcpi,t = Zglpl,t
1

* _ 5. P*
Pcpi,t - Zslpl,t
1

Tepit = Zs_l Tt
1
Tlmcpit = Z dee 7T 4

l

Re = o +uf

t = (Pncpl,t + Uy

R _ R, R R

ug = pruyg &

Equations for demand indices. Coefficients:



chtm_Y,, = <1 + ‘ﬁ) / (q)(i)fman(i)) di

+ Wn(i)
_R-1 w(i) b(i) ;
Ot ="g e(i) + Wn(i)¥ R ?
c0_P,; = —R; L o) —:Jé\l/)n(l):f (e(z) (si(i) —5;) + pWn(i) (8661(1) - aeel>) di
oy R )
Yo ="% (1 " 0) /e(i) +Wn(i)§w (i)

Equations:

A A N ) A
EiCii1 (w) — G (w) =0 (fmcuth — ) msiig) 7Tl,t+1> + m]EtC?H (w)
1

+chtm_Re (EiRps1 — Ry) + chtm_Y,, (]Etj)tﬂ - ) - Y chtm_7te, B 7ty 441
]
R—-1

AQ B
Ciq (w) R

Ct—l (w)

1 A N N N
(1 . 5) R]EtC? ((U) = Co—rw (Rt—l - ]Etncpi,t) + ZCO_Pw,lPl,t_l + CO_wat—l —
1



C Proofs Analytical results Section 3

Result 1
Denote Pk,t = pk,t =y )%ajel 13” and 7ty = T — Yy %18761 711+ the sector price and inflation relative to the ‘Divine

Coincidence index’ pd,t =3 %87611% with % =Y ?"‘;’ , define similarly P,j‘,t. Under (A.1), we can aggregate the
sectoral NKPCs with the divine coincidence weights to obtain:
Tr =KV + A Y 0eexMyy + B (1 —8) Birgpia,
k

Ttk = <)\k (B — Prer) — Ak Y_0eer (P — Bry) + AeMycy — )\Zaeez/\/lz,t> + B (1 —6) EeAty py1.
1 1

Pk,t = Tt + pk,tfl-
Next, assume [ v} (7)b(i)di = 0 for all k, which is a weaker version of assumption (A.2). Recall that:

N )
My = EMiy = Y 0t (Re = Eiripg) — flEtMg,m/
1
0 1 b(i)
Mk,t = (1-9)R E Mkt+1 +/’ka 7‘11( 7Tcpi,t+1)
~ [el(i ) _ Wn N oA R—-1
- Zl:/%,k(l) <§3> (s1(i) —51) + lPWI\; /) <3e€z(l) - aeﬁ)) diPy — TMEV
N — R o+ ~Wn(i) |,
/’Yek eek( 1)9eer (i)di — 09ee1 57— Ulp /’Yb,k(l) WI(\I)dl'

Given [ 7,x(i)b(i)di = 0, we can write:

(0+¢)/%,k(i) V},]\Z(\;)di = /’rb,k(i) (ﬂg}@ +o (I/\I:\Tzlz(\;) + (1 —~ R) b?)) di,

A

d

0T
— <1 - ;) / o ()90ei(i) < i,

and therefore:

and

D _ D M o 0
Mk,t — IEth,t+1 + Zak,l IEtT[l,t—i-l - lEth,t+1,
l

1-9

1 . ] . Wn(i N - R-1
Mgrt :mEtMg,Hl — Zl:/%,k(l) <6(El) (s;(i) — 5) + ’PW’;\;Z) (aeel(l) — aeel)> diP; — TMII‘D’t'

Recall that we can decompose the endogenous markup wedge My, = IV} + MF, + MP,, and note that the first
component, I't )}, is exogenous and hence independent of monetary policy. To show that the other components are
independent of monetary policy too, we proceed as follows. Since Y ; px; (i) = 0, we can write the sectoral substitution

component of the endogenous markup wedge as:

K
N € N .
Mll:,t = Z/'Ye,k(z)Ekak,l(l)dZPI,t.
I=1 k



Therefore, the relative price equations can be rewritten as:

1 1\ « -
ﬁk,t—ﬁ(1—5)15tﬁk,t+1:—(/\k—A)<¢+U>yt*+)\k<Pkt ) _oee Plt)+Z“klplt+z(AkMkt—/\Zaelle>
1

Per = 7t + P,

~ ~ o
= :[E _——
M tMti1 1-5
1

N N 3 1\ -
MY, = mEtM%m —Y BiiPi— <1 - R) My,

40
IEka,t-s—lf

with

wg) = —Alle—y + 9ees A +)\k/%,k( Pkl /\Za en /')’en Pnl i)di — Aot + A Y 0ee,or,
n

B = [ 1D ((s00) )+  (d2er(i) —ﬂ,)) di+ (1- 3 ) ot

Since i and 15[; are exogenous, P ;, 7y ;, M and M,?/t are pinned down by a system of 4(K — 1) equations which does
not involve R; . These variables are therefore independent of monetary policy. From the above equations we observe
that MP and M?P, depend only on 7% ; and Py ;. Therefore, these wedges are independent of monetary policy as well.
Finally, the non-hé)motheticity and relative price wedge can be written as:

K

NH =Y (9ee; —5) (P — Pfy),
1=1
Prr = (pift - Zglplft) - (pkt Pc*plt)
1
It now follows that all the wedges are independent of monetary policy.

Additions to Result 1. In Appendix F we present a number of additions to Result 1. Specifically, we derive an
inflation index implementing the Divine Coinvidence. We also extend Result 1 to the case with HtM households and
Input-Output linkages.

Result 2
Note that if M; = 0, then x;, = A, <% + %), so (A.1) becomes Ay = A for all k. We can now write the NKPC for the
MCPI as :

nmcpi,t = Kj)t + ,B (1 - 5) IIE"'t7Tmcpi,t‘-i—l-
And the Euler equations remains:
Vi = EtViy1 — 0B (R — Tonepijp+1 — 1) -
As in the standard model, implementing
Rt = ?;ﬁ + (ancpi,t
therefore stabilizes jointly the output gap and MCPI inflation (when ¢ > 1). Indeed we obtain:
]Etn'mcpi,t-l—l - (1 + R+ RKU) IE:'157-L'rl1cpi,t—i-1 + (R + RKU¢) nmcpi,t =0.
For ¢ > 1, the roots of the polynomial are strictly larger than 1, so the only non explosive solution is 7;;cp;; = 0 which
implies ) = 0, see e.g. Woodford (2003).

Result 3

Denote the gap between MCPI and CPI inflation by 7ma = ) (@ — §1> 71+, and analogously define pA,t and AA,t-
Recall that if if M; = 0 then (A.1) becomes A, = A for all k. We can write the NKPC for 775 as:

Rrpy = —AR (Pay+ Any) + o
VN

Pati1— (1+R+RA) Py + RPyy 1 = ARAy,
The eigenvalues of the system are:



R+R/\+1i\/(R+R/\—1)2+4R/\
Pt =
2

With py > R+ RA, u— < 1. We obtain:

t
, B 1 4
Pay=—-AY u =Y — A
0 Hy

Therefore, we have:

t
- 1 . .
NH = —)\Z}lt_ s+l E T’u Aputs + Anp.
0 +

Now suppose that we have a negative shock in a necessity (luxury) sector, in that case Ay ; > 0 (A ; < 0). Assume
in addition that | A ;| < |Aao| (the shock is larger on impact), then we have for a shock in a necessity sector

u>0 '+
> <1 _ M) A,
py—1
AR R
1-— Apg >
= < R+RA—1> a0 =0
Similarly for a shock in a luxury sector, we have:
AR N
< e < 0.
NHy < <1 R+RA_1) App <0

Result 3A.0 Analytical formulas for AR(1) shocks

In this section, we assume that shocks vanish at a constant rate p, and derive analytical formulas for 7z.p; ¢, 7Tncpis and
;. We show the following:

i

ii.

ii.

iv.

Vi.

There exists a time fpry (tay = 0if p; = 0, tpryy = ooif p, = 1) such that for a negative shock in a necessity
(luxury) sector and t < tyry then NH; > 0 (NH; < 0) and for t > tyry NHy < 0(NH; > 0)

The gap 7t pit — Tncpi €volves independently of the policy rule. There exists t* (t* = 0if p, = 0, t* = ocif p, =
1) such that for a negative shock in a necessity (luxury) sector and t < t* then 7tcpit > Tncpit (Tepit < Tincpit)
and for t > t* TCepi b < Tlmcpit (ncpi,t > ﬂmcpi,t)

Under the MCPI rule R; = PTncpi + 7 (With ¢ > 1), we have 7cpip = Y; = 0so for a negative shock in a
necessity (luxury) sector and ¢ < t* then 7.p; s > 0 (7¢piy < 0) and for ¢ > * 7p;p < 0 (7Tepip > 0)

Under the CPI rule R; = ¢7tepis + 7f, There exists a time ty (ty = 0if p, = 0, ty = oo if p, = 1) such that for a
negative shock in a necessity (luxury) sector and t < ty then Yy <0, >0)and for t > ty.j)t >0(); <0).

Under the CPI rule R; = $7tepiy + 71, there exists a level of persistence p*such that for p, < p*, for negative
shocks in a necessity (luxury) sector 7p;; > 0 (77cpir < 0) for all t. For p, > p*, There exists tcpy (fcp; = ooif
pa = 1) such that for a negative shock in a necessity (luxury) sector and ¢ < tcp; then 7.p;; < 0 (7pir > 0) and
fort > tepr TCepit >0 (ncpi,t < 0)

Under the alternative rule ﬁt = PTncpi OF ﬁt = PTpits the response of the output gap and both inflation
indices at t are simply shifted up proportionally to p’?;. Normalizing shocks such that 7§ = —1 (equal impact
of sectoral shocks on efficient output), we have that for t < ty (t > ty) and CPI targeting the output gap will
be higher (lower) following a shock in a luxury sector rather than in a necessity sector. In addition, for high
enough persistence the output gap will be negative under CPI targeting following a shock in a necessity sector.

Dynamics of the N/ wedge. Rewriting NH; = —A Y u' 1y ﬁAA,ws + Ay, with Ay = pt Ap g we have:

NHy = s (R =) (1= ) = (R =) (1= i) i) A




Define t* = In <%> /In ( ) for t < t*, N'H;same sign as A and for t > t*, N'H;same sign as —Ax o.

For transitory shock t* = 0, for a permanent shock t* = co.
We now derive the evolution of inflation (CPI and MCPI) and the output gap under some particular interest rules.

Case R; = PTncpi + 1. The system of equations becomes
ancpi,t = Rx): + ]Etﬂmcpi,t+l

yt+1 - 5)1‘ =0 ((ancpi,t - nmcpi,t+1)
The eigenvalues of the system are

R+RKU+1i\/(R+RKU—1)2—4RKU(¢—1)
2

For ¢ > 1, the eigenvalues are larger than 1in modulus, we therefore have 7tcp;i = Y; = 0 for all t. The evolution of
CPl is then

Ay =

Rncpi,t = R)\NHt + IEtncpi,tJrl

RA C o
(.u+ - Pa) (}l_ — pa) ((1 - pa)pa (1 “I,l,) y_) AA,O

We have that 71, o has the same sign as Ap o (positive for a shock in a necessity sector, negative for a shock in a luxury

Teepit =

sector). In addition, define t* = In ((( ) /In ( ) for t < t*, 71cpi+ has same sign as AA o and for £ > t*, 7.p; s has

the same sign as — A . For transitory shock t* = 0, for a permanent shock t* = co.

Case R; = PTCepip + P
Rﬂcpi,t = RKj}t + R)\NHt + IEt7-[cpi,t+1

yt+1 - yt =0 (477Tcpi,t - nmcpi,t+1)
In that case, we have

it = —pal)z?u —pa) { <1 (A - ji)qab —pa)> (=pa)es = (1 (A — MRi)q(Tqb — - ) (=) ”t} Aso

o RAc¢ (1 —pa) (R —pa) t (1—p-)(R
N= (14 — pa) (H= — pa) {<A+—pa)(A—pa)p” (A —p-) (A ” }
RA

7Tcpz t nmcpz t —

G o Gy (A= pa) et = (1= =) t) Aug

Note that the fraction % is decreasing in x. From this we deduce that J; initially has the same sign as

H——x
—Apg (fort <t =t* =1In ((FR_V%%E gﬂ)) ((AA:_:“;EA— Z" ) /In (p” )) then for t > t* has the same sign as A (for a

transitory shock); has the same sign as Apgfort >0, fora permanent shock, Vi has the same sign of —App forall t).
This implies that the output gap is always negative on impact in response to a negative shock in the necessity sector,
positive for a shock in a luxury sector.

The response of CPI is more ambiguous and depends on the persistence of the shock. There exist a persistence
R+Rxo+1—+/ (R+Rxo—1)>+4Rko R+RA+1—1/(R+RA—1)2+4RA
2 2

O<v= <pr< = p— such that for p, < p*, 7,p; s always has the
same sign as App. In that case, 71+ and the output gap initially move in opposite direction. If p, > p*, initially cpi
inflation has the same sign as —Ax o and then switches sign (keeping the sign of —Ap g if p, = 1). In that case, TUepit
and the output gap initially co-move. To see this consider the polynomial P(x) = ((1 — x) (R —x) — Rkox) (1 —x) —
(A —x) (A= —x) (1 - m_}f;%) (1 —p—). Itis a third order polynomial with a negative dominant term. It
is direct to check that P(x) > 0 for x < v, P(u_) = 0, P(1) = 0 and P'(y—) = 0. This implies P(x) > 0 for
x € [0,0*]U[u-,1], P(x) < 0forx € [p*, u_] withv < p* < p_. Inspecting the formula for 7, then gives the result.
In the extreme case where ¢ — co, we have Tepif = 0, = -5 +lIJN ‘H;: stabilizing CPI inflation comes at the cost

of distorting the output gap. Finally, since by Result 1 7.+ — 7Tycpis is independent of monetary policy, we have as
in the previous case that for a negative shock in a necessity sector, 7;; is initially higher than 7;,.p; s and then lower
and the opposite is true for a negative shock in a luxury sector.



Case R; = @Tncpit-  The system of equations becomes
ancpi,t = Rk + Et”mcpi,t—o—l
- . .
V1= =0 ((ancpi,t — Tlncpipt+1 — rt)

In that case

o Rxo ptf’*
P (i = pa) (- —pa) O
) U(R _pa) tax
Vi = ol
" s = pa) (u —pa) 0

The response is as in the standard model with 77,,,; ¢ and J; both increasing in response to a negative shock (sectoral
or aggregate) and increase is smaller the stronger the Taylor rule. In addition

RA Rxo
Hi = Pa) (H- — Pa i = Pa) (- — Pa)
Tlepit increases relatively more than 71,¢; ¢ for t < t* = In ((17” ’)) /In (1%) , (less for t > t*) for a negative shock in

(1~pa)
a necessity sector, relatively less for a negative shock in a luxury sector.

Tepis = ¢ ) (1=pa)ph— (1= p) u") App+ ( ph7s

Case R; = ¢7tcpit-  The system of equations becomes
Rﬂcpi,t = RKj}t + RANHt + IEtncpi,t+1

yt+1 V=0 ((Pncpi,t — Tncpipt+1 — ?;k)

We have:
o RA _ Rxo¢ _ b (4 Rxo¢ _ P N
G e e | Gkt e e Gl v ) KB £
Rxo £ ax
TG ) (- —p
o RAG¢ (1—pa) (R—pa) t (A—p)R=p-) 4\ z 0 (R —pa) t ok
N = <y+—pa><u—pa>{<m—pa>m—pa>“ <A+—u><A—y>”—}AA'°+<A+—pa><A—pa>P“’°‘

Using the results of the previous cases, we can directly see that following a negative shock in a necessity sector,
the output gap is lower under targeting than under MCPI targeting. In addition, if we compare the response of
a negative shock in a luxury sector and a necessity sector which have the same impact on efficient output (J; =

1;7 Y (ll)aigel + §1) Al,t)/ the output gap is relatively lower in response to the shock in the necessity sector. If the

shock is sufficiently persistent the output gap is negative in response to a shock in a necessity sector (as #; — 0 when
Pa — 1).

Additions to Result 3. In Appendix F we extend provide a number of additional analytical results for the case with
Hand-to-Mouth households.

Result 4

We first give an example of a shock® that is such that there is no inflation index (77; = Y @y 7ty with Y @k # 0) that
can be stabilized alongside the output gap under A.1 and A.2. We then argue that for any persistence of the shock
pa, the set of shocks for which an inflation index can be jointly stabilized with the output gap is of measure 0. Finally

we extend the argument without A.1 and A.2. We denote B, ({At} t>0) the solution of the relative price system
(described in Result 1) for an arbitrary sequence of shocks { Af}t>0 (and similarly 7y ; ({Af}t>o)' My ({At}t20>

the implied relative price inflation and endogenous markups). Consider a shock A; = {Al,t/ vy Ary } 1>0 such that for
k=1,.,K—1andall t: B
1 1 )k % N, D*
- <1l]+0'> (Ak—)\) yt +Akpk,f_/\k ZaEEZPI,t :O
)

Re-expressed in terms of A, this becomes:

®There are, of course, other examples as well.



— 5\ . N —
— (=AY <ae€1 + lli) Ay — AeArr + A ) _0ee1 Ay =0
1 1

Note that this is a system of K — 1 equations in K unknowns, so it admits a non trivial solution A* # 0. We necessarily
have:
N S N
Z <aee1 + l> A;k # 0.
7 ¥

We reason by contradiction: if ) (@l + %) A;‘ = 0, then Ay (A; Y. aTenA;;) = A (A;‘ -y Bjenfl,ﬁ) for all [,k
(note that the K" sector equation is a linear combination of the other K — 1 equations). Under (A.1), we have
that Ay > 0 for all k, which implies Az = 0 for all k. Indeed, noting A* = min (A;‘) A" = max (A;k), we have
0< A (Z* -y, @HAZ) =A (A* -, TgenA:‘J <0,so0 A,’j is constant across sectors which implies A; = ( for all k.
This contradicts the fact that A* is a non trivial solution of the system.

Next, define the shock A*# such that A:’p "= pflA* for 0 < p, < 1, in that case, the system for relative prices is
given by:

et — B (1 —0) Beftipn = Y iy + ) (AkMk,t —A ZaeelMl,t>
1

Pry = Tty + Pryq
0 0

Mk,t = ]Et-/\;lk,t—s-l - mlEka,tH'
1

- - 1 -
mEfMg,H—l —Y Bl — (1 - R> M,

We therefore that have By ; (A*f+) = 0 for all k, ¢ is a solution of the system. This implies that the NKPC for the index
T4+ 18t

-0
Mg, =

el
Tp =k +AY 0eer Tk ) —————LphAf + +BEi 74411
k

7 o+

Since } Wﬁf # 0, the index 7, cannot be stabilized jointly with the output gap for any A*#s.

Now Take an arbitrary inflation index 7t;, decomposing it in the basis of 7;; and relative prices, we have:
K-1

T = Wallgs + Y Wtk
k=1

Suppose w,; # 0. We have for an arbitrary shock persistence p,, A? such that A" = p! A that the NKPC for the index
7Ty 1S:

e — Bt 11 = wak Vi + Wy (Ap”)
Where the wedge W; (A7) is given by
o (w@m + §m)

K-1
Aoa) = RS- t A D (A ®a P (Apa

k-1

— Y w (Ak (0hAm + Py (AP7)) — Ak Y 0cey (0hAm + Pt (Ap“))>

I=1 m

Since the system of relative prices (described in Result 1) is linear and that shock enters linearly, we have that the map-
ping A — P, (Af") is linear. Therefore we directly have that the mappings A — MP, (Af*), A — M, (Afr) are

linear (as M kD,t and /\/l}: , are linear functions of relative prices). This implies that the mapping A — W; (Afr) is also
linear. Note that since Wy (A*f1) = wyA (Zajekl”o Y w&k # 0, we have that the kernel of A — W (Af)
is at most of dimension K — 1. Since a subspace of RX of dimension K — 1 has Lebesgue measure 0, that implies that
for a any p,, Wy (APr) # 0 on a subset of measure 1. This implies that no index with wy # 0 can be stabilized jointly
with the output gap. Therefore only relative prices can be stabilized jointly with the output gap. However, as shown
in Result 1, relative prices are independent from monetary policy. So the only inflation index that could be stabilized



jointly with inflation would be a trivial index which does not respond to any shock.

Note that previous argument remains valid if we relax A.1 and A.2. for permanent shocks. Consider a policy that
stabilizes the output gap. We have Yy =0,R = r{ + Tncpit+1- We first show that no inflation index 71y = Y @y 7t
with ), @k # 0 can be stabilized jointly with the output gap.

) . o (lpaieel + S’z) . . — .
e = Y (Alk — ATw) O Y WAU — | MAr — Ax ZI:Be@zAz,t

m l

- (Akpk,t — Ax Zaeelpl,t> + Ak (Mpk,t + MPk,t) — A 0ee; (MDl,t + MPZ,t) +B(1—0) Eitp i1
1 1

pk,t = Ty + pk,t—l~
Where the endogenous markup now solves:

Mkt = Z/'Yek Pkl )dipl,t,

¥ | - ~ 0
MkD,t - EthD,t+1 - Z‘TI}/,\I/t (rf + Tmepit+1 — Bt 1) — 1-3 tht+1r
]
MO _ 1 E MO . b(l)d * ~ ~
kt = m tMi i Tt 'Yb,k(l)ﬁ ! (rt + Tlnepit+1 — 7Tcpi,t+1)
~ (el . Wn N S - R-1
- Z/'Yb,k(l) <() (s1(i) —51) + ¢WA§ ) (aeffz(l) - ae€z>> diPyy — TMlgt,
_ — R 0'+ A Wn(i
O'kl = U/’yek 8 ek (1)0ee;(i)di — 09, e ll] WZ(\I)dZ

Note that under a policy that stablhzes the output gap, the evolutlon of relative prices is independent from
74, relative prices only depend on themselves. Consider a permanent shock (A;; = A, for all I, ) such that

Yo (AkTk — AT) Oce Y %fil,t — (AkAk,t =y ﬂlfll,t) = 0 for all k and denote it A*. This implies r; = 0

for all t and therefore ?k/t (A*) = 0 for all k,t. As before, we necessarily have ), (ﬂl + ‘;—l) A;k # 0. If we consider

an inflation index 71y = ), @y 7ty with ), @ # 0 it can be rewritten 77, = wyry; + Z,If;ll wi Tt with wy # 0. Con-
sider the set of permanent shocks Al the NKPC for 7; is then 71, — BE;mti 11 = Wy (Al) and note that W, (A*) =

g Yo AT mOclr Y %/ﬁf # 0. Since A — W; (Al) is again a linear map, this implies that the set of perma-

nent shocks such that W, (Al) = 0 as dimension at most K — 1 and therefore has a Lebesgue measure of 0. We
can extend the argument to the set of shocks A (a)such that Ay, (x) = YI_a;xp! where 0 = pg < ... < p; = 1 and
{@ik}to<icr1<k<k are arbitrarily scalars (A (w) is an arbitrary combination of I shocks with persistence py,...,01). Indeed

consider A (a*) such that a;x = Af and a;; = 0 fori # I, we have Wi (A (a*)) = wy ¥y AT ey Y Wgefe’l[js_l)ﬁf #0

so using the same logic, for a given ¢, the subset of shocks such that W (A (x)) = 0 is of measure 0 .Therefore no in-
flation index with Y ; @y # 0 can be stabilized jointly with the output gap on any set of combination of AR(1) shocks.

Result 5

Under the assumption that A = Ay for all k, the equations for relative prices (defined with respect to MCPI) can be
rewritten as:

ftgr — B (1 —0) Etftg 1 = A (13,2} + Z(Xk,lpl,t + Z (/\;lk,t - Zagel/ﬂllt>> ,
]
pk,t = Tt + pk,tflr
- . 5
My = B Mjpq — -
v 1 ~ _ 1\ -
My, = mEfMg,H—l —Y Bl — (1 — R> M,

T—sE Mg

with



R . e . R
K = —lj—; + 9eey +/'76,k(1)Ekpk,l(Z) - )\ a /'Yen E Pnl( )d U'kl +Zaeen On,l

~e(i N N T . 1
Bri = /%,k(l);) ((51(1) —&)+o <3e€z(l) - 3e€z>) di+ (1 - R) o
For an aggregate shock, we have 15,: , = 0forall k so P; = 0 for all k, t. Since we have

. )
Mllc),t = IEtMIP,Hl + Z‘T%Etnhtﬂ - (5]E Mkt+1
1

1 . /) . W N — = R-1
Mg/t :mﬂztﬂ/t%m — ;/%,k(z) <eg (si(i) —5;) + lpwr;\; i) (8961(1) - aeel>> diPy; — TM,&.

and
M, = Z/%k Pkl i)diPy
This implies M ,’;'?t =M ,l: ; = 0 for all k, t. Therefore,
My =T VF <0
Forall k,tif I, > 0.

Result 6
Assume that the households’ utility function associated with intratemporal sectoral consumption takes the form

1—1
1 K ’
u(cy ..., Cx) = 11 (H (cx _Ck)ak> :
o

k=1
With ¢ = ex/ Py (recall that subvariety prices are equal in steady state) and ) a; = 1. We have:

a (e — ) Pecicr) = Pe (cx — cx) -

Therefore
Beek = K
0 ek K ay
dpck + ;k = P —c + Fk <P E—ZPkck —|—C1> 1= l E—ZPka
0 ek Kk
PlapICk + Pl ;k = Fk (Dél - jlk:l) (6 — Zpkik) ,
and
_ 1
Sk = / T (th ZP[C] +Pka)d
— Py —0eer Y Prc
v %Ck ;kz i

. / ! 5 Prcx — 9eer Y Pic
e(EZ)(Sk(Z)_S_"):E <aee" —Y_Pia) +Pka—€()<ae€k—|— L Ekz ll))/

~5(1-F) (ra -7 LRg) = (1) (v-3).

Defining P; = Py — Y BjelPu and gy = s — Yy 00€] 71+, we therefore have

X — 3 N
My =T [ r0x@) E (e~ L Riew) dideerPyy — [ 7ea(i) 5 (e~ Lo Pecy) i
l

- 0eC, o~
= — /’Ye,k(l) Eik (e — Y Pecy) diPy



0

MkD,t = IEfMl<D,t+1 1-5 tht+1
1 ~e(d) .o .5 R-1
M, = mﬂwﬁm =1 [ 1ok Gsl0) = 1) diPy — == M,
Note that under A3 we have 7, (i )a"ek =7, (i) + and Yy (i) = 75, (i) for all k so /\/l MP,Mglt = M),
kCk
Mkt = /’Ye ;dlpkt
D )
M - ]E Mt+1 1 tMt-‘rl
1 R—-1
M?: (1 5 t+1 Z/ _Sl)dlplt_TMtD
Next under (A.1) and (A.3), we necessarily have I' = I', Ay = A for all k so the NKPC for 7ty ; is
_ (e— XL Pick) .- _
T = A ((Pkt - Pkt /’)’e E)dlpk,t> + BE; 7ty p41

The evolution of relative price k only depends on itself. Denoting A = A <1 + [ ’ye(i)(ezEpkck)> the eigenvalues of

the system are:

R+RA+141/(R+RA—1)° — 4R}
2
> —1,0 < v_ <1, R+ RA < v,) and the evolution of Dy ; is given by:

D t—s+1 D%
Pk,t - AZV— ZVTPk,s+L1
0 +

For a negative sequence of shocks in k {15,:‘ ;}t>0 > 0, we therefore have Pk/t > O forall t and aTekPk,t = — (1 — aTek) Pl,t
for all I # k so we have

V4 =

(Note that for [ v, (i) M

Y. Prex
Cplt_ZSkMkt_ /’Ye 7*511251 i

C
/'Ye P kdl (sk—aek)/\zvt S+1zvu ks+u
So MP .

epip <0 following a shock in a necessity sector, M”
have for a shock in sector k

L1 )\ . o 1 5 5
MP Z—/%(ﬁg (1_6(51)> di <1—5)H1L,ZOR“;(qu_a“elzp”c”> Pl

epip > 0 following a shock in a luxury sector. In addition we

o (- ) o) P
(i

So if Cov (’yb(i), e—) >0, MP = M?p” > 0 following a shock in a necessity sector. Note that under the stronger

E
assumption that b (i) = 0 for all i, we have v, (i) = v.(i)o /(0 + ) so if 7.(i) is increasing in e(i), Cov ('yb(i), %) > 0.



D Calibration procedure and numerical details

Outer Preferences

To calibrate the non-homothetic CES preferences we use the LCF survey, which is the most comprehensive
survey on household spending in the UK. Each member of the household keeps a detailed spending diary
for a period of two weeks, while expenditure information on bigger items (like cars, vacations, housing etc.)
are collected during interviews with the household head. We map these highly disaggregated consumption
data into the standard 3-digit COICOP categories using a mapping table provided by the ONS. Aggregating
these to the COICOP division level, forms the basis of our definition of sectors for the UK economy as
well as providing the data for estimating the household-specific marginal propensities to consume across

different sectors. _ _ o _
We exclude housing costs from household expenditures by redefining the relevant consumption cat-

egory (COICOP4) to only include expenditure on Electricity, Gas and Other Fuels.” Furthermore, we
exclude the following four sectors from our model: Alcohol & Tobacco, Health, Communication and Edu-
cation. Health and Education are largely publicly provided in the UK and hence only a very small fraction
of households report any private spending in these sectors. The other two sectors account for a small bud-
get share so overall we still capture the vast majority of private expenditure, with the notable exception of
housing.®

We gConstlruc’c household-specific price indices using the observed consumption shares in the 3-digit
subcategories of each COICOP group so that In Py (i) = Yepm, Smkt(i) In Py, i ;. Whenever indices of 3-
digit COICOP categories are not available (only occurring before 2015 and for a small subset of categories),
we use the 2-digit price index of the corresponding group. To guard against any potential endogeneity of
prices (similarly to what is done in ?) we construct Hausman-type price instruments by using the shares of
all other households in the same region and for any given sector. To instrument for total expenditure we
use log disposable income as well as the expenditure quintile of the household.

We impose that the individual parameter shifters take the following form:

k
InVig = xify +v;,
where x; are household demographic characteristics and vi-‘ is an idiosyncratic and time invariant prefer-

ence shifter that satisfies IE [vi‘ x;] = 0. The specific demographic controls include the size of the household
(1,2 4 adults), number of children (0, 14 ) and the age of the household head (18 — 37,38 — 50,51 — 64, 65+).
Note that since households are surveyed at different points during the year, we also include quarter dum-
mies to allow for potential seasonal effects in the consumption of different goods. The table below shows
the results across a different set of specifications, with the first column showing our baseline version.For all
estimates in this table, we use Clothing as the base sector and assume an elasticity of substitution equal to
0.1. We conduct different robustness checks to show that our results do not qualitatively change with the
specific assumptions made in the baseline. The other columns show in turn the GMM results from win-
sorizing the data, adding regional controls (there are 12 regions in the UK) and expanding the sample to
include all years available. For the winsorized sample we mark the households that are in the bottom or top
2% of expenditure shares in each of the eight COICOP categories and then drop them from the estimation.
The GMM results are quite robust to outliers so the exact cut-off does not matter much. Note also that in
specification 4 we add year dummies on top of the quarter dummies that are present in all specifications.
We have also run other robustness checks where we use different instruments or weight the observations
by household expenditure and qualitatively the results are unchanged.

“Note that these are not the only direct expenditure on energy as households who own vehicles will also spend on diesel and
petrol, included in the Transport category.

8The correlation between the three different measures of total expenditure (i.e. the original variable, excluding housing and
excluding housing plus the four sectors) is always greater than 0.966.



. @ 6 ¢

Food 050 046 0.49 0.37
(0.02) (0.02) (0.02)  (0.00)
Electricity & Gas 052 047 051 0.30
(0.02) (0.02) (0.02)  (0.00)
Furniture 121  1.12 1.19 1.20
(0.05) (0.05) (0.05) (0.01)
Transport 090 089 088 1.10
(0.04) (0.04) (0.04) (0.01)
Recreation 123 1.15 1.20 1.11

(0.05)  (0.04) (0.04)  (0.01)

Restaurants & Hotels 0.98 097 0.96 0.99
0.04) (0.04) (0.03) (0.01)

Miscellaneous 086 082 084 0.90
0.03) (0.03) (0.03) (0.01)
N 3,164 2,815 3,164 56,538

These estimates allows us in turn to construct the marginal budget share d.¢;(i) = 7 + (1 — 17)%, where
{(i) is the household specific ‘average’ non-homotheticity measure given by (i) = Y s¢(i)Zx. This implies
that richer households that spend more on luxury goods will have a higher ((i). These preferences also
imply that the compensated price elasticities take the following form:

P (i) = {—;7 (1-s(i) ifk=1L

Elasticity of Substitution Parameter. We set the elasticity of substitution parameter equal to 0.1, following
the ? estimation for their 10-sector model. Here we show that increasing the value of 7 worsens the fit of
the model, as measured by the criterion function of the GMM procedure. Figure 8 plots the criterion value
as we vary the value of the elasticity parameter between 0.05 and 0.9. Regardless which of the sectors we

choose as the base, the fit of the model worsens with higher values of 7. *

Figure 1. Criterion Value for different values of the elasticity parameter.
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Notes: Each panel plots the minimised criterion function for the same GMM procedure for a given base sector.

Finally, figure 2 shows that the estimated preferences reproduce reasonably well the non-homotheticiets
observed in the data. In particular, we plot each category’s budget share against total household expen-
diture. The data are binned in 20 equally sized groups by total expenditure, and each dot represents the

9Note that we do not estimate the parameter 7 jointly with the {’s because as the figure shows the estimation would demand
an 7 that goes to zero and so the procedure is not well behaved.



average budget share in that bin. In blue we have the observed budget shares while the red dots represent
the fitted budget shares, and they align quite well for almost all sectors.

Figure 2. Actual vs. Predicted budget shares by household total expenditure.
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Notes: Each point represents the average expenditure share on a given sector by total expenditure bin. The data has been binned
into 20 equally sized groups.

Inner Preferences

Our quantitative exercise assumes an inner aggregator that takes the HARA form and is sector specific. The
sectoral bundle for household i in sector k is given by
akfl

th (i) = 1 [ (betasanlin ) di,

ag

where {ay, by} are the two parameters that govern the HARA function. The optimal bundle of varieties
given a total sectoral expenditure e (i) is the solution to the following problem

maxth () + 240) ()~ [ peliecti )
k

where A (i) is the Lagrange multiplier and is household-specific due to the fact that households have dif-
ferent expenditure levels. Taking the FOC of this problem and re-writing allows us to derive the HARA
demand function as

crli ) = - (kDG ™ = ).

We can then use the definition of price elasticity e, (i) = %llrrllc—]{’jlfé’]j)) and take the derivative of the previous
expression to derive that the elasticity is equal to a; + C;%, as given in the main text. Since subvariety prices
are all equal in equilibrium, the household will have the same elasticity of demand for all subvarieties and
therefore we suppress the j in the notation. Nonetheless, if by < 0 households that spend more money on a
given sector and therefore consume higher amounts will be less price elastic.

A few more lines of algebra allow us to derive the superelasticity for household i in sector k starting



from its definition
. dlne k (l)
~ dnp(j)’
_ b 9 f) pr(G)
ci (i, ) ope(j) ex(i)’
_ b (_ack(i/j) 240)) ) 1
cr(@,j) \ 9px(j) exlinf) /) ex(d)’
bi
c(i, )
Given the household level elasticity and super-elasticity, we can derive the aggregate counterpart of these

objects which will in turn determine the sectoral markup and price passthrough. To recover the aggregate
elasticity we take the the average household elasticity, weighted by the expenditure shares to get that & =

ax + g—’]‘(. Finally, to get the expression for the aggregate super-elasticity, we plug in the expressions for
ex(i) and € (i) in the formula'® & = (— | (ex(i) — &)’ %di + %ei(i)ek(i)do /€& and we get that

€ = (b:—’]‘(. Note that these formulas are slightly different than the ones given in the main text where we use

expenditure rather than actual consumption levels. Normalising the price to one is innocuous since the
elasticity and super-elasticity values that are recovered for each household are independent of the assumed
price level. The reason for this is that while we can recover a; for the other coefficient we can only identify

€ (1)

1 4
by __ passthrough

G = markup—T - This is sufficient to get the household objects since with a slight re-writing we have that

L\ -1 A\ 1
ex(l) = a + <%> g—’; and €; (i) = (%) g—’; The same is true for the markup sensitivity parameter

which an application of the formula shows to be equal to v, (i) = < — i—:) ékl—l'

Input-Output. To calibrate the parameters relating to the IO part of the model, we use the tables of inter-
mediate input consumption provided by the ONS. These tables of input flows are constructed based on the
CPA classification that defines 105 industries/products and which are different from the COICOP classifi-
cation that we use in our model. To bridge this gap, we construct a mapping between the CPA classification
and the COICOP one starting from the most disaggregated list of product classification (CPC10) of which
there are more than 2000 products, although only 832 are for final consumption. The mapping consists in
two steps. The first is to use the CPC10 to COICOP tables and assign weights to each product using the CPI
weights available from ONS data. For example, if there are four CPC10 goods for a given COICOP category
(we use the most disaggregated one for which we observe consumption weights) that has a weight of 1,
each good will receive a weight of 0.25. Also note that the vast majority of CPC10 goods (more than 80%)
map to a single COICOP category. Another 12% maps to two categories and only less than 5% maps to 3-5
COICOP categories.

Similarly in the other direction, we map the COICOP10 consumption goods to the CPA industry defi-
nitions using the concordance tables available from the UN’s Statistics Division. !  Unsurprisingly, the
mapping of consumption goods to industries contains fewer one-to-one cases than with COICOP. Nonethe-
less, about 60% of goods only map to one or two CPA industries and another 30% map to 3 or 4.

Closed economy adjustment. The intermediate consumption tables provided by the ONS do not specify
the share of inputs produced domestically vs what is imported. In our closed-economy world it must be

ONote that this formula is valid for any demand system and can be derived directly from the definition of &
as the elasticity of the aggregate elasticity with respect to its own price.  Taking the derivative wrt price gives

(p’;—i])) <f (apkek(i)g’%(:) + (i) <apk£k(i) - Ek(i)figkek(i)di>) di). Use the fact that 0p,e(i) = ci(i) (1 — €x(i)) and re-arrange
k

k
to get the expression in the text.

Note that this has to be done in a few steps that consists of the following chain of mapping CPC10 — ISIC3 — ISIC3.1 —
ISIC4 — NACE2. That final classification contains 626 categories that can be aggregated to the 105 sectors used in the UK’s 10
tables.



the case that final demand (private consumption) plus intermediate consumption equals to total domestic
output [PY]. To make this identity hold when we calibrate the model to the real-world data we adjust the
vector of domestic total outputs with weights {a1, a3, ..., ax} such that the following holds

[PCli + T[]y = D [a] [PY];,
where the matrix T gives the flow of intermediate inputs and specifically T; ; is the amount of product i
used in industry j. '2  This correction imposes that all production is done domestically (while not distort-
ing the input mix used by different industries as given by T) and hence sectors in which the UK imports
(exports) a lot will have a higher (lower) adjustment factor «.

The table below shows the IO matrix () for the eights sectors in our model. As is standard, we observe
that sectors mostly tend to use goods produced by their own sector and so the diagonal entries dominate.

0.200 0.009 0.023 0.019 0.031 0.049 0.006 0.043
0.003 0.024 0.016 0.024 0.023 0.028 0.001 0.040
0.006 0.011 0.322 0.055 0.036 0.036 0.001 0.094
0.005 0.019 0.060 0.108 0.047 0.064 0.001 0.086
0.008 0.011 0.057 0.039 0.239 0.066 0.003 0.089

D.1 Model without heterogeneity in price stickiness and markups, and without I-O
linkages

The baseline model includes various features other than non-homotheticities. In this appendix we study
their quantitative importance. First, we shut down sectoral heterogeneity in prices stickiness and steady-
state markups, as well as Input-Output linkages. Concretely, we achieve this by targeting in the calibration
the (unweighted) average markup across sectors, setting all Calvo parameters equal to the average across
sectors, and by setting intermediate input shares to zero.

Figure 3 shows impulse responses under a Taylor rule, with the aforementioned features shot down. As
shown by the figure, we preserve the key result that the output gap declines in the two necessity sectors:
Food and Electricity & Gas. In sector Transport, the output gap now increases. The increase observed in the
baseline model is thus driven by the features that we shut down in this appendix. This is consistent with
the fact that Transport is neither a luxury nor a necessity sector (the luxury index equals zero for this sector).

Figure 6 shows the Guidance experiment in the model version without I-O linkages and sectoral hetero-
geneity in markups price stickiness. The figure shows that the key result, that monetary policy is relatively
loose in response to shocks in necessity sectors (Food and Electricity & Gas) is preserved.

Overall these results underscore the importance of non-homotheticities and show that our main results
in the baseline model are not driven by sectoral heterogeneity in price setting, markups and I-O linkages.

Next, we study the wedges quantitatively. Figure 4 plots the baseline model. We observe that the N'H
wedge increases following negative shocks productivity shocks in the sectors Food and Electricity & Gas,
and decreases following shocks to Clothing, Furniture, Recreation, and Restaurants & Hotels. We also observe
that the movements tend to be relatively transitory. By contrast, the M wedge falls persistently following
all negative productivity shocks. Finally, we observe that the relative price wedge P plays a quantitatively
important role as well. Recall that this wedge enters the NKPC with a negative sign. The negative of the
wedge increases for following negative shocks to Food, Clothing, Electricity & Gas and Transport as these
are sectors with relatively flexible prices. For the remaining sectoral shocks, the negative of the wedge falls
(on impact). From Table 4 in the main text it can be seen luxury sectors tend to have stickier prices. Thus,
the N'H and the P wedge tend to reinforce each other, although there are exceptions (e.g. Clothing shocks).

Figure 5 shows the wedges for the baseline model, but without heterogeneity in Calvo probabilities and
without I-O linkages. In this model version, the weighted relative price wedge is zero. The movements in
the N1 and M wedges are qualitatively similar to those in the baseline model.

12Note that in terms of the () matrix one can write the flow matrix as T = (D [PY] Q).



D.2 Implementing optimal policy with a Taylor rule plus guidance

In this appendix, we show how we back out the “policy guidance” in the exercise of Section 5.3. Guidance
is defined as a series of interest rate rule residuals, {uﬁs }EOZO, where uﬁrs = R[+S — ¢7tt4s. These residuals
are announced at the moment a certain shock hits (this could be e.g. a sectoral or aggregate productivity
shock). The guidance may varies across shocks.

Our goal is to solve for the guidance which, for a certain shock, implements the optimal policy. Let
IRFop be a column vector containing the Impulse Response Function (IRF) of some variable under optimal
monetary policy, IRFrg the IRF under a Taylor rule, and IRFyp() be the IRF to a purely transitory, unit
news shock to the Taylor rule, hitting at date s and announced at date 0. We want to solve for {uf, }SS;S

such that

S
IRFop = IRFTRr + le5+s Z IRFMP(S) = IRFrr + IRFpipu
s=0
where S is a truncation date, IRFp is an S X S matrix containing the IRFs to the monetary policy shocks
on its columns, and #R is a column vector containing the guidance. We solve for the guidance vector as:

uR = IRF,}, (IRFop — IRFrR).

In our implementation, we use the IRF of CPI inflation to aggregate and sector-level shocks. We set the
truncation horizon to 75 quarters. We verify ex post that the IRFs of variables are close to identical under
optimal policy and the interest rate rule plus guidance.



Figure 3. Responses in the baseline model, but without heterogeneity in prices stickiness and steady-state
markups across sectors, and without Input-Output linkages.

MP shock Prod. shock: aggregate Prod. shock: Food Prod. shock: Clothing Prod. shock: Electricity and Gas
0.08 0.15 0.12 0.1 =

0.1r:

0.1F
0.1

%
S L s b b b
e o o o o o
5 - & & & R’&8 o
< o o o o o o
o = S ° ° o
S 5] R & 3 <
luxury index: 0
°
S <
&
luxury index: -5.9
luxury index: 0.5
S
°
& o
luxury index: -2.2

L L L L L 015 L L L
0 10 20 30 0 10 20 30 0 10 20 30

-0.15 -
0 10 20 30
Prod. shock: Furniture Prod. shock: Transport Prod. shock: Recreation Prod. shock: Restaurants and Hotels Prod. shock: Miscellaneous
02 0.09 0.2 0.12 0.08
018,/ ——CPl inflation oosh 018,
—Yga i
0.16 gap i i 007+ 0.16 !
77777 MCPI inflation : i
014
0.06 ] <
~ ! © :
N S o1zl < ° <
¥ 005 3 i H 3 %
° I3 1 ° c °
< Z 0.1 £ = 2
2 004 g ! > > <
5 h E i S 2 3
2 3 o008h|i H 3 2
0.03 3
0.06
oo0zr 0.04
0.01f 0.02 0.01
0 0 0 [ 0
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
quarter quarter quarter quarter quarter

Notes: Responses for productivity shocks are for a 1 percent decline in productivity where scaled for comparability (see main

text). On the right axis, the luxury index is defined as 100(d.e; — 5).



0.035

0.025

0.02

0.015

0.005

0

-0.02

Figure 4. Responses of the wedges in the baseline model.
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Figure 5. Responses of the wedges in the baseline model, but without heterogeneity in prices stickiness and

steady-state markups across sectors, and without Input-Output linkages.
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Figure 6. Optimal policy relative to Taylor rule in the model without heterogeneity in prices stickiness and
steady-state markups across sectors, and without Input-Output linkages.
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E Optimal Policy
E.1 Optimal policy: derivations

As noted in the main text, the Central Bank (CB) values the utility of households according to the social welfare function W defined has:
(1-6 /G dz+511~:02[5f0/c (V1 (i), i) di

Here, a superscript to denotes the birth date of a cohort (within a household type i) and a superscript _ denotes cohorts born before t = 0.1  The value of a cohort j in

type i is given by:
tou (s tou s s (i) to, HEM to, HEM ”:OfstM(l)
U (ul (Clot 1 (0 )) ,ee Uk (CKU to+s (1))) —X ( 29(1) ) Ui (ul (Clot b (0 )> U (ClgtoJrs (Z))) X 019T :

and note that within each cohort/type a fraction ¢ (i) is HtM, and recall that non-HtM households are denoted by a superscript u. The value of pre-existing cohorts,
V_ (i), is defined analogously. The CB maximizes WV under the following set of constraints (for any i, j, k, ¢, to):

+ ¢ (i)

5=0

V(i) = Ey, i (1-9)p)° {(1 —¢ (i)

* Optimality of intratemporal consumption decisions
e i) = dic (e s i (e (), Pr))
v; (eio'h (i) ,p) =U; (Ul (dl (Pl,t(]')rm,tr@T (eio’h (i) ,Pt>)) s Uk (dK (pK,t(j)/pK,t/ ex (Eio’h (i) Pt))))

for h € {u, HtM}. Here, d; and e} are the solutions of the inner and outer consumption problem defined in the previous sections.

* Optimality of labor supply decisions, for h € {u, HtM}:

m D\ 1o p
X 0G) ) o@)  toetit (et OF )

* Optimality of intertemporal expenditure decisions for non-HtM households (Euler equation and budget constraint):
0eU; 4 (et (i), Pt) = B(1 = 0)R{E; [aevi,t+l (ef(r{ (i), Ptﬂ ,

b (i)

R;

—btou()+nt°” WH—ng Dzvkt—ei (i),

P )
with b0 (i) = b "™ (i) = (1+ 155 (%)) by (i).
¢ HtM consumption:
<1_1> b;g HtM( ) _ nio,Hl‘M Wt+2€k Dlvkt—EOHtM( )

¢ Optimal Price resetting:

Er Y B0 (Drers (i) Pt oo Yerrs) + (pie() = (1= TOMChyia(*) ) 3pDiess (Pl (7)s Prpvss €iprss Yigrs) ) =0
s=0

where the aggregate demand for subvarieties is defined in the previous section.

13Note that it would be equivalent - to a first order approximation — to differentiate households born before t( according to their date of birth, that is consider the social
welfare function W = 8o Y57 o B [ G (V' (i), i) di.



¢ Labor market clearing:

Dyt (Pk,t (7): Prss €t Yk,t) y
At /

A=) [(A=g)m (i) + () MM i)di+6 Y (1 =)™ [ (1= (0)) nfo" (1) + 9 (i) ™™ z N, W) [

The firm optimal choice of input, the market clearing conditions for intermediate goods and consumption goods and the government budget constraint will be used
implicitly.
We denote by E; ; (X;O) =(1-0)""X +9¢ Yo (1— 8)7!0 X0 the inter-generational average of variable X[° at t. We further denote by Z; and fiy; the Lagrange

multipliers on the labor market clearing constraint and optimal price setting constraints, and by )V\to (i), Vfo’” (i), fO’HtM (i), &f“ (i) and X; 0 (i), the Lagrange multipliers on

the Euler equation of unconstrained households ( )VL?J (7)), on the optimality of labor supply decisions (éto (i), fo HIM i)) and on the budget constraints of households
(Ecio (i) for unconstrained households and &;0 (i) for HtM households), The Lagrangian of the optimal policy problem is:

(1-6 /E (i), )dz+51EOZﬁf0/G (V10 (i) i) di
+1EOEO B'Es / (1= (i) devrs (e (1), P) (AP (i) = Rea A2, (i) ) di
B0 BE [ (1= 902 ) (wfaevt,i (e i), P) — <0<§)> 19()>dz+113 Fps [ o fo'HfMU(wtaev“(e;o/HfM 0).P) ¥ (;f“) 1%1)> i
+Eo Zﬁ o' [ (1= ()& (i) (bﬁgth(') (bi“’”(i)Jr nfo( (W + P )Divg ¢ — el ())) di
+1E0§O/3fu35,t / X0 (1) (1) ((;t _1> ploHiM () (n;o,HtM W, +ng \Divg s — eloHM; )>>

Dyt (Pt (7)s Prps €t Yier
ZNk pt,wt)/ ( )dj

k=1 Agp

+moiﬁ*étwt((1—5>f+1/<1—¢<i>> i)+ (1) TG di+5t2<1—5>f*f0/<1—<o<z‘>> n? (i) + g (1) m

K o o
+ Y o) Bk (2 B0 (Drers (Pis(*) Prsrss s Vs ) + (Phe(7) = (1= T)MCy (%) ) 9pDiss (p;:,to*),pk,Hs,ek,Hs,Yk,Hs)))
k=1 s=0

First-order conditions

Let us consider a steady state in which the CB targets zero inflation (and all goods prices and wages are constant), setting R; = 1/f. Recall also that we normalized Ay ; = 1
c 7
P"?JPCDk = Lg’sz = —&. Insuch a
k k
steady state, wealth, expenditure and labor supply of households is constant across time and identical for unconstrained and HtM households of the same type i. We first

show that, given the presence of a subsidy undoing markups, (1 — 1) éfﬁ 1 = 1, and the first assumption on the social welfare function, G’ (V;, (i) ,i)d.v (i) = 1, this steady

and that we assumed that elasticities of substitution across varieties are equal for households and intermediate input producers, i.e.

state is efficient. We do so by first showing that the first-order conditions to the optimal policy problem hold at the steady state.'* After doing so, we perturb the first-order
conditions around the steady state, in order to solve for the optimal dynamics.

14 When we derive the loss function, we also show that the second-order conditions are satisfied.



il (1),

e First-order conditions for b (i)
St
5“[ (l) Rt 1 t—1
= & (i) = & (i)
where the second line gives the necessary optimality condition in a steady state with constant prices and Ry =1/
e First-order conditions for the interest rate, R;
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where the second line gives the necessary optimality condition in a steady state with constant prices and R; = 1/ (so wealth is constant across time and generations)
* First-order conditions for W;. Denoting as before Q; ; = yl,kYLA the matrix of intermediate shares, we have:
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where the change in demand for intermediary in response to a change in wage solves
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We use the market clearing condition for intermediary and the optimal input demand from firms to obtain the expression on the last line. Using the fact that
=1, we can use:
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In addition, we define fi; r which constrains the growth rate of sectoral inflation: :

fikT = Z ((1- i Z B 0% (2pit (7 )9pDitss + (Prr (%) — (1 = ) MCrps (7)) Prct (7°)9ppDict+s)
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and note that around our steady steady state:
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Using this, we rewrite the first order condition as:
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Using the fact that ¢(i) = n(i) /N, the steady state equation is:
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First order conditions with respect to labor supply, 7" (i) and , n}* HIM iy
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where we used the definition ¢ = x’ ("tgl)) / (ﬂt (0) P ("tlgl))) and the optimality of labor supply decisions, and the second and fourth line are the steady

state equations.



* First order condition with respect to expenditure of the non-HtM, e} (i):
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With some abuse of notation, d,Y; is the Gateaux derivative (keeping prices fixed) of demand for intermediary output with respect to a change in efo’” (i). Note that
we use (1 — 1) = 7 £; = 1 and the adjustment of the lump sum tax to express the total change in dividends. We have, denoting Ql,k = Vii/ Ax:
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Simplifying we have, in steady state:
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Following the same steps, the first order conditions for the expenditure of HtM households, ef”M (i), s
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and in steady state simplifies to:
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* Finally consider the first order conditions for a compensated change in resetted prices p; ,(j*) (That is, each household receives a transfer in period t +s,5 > 0
which cancels the income effect of the price change. For a household consuming a bundle dj ;. (i,j)of the varieties in sector k at t + s, the transfer would be
(1 —6k) 65 [ dit1s (i, 7) dj. Note that we can alternatively consider an uncompensated change in prices, but the terms corresponding to the income effects can then be
simplified using the first-order condition corresponding to the optimality of expenditure of unconstrained and HtM households.):
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We define fi; 7, which constrains the growth rate of sectoral inflation:
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Using the properties of the steady state, we get:
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Taking the difference between the equation at ¢ + 1 times 0) and the equation at ¢ we obtain
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We can now verify that a steady state with R = 1/, constant wages and prices (chosen such that the good markets and labor market clear, recall that this implies that
wealth, expenditure and labor supply of households is constant across time and identical for unconstrained and HtM households) and g, ot — Vﬁo’HtM =5 = = jlg; = /\io =0,
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Differentiating the first-order conditions

We now differentiate the first-order conditions around the steady state constructed in the previous section. Prices are in log-deviation while Lagrange multipliers are in
absolute deviations.

e First order conditions with respect to bf“’u (i):

e First Order conditions for the interest rate

15Note that to solve the steady state system we only need £ — &0 = —1 and Z — X' = —1. It's direct to verify that choosing any values for Z, &%, and X that satisfy
this would give the same system of differentiated first order conditions.



¢ First Order conditions for W;

¢ First-order conditions with respect to labor supply
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¢ First-order condition with respect to expenditure. We only need to rexpress the impact of individual consumption on profits
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¢ Finally for resetted prices, note that we have:
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Defining ¢y = & (1_}%5%, we obtain:
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Solving the Labor market equation

The next step is to re-write the (infinite number of) linearized conditions, into a system of a limited number of equations and variables. Our first main equation is the
optimality of the wage
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Let us define the first component as Z; = Es; [ ( — (i) ¢4 0 (1) 4 g (i i) o HIM (i )) Wo,vdi. Substituting out the Lagrange multipliers gives:
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Our first goal is to solve for &, &' (i) and R} (i). Using the optimality of household’s expenditure and substituting the {{*" (i) term
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Similarly for the budget constraint multiplier of HtM agents,
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Next, define
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Using the first-order condition for the optimality of expenditure of unconstrained households to substitute (/\t‘J (i) — R)\to 1 (i )) d.v and the overlapping generation



sturcture, the evolution of A; is given by:
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[ (1= g i) Maeodi = (oo i) + ywn i) (wv() - (j (éi'” ()~ Fe )m) + L Plt>>

+ (e (i) + yWn (i) (& (i) — Z¢) — oe( ( Zaeel (A +By) + PlYk k_zl Akt Ye (i) Ocey (i)>

[e9)

= [ g @) () +ypwn@)ai L A s

* . | N x R 1 & y . L
+/ (1= (i) oe(i) Z R <AWt+1+s Y _0eer (i) A (Apprass + Prrsags) + PY, Y AkBikr14sYek (i) Oeek (1)> di
1 k=1
1 1\ -
——AY 1-=)A
et (17 5) &
Coming back to Z:, and defining a new variable Z which captures the contribution of the unconstrained households to the variable 7, we can write
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The evolution of Z; is given by (using the fact that the second term in the definition of Ztis independent of ¢ ):
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The second line correspond to the contribution of unconstrained households born at t + 1 to Z441. To characterize the dynamics of this term, we define:
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Using the definition of 70 ., the joint evolution of 7; and Z? is given by:
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Finally, define
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The dynamics of Z; are characterized by the following two equations:
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And we can rewrite our original equation characterizing the optimality of the nominal wage as:
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Next, we derive the evolution of A;. The optimality of R; allows us to express A; in terms of the Lagrange multipliers of the budget constraints of unconstrained and HtM
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households:

Define Ay, = Ey, <(1 — g (i) & (i) b?) +Eyy (cp (i) R} (i) %b (i))

i tO and &fo derived above, the evolution of Ay is given by:

Using our formulas for &

- - N b (i
Ay = (1=0) Apy = 1= Ry [ (1= 9() " di 11 -0) [ () 1b (i) dinZ,

o1 oe (i) A 1 & y . . .
+(1—5)/go(z) Rb(l)(fe(i)ﬂLllﬂ/Vn(i)<AWt+l Zaeel ) (AAp1+ AP ) + PkYkk_zl)‘kA,uk,Hl'Ye,k(l)aeek(l)> di

11
+ (1 - 6) Es; <q) (1) gb () A~ ( oM () Zsl i) b, t+1> +AZaee, i) b t+1>

+6 [ (=9I +o0 R () b ()i
The last line gives the contribution of the newborn households, to characterize its evolution, we define:
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The decisions of households born at t in terms of expenditure at ¢ and their change in welfare at ¢ (usingRoy’s identity) are given by:
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Using these expressions, &! can be rewritten as:
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The evolution of Aj; and AY | is therefore characterized by:
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Using the relationship between At and Z;, we obtain:
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And the original wage equation in terms of Z; and Ay is
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Solving the Price Setting equation
The second set of main equations are given by the optimality of price setting
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As in the previous subsection the goal here is to derive the dynamics of the components of these equation using only a finite number of variables
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The resetting equation becomes
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The resetting equation becomes
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Optimal Policy Equations: summary

We now collect and slightly simplify the optimal pohcy equations derived above.'® We obtain a system of 6 + K * 6 equations in the following variables: W;, Zt, Z?,

Apy, Ag/ pand Ay and My, flis, Ly, Lg/ ,and Aek’t, et These replace the interest rate rule. Note that the evolution of W is given by
(1- ™) ot = ((1-¢F )a+ (1= ") 9) Re— (1- ™) 5 Ay

e(i) N .

+ [ o) 20 (AR 1 — (R = 1) repps) — S Y (5i00) = 50)) g ¢ i

k
to ;_ / (1-¢ (i) e(Ei)aefk(i)ﬂk,tH)

We renormalize iy ; = Ejiy s, and define g(i) = (— BKUGG,((“//((Z;.))))R” + 5w +;Wn(i)) E. Our Labor Market equation equation becomes

K — ol N wdi
k;QN,k)\kﬁk,t =Zi+ T _féol(i))(p(( )z Nt SP;\;P:( 0ydi 112 (Aps — (1 =0)RAy; 1)

J (1= (i) Sontwdi [ (1— g (i) oe (i) di 5 V(i)
_< f(l_(P(W)ISI( e (i) +yWn(i))di +/(P(1)1/J WN e ( —i—l/m >
0ce

(

J (= (i) WD ydi [ (1— ¢ (i) oe (i) eey (i) e (i) deey (i

+§< T (=9 (0) (e (i) + pWn (i) di /"’ "’ww oe ( +1/m
(

) Akt+Pkt

L B ([ @) Wn () gdi [ (1 (i) 0 E e (1) deer (i m/JWn) () i)
‘;A"Pﬂk( T @) (0e () + ¢ () di o0 G s 0
+ZPIW3wylkYk (Plt+Alt)+Z jW;]\[kYWt
k1
With
Zi1 ZtZ%Z?ﬂ
1 1 B 1 ~e(D) f( ( 1)) Wn (i) ydi YWn(i) o
Zgl_(1—5)RZ?+(1_R>Zf‘1_(1_12)./(1_(”(1))”E (f(1 oe (i) + ¢Wn (1)) di ae(i)—i—lan(i))let_l
1 1) f(1—<p()) (i) g pwnti) N\ oo
‘%(“R)/“‘(”“””Eage"”<f< ) Goe T+ PN el % gy ) 4 ot + P
ME 1 e , J (1 — ¢ (i) Wn (i) pdi YpWn (i) o
“Thy (1-7) [ A= 0@ o s ( o T el e~ ST i o) i

16We also derived these equations in a different way, starting from the welfare loss function derived in the next appendix.
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The Price resetting equation becomes
Mt = s = (1= 0) flgp—1
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E.2 Optimal policy: proofs analytical results Section 5

Result 7

We first show that under (A.1) and (A.2), optimal policy attempts to jointly stabilize the output gap )} and an inflation index 71 = Zk 1 s" Ok T (with ¢ = Zk 15c%%), in
the sense that optimal policy can equivalently be derived by solving:

. 18 o+ 2
_inf ]EOE Z,Bt <"’y} +0 (7‘[?) )
{37} =0 oy

s.t. Einly — R = —RxY; — RAYWY

We consider the general case in which &, & and 6; may vary across sectors. Note that under inner CES preferences the inflation index can be rewritten 7¢ = —1 - YK %
k t Z}[(( ) % k=1 Ay ot
- k
0

rr; overweight larger sectors (higher 5;) more rigid sectors (lower Ax) and more elastic sector (higher &). If we have that 8 and & are equal across sector then nf is simply
the CPI index. The NKPC associated with 7! is given by

E;ml.q — Rl = —RxY; — RAPWY
Where WY is a wedge that is independent from monetary policy (Result 1 of the positive section). Under the optimal policy, we have Jy = — = + P Kl97'[0, and ) partially
absorbs the wedge: if Wf > 0 atall t then Y, < 0 at all . In addition, when ¢ goes to infinity keeping all other parameters fixed, we have V= _?Wt and 7'[t = 0: the
output gap fully absorbs the wedge. Inversely, when ¢ goes to 0, J; = 0: the inflation index fully absorbs the wedge.
Note that under (A.2) we have Aj,; = A(b)/ ;, = O forall t and since e (i) = Wn (i), Z; = Z9 = 0 for all t. Defining ji; = ZkK:1 flx s We can rewrite the Labor Market equation as:

Ui’blpKﬁt = -

The system of price resetting equations becomes
My = i — (1= 0) fix -1,

BE:My 11 — My = —5;0 (7tx e — BEi7Th 141)

— oy & —
+ ek kY i+ 0cer Ve — Lyt + Aeyt

- ZAZ/% E Plk()dlﬂlt-FZglﬁlk (B + —UZ (/ —=0ee (1) deey (i )di—aeekaeel> (A + Pry)

. = . . oe(i . N . = . oe(i A
/\k,uk,t - aeek Z )\l.ul,t + Z )‘l (/ a«e‘ek (l) EE )’)’e,l (1) aeel (1) di — aeek/aeel (1) E(l )’)/e,l (1) dl) Hit-

I=1 I=1
Note that we have:



We therefore have YK L, =YK | A, =Yk | A _+ = 0. Defining M; = YK | My, we have
M = iy = (1= 0) i1,

K
BEMyt 1 — My = — Y 50 (7t — BEi T 141)

k=1
Defining;
>
9= S_kl9k,
k=1
K
v Sk
ﬂtg - Z 9 ktl
k=1
K =
o _ v Sk

K = K
A Skﬁk/\k = Skl9k)tk
W =Y Y (Qeer — By,

=R U M +k:1 ( kT a0 ot

the evolution of the output gap under optimal policy is determined by:
- o .
Vr=— f m Kt
i = (1= 8) i1 = 07,
Einl, — R = —RxYr — RAYAY.
Note that we would obtain the same system of equation if the central bank were instead to solve:
~mf Ep= Z,B (U—H’byt ( ?)2)
{y #70 } >0 =
st. Bl — Rrf = —RxYr — RAYAY.
In the special case in whichéy, & and 6 are common across sectors we obtain the problem stated in result 6. Denoting by ' jit the Lagrange multiplier on the NKPC, the
first-order conditions are:

Ve = _;PwRKHt

on? = Rjiy — BIRfi4

Redefining ji; = Rji;we obtain:
4 .
4 i
o+
fir = (1= 0) fir—y = 071},
E;n?  — Rl = —RkY; — RADAY,

Vi=-

which is the same system.
Note that under (A.1) and (A.2), the wedge ! evolves independently of monetary policy. The OP system can be rewritten as

Ei Y1 — ((1 — 8 +R (1 + U‘i’”ﬁﬂ)) Vi — (1=8)RY,_; = RA® U‘f’lpﬂxm".




Defining

2
(17(5)+R( (ﬁ’lpﬁx) \/((15)+R( 0‘1{#19;@)) —4(1-6)R
Bt = 5
and noting that we have 0 < y_ <1—-6 < R < p4, we have

099 o +oo
Y = 17+ll1 Z ytﬂ s 2 T £+u
We directly obtain that if W = 0 for all  then yt = 0 for all £. In addition we have limg_, pit =limg ,eopu— =O0and y_ = (1-90)/ (%191{) +0(1/9), so as ¥ goes to
infinity keeping all other parameters fixed, we have
. A%
V= —*Wf

Inversely when ¢ goes to 0, the output gap goes to 0 and 7¢ fully absorbs the wedge /7.

Result 8

In addition to (A 1) and (A.2), we now assume that there are no endogenous markups (’ye ¢ (i) = 0 for all 7, k) and that sectoral shocks in k follow vanish geometri-
cally Ay, = PaAkO We derive analytical formulas for the evolution of )y, Tnepi,t and 7! and characterize their sign. First note that for aggregate shocks, we have

Vi = Tonepip = 7'1:t =0.If deey < sk k (note that if ¥ are equal across sector the condition simply characterize necessity), following a negative shock in sector k, ) is negative
on impact and there +* such that for t>t*, Yy is positive. 7,cp; + is negative on impact and there t* such that for t > ¥, 77,.p; ¢ is positive. nt is positive on impact and if &
is small enough there #* such that for t > #*, ! is positive. In net present value term, we have Y~ %5&, Y0 % Tomepit > 0 andy s> %nf < 0 following a negative shock

in k with 9,¢; < Skﬂk

Under (A.2) and 7, (i) = 0, we have Ay = aip’( = Aand My, = 0 for all k, so we have that the exogenous wedge is given by:
We = pp,
with Pt = Zk 1 ( ok — —) Pk t ? = Zle (ﬂk — —) Ak t Pt = PA + AA The relative price PA satisfies
E:PA, — (1+R(1+A)) PP+ RPP = RApLAS

Denoting the roots of the equation polynomial as v+, we have

14+ R(14+A) £ /(1+R(1+A))* —4R
: ,

v+ =

with0 < v_ <1< R < v;. And P is given by:

A RA ( 41 — ot

o ) =)
Pp is independent of policy and always has the same sign as — Ay o. The wedge is then given by:
(1/_ — pu)l(V+ — Pa) ((R - V*) (1 - U*) th - (R - Pa) (1 - Pg) pfl) AOA
Noting that (R — x) (1 — x) is positive and decreasing on [0, 1], we conclude that the wedge (independently of policy) initially has the same sign as A@ for t < t* (with ¢*
the smallest ¢ such that (R — p;) (1 — pa) ph, > (R—v_) (1 —v_) vl if p, > v_,such that (R — p,) (1 —pa) o, < (R—v_) (1 —v_) vt if p, < v_ ) and thas the same sign as
— Ay for t > t*. Note that t* = 1 for transitory shocks, t* = oo for permanent shocks.

t+1) AD

= -

Plugging this formula in our general expression for the output gap and using the NKPC for the indices 7t/ and Ttmepit, and the definition of the nominal interest rate,



we obtain:

5o RA?9 (R—pq) (1 —pq) Pl f4l (R=v)(1—-v) St AA
= = Loty 0 - G ey (A
o (R)\)zﬂ" (1—pa) (R—pa) Pa_ ¢+ K- | (R—v-)(1—-v) V- s B ¢ AA
”’"C’"'f‘(v_—pn(u—pa){<pa—y+><pa—u_>{R—pu"” R—u_"} <v_—u+><v_—u>{ R—v_ '~ R—;J‘}}AO
0 _ RA (R—pa) (1 —pa) 1 b vo)(1—v-) 1 P 1 t AA
= (V_pa)(v+_pa){(p ) ey e = (=0 = (e = (1= 9t} = u+)(vf—u j i - =i —(p- - 5))u}}Ao
Rt:_;izl;(l_Pu)PZZk:S_kAk,o_(Tip(l_Pa)PZAé
1 RA%Y (R—pa) (1 —pa) t+1 _ 1] R—v)(1—v) B t1 g (411 | 44
U(V——pa)(w—Pa){(pu—u+)(Pa—ﬂ—){( B ST T Sl e ey B (U R G O }}AO
RA%9 (1—pa) (R—pa) Rkpa 141 Rep g (R—v)(-v) Ricv— N Ricp— 141 AA
+(V——pa)(1/+—pa){(Pa—ﬂ+)(pa— >{R—pa“ R—u_”} ( —y+><v_—y_>{R—v_ - R-p }}AO

For aggregate shocks we have A@ =0s0); = Tnepit = nf =0.
On impact, after some algebra, we obtain

. RA%® A
= —R+pav- — +v_)+ R+1))A
(V+—Pa)(,u+—Pa)(,u+_V7>( PaV— — pit (pa +v=) + p+ (R+1)) Ag
(RA)? 0 R A
PO = = o) (1 — pa) (i —v) R—pu T DA
RA A
= — (=R +pav— — it (pa +v-) + ps (R+1)) Af

(V4 = pa) (ht — pa) (P4 —v-)
Note that since p;, v— < 1, p+ > R, we have:

—R+pav— —pg (pa+v-)+pus (R+1)=py (R+1—(pa+v-)) — R+ pav—
>R(R+1—(ps+v-)) =R+ pav_
— (R—pa) (R—v_) >0
Yo, Tomepip 2 0 and ng s 0if A@ < 0. In addition, Yy = —/\19718. Note in particular that if €, = 0 (CES inner utility) and & = € across sector, we have nf = Tlepip and
AtA = Zk 1 ( eCr — §k) Ak,ti AtA is negative (positive) for negative shocks in luxury (necessity) sectors.

In the medium run the behavior of Y, nf, TUmcpi,t @ priori depends on which of the parameters p,, ji— or v_ dominates. If p, > y_,v_ , we have:

0, RA?9 (R—pa) X =pa) 111 a o (o

V= ) s = pa) (pa— i) (pa ) 0 o (ea)
I (RA)219K (1_Pu) e .
) ) (e ) (oo )P T )

T s i ””“1"’”) (pa (1= 9) gt +0 1)

(V= = pa) (v+ = pa) (Pa = p+) (pa — -
for t large enough we have )y, Tncpip 2 0 if Al z0.70Z20(n? <0)if A = 0and p, < (1—96) (0a > (1 —6)). Similarly, if v_ > p_,p, , we have:



- RA?9 (R—v_)(1—v)

- LA L oyt
e (V- —pa) (V4 — pa) (V= — py) (v— — p—) AR +o(vh)
it = = (R)\)Zﬂ (1 _V*) LA 4ot
Trmepit = (V- —pa) (Vs —pa) (v— —pp) (v — o) HLAS +o(vh)
o_ RA R-v)(1-v)
" (V_ _‘0”) ( ) (V —‘IL:,.) (1/_ —‘1,[_) (V* (1 5))1/ AO +0( )

for t large enough we have YV, Tycpiy 2 0 if Alz0.nlz0(n! <0)if AS Z0andv_ < (1—6) (v— > (1—0)). Finally, if yu— > v_, pa:

5 RA?0 AOR(R+pqv-) +6(R—pa) (R—v_) 14q 44 t
= s —p0) (e — i) (e —p ) (0 ) (vt A0 Tol)
o (R/\)Zﬂ’c A?9R (R+pav—) + 8 (R—pg) (R—v-) 1 t+1 A t
Toncpit = (0 pa) (pe— pir) (e — ) (v —pe) (v — ) R P 40 7o)
af = RA A*9R (R +pav—) +6 (R — pa) (R —v-) (o — (1= 8)) it 4B +o(t)

(vy — Pu) (pa — ) (o — =) (v — pg) (V= — )
Recall that 4 < 1 — J so we have Vi, Tonepi ts nt > 0if A

Finally we derive the net present value of ), TCnepits nt under optimal policy. We have:

(RA) 6 R (s —1) 44
1§)Rtyt T —pa) (s —pa) (s —v) R—p 0
1 (RA)? 8k R ) N ) B )
EogRtﬂmcp1,t— (V+_Pa)(#+—Pa)(H+—V)(R—y_)2(R—pa)(R—v_){R (s (R—6) = R) + 38R (g +v-) + (- (R—1) + 3R?) por_ }
RAR-(1-0)) =1 4
]EotgoRt a V+—Pa)(V+—Pa)(ﬂ+—V—)R—V—AO

Note that u4 > R, 0 < pgv- <1 and as B(1—6)R =1, R—6 > 1s0 R*(uy (R—06) —R) + 6R* (pa +v-) + (p— (R—1) +6R?) p,u— > 0. We therefore have
L0 %yt, Y420 %”mcpzt 0 and2t>o R ) S0if Af S0
Result 9

Under the assumption 6 and é; are equal across sector then nf = Tlcpit, using the result of the previous subsection, we have:
~ RAAS

= o e G =y Gy =y R P s (pa kv ) 4 s (R4D) A
2 _
L w0 = (Vs — o) wli Mpi) (e =) = ul)%
et = = G gy (R P = e (pat o) + s (R+1)) 4
2 — _ _
EOEJQ”W " (v —§>A <§i —(pln <i)+) —v) k- ul‘%\

Note that using (y+ — 1) (44 — R) — RAOkpy = 0and —R + pav— — pi+ (pa +v—) + p+ (R+1) > 0 we have:



N (e = 1) (s = R) (=R +pav— — pis (pa +v-) + pi (R+1)) 44
x (V4 — pa) (H+ — pa) (s —vo) ps 0
|370’=§ 1 (e = 1) (s = R) (=R +pav— — pis (pa +v—) +ps- (R+1)) | 24
1 (V+ = pa) (p+ — Pa) (4 —v=) ps 0
A1 (=) (e = R) (= (ot v) + (RAD) Pt | 44
K (Ve —pa) (s — Pa) (4 —v) 0

_AR+1—(pa+v-) (py —1) (py —R)
K (V4 = pa) (Mt = pa) (py —v-)
< &R+1—(Pa+l/7)
T (v —pa)
where the last line uses the fact that p;, v— <1 < R. Similarly, using (y— —1) (4— — R) — RA%xu_ =0

1o A R (p=1) (A=p) 4
]Eot; R T o —po) (1 —pa) (e —v )i 0
AR (=1 (A—p) 44

K (v —pa) e =pa) (3 v p )"

AAD
AO

~

Ag

_R
(V4 — pa)

where the second line uses piy i~ = R (1 —J) = 1/ and the last line uses % —v_p_>1—v_pu_>1—-pu_andp, <1

1 - A A

t>0

Under strict CPI targeting we have 71.;; = 0 at all dates and

. A 1 A
=—"NHi=— R—p2)(1—ps)ph —(R—v_)(1—v_)vt) AL,
Nz p t (V——Pa)(V+—Pa)(( pa) (L= pa) pz — ( v-) ( V)V) 0
So under strict CPI targeting;:
. A 1 AA
yo—“;m@*'l—(ﬁ’u‘*“/f))flo
1 - A R R
E —V=--—— A},
OEJRt t K (V4 — pa) 0

Denoting with a superscript CPI the variables under CPI targeting, OP the variables the variables under optimal policy we therefore have after a negative shock in a
necessity sector:

V§PE < PO <0

1 ¢ 1 <o
Eo )z <Eo ) 797" <0
>0 >0

CPI _
cpi0 — 0

1 _op 1 cpr
Eo )| = epit > Eo ) =iy =0
£>0 >0

opr
ncpi,O > T



monetary policy is more accomodative after a negative shock in a necessity sector than strict targeting. After a shock in a luxury sector, we have:
IEP > PPP >0

1 - 1 -
Eo) Vi > Eo ) o977 >0
t>0

z t>0
or CPI __
7Tcpi,O < ncpi,O =0
1 _op 1 _cpr
Eo Z ﬁncpi,t < Eg Z ﬁncpi,t =0
>0 >0

i.e. monetary policy is more strict.



E.3 Welfare loss function
Welfare Loss Function

In this appendix, we derive the second order approximation of our social welfare function:

(1-6 /G d1+(5lEoZﬁt0/G Vi, (i) i) di.
to=
Recall that the value function of household i born at tjis given by:

) . ng (i) . . ”Fﬂg(l)
10 (e 0) ot (e 0)) = () | 00 1 o (20, 0) a0 (et ) - (557 |
HtM Htm

Where the quantities {c}(‘ tors (1) Clptes () 1 (), 1] +S(z)} Lo e chosen optimally, as described in the derivation appendix. Applying Roy’s identity (and using the fact
, o>

o

Vi (i) = Egy (1= 0) p)° {(1 — (D)

5=0

+ ¢ (i)

that in steady state consumption and labor supply is constant across constrained and unconstrained households of the same type i) , the derivative of the value function is
given by:

b
Vi, (i) = Ey ): (1= 8) B)* devnys {;*“m T Wiy s Wiyttt s 2 [ sl D ()45 >dDwto+s}
0 +s
K 1 K
+(1*§9( aevtobto Z Plto+‘P ]Etoz (1-0 aevtoJrS (1 o )bfo Z Plto’
=1 0+s =1

with the first order change in dividends given by:

1 X K A
dDivy = Z /yk (det j)— A, (Nk(Ptr Wi)dWi + Y Vi k(Pt, W )Py — (Nk(Pt/ Wi)Wi + ) V(P Wt)Pl,t> Ak,t))

1=1 I=1

I=1

1 K
+ Z/dyk (Pkt j)— A <Nk(PtrWt)Wt+ Zyl,k(Pt/Wt)Pl,t>> ,

where the change in demand for variety j is given by:

dyx (j) = Es s (/ Ipdi,t (i, 7)dpks () + /ank,t(irj) Ul dpie (G°) dj* + 0edy 4 (i, ) ((1 — @ (i) de%" (i) + o (i) dey HtM) dz)

+ (30l G () + [ amaly () )i (7)) Yo +

and demand for intermediary dYk,t solves the system

K
Y =) (awyk,l(Pt/ Wh)dW; + Y 9p, Vi (Py, Wt)dpm,t> Yie + Y Vi (Pr, Wy)dYyy,
1 m=1 1

dYi, = / Ay (7) dj-

Around a steady state where prices, consumption, wealth and labor supply are constant (and equal across generation, constrained and unconstrained households of the



, this simplifies to

N—

same type i) and with p (j) = & (N (P,W)W + YK, V1 (P,W)P,

[eS) b(i K 1 K R .
dVi, (i) = 900 (i) By, Y, ((1—0) B)° { ;{)Rf0+5 + Wig s W (i) = Y e (1) Py ys + 6 (i 2 P Yy (Pk s T 4P (WNk(Pt, W) Wiggs + Y Plyl,k(Pt/Wt)Pl,t> + Ak,t0+s> }
5=0 I=1

I=1 k=1
K
+ 9.0 (i Z
i s[b@) (4 K K 4 S
=00 () By ) (1=0) )" = | Reots = Yo 81sgssr | = Y€ (i) (51 (1) = 81) Phags + W (1) ) 5141104
5=0 =1 =1 I=1

Next we derive the second order approximation of the social welfare function. We use the fact that in steady state, prices, consumption, wealth and labor supply are constant

(and equal across generation, constrained and unconstrained households of the same type i) , G’ (Vj, (i),i) dcvt, = 1 and pi (j) = & (Nk(P, W)W + YK V(P W)PZ>.

Using clearing of the bond market, we have:

d2W:(1—5)/G”()(dV_()) di + 6E, ZﬁfO/G” (dVy, (i))2 di

to=0
) i) . . K 5 K R
—Eo ) B'Esy / (1—9¢(i) ( (Ato : Zsk ) P t> + Zaeek ) B t> {blg)Rt =Y (e()s; (i) —Wn (i)5) Py +Wn (i) ) 5141 4+ Timgob (i) ) szPz,to} di
=0 =1 =1 =1
S A1 gy HiM b(i) s &, . I S 1 IS .
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Simplifying — using market clearing Condltlons for labor and markets and properties of the steady state — and removing the terms independent of monetary policy, we have:
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Let us first slightly rewrite the terms coming from substitution in production. We have:
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Simplification of the terms corresponding to the expenditure of unconstrained households

Here we simplify the second line of the expression. To do so, define
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Next we have:
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W (i) (i)

1\ & ) n(i) «—_ »
(1 B R) s;oﬁ (- ¢E)a+ (1— M)y / (=) { WN ;SIA”O“ TN Wik +Z‘T E
Z T / — (i {Z oe (i) deey (i (Wt0+s - pk,to—i-s - 2Ak,to+5) } di

deey (i) diPyy } di

_ (1 _ 1) = T / a% {i 115 (wtm ;agek (i) (Beggss + Akms)) }2di
~ (1 _ ;) = o / eg) {Z ;S Zaeek ) (Pesyrs + Agoss) }2011'
-(1- 11z> = qﬂf) a+1 - (Z v/ a-ewty Looee () (Bragrs + Anso) di>2
(1 R) Brton L [ 00 00 Do i (1) siolsf (1-0(0) (algS;) h %J) w) 00 S R

72| =
—
H
|
/—/H
q
N
[

ch
;S
—~
§

o

+

w

e
=

+

192)

N
S

=

=y

+

v
SN—
——
=



Next, the second and third terms can be rewritten:
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Putting everything together, we have:
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and we define the variance covariance matrix of marginal propensities to spend:
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Simplification of the terms corresponding to the expenditure of unconstrained households

Here we simplify the second line of the of the

social welfare function. Recall that we have:
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Gathering the terms, we obtain:
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Social Welfare Function
Note that we have, as E; X; 1 — Xy = R,
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Finally, we denote for any variable Z;,
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the social average over the population of the variable Z; (Note that if Z; is constant, we have [E B (Zty)
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where O denote the aggregate input substitution matrix and is given by O = N N
Pop N py, DoV
N E

k
The last five lines constitute the redistributive motive. the first term is standard it is 0 when households are compensated for their loss of income. the second term is an

adjustment taking into account that it is relatively more efficient to compensate households who consume more in relatively more productive sectors. the last twho terms
are adjustments taking into account that HtM households cannot smooth their consumption.
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Without HtM households and IO, this simplifies to:
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Defining P, = D + A5, the markup in k, and using J; = > + P ( — Y 0ce; (P, ¢ + A; ;) ) we can re-express the loss function directly in terms of the output gap :
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System of Equations without redistributive motive:
We now derive the system of optimal equation when the central bank ignores redistributive motives (last five lines of the loss function for the full model). Defining
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Taking derivatives with respect to the price of k at ¢ gives:
My = iy — (1= 6) flis—
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Efficiency of the Steady State

For first order change in prices, the change in welfare is

W =y [ (Vi) aew () Ex, Y ((1-6)B)° { (bESQ (R - <R—1>;§zﬁz,s> I —§z)pl,s> +2R;1bg>§zﬁl,to}di
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Using the fact that G’ (V (7)) 9. (i) = 1 and that the market for bonds clear, we have that

aw =0
For any change in prices (subvariety prices, wage and interest rate). Therefore there is no change in monetary policy that can improve upon the steady state. It is also direct
to verify that there are no taxes at any date ¢, financed by a lump sum at ¢ than can improve the steady state. To see this consider, for example a wage subsidy in sector k at
t subsidized by an arbitrary lump sum. The total impact on welfare is given by

B0 [ G (V1) 2c0 0) {& () NPy W — ds ()| i
With .
/ i/\fk(pt, W) AW, di = / dv (i) di

Using again G’ (V(i)) 9.v (i) = 1 and [ ¢ (i) di = 1, this subsidy has no 1mpac:t on Welfare. Similarly, wage subsidy to workers, input taxes and commodity taxes have no
impact on welfare. The economy is therefore constrained efficient: the only inefficiency is the uninsured death risk which could be corrected through an annuity market
but neither through monetary policy or through taxes (if the government cannot have debt).

We now verify that the second order approximation of the Welfare Function is always negative. This will imply that a steady state with 0 inflation and output gap is a local
maximum. First note that a direct application of Cauchy-Schwartz gives that for any variable x; and any weight 0 < a < 1,

2
Ey (Z a5xt+s> < IEo 2 o (Xpi5)?

s>0 s>0
Given the definition of Egwe have that } .7 f°X;s = [Eg [Zszto B~ X;] so we can rewrite the average labor distortion term (which we denote by L;) as
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We can re-write the term that appears in the dispersion of wealth effect as
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where the second term is always weakly negative and hence
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Putting these results together we have that

>0
where the last line follows from our preliminary Cauchy-Schwartz result.



Next consider the term
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Since £ is a variance-covariance matrix, it is positive semi-definite, therefore:
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Since both the substitution and the transformation matrix are negative semi- defmlte
Finally, we can rewrite the redistribution terms as
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Therefore, all terms in the social welfare function are positive: there are no second order deviations in prices, wage and interest rates improving on the steady state.



F Additional analytical results

Addition to Result 1: divine Coincidence indices without endogenous markups

We now derive an inflation index which can be fully stabilized alongside the output gap, for the case with the endogenous markup wedge. In this case, the
sectoral NKPC can be written as:

s = Kk Ve + Ax <Z (QN,kaT@l + Qk,l) (P —Py) — (P — 1%)) + BE; 7tk 141,
1
or in matrix form:

T = Kj)t +D [)\] (() — Id) (pt - 13:) + ,BIEtTL't+1.
where x = [K1, ..., kk|T, D [A] is a K x K diagonal matrix with A on the diagonal and Q) ; = QN,kaTe, + Q. Note that
QO >0,

Y Oy =1

The Perron-Frobenius’ theorem for row-stochastic matrices implies that we have an eigenvector @ = [@, ..., @] with @ > 0 and Y @, = 1 (normaliza-
tion) such that

Q=@
Now, define
A AL
w = |:)\10J1, /)\ (UK:| ,
1 1
A ; Pt
Note that we have
wDA (Q—1d) = @D ' A DA (Q—1d) =
Now define
At =) Wy,
We have

Tar = kY + wD [A] (Q— Id) (Py — PF) + BE;my4.1,

= «Vs + BEi 74441
With k¥ = }_ wykg. Therefore 7, can be stabilized jointly with the output gap.

Addition to Result 1: HtM and I-O
In this section we show how to extend Result 1 to the case with HtM households and Input-Output links. We slightly amend the assumption (A.1) and (A.2):

e Assumption Al: x; = x for all k (recall that with IO x; = Ay (% + l) <QN,k + SE%Fk))

* Assumption A2: [}, (i) {(1_‘%(i))b - ((11 ‘ZD(??NN (1— (i) (T } = [riiM(i) { ()b _ l fgo é }di =0

Note that (A.2) is slightly strengthened with HtM. Without HtM we only need to assume that -y ; (i ) is uncorrelated with wealth. With HtM we assume that
Yk (i) is uncorrelated with both the wealth of the HtM and the unconstrained households. We rewrite once again the system of equation of relative prices
Pkt = Pkt Pd +, with Pdt defined in the previous section:
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1

My =T Vf + Mg, + ME,
kt—ZSklPlt

Therefore to prove that relative prices evolve independently of monetary policy, we only need show that under (A.2), M,’g , only depends on relative
prices. Recall that we have:
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Under (A.2) we can rewrite 0y ; " as:
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In addition we have
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Therefore the equations for M ,’? , can be rewritten:

E:Mpyq — Mgy = Z‘Tkz M1+ 75 ’ tht+1
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Where we use
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to replace pl,t/ ;s with By, 7 ;. Therefore, relative prices are determined by a system of 4(K — 1) equations which independent of R; and are therefore
independent from monetary policy. We conclude, since N'H;, My ;, Pk 1, Iy ; only depend on relative prices that the wedges are independent from monetary

policy.

Additions to Result 3: Analytical Formulas with HtM
We first re-derive the evolution of any relative price Pk,t = Pk,t — Y. 0ee pl,t
Rﬁk,t - —AR (pk,t — p]:f) + ﬁk,t

Pasy1— (1+R+RA)Pyy+ RPyy 1 = ARAp,
The eigenvalues of the system are:

R+RA+1%1/(R+RA -1 +4RA
pe =
2

With yy > R+ RA, u— < 1. We obtain:
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We now assume shock vanishes at a constant rate p,, we have:

— t+1 41 pr
(44 = pa) (- — pa) (1" =) iy
Next we slightly rewrite the output gap equation

Vi1 = Ve=0((1 = ®p) Re = (1 — @) Tyucpips1 — ;)

1 . . B 1—0f) ¢ S IR
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q>b:41 v
-~ o+ Y
—1<P, <1

Response to aggregate shocks, inflation targeting. For aggregate shocks (Ay; = A¢), all relative sectoral prices are constant so the response does not
depend on which inflation index is targeted. Assume R; = ¢71; (with 7; an arbitrary index), we have

Rﬂt = RKj}t + TC41

A 1
T4 — (1 + R + Rxo (1 — q)b) + RKq)b) T4 + Rty + Rxo (1 — cbb) R; + RKquR

1ARt+1 — Rko?; =0

1 1
Tip — <1+R+RK(U—¢b<U+¢H—1>>>7Tt+1 + R(l—i—mp(a(l—d)b)—CDbR_l))m —  Rko?y = 0
The eigenvalues of the system are

(1R Re (0 @, 0+ 9ty — 1)) /(R4 Re (0 — By (0+ 9ty — 1)) —1)° — 4R [(9 — 1) (0 (1 — D)) — D)

/\HtM
= 2
Note that when ®;, < 0, ¢ > 1 implies that both eigenvalues of the system are larger than one!”
Ty = R pti%
pi = (1+ R+ Rk (¢ = @y (0 + 9757 = 1)) pa + R (1+x¢ (0 (1= D) = Ppty))
Rxo o
= Pat0
(A = pa) (A= = pa) + RKC(pa)
¥, = 7 (R —pa) e

ai’
(A+ — pa) (A_ — pa) + RiClpa) 0
with

C(pa) = —Dy <0(¢—pa) +¢% (1—pa) +pa) >0

7Note that we only need ¢ > max{1 + %, —(R-1) (%'Pb -3 +o0)+o- 1) }in particular if k < lor ¢ > 1 this simplifies to ¢ > 1+ %.



And C(p,) is decreasing in p4. For a given policy rule, the presence of HtM households decreases the impact of technology or monetary shocks on
inflation and the output gap. Intuitively, as HtM have negative wealth on average they respond to an increase in inflation by cutting consumption, since they
respond more strongly than non HtM this makes monetary policy more effective.

Response to sectoral shocks, inflation targeting. Now assume that CB targets CPL: R; = ¢7Tcpit- The system becomes
1 1
ncpi,tJrZ - (1 + R+ Rk <(T_ q)b <U+¢1H - 1))) ncpi,tJrl +R (1 +K¢ (U(l - q)b) - quR — 1>> ﬂcpi,t
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1—¢l o+ 7
We have
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+ o (R —pa)

(% o) (A —pa) T RC(p) o1
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Impact of relative price on HtM consumption

The introduction of HtM has an ambiguous impact on both CPI inflation and the output gap. The response of the output gap is the sum of three terms.
The first one is the contribution of the N'H wedge:

_ RA {(0¢+C(pa>)(1—pa) (R=pa) v (0p+C(p-))(A—p)(R—p-) t}AM
(.“+ _pa> (V— _Pa) ,

(As —pa) (A —pa) + RxClo) ™~ Ay =) (A —p) + ReC(p) !~

As before, (Y¢+5g?“)2(1;§f2;§g€;)) is decreasing in p,, so the sign of this term is the same with or without HtM. The amplitude is however ambiguous. For
transitory shocks in necessity sectors without HtM, as see in the previous subsection CPI inflation is positive and decreasing. This implies that the interest

rate implemented is positive and decreasing which increases the growth rate of HtM demand which implies lower out output gap (output gap converges to
Oin the long run): the response is amplified. By contrast, the response would be muted for a permanent shock

The second term summarizes the impact of the change in real rate. As explain previously, this response is always muted with HtM.

The third term corresponds to the difference in demand growth rate between HtM and unconstrained households in response to changes in sectoral
prices:

1 oF o M . HIM (1—p )(R—p-) -+ (1—pa) (R = pa) 1) p
(44— pa) (V——Pa>1—¢L0+¢;(< =) —o (e - 2 ) ((M—u—)(A——ﬂ—HRKC(ﬂ—)”1_ (A+ — pa) (A= — pa) + RKC(pa) " 1) Flo

For transitory shocks, after the first period, there is deflation of necessity goods. If the growth rate of HtM necessary good consumption is relatively higher in



o . =—HM =— . . e
response to deflation in the necessity sector ( (sf"™ —35) — ¢ (aee, - 8361) > 0), the output gap is lower at all dates, which further amplifies the response

of the output gap to a transitory necessity shock. This is reversed for close to permanent shocks: in that case there is inflation of necessity goods which
reduces the growth rate of HtM demand and implies a relatively higher output gap.
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