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WHO SHOULD BE TREATED? EMPIRICAL WELFARE MAXIMIZATION
METHODS FOR TREATMENT CHOICE
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One of the main objectives of empirical analysis of experiments and quasi-
experiments is to inform policy decisions that determine the allocation of treatments
to individuals with different observable covariates. We study the properties and imple-
mentation of the Empirical Welfare Maximization (EWM) method, which estimates a
treatment assignment policy by maximizing the sample analog of average social welfare
over a class of candidate treatment policies. The EWM approach is attractive in terms
of both statistical performance and practical implementation in realistic settings of pol-
icy design. Common features of these settings include: (i) feasible treatment assignment
rules are constrained exogenously for ethical, legislative, or political reasons, (ii) a pol-
icy maker wants a simple treatment assignment rule based on one or more eligibility
scores in order to reduce the dimensionality of individual observable characteristics,
and/or (iii) the proportion of individuals who can receive the treatment is a priori lim-
ited due to a budget or a capacity constraint. We show that when the propensity score
is known, the average social welfare attained by EWM rules converges at least at n−1/2

rate to the maximum obtainable welfare uniformly over a minimally constrained class
of data distributions, and this uniform convergence rate is minimax optimal. We exam-
ine how the uniform convergence rate depends on the richness of the class of candidate
decision rules, the distribution of conditional treatment effects, and the lack of knowl-
edge of the propensity score. We offer easily implementable algorithms for computing
the EWM rule and an application using experimental data from the National JTPA
Study.

KEYWORDS: Heterogeneous treatment effects, randomized experiments, program
evaluation, individualized treatment rules, empirical risk minimization, risk bounds.

1. INTRODUCTION

TREATMENT EFFECTS OFTEN VARY with observable individual characteristics. An impor-
tant objective of empirical analysis of experimental and quasi-experimental data is to de-
termine the individuals who should be treated based on their observable characteristics.
Empirical researchers often use regression estimates of individual treatment effects to in-
fer the set of individuals who benefit or do not benefit from the treatment and to suggest
who should be targeted for treatment. This paper advocates the Empirical Welfare Max-
imization (EWM) method, which offers an alternative way to choose optimal treatment
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assignment based on experimental or observational data from program evaluation stud-
ies. We study the frequentist properties of the EWM treatment choice rule and show its
optimality in terms of welfare convergence rate, which measures how quickly the average
welfare attained by practicing the estimated treatment choice rule converges to the max-
imal welfare attainable with the knowledge of the true data generating process. We also
argue that the EWM approach is well-suited for policy design problems, since it easily ac-
commodates many practical policy concerns, including (i) feasible treatment assignment
rules being constrained exogenously for ethical, legislative, or political reasons, (ii) the
policy maker facing a budget or capacity constraint that limits the proportion of indi-
viduals who can receive one of the treatments, or (iii) the policy maker wanting to have
a simple treatment assignment rule based on one or more indices (eligibility scores) to
reduce the dimensionality of individual characteristics.

Let the data be a size n random sample of Zi = (Yi�Di�Xi), whereXi ∈X ⊂R
dx refers

to observable pre-treatment covariates of individual i, Di ∈ {0�1} is a binary indicator
of the individual’s treatment assignment, and Yi ∈ R is her/his post-treatment observed
outcome. The population from which the sample is drawn is characterized by P , a joint
distribution of (Y0�i�Y1�i�Di�Xi), where Y0�i and Y1�i are potential outcomes that would
have been observed if i’s treatment status were Di = 0 and Di = 1, respectively. We as-
sume unconfoundedness, meaning that in the data treatments are assigned independently
of the potential outcomes (Y0�i�Y1�i) conditionally on observable characteristicsXi. Based
on this data, the policy maker has to choose a conditional treatment rule that determines
whether individuals with covariatesX in a target population will be assigned to treatment
0 or to treatment 1. We restrict our analysis to non-randomized treatment rules. The set
of treatment rules could then be indexed by their decision sets G⊂X of covariate values,
which determine the group of individuals {X ∈G} to whom treatment 1 is assigned. We
denote the collection of candidate treatment rules by G = {G⊂X }.

The goal of our analysis is to empirically select a treatment assignment rule that gives
the highest welfare to the target population. We assume that the joint distribution of
(Y0�i�Y1�i�Xi) of the target population is identical to that of the sampled population.1 We
consider the additive welfare criterion defined by the average of the individual outcomes
in the target population.2 When treatment rule G is applied to the target population, the
social welfare defined by the sum of individual outcomes in the population is proportional
to

W (G)≡EP
[
Y1 · 1{X ∈G} +Y0 · 1{X /∈G}]� (1.1)

where EP(·) is the expectation with respect to P . Our framework could incorporate a
broad range of social preferences by suitably redefining the outcome variable. Setting Y
to be a concave transformation of one’s measure of wealth leads to an inequality-averse
social welfare of Atkinson (1970). When multiple outcome variables enter into the indi-
vidual utility (e.g., consumption and leisure), Y can be set to a known function of these
outcomes. The cost of treatment can be incorporated into the social welfare by redefining
the individual potential outcome Yd to be the outcome minus the cost of treatment d.

Denoting the conditional mean treatment response by md(x) ≡ E[Yd|X = x] and the
conditional average treatment effect by τ(x)≡m1(x)−m0(x), we could also express the

1In Remark 2.2, we consider a setting where the target and the sampled populations have identical condi-
tional treatment effects, but different marginal distributions of X .

2In the econometrics literature of treatment choice, the additive social welfare is often referred to as a
utilitarian social welfare.
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welfare criterion as

W (G)=EP
(
m0(X)

)+EP[τ(X) · 1{X ∈G}]� (1.2)

Assuming unconfoundedness, equivalence of the distributions of (Y0�i�Y1�i�Xi) be-
tween the target and sampled populations, and the overlap condition for the propensity
score e(X)=EP[D|X] in the sampled population, the welfare criterion (1.1) can be writ-
ten equivalently as

W (G)=EP
[
YD

e(X)
· 1{X ∈G} + Y(1 −D)

1 − e(X) · 1{X /∈G}
]

=EP(Y0)+EP
[(

YD

e(X)
− Y(1 −D)

1 − e(X)
)

· 1{X ∈G}
]
�

(1.3)

Hence, if the probability distribution of observables (Y�D�X) is fully known to the
decision-maker, an optimal treatment rule from the utilitarian perspective can be writ-
ten as

G∗ ∈ arg max
G∈G

W (G)� (1.4)

or, equivalently, as a maximizer of the welfare gain relative to EP(Y0):

G∗ ∈ arg max
G∈G

EP
[
τ(X) · 1{X ∈G}]� or (1.5)

G∗ ∈ arg max
G∈G

EP

[(
YD

e(X)
− Y(1 −D)

1 − e(X)
)

· 1{X ∈G}
]
� (1.6)

The main idea of Empirical Welfare Maximization (EWM) is to solve a sample analog of
the population maximization problem (1.4),

ĜEWM ∈ arg max
G∈G

Wn(G)� where

Wn(G)=En
[
YiDi

e(Xi)
· 1{Xi ∈G} + Yi(1 −Di)

1 − e(Xi)
· 1{Xi /∈G}

] (1.7)

and En(·) is the sample average. One notable feature of our framework is that the class of
candidate treatment rules G = {G⊂ X } is not as rich as the class of all subsets of X , and
it may not include the first-best decision set

G∗
FB ≡ {x ∈X : τ(x)≥ 0

}
� (1.8)

which maximizes the population welfare (1.1) if any assignment rule is feasible to imple-
ment. Our framework with a constrained class of feasible assignment rules allows us to
incorporate several types of exogenous constraints that generally restrict the complexity
of feasible treatment assignment rules. For instance, when assigning treatments to indi-
viduals in the target population, it may not be realistic to implement a complex treatment
assignment rule due to logistic, legal, ethical, or political restrictions.

The largest welfare that could be obtained by any treatment rule in class G is

W ∗
G ≡ sup

G∈G
W (G)� (1.9)
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which is the second-best welfare if W ∗
G < W (G

∗
FB). In line with Manski (2004) and the

subsequent literature on statistical treatment rules, we evaluate the performance of esti-
mated treatment rules Ĝ ∈ G in terms of their average welfare loss (regret) relative to the
maximum feasible welfare W ∗

G

W ∗
G −EPn

[
W (Ĝ)

]=EPn[W ∗
G −W (Ĝ)]≥ 0� (1.10)

where the expectation EPn is taken over different realizations of the random sample. This
criterion measures the average difference between the best attainable population welfare
and the welfare attained by implementing estimated policy Ĝ. Since we assess the statisti-
cal performance of Ĝ by its welfare value W (Ĝ), we do not require arg maxG∈GW (G) to
be unique or Ĝ to converge to a specific set.

Assuming that the propensity score e(X) is known and bounded away from zero and
1, as is the case in randomized experiments, we derive a non-asymptotic distribution-free
upper bound ofEPn[W ∗

G −W (ĜEWM)] as a function of sample size n and a measure of com-
plexity of G. Based on this bound, we show that the average welfare of the EWM treat-
ment rule converges to W ∗

G at rate O(n−1/2) uniformly over a minimally constrained class
of probability distributions. We also show that this uniform convergence rate of ĜEWM is
optimal in the sense that no estimated treatment choice rule of any kind can attain a faster
uniform convergence rate compared to the EWM rule, that is, minimax rate optimality of
ĜEWM. For further refinement of this theoretical result, we analyze how this uniform con-
vergence rate improves if the first-best decision rule G∗

FB is feasible, that is, G∗
FB ∈ G, and

if the class of data generating processes is constrained by the margin assumption, which
restricts the distribution of conditional treatment effects in a neighborhood of zero. We
show that ĜEWM remains minimax rate optimal with these additional restrictions.

When the data are from an observational study, the propensity score is usually un-
known, so it is not feasible to implement the EWM rule (1.7). As a feasible version of the
EWM rule, we consider hybrid EWM approaches that plug in estimators of the regression
equations or the propensity score in the sample analogs of (1.5) or (1.6). Specifically, with
estimated regression functions m̂d(x) = Ê(Yd|X = x) = Ê(Y |X = x�D = d), we define
the m-hybrid rule as

Ĝm-hybrid ∈ arg max
G∈G

En
[
τ̂m(Xi) · 1{Xi ∈G}]� (1.11)

where τ̂m(Xi)≡ m̂1(Xi)− m̂0(Xi). Similarly, with the estimated propensity score ê(x), we
define an e-hybrid rule as

Ĝe-hybrid ∈ arg max
G∈G

En
[
τ̂ei · 1{Xi ∈G}]� (1.12)

where τ̂ei ≡ [ YiDi
ê(Xi)

− Yi(1−Di)
1−ê(Xi) ] · 1{εn ≤ ê(Xi) ≤ 1 − εn} with a converging positive sequence

εn → 0 as n→ ∞. We investigate the performance of these hybrid approaches in terms
of the uniform convergence rate of the welfare loss and clarify how this rate is affected by
the estimation uncertainty in m̂d(·) and ê(·).

Since the welfare criterion function involves optimization over a class of sets, estimation
of the EWM and hybrid treatment rules could present challenging computational prob-
lems when G is rich, similarly to the maximum score estimation (Manski (1975), Manski
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and Thompson (1989)). We argue, however, that exact maximization of the EWM cri-
terion is now practically feasible for many problems in economics using widely-available
optimization software and an approach proposed by Florios and Skouras (2008), which
we extend and improve upon.

To illustrate EWM in practice, we compare EWM and plug-in treatment rules com-
puted from the experimental data of the National Job Training Partnership Act Study
analyzed by Bloom, Orr, Bell, Cave, Doolittle, Lin, and Bos (1997).

1.1. Related Literature

Our paper contributes to a growing literature on statistical treatment rules in econo-
metrics, including Manski (2004), Dehejia (2005), Hirano and Porter (2009), Stoye (2009,
2012), Chamberlain (2011), Bhattacharya and Dupas (2012), Tetenov (2012), and Kasy
(2017). Manski (2004) proposed to assess the welfare properties of statistical treatment
rules by their maximum regret and derived finite-sample regret bounds for Conditional
Empirical Success (CES) rules. CES rules take a finite partition of the covariate space
and, separately for each set in this partition, assign the treatment that yields the highest
sample average outcome. CES rules can be viewed as a type of EWM rules for which G
consists of all unions of the sets in the partition and the empirical welfare criterion uses
the sample propensity score. Manski showed that with the partition fixed, their welfare re-
gret converges to zero at least at n−1/2 rate. We show that this rate holds for a broader class
of EWM rules and that it cannot be improved uniformly without additional restrictions
on P .

Stoye (2009) showed that in the absence of ex ante restrictions on how outcome distri-
butions vary with covariates, finite-sample minimax regret is attained by rules that take
the finest partition of the covariate space and operate independently for each covariate
value. This important result implies that with continuous covariates, minimax regret does
not converge to zero with sample size because the first-best treatment rule may be ar-
bitrarily “wiggly” and difficult to approximate from countable data. Our approach does
not give rise to Stoye’s non-convergence result because we restrict the complexity of G
and define regret relative to the maximum attainable welfare in G instead of the uncon-
strained first-best welfare. However, we do not derive exact finite-sample minimax regret
rules in the more complex setting of our paper.

Treatment choice has substantial similarities with classification. In a binary classification
problem, the researcher observes a random sample (Yi�Xi), where Yi ∈ {−1�+1} denotes
which of two classes an observation belongs to. A classifier aims to predict the correct
classification of future observations based on observed covariates X . A treatment rule
similarly seeks to “classify” individuals into those who should and should not be treated
based on their covariates. Treatment choice, however, differs from classification in a few
significant ways: (1) observed outcomes can be real-valued rather than binary, (2) we only
observe one of the two potential outcomes, and not the correct classification of individuals
in the sample, (3) policy settings often impose constraints on practicable treatment rules
or on the proportion of the population that could be treated.

The earliest works noting the connection between treatment choice and classification
are Zadrozny (2003) and Beygelzimer and Langford (2009). They proposed algorithms
that transform a sample from a treatment choice problem into a sample from a standard
binary classification problem. Treatment rules could be then generated using any existing
binary classification algorithm. Beygelzimer and Langford (2009) showed that the welfare
loss of any treatment rule G with respect to the first-best (W (G∗

FB)−W (G)) is bounded
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above by a classification regret with respect to the first-best classifier. It implies that if
the regret of the classification algorithm converges to zero, then consistency of W (Ĝ) to
W (G∗

FB) holds. They did not consider any restrictions on G and did not study the welfare
loss convergence rates. Instead, we consider maximizing Wn(G) over a constrained class
of policies without converting it into a classification problem.

The idea of optimizing the sample analog of a population decision problem is known
as the Empirical Risk Minimization (ERM) Principle in classification (see Vapnik (1998)
and references therein). The similarity between treatment choice and classification al-
lows us to draw on recent results by Devroye, Györfi, and Lugosi (1996), Tsybakov (2004),
Massart and Nédélec (2006), Audibert and Tsybakov (2007), and Kerkyacharian, Tsy-
bakov, Temlyakov, Picard, and Koltchinskii (2014), among others. We extend these con-
vergence rate results for ERM classifiers to the treatment choice problem, accommo-
dating the differences between classification and treatment choice and addressing issues
specific to treatment choice. Establishing uniform convergence rates of the welfare regret
of the EWM rule and its minimax rate optimality constitute the main theoretical contri-
butions of this paper.

The analysis of individualized treatment rules has also received considerable attention in
biostatistics. Qian and Murphy (2011) proposed a plug-in approach using E(Yd|X) esti-
mated by penalized least squares. They derived welfare convergence rate of n−1/2 or better
(with a margin condition), assuming that E(Yd|X) is well approximated by a sparse repre-
sentation. Zhao, Zeng, Rush, and Kosorok (2012) proposed estimation of the treatment
rule using a Support Vector Machine. This approach substitutes the EWM treatment
choice objective function by a convex surrogate. They derived the welfare convergence
rates that depend on the dimension of the covariates, similarly to nonparametric plug-
in rules. These approaches are computationally attractive but cannot be used to choose
from a constrained set of treatment rules or under a capacity constraint. Dudík, Langford,
and Li (2011) and Zhang, Tsiatis, Laber, and Davidian (2012) considered maximizing a
doubly-robust estimate of the welfare over a set of policies and showed by simulation
that this approach outperforms the e-hybrid EWM approach in terms of welfare. Athey
and Wager (2017) analytically characterized advantages of the doubly-robust approach by
showing an improved constant term in the welfare regret upper bounds.

Several works in econometrics consider the plug-in approach to treatment choice using
estimated regression equations,

Ĝplug-in = {x : τ̂m(x)≥ 0
}
� τ̂m(x)= m̂1(x)− m̂0(x)� (1.13)

where m̂d(x) is a parametric or a nonparametric estimator of E(Yd|X = x). Hirano and
Porter (2009) established local asymptotic minimax optimality of plug-in rules for para-
metric and semiparametric models of treatment response. Under an aggregate budget
constraint, Bhattacharya and Dupas (2012) considered nonparametric plug-in rules with
propensity score weighted estimators of the regression equations and derived some of
their properties. Armstrong and Shen (2015) considered statistical inference for the first-
best decision ruleG∗

FB from the perspective of inference for conditional moment inequal-
ities. Empirical researchers often assess who should be treated by stratifying the popu-
lation on an estimated predictor of Y0, which leads to biased treatment effect estimates
(Abadie, Chingos, and West (2017)). Kasy (2016) considered estimation of a partially-
ordered welfare ranking over treatment assignment policies with a set-identified welfare
criterion.

To assess treatment effect heterogeneity, estimation and inference for conditional treat-
ment effects based on parametric or nonparametric regressions are often reported, but
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the stylized output of statistical inference (e.g., confidence intervals, p-values) fails to of-
fer the policy maker a direct guidance on what treatment rule to follow. In contrast, our
EWM approach offers the policy maker a specific treatment assignment rule designed to
maximize social welfare.

A treatment assignment rule could also be obtained by specifying a prior distribution
for P and solving for a Bayes decision rule (see Dehejia (2005) and Chamberlain (2011)
for Bayesian approaches to the treatment choice problem). Kasy (2017) proposed a non-
parametric Bayesian approach to policy estimation for a range of public policy applica-
tions. In contrast to the Bayesian approach, the EWM approach utilizes only the empirical
distribution of the data and does not require a prior distribution over the data generating
processes.

Elliott and Lieli (2013) and Lieli and White (2010) also proposed maximizing the sam-
ple analog of a utilitarian decision criterion similar to EWM. They considered the prob-
lem of forecasting binary outcomes based on observations of (Yi�Xi), as in Manski and
Thompson (1989), where a forecast leads to a binary decision.

2. THEORETICAL PROPERTIES OF EWM

2.1. Setup and Assumptions

Throughout our investigation of theoretical properties of EWM, we maintain the fol-
lowing assumptions.

ASSUMPTION 2.1: (UCF) Unconfoundedness: (Y1�Y0)⊥D|X .
(BO) Bounded Outcomes: There existsM <∞ such that the support of outcome variable

Y is contained in [−M/2�M/2].
(SO) Strict Overlap: There exist κ ∈ (0�1/2) such that the propensity score satisfies e(x) ∈

[κ�1 − κ] for all x ∈X .
(VC) VC-class: A class of decision sets G has a finite VC-dimension3 v <∞ and is count-

able.4

The assumption of unconfoundedness (selection on observables) holds if data are ob-
tained from an experimental study with a randomized treatment assignment. In observa-
tional studies, unconfoundedness is a non-testable and often controversial assumption.
Our analysis could be applied to the observational studies in which unconfoundedness is
credible. The second assumption (BO) implies boundedness of the treatment effects, that
is,

PX
(∣∣τ(X)∣∣≤M)= 1�

3Let xl ≡ {x1� � � � � xl} be a finite set with l ≥ 1 points in X . Given a class of subsets G in X , define
N(xl)= |{xl ∩G :G ∈ G}| to be the number of different subsets of xl picked out by G ∈ G. The VC-dimension
v ≥ 1 of G is defined by the largest l such that supxl N(x

l) = 2l holds (Vapnik (1998)). The VC-dimension is
commonly used to measure the complexity of a class of sets in the statistical learning literature (see Vapnik
(1998), Dudley (1999, Chapter 4), and van der Vaart and Wellner (1996) for extensive discussions). Note that
the VC-dimension is smaller by one compared to the VC-index used to measure the complexity of a class of
sets in the empirical process theory; see, for example, van der Vaart and Wellner (1996).

4Countability of G is imposed to simplify measurability issues in proving our theoretical results. In Exam-
ples 2.1–2.3 below, we formulate G to be uncountable, whereas any practical implementation will only use a
countable subset of G in search of the EWM rule.
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where PX is the marginal distribution of X and τ(·) is the conditional treatment effect
τ(X) = E(Y1 − Y0|X). Implementing EWM does not require knowledge of M and this
assumption is imposed mainly for analytical convenience. The third assumption (SO) is a
standard assumption in the treatment effect literature. It is satisfied in randomized con-
trolled trials by design, but it may be violated in observational studies if almost all the
individuals are in the same group (treatment or control) for some values of X . We let
P(M�κ) denote the class of distributions of (Y0�Y1�D�X) that satisfy Assumption 2.1
(UCF), (BO), and (SO).

The fourth assumption (VC) restricts the complexity of the class of candidate treatment
rules G in terms of its VC-dimension. If X has a finite support, then the VC-dimension
v of any class G does not exceed the number of support points. If some of X is continu-
ously distributed, Assumption 2.1 (VC) requires G to be smaller than the Borel σ-algebra
of X . The following examples illustrate several practically relevant classes of the feasible
treatment rules satisfying Assumption 2.1 (VC).

EXAMPLE 2.1—Linear Eligibility Score: Suppose that a feasible assignment rule is con-
strained to those that assign the treatment according to an eligibility score. By the eligi-
bility score, we mean a scalar-valued function of the individual’s observed characteristics
that determines whether one receives the treatment based on whether the eligibility score
exceeds a certain threshold. The main objective of data analysis is therefore to construct
an eligibility score that yields a welfare-maximizing treatment rule. Specifically, we as-
sume that the eligibility score is constrained to being linear in a subvector of x ∈ R

dx ,
xsub ∈ R

dsub , dsub ≤ dx. The class of decision sets generated by Linear Eligibility Scores
(LES) is defined as

GLES ≡ {{x ∈ R
dx : β0 + xTsubβsub ≥ 0

} : (β0�β
T
sub

) ∈ R
dsub+1

}
� (2.1)

We accordingly obtain an EWM assignment rule by maximizing

Wn(β)≡ En
[
YiDi

e(Xi)
· 1
{
β0 +XT

sub�iβsub ≥ 0
}+ Yi(1 −Di)

1 − e(Xi)
· 1
{
β0 +XT

sub�iβsub < 0
}]

in β = (β0�β
T
sub) ∈ R

dsub+1. It is well known that the class of half-spaces spanned by
(β0�β

T
sub) ∈ R

dsub+1 has the VC-dimension v = dsub + 1, so the requirement of finite VC-
dimension in Assumption 2.1 (VC) holds. In Appendix C of Kitagawa and Tetenov
(2018a), we discuss how to compute ĜEWM when the class of decision sets is given by
GLES. A plug-in rule based on a parametric linear regression also selects a treatment rule
from GLES, but their welfare does not converge to the maximum welfare W ∗

GLES
if the re-

gression equations are misspecified, whereas the welfare of ĜEWM always does (as shown
in Theorem 2.1 below).

EXAMPLE 2.2—Generalized Eligibility Score: Let fj(·), j = 1� � � � �m, and g(·) be
known functions of x ∈ R

dx . Consider a class of assignment rules generated by Gener-
alized Eligibility Scores (GES),

GGES ≡
{{
x ∈ R

dx :
m∑
j=1

βjfj(x)≥ g(x)
}
� (β1� � � � �βm) ∈R

m

}
�

The class of decision sets GGES generalizes the linear eligibility score rules (2.1), as it allows
for eligibility scores that are nonlinear in x, that is, GGES can accommodate decision sets
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that partition the space of covariates by nonlinear boundaries. It can be shown that GGES

has the VC-dimension v=m+ 1 (Theorem 4.2.1 in Dudley (1999)).

EXAMPLE 2.3—Intersection Rule of Multiple Eligibility Scores: Consider a situation
where there are L≥ 2 eligibility scores. Let GGES�l, l= 1� � � � �L, be classes of decision sets
such that each of them is generated by contour sets of the lth eligibility score. Suppose that
a feasible decision rule is constrained to those that assign the treatment if the individual
has all the L eligibility scores exceeding thresholds. In this case, the class of decision sets
is constructed by the intersections, G ≡⋂L

l=1 GGES�l = {⋂L

l=1Gl :Gl ∈ GGES�l� l = 1� � � � �L}.
An intersection of a finite number of VC-classes is a VC-class with a finite VC-dimension
(Theorem 4.5.4 in Dudley (1999)). We can also consider a class of treatment rules that
assigns a treatment if at least one of the L eligibility scores exceeds a threshold. In
this case, instead of intersections, the class of decision sets is formed by the unions of
{GGES�l� l = 1� � � � �L}, which is also known to have a finite VC-dimension (Theorem 4.5.4
in Dudley (1999)).

2.2. Uniform Rate Optimality of EWM

To analyze statistical performance of EWM rules, we focus on a non-asymptotic upper
bound of the worst-case welfare loss supP∈P(M�κ) EPn[W ∗

G −W (ĜEWM)] and examine how
it depends on sample size n and VC-dimension v. This finite-sample upper bound allows
us to assess the uniform convergence rate of the welfare and to examine how richness
(complexity) of the class of candidate decision rules affects the worst-case performance
of EWM. The main reason that we focus on the uniform convergence rate rather than
a pointwise convergence rate is that the pointwise convergence rate of the welfare loss
can vary depending on a feature of the data distribution and fails to provide a guaranteed
learning rate of an optimal policy when no additional assumption, other than Assump-
tion 2.1, is available.

For heuristic illustration of the derivation of the uniform convergence rate, consider
the following inequality, which holds for any G̃ ∈ G:

W (G̃)−W (ĜEWM)=W (G̃)−Wn(ĜEWM)+Wn(ĜEWM)−W (ĜEWM)

≤W (G̃)−Wn(G̃)+ sup
G∈G

∣∣Wn(G)−W (G)∣∣
(
∵Wn(ĜEWM)≥Wn(G̃)

)
≤ 2 sup

G∈G

∣∣Wn(G)−W (G)∣∣�
(2.2)

Since it applies to W (G̃) for all G̃, it also applies to W ∗
G = supW (G̃):

W ∗
G −W (ĜEWM)≤ 2 sup

G∈G

∣∣Wn(G)−W (G)∣∣� (2.3)

Therefore, the expected welfare loss can be bounded uniformly in P by a distribution-free
upper bound of EPn(supG∈G |Wn(G)−W (G)|). Since Wn(G)−W (G) can be seen as the
centered empirical process indexed by G ∈ G, an application of the existing moment in-
equality for the supremum of centered empirical processes indexed by a VC-class yields
the following distribution-free upper bound. A proof, which closely follows the proofs of
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Theorems 1.16 and 1.17 in Lugosi (2002) in the classification problem, is given in Sec-
tion A.2 of Kitagawa and Tetenov (2018a).

THEOREM 2.1: Under Assumption 2.1, we have

sup
P∈P(M�κ)

EPn
[
W ∗

G −W (ĜEWM)
]≤ C1

M

κ

√
v

n
�

where C1 is a universal constant defined in Lemma A.4 in Kitagawa and Tetenov (2018a).

This theorem shows that the convergence rate of the worst-case welfare loss for the
EWM rule is no slower than n−1/2. The upper bound is increasing in the VC-dimension of
G, implying that, as the candidate treatment assignment rules become more complex in
terms of VC-dimension, ĜEWM tends to overfit the data in the sense that the distribution
of regret W ∗

G −W (ĜEWM) is more and more dispersed, and, with n fixed, this overfitting
results in inflating the average welfare regret.5

The next theorem concerns a universal lower bound of the worst-case average welfare
loss. It shows that no data-based treatment choice rule can have a uniform convergence
rate faster than n−1/2.

THEOREM 2.2: Suppose that Assumption 2.1 holds. For any treatment choice rule Ĝ as a
function of (Z1� � � � �Zn), it holds that

sup
P∈P(M�κ)

EPn
[
W ∗

G −W (Ĝ)]≥ 2−1 exp{−2
√

2}M
√
v

n
for all n≥ 16v�

We derive this lower bound by bounding below the worst-case welfare regret by the
risk of a parametric Bayes decision problem (i.e., a prior that only supports a paramet-
ric subclass P∗ ⊂ P(M�κ)) and maximizing the Bayes risk over P ∈ P∗. A similar proof
technique appears in Devroye and Lugosi (1995) in their regret lower bound analysis of
ERM classifiers.

This theorem, combined with Theorem 2.1, implies that ĜEWM is minimax rate optimal
over the class of data generating processes P(M�κ), since the convergence rate of the
upper bound of supP∈P(M�κ) EPn[W ∗

G −W (ĜEWM)] agrees with the convergence rate of the
universal lower bound. Accordingly, we can conclude that no other data-driven procedure
for obtaining a treatment choice rule can outperform ĜEWM in terms of the uniform con-
vergence rate over P(M�κ). It is worth noting that the rate lower bound is uniform in
P and does not apply pointwise. Theorem 2.3 shows that EWM rules have faster conver-
gence rates for some distributions. It is also possible that EPn[W (Ĝ)]>W ∗

G for some pairs
of Ĝ and P , but it can never hold for all distributions in P(M�κ).6

5Note that W ∗
G weakly increases if a more complex class G is chosen. Our welfare loss criterion is defined

for a specific class G and does not capture the potential gain in the maximal welfare from the choice of a more
complex G.

6For example, if Ĝ is a nonparametric plug-in rule and the first-best decision rule G∗
FB for distribution P

does not belong to G, then the welfare of Ĝ will exceed W ∗
G in sufficiently large samples. However, the uniform

lower bound still applies because there exist other distributions for which EPnW (Ĝ)≤W ∗
G − (n−1/2 bound) for

the same sample size.
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REMARK 2.1: Capacity or budget constraints that restrict the proportion of the target
population that could be assigned to treatment exist in various treatment choice problems.
An attractive feature of the empirical welfare maximization method is the simplicity of
incorporating these constraints in the estimation of a treatment choice rule.

Assume that the proportion of the target population that could receive treatment 1
cannot exceed K ∈ (0�1). If the population distribution of covariates PX were known,
maximization of the empirical welfare criterion could be simply restricted to sets in class
G that satisfy the capacity constraint GK ≡ {G ∈ G : PX(G) ≤ K}. Being a subset of G,
the class of sets GK has the same complexity as G (or lower), and Theorem 2.1 could be
applied simply by replacing G with GK .

When PX is unknown, it is not guaranteed with certainty that estimated treatment rule
Ĝ satisfies the capacity constraint. To evaluate the welfare in this setting, we assume that
if the treatment ruleG violates the capacity constraint, PX(G) >K, then the scarce treat-
ment is randomly allocated (“rationed”) to a fraction K

PX(G)
of the assigned recipients with

X ∈G independently of (X�Y0�Y1).7 If G does not violate the capacity constraint, then
there is no rationing and all recipients with covariates X ∈G receive treatment 1. This
allows us to clearly define the capacity-constrained welfare of the treatment rule indexed
by any subset G⊂X of the covariate space as

W K(G)≡ EP
⎡
⎣
[
Y1 · min

{
1�

K

PX(G)

}
+Y0 ·

(
1 − min

{
1�

K

PX(G)

})]
· 1{X ∈G}

+Y0 · 1{X /∈G}

⎤
⎦ �

Then the capacity-constrained welfare gain of the treatment rule G relative to the no-
treatment policy is given by

V K(G)≡W K(G)−W K(∅)= min
{

1�
K

PX(G)

}
·EP

[
τ(X)1{X ∈G}]�

Observe that rationing dilutes the effect of treatment rules that violate the capacity con-
straint and we take into account this effect on welfare. We hence propose a treatment
rule that maximizes the empirical analog of the capacity-constrained welfare gain V K(G)
(and, hence, welfare):

ĜK ≡ arg max
G∈G

V K
n (G)� (2.4)

where

V K
n (G)≡ min

{
1�

K

PX�n(G)

}
·En
[(

YiDi

e(Xi)
− Yi(1 −Di)

1 − e(Xi)

)
· 1{Xi ∈G}

]
�

and PX�n is the empirical probability distribution of (X1� � � � �Xn). Theorem D.1 of
Kitagawa and Tetenov (2018b) shows that similarly to Theorem 2.1, the expected welfare
of ĜK converges to the maximum at least at n−1/2 rate.

REMARK 2.2: Empirical Welfare Maximization method can be adapted to situations
where a target population shares the conditional treatment effect with the sampled pop-
ulation, but differs in the distribution of covariates X . Let ρ(x) ≡ pTX(x)/pX(x) be the

7In comparison, nonparametric plug-in treatment rules proposed by Bhattacharya and Dupas (2012) are
only required to satisfy the capacity constraint on average over repeated data samples.
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density ratio of the marginal distributions of X , where pX and pTX are those of the sam-
pled population and the target population. Assume ρ(x) ≤ ρ̄ <∞ for all x. The welfare
gain of treatment rule G on the target population can be written as

V T (G)≡
∫
X
τ(x)1{x ∈G}ρ(x)dPX(x)�

Since the first-best treatment rule G∗
FB = 1{x : τ(x)≥ 0} is the same in the sampled and

the target populations, if G∗
FB ∈ G, we could directly apply the EWM rule computed for

the sampled population to the target population. In contrast, if the first-best policy is not
feasible (G∗

FB /∈ G), the second-best policies for the sampled and the target populations are
generally different, and the welfare of treatment rules proposed in the previous sections
does not generally converge to the second-best in the target population supG∈G V

T (G).
The second-best in the target population could be obtained by reweighting the argu-

ment of the EWM problem by the density ratio ρ(Xi):

ĜT
EWM ∈ arg max

G∈G
En

[(
YiDi

e(Xi)
− Yi(1 −Di)

1 − e(Xi)

)
· ρ(Xi) · 1{Xi ∈G}

]
� (2.5)

As an extension of Theorem 2.1, the welfare loss of the reweighted EWM rule in the
target population can be shown to converge to zero at least at n−1/2 rate.

REMARK 2.3: The EWM rule (1.7) is invariant to multiplying all outcomes Yi by a pos-
itive constant, but is not invariant to adding a constant. If all Yi’s are replaced by Yi + c,
the welfare estimate Wn(G) changes by c ·En[ Di

e(Xi)
· 1{Xi ∈G} + 1−Di

1−e(Xi) · 1{Xi /∈G}]. This
difference converges to c for every G, but its value varies with G in finite samples. This
could pose problems for applied work because the researcher has some room to change
the treatment assignment rule by changing the coding of the outcome variable. We pro-
pose a simple modification of the EWM rule invariant to positive affine transformations
of outcomes. Denote by Y dm

i ≡ Yi−En[Yi] the outcomes demeaned by their sample mean;
they are invariant to changing Yi’s by a constant. Then the demeaned EWM rule

Ĝdm
EWM ∈ arg max

G∈G
W dm
n (G)� where (2.6)

W dm
n (G)≡ En

[
Y dm
i Di

e(Xi)
· 1{Xi ∈G} + Y dm

i (1 −Di)

1 − e(Xi)
· 1{Xi /∈G}

]
� (2.7)

is invariant to positive affine transformations of Yi.
The rate result of Theorem 2.1 also holds for demeaned EWM rule Ĝdm

EWM, as we show in
Section D.2 of Kitagawa and Tetenov (2018b).8 In our empirical application, we compute
the demeaned EWM treatment rules.

REMARK 2.4: In Section D.3 of Kitagawa and Tetenov (2018b), we discuss how the
EWM approach could be applied with more than two treatments. The rate result of The-
orem 2.1 holds for multiple treatments if treatment assignment covariate subsets for each
treatment belong to a VC-class.

8In our simulations, demeaned EWM never performed much worse than standard EWM in terms of welfare.
Demeaned EWM performed much better in cases where E[Y ] was very far from zero.
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2.3. Rate Improvement by Margin Assumption

The welfare loss upper bounds obtained in Theorem 2.1 can indeed tighten up and the
uniform convergence rate can improve, as we further constrain the class of data generat-
ing processes. In this section, we investigate (i) what feature of data generating processes
can affect the upper bound on the welfare loss of the EWM rule, and (ii) whether or not
the EWM rule remains minimax rate optimal even under the additional constraints. For
this goal, we consider imposing the following two assumptions.

ASSUMPTION 2.2: (FB) Correct Specification: The first-best treatment rule G∗
FB defined

in (1.8) belongs to the class of candidate treatment rules G.
(MA) Margin Assumption: There exist constants 0<η≤M and 0<α<∞ such that

PX
(∣∣τ(X)∣∣≤ t)≤ (t/η)α� ∀0 ≤ t ≤ η�

where M <∞ is the constant as defined in Assumption 2.1 (BO).

The assumption of correct specification means that the class of feasible policy rules
specified by G contains an unconstrained first-best treatment rule G∗

FB. This assumption
is plausible if, for instance, the policy maker’s specification of G is based on a credible as-
sumption about the shape of the contour set {x : τ(x)≥ 0}. This assumption can be, on the
other hand, restrictive if the specification of G comes from some exogenous constraints
for feasible policy rules, as in the case of Example 2.1.

The second assumption (MA) concerns the way in which the distribution of conditional
treatment effect τ(X) behaves in the neighborhood of τ(X) = 0. A similar assumption
has been considered in the literature on classification analysis (Mammen and Tsybakov
(1999), Tsybakov (2004), among others), and we borrow the term “margin assumption”
from Tsybakov (2004). Parameters η and α characterize the size of population with the
conditional treatment effect close to the margin τ(X) = 0. Smaller η and α imply that
more individuals can concentrate in a neighborhood of τ(X) = 0. The next examples il-
lustrate this interpretation of η and α.

EXAMPLE 2.4: Suppose that X contains a continuously distributed covariate and that
the conditional treatment effect τ(X) is continuously distributed. If the probability den-
sity function of τ(X) is bounded from above by pτ < ∞, then the margin assumption
holds with α= 1 and η= (2pτ)−1.

EXAMPLE 2.5: Suppose that X is a scalar and follows the uniform distribution on
[−1/2�1/2]. Specify the conditional treatment effect to be τ(X)= (−X)3. In this speci-
fication, τ(X) “flats out” at X = 0, and accordingly, the density function of τ(X) is un-
bounded in the neighborhood of τ(X)= 0. This specification leads to PX(|τ(X)| ≤ t)=
2t1/3, so the margin assumption holds with α= 1/3 and η= 1/8.

EXAMPLE 2.6: Suppose that the distribution of X is the same as in Example 2.5. Let
h> 0 and specify τ(X) as

τ(X)=
{
X − h for X ≤ 0�
X + h for X > 0�
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This τ(X) is discontinuous at X = 0, and the distribution of τ(X) has zero probability
around the margin of τ(X)= 0. It holds that

PX
(∣∣τ(X)∣∣≤ t)=

{
0 for t ≤ h�
2(t − h) for h< t ≤ 1

2
+ h�

By setting η = h, the margin condition holds for arbitrarily large α. In general, if the
distribution of τ(X) has a gap around the margin of τ(X) = 0, the margin condition
holds with arbitrarily large α.

From now on, we denote the class of P satisfying Assumptions 2.1 and 2.2 by
PFB(M�κ�η�α).9 The next theorem provides the upper bound of the welfare loss of the
EWM rule when a class of data distributions is constrained to PFB(M�κ�η�α).

THEOREM 2.3: Under Assumptions 2.1 and 2.2,

sup
P∈PFB(M�κ�η�α)

EPn
[
W
(
G∗

FB

)−W (ĜEWM)
]≤ c(v

n

) 1+α
2+α

holds for all n, where c is a positive constant that depends only on M , κ, η, and α.

Similarly to Theorem 2.1, the presented welfare loss upper bound is non-asymptotic,
and it is valid for every sample size. Our derivation of this theorem can be seen as an
extension of the finite-sample risk bound for the classification error shown in Theorem 2
of Massart and Nédélec (2006). Our rate upper bound is consistent with the uniform
convergence rate of the classification risk of the empirical risk-minimizing classifier shown
in Theorem 1 of Tsybakov (2004).10 This coincidence is somewhat expected, given that
the empirical welfare criterion that the EWM rule maximizes resembles the empirical
classification risk in the classification problem.

The next theorem shows that the uniform convergence rate of n− 1+α
2+α obtained in The-

orem 2.3 attains the minimax rate lower bound, implying that any treatment choice rule
Ĝ based on data (including ĜEWM) cannot attain a uniform convergence rate faster than
n− 1+α

2+α . This means that the EWM rule remains rate optimal even when the class of data
generating processes is constrained additionally by Assumption 2.2.11

THEOREM 2.4: Suppose Assumptions 2.1 and 2.2 hold. Assume that the VC-dimension of
G satisfies v≥ 2. Then, for any treatment choice rule Ĝ as a function of (Z1� � � � �Zn), it holds
that

sup
P∈PFB(M�κ�η�α)

EPn
[
W
(
G∗

FB

)−W (Ĝ)]≥ 2−1 exp{−2
√

2}M 2(1+α)
2+α η− α

2+α

(
v− 1
n

) 1+α
2+α

for all n≥ max{(M/η)2�42+α}(v− 1).

9Note that PFB(M�κ�η�α) depends on the set of feasible treatment rules G via Assumption 2.2 (FB).
10Tsybakov (2004) defined the complexity of the decision sets G in terms of the growth coefficient ρ of the

bracketing number of G. We control complexity of G in terms of the VC-dimension, which corresponds to
Tsybakov’s growth coefficient ρ being arbitrarily close to zero.

11Assumption 2.2 rules out data generating processes with PX(τ(X) = 0) > 0, which can constitute focal
null hypotheses (often PX(τ(X)= 0)= 1) in program evaluation studies. A practical implication of the refined
minimax rate result shown in this section is that the EWM rule remains a recommended choice even when we
know ex ante that there is substantial effect heterogeneity in x and τ(x) �= 0 for most x.
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The following remarks summarize some analytical insights associated with Theorems
2.1–2.4.

REMARK 2.5: The convergence rates of the worst-case EWM welfare loss obtained by
Theorems 2.1 and 2.3 highlight how margin coefficient α influences the uniform perfor-
mance of the EWM rule. Higher α improves the welfare loss convergence rate of EWM,
and the convergence rate approaches n−1 in an extreme case, where the distribution of
τ(X) has a gap around τ(X)= 0. As fewer individuals are around the margin of τ(X)= 0,
we can attain the maximal welfare quicker. Conversely, as α approaches zero (more indi-
viduals around the margin), the welfare loss convergence rate of EWM approaches n−1/2,
and it corresponds to the uniform convergence rate of Theorem 2.1.

REMARK 2.6: The upper bounds of welfare loss convergence rate shown in Theorems
2.1 and 2.3 are increasing in the VC-dimension of G. Since they are valid at every n, we
can allow the VC-dimension of the candidate treatment rules to grow with the sample
size. For instance, if we consider a sequence of candidate decision sets {Gn : n= 1�2� � � � },
for which the VC-dimension grows with the sample size at rate nλ, 0< λ < 1, Theorems
2.1 and 2.3 imply that the welfare loss uniform convergence rate of the EWM rule slows
down to n− 1−λ

2 for the case without Assumption 2.2 and to n−(1−λ) (1+α)
2+α for the case with

Assumption 2.2.12 Note that the welfare loss lower bounds shown in Theorems 2.2 and 2.4
have the VC-dimensions of the same order as in the corresponding upper bounds, so we
can conclude that the EWM rule is also minimax rate optimal even in the situations where
the complexity of G grows with the sample size.

REMARK 2.7: Note that the welfare loss lower bounds of Theorems 2.2 and 2.4 are
valid for any estimated treatment choice rule Ĝ irrespective of whether Ĝ is constrained
to G or not. Therefore, the nonparametric plug-in rule Ĝplug-in defined in (1.13) is subject
to the same lower bound.13

REMARK 2.8: Let PFB(M�κ) be the class of data generating processes that satisfy As-
sumption 2.1 and Assumption 2.2 (FB). A close inspection of the proofs of Theorems
2.1 and 2.2 given in Section A.2 of Kitagawa and Tetenov (2018a) shows that the same
lower and upper bounds of Theorems 2.1 and 2.2 can be obtained even when P(M�κ)
is replaced with PFB(M�κ). In this sense, Assumption 2.2 (MA) plays the main role in
improving the welfare loss convergence rate.

2.4. Unknown Propensity Score

We have so far considered situations where the true propensity score is known. This
would not be the case if the data were obtained from an observational study in which
the assignment of treatment is not generally under the control of the experimenter. To
cope with the unknown propensity score, this section considers two hybrids of the EWM
approach and the parametric/nonparametric plug-in approach: the m-hybrid rule defined

12Note that for the case without Assumption 2.2 (FB), the maximal attainable welfare W ∗
G increases weakly

as the complexity of G grows. On the other hand, with Assumption 2.2 (FB), the set of data generating processes
PFB(M�κ�η�α) expands as the complexity of G grows.

13Section D.4 of Kitagawa and Tetenov (2018b) discusses the welfare loss uniform convergence rate of the
nonparametric plug-in rule.
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in (1.11) and the e-hybrid rule defined in (1.12). The e-hybrid rule employs the trimming
rule 1{εn ≤ ê(Xi) ≤ 1 − εn} with a deterministic sequence {εn : n = 1�2� � � � }, which we
assume to converge to zero faster than some polynomial rate, εn ≤O(n−a), a > 0.14

The next condition concerns the convergence rate of the average estimation error of
the conditional treatment effect estimators.

CONDITION 2.1: (m) (m-hybrid case): Let τ̂m(x)= m̂1(x)− m̂0(x) be an estimator for
the conditional treatment effect τ(x) = m1(x) − m0(x). For a class of data generating
processes Pm, there exists a sequence ψn → ∞ such that

lim sup
n→∞

sup
P∈Pm

ψnEPn

[
1
n

n∑
i=1

∣∣τ̂m(Xi)− τ(Xi)
∣∣]<∞ (2.8)

holds.
(e) (e-hybrid case): Let τ̂ei = [ YiDi

ê(Xi)
− Yi(1−Di)

1−ê(Xi) ] · 1{εn ≤ ê(Xi) ≤ 1 − εn} be an estimator
for τi = YiDi

e(Xi)
− Yi(1−Di)

1−e(Xi) , where ê(·) is an estimated propensity score. For a class of data
generating processes Pe, there exists a sequence φn → ∞ such that

lim sup
n→∞

sup
P∈Pe

φnEPn

[
1
n

n∑
i=1

∣∣τ̂ei − τi
∣∣]<∞� (2.9)

In Section E of Kitagawa and Tetenov (2018b), we showed that the estimators τ̂m(·) and
τ̂ei constructed via local polynomial regressions satisfy this condition for a certain class of
data generating processes. Theorems 2.5 and 2.6 below derive the uniform convergence
rate bounds of the hybrid rules in two different scenarios. In Theorem 2.5, we constrain
the class of data generating processes only by Assumption 2.1 and Condition 2.1, and,
importantly, we allow the class of decision rules G to exclude the first-best rule G∗

FB. See
Kitagawa and Tetenov (2018a) for proofs of these theorems.

THEOREM 2.5: Suppose Assumption 2.1 holds.
(m) (m-hybrid case): Given a class of data generating processes Pm, if an estimator for the

conditional treatment effect τ̂m(·) satisfies Condition 2.1 (m), then

sup
P∈Pm∩P(M�κ)

EPn
[
W ∗

G −W (Ĝm-hybrid)
]≤O(ψ−1

n ∨ n−1/2
)
�

(e) (e-hybrid case): Given a class of data generating processes Pe, if an estimator for the
propensity score ê(·) satisfies Condition 2.1 (e), then

sup
P∈Pe∩P(M�κ)

EPn
[
W ∗

G −W (Ĝe-hybrid)
]≤O(φ−1

n ∨ n−1/2
)
�

A comparison of Theorem 2.5 with Theorem 2.1 shows that the uniform rate upper
bounds for the hybrid EWM rules are no faster than the welfare loss convergence rate

14The trimming sequence εn is introduced only to simplify the derivation of the rate upper bound of the
welfare loss. In practical terms, if the overlap condition is well satisfied in the given data, the trimming is not
necessary for computing the e-hybrid rule.
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of the EWM with known propensity score. Note that if some nonparametric estimator
is used to estimate τ(·) or e(·), ψn or φn specified in Condition 2.1 is generally slower
than n1/2. Hence, the welfare loss upper bounds of the hybrid rules are determined by
the nonparametric rate ψ−1

n or φ−1
n . A special case where the estimation of τ(·) or e(·)

does not affect the uniform convergence rate is when τ(·) or e(·) is assumed to belong
to a parametric family and it is estimated parametrically, that is, ψn or φn is equal to
n1/2.

In the second scenario, we consider the case where G contains the first-best decision
rule G∗

FB and the data generating processes are constrained further by the margin as-
sumption (Assumption 2.2) with margin coefficient α ∈ (0�1].

THEOREM 2.6: Suppose Assumptions 2.1 and 2.2 hold with a margin coefficient α ∈ (0�1].
Assume that a stronger version of Condition 2.1 holds, where (2.8) and (2.9) are replaced by

lim sup
n→∞

sup
P∈Pm

EPn
[(
ψ̃n max

1≤i≤n

∣∣τ̂m(Xi)− τ(Xi)
∣∣)2]

<∞ and (2.10)

lim sup
n→∞

sup
P∈Pe

EPn
[(
φ̃n max

1≤i≤n

∣∣τ̂ei − τi
∣∣)2]

<∞ (2.11)

for sequences ψ̃n → ∞ and φ̃n → ∞, respectively. Then, we have

sup
P∈Pm∩PFB(M�κ�α�η)

EPn
[
W
(
G∗

FB

)−W (Ĝm-hybrid)
] ≤ O(ψ̃−(1+α)

n ∨ n− 1+α
2+α log ψ̃n

)
�

sup
P∈Pe∩PFB(M�κ�α�η)

EPn
[
W
(
G∗

FB

)−W (Ĝe-hybrid)
] ≤ O(φ̃−(1+α)

n ∨ n− 1+α
2+α log φ̃n

)
�

Theorem 2.6 shows that even when τ(·) or e(·) has to be estimated, the margin coeffi-
cient α influences the rate upper bound of the welfare loss. A higher α leads to a faster
rate of the welfare loss convergence regardless of whether τ(·) and e(·) are estimated
parametrically or nonparametrically. In the situation where τ(·) or e(·) is estimated para-
metrically (with a compact support of X), ψ̃n or φ̃n is equal to n1/2; thus, the uniform
welfare loss convergence rate is given by the second argument in O(·), n− 1+α

2+α logn. On the
other hand, when τ(·) or e(·) is estimated nonparametrically, which of the two terms in
O(·) converges more slowly depends on the dimension of X and the degree of smooth-
ness of the underlying nonparametric function. For instance, Section E of Kitagawa and
Tetenov (2018b) shows, for suitably constructed Pm, local polynomial estimation for τ(x)
can attain ψ̃n = n

1
2+dx/βm (logn)−

1
2+dx/βm −2, where dx is the dimension of X and βm is the

degree of Hölder smoothness of m1(x) and m0(x). Hence, if dx/βm > α, the rate upper
bound of Theorem 2.6 implies that the welfare loss convergence rate of them-hybrid rule
is guaranteed to be n− 1+α

2+dx/βm (logn)(
1

2+dx/βm +2)(1+α).
Note that Theorems 2.5 and 2.6 concern the upper bound of the convergence rate. We

do not have the universal rate lower bound results for these constrained classes of data
generating processes. We leave the investigation of the sharp rate bound of the hybrid-
EWM welfare loss for future research.

3. EMPIRICAL APPLICATION

We illustrate the Empirical Welfare Maximization method by applying it to experimen-
tal data from the National Job Training Partnership Act (JTPA) Study. A detailed descrip-
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TABLE I

ESTIMATED WELFARE GAIN OF ALTERNATIVE TREATMENT ASSIGNMENT RULES THAT CONDITION ON
EDUCATION AND PRE-PROGRAM EARNINGSa

Outcome Variable: 30-Month Post-Program Earnings, 30-Month Post-Program Earnings,
No Treatment Cost $774 Cost for Each Assigned Treatment

Treatment Rule: Share of Population Est. Welfare Gain Share of Population Est. Welfare Gain
to Be Treated per Population Member to Be Treated per Population Member

Treat everyone 1 $1,180 1 $404
($464, $1,896) (−$313, $1,121)

EWM quadrant rule 0.95 $1,340 0.8 $643
($441, $2,239) (−$258, $1,544)

EWM linear rule 0.96 $1,364 0.69 $792
($398, $2,330) (−$177, $1,761)

EWM linear rule 0.88 $1,489 0.75 $897
(with (education)2 and ($374, $2,603) (−$214, $2,008)
(education)3)

Linear regression plug-in rule 0.98 $1,152 0.86 $527

Linear regression plug-in rule 0.95 $1,263 0.91 $547
(with (education)2 and
(education)3)

Nonparametric plug-in rule 0.91 $1,693 0.78 $996

aTwo-sided 95% confidence intervals in parentheses. See Appendix B in Kitagawa and Tetenov (2018a) for their construction and
asymptotic validity.

tion of the study and an assessment of average program effects for five large subgroups
of the target population are found in Bloom et al. (1997). The study randomized whether
applicants would be eligible to receive a mix of training, job-search assistance, and other
services provided by the JTPA for a period of 18 months. It collected background infor-
mation on the applicants prior to random assignment, as well as administrative and survey
data on applicants’ earnings in the 30-month period following the assignment. Our sample
consists of 9,223 observations with available data on years of education and pre-program
earnings from the sample of adults (22 years and older) used in the original evaluation
of the program and in subsequent studies (Bloom et al. (1997), Heckman, Ichimura, and
Todd (1997), Abadie, Angrist, and Imbens (2002)). The probability of being assigned to
the treatment was two thirds in this sample.

We use two welfare outcome measures for our illustration. The first is the total indi-
vidual earnings in the 30 months after program assignment. The second is the 30-month
earnings minus $774 for individuals who were assigned to treatment. This is the average
cost of services per treatment assignment (estimated from Table 5 in Bloom et al. (1997)),
which takes into account varying take-up of program services. The first outcome measure
reflects social preferences that put no weight on the costs of the program incurred by
the government. The second outcome measure weighs participants’ gains and the govern-
ment’s losses equally.

We consider these outcomes (and costs) from an intention-to-treat perspective. We view
the policy maker’s problem as a choice of the eligibility criteria and not as a choice of the
take-up rate (decided by individuals); hence, we are not interested in the treatment effect
on compliers. Since we have to compare welfare effects of policies that assign different
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FIGURE 1.—Empirical welfare-maximizing treatment rules from the quadrant class conditioning on years
of education and pre-program earnings.

proportions of the population to the treatment, we report estimates of the average effect
per population member E[(Y1 −Y0) · 1{X ∈G}], which is proportional to the total welfare
effect of the treatment rule G.

We consider conditioning treatment assignment on two pre-treatment variables: the in-
dividual’s years of education and earnings in the year prior to the assignment. Both vari-
ables may plausibly affect how much effect the individual gets from the program services.
We do not use race, gender, or age. Though treatment effects may vary with these char-
acteristics, policy makers usually cannot use them to determine treatment assignment.
Education and earnings are generally verifiable characteristics. This is an important fea-
ture for implementing the proposed treatment assignment because the empirical welfare
estimates are not valid for the target population if the individuals could manipulate their
characteristics to obtain the desired treatment.

Table I reports the estimated welfare gains W dm
n (G)−W dm

n (∅) of alternative treatment
rules relative to the benchmark of assigning no-one to treatment, as well as the estimated
proportion of individuals assigned to treatment 1 by each rule.15

15We report welfare gain estimates using equation (2.7) with demeaned outcome variable (see Remark 2.3).
These estimates are invariant to translation of the outcome variable by a constant.
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FIGURE 2.—Empirical welfare-maximizing treatment rules from the linear class conditioning on years of
education and pre-program earnings.

We consider three candidate classes of treatment rules for EWM.16 The first is the class
of quadrant treatment rules:

GQ ≡
{{
x : s1(education − t1) > 0 & s2(prior earnings − t2) > 0

}
�

s1� s2 ∈ {−1�1}� t1� t2 ∈ R

}
� (3.1)

This class of treatment rules is easily implementable and is often used in practice. To
be assigned to treatment according to such a rule, an individual’s education and pre-
program earnings have to be above (or below) some specific thresholds. The EWM
method searches over all possible thresholds and directions. Figure 1 demonstrates the
quadrant treatment rules selected by the EWM criterion. The full shaded area indicates
individuals who would be assigned to treatment if it were costless (education ≤ 15, prior
earnings ≤ $19,670). The EWM treatment rule that takes into account $774 treatment
assignment cost has the same earnings threshold, but lowers the education threshold to
12. The size of black dots indicates the number of individuals with different covariate
values.

16Specifically, we implement demeaned EWM described in Remark 2.3 with known constant propensity
score e(Xi)= 2/3. Further details on computing EWM rules are found in Appendix C of Kitagawa and Tetenov
(2018a).
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FIGURE 3.—Parametric plug-in treatment rules based on the linear regressions of treatment outcomes on
years of education and pre-program earnings.

Second, we consider two classes of linear treatment rules:

GLES ≡ {{x : β0 +β1 · prior earnings +β2 · education> 0}�β0�β1�β2 ∈ R
}
�

G3
LES ≡

⎧⎨
⎩
{
x :
(
β0 +β1 · prior earnings +β2 · education
+β3 · (education)2 +β4 · (education)3

)
> 0
}
�

β0�β1�β2�β3�β4 ∈R

⎫⎬
⎭ �

(3.2)

Linear treatment rules that maximize empirical welfare could markedly differ from plug-
in rules derived from linear regressions. When treatment costs are not considered, the di-
rection of treatment assignment as a function of prior earnings differs between the EWM
rule (Figure 2) and the linear regression plug-in rule (Figure 3). When treatment costs are
considered, the direction of treatment assignment is similar, but the two treatment rules
substantially differ in the proportion of population assigned (69% by the EWM rule vs.
86% by the plug-in rule, Table I). If a regression equation is correctly specified, the regres-
sion plug-in and EWM rules have identical large sample limits. If the regression equation
is misspecified, however, only the linear EWM treatment rule converges with sample size
to the welfare-maximizing limit, and the welfare level attained by the regression plug-in
rule can be suboptimal even in large samples.

When quadratic and cubic terms for education are included, the EWM rule (Figure 4)
uses the additional flexibility of this functional form to change the shape of the treat-
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FIGURE 4.—Empirical welfare-maximizing treatment rules from the linear class conditioning on years of
education, (education)2, (education)3, and pre-program earnings.

ment assignment boundary, setting a higher prior earnings threshold for individuals with
13 years of education. It can be seen from Figure 6 that treatment effects estimated by
nonparametric regression for these excluded individuals are also low. In comparison, the
linear regression (Figure 5) uses the additional terms to improve the global fit of the earn-
ings equation and does not exclude this subset of the population for whom the treatment
effect seems to be negative.

Figure 6 shows plug-in treatment rules based on kernel regressions of treatment and
control outcomes on the covariates.17 The class of nonparametric plug-in rules is much
richer than the quadrant or the linear class of treatment rules, and it may obtain higher
welfare in large samples. It is clear from the figure, however, that this class of patchy
decision rules may be difficult to implement in public policy, where clear and transparent
treatment rules are required.

4. CONCLUSION

The EWM approach considered in this paper directly maximizes a sample analog of the
welfare criterion of a policy maker. This welfare-function-based statistical procedure for

17The bandwidths were chosen by Silverman’s rule of thumb.
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FIGURE 5.—Parametric plug-in treatment rules based on the regressions of treatment outcomes on years of
education, (education)2, (education)3, and pre-program earnings.

treatment choice differs fundamentally from parametric and nonparametric plug-in ap-
proaches, which do not integrate statistical inference and the decision problem at hand.
We investigated the statistical performances of the EWM rule in terms of the uniform
convergence rate of the welfare loss and demonstrated that with known propensity scores,
the EWM rule attains minimax optimal rates over various classes of feasible data distribu-
tions. The EWM approach offers a useful framework for the individualized policy assign-
ment problems, as the EWM approach can easily accommodate the constraints that policy
makers commonly face in reality. We also presented methods to compute the EWM rule
for many practically important classes of treatment assignment rules and demonstrated
them using experimental data from the JTPA program.

Several extensions and open questions remain to be answered. First, this paper assumed
that the class of candidate policies G is given exogenously to the policy maker. We did not
consider how to select the class G when the policy maker is free to do so. See Swaminathan
and Joachims (2015) and Mbakop and Tabord-Meehan (2017) for recent developments.
Second, while EWM attains minimax rate-optimality, it is unclear whether the EWM rule
has stronger decision-theoretic optimality properties for the nonparametric class of data
generating processes we considered. It remains to be seen whether EWM obtains the low-
est asymptotic maximum regret within the class of minimax rate-optimal rules, whether it
is admissible, and whether it is Bayes-optimal for some prior over P . It is an open ques-
tion whether modifications of EWM or other rate-optimal rules could perform better.
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FIGURE 6.—Nonparametric plug-in treatment rules based on the kernel regressions of treatment outcomes
on years of education and pre-program earnings.

Third, we ruled out the case in which the data are subject to selection on unobservables
or the overlap conditions fails. In these situations, the welfare criterion could be only
set-identified, and it is not clear how to extend the EWM idea to this case. Fourth, we
restricted our analysis to the additive social welfare criterion, but in some contexts, policy
makers have a non-additive social welfare criterion. See Kitagawa and Tetenov (2017) for
an extension of the EWM approach to a class of generalized Gini social welfare functions.
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