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Abstract

This paper develops a test for the conditions of instrument validity in the hetero-
geneous treatment e¤ect model (Imbens and Angrist (1994)). We show that under
the conditions of instrument validity, the point-identi�ed complier�s outcome densities
must be nonnegative. This provides the testable implication for instrument validity.
To infer this testable implication from data, we develop a speci�cation test based on
a Kolmogorov-Sminov type statistic to assess the nonnegativity of the densities. We
provide a bootstrap algorithm to implement the proposed test and show its asymptotic
validity.
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1 Introduction

In this paper, we develop a test procedure for the instrumental validity in the heterogeneous
treatment e¤ect model. When we suspect that one�s participation to a treatment depends
on his potential outcomes, a common strategy to extract identifying information for coun-
terfactual causal e¤ects is to employ an instrumental variable Z. As is demonstrated in
Imbens and Angrist (1994), Angrist, Imbens and Rubin (1996), and Heckman and Vytracil
(1999, 2001), when the instrument satis�es the two key conditions, we can point-identify
the average causal e¤ects for those whose participation decision is strictly randomized by
the instrument. (the local average treatment e¤ect) These key conditions consist of i) ran-
dom treatment assignment (RTA): an instrument is assigned independently from individual
heterogeneities which a¤ect one�s outcome and participation response, and ii) monotonic
participation response to instrument (MPR): one�s participation response to the instrument
is uniform in a certain sense over the entire population.1

When we analyze (quasi-)experimental data with possible incompliance, we often use
the initial treatment assignment as an instrument. In this case, the instrumental validity is
reasonably satisifed as far as the the initial treatment assignment is completely randomized
and incompliance is allowed only for those who are initially assigned to the treatment group
(see, for example, Abadie, Angrist, and Imbens (2002) and Kling, Liebman, and Katz
(2007)). But, if the incompliance is also allowed for those initially assigned to the control
group, we face a risk of violating MPR. Examples of this contain the well-known draft
lottery of Angrist (1991) and the applications of the fuzzy regression discontinuity design
(Campbell (1969), Hahn, Todd, and Van der Klaauw (2001)) where eligibility for a treatment
based on one�s attribute is used as an instrument. When we conduct an analysis using
observational data, the exogeneity of instrument becomes less credible and therefore, not
only MPR, but also RTA becomes a threat for the instrument validity. Although validating
an instrument is the core of identifying the causal e¤ects, there have been no procedures
proposed to empirically test the aforementioned instrumental validity. Because of this, the
instrumental validity is simply assumed or justi�ed by indirect evidence outside of data.

The �rst contribution of this paper is to clarify the testability of the instrument validity
in the heterogenous treatment e¤ect model with a binary treatment and a binary instrument.
The refutability result of this paper is closely related to the pointi-identi�cation result of the
complier�s outcome distributions by Imbens and Rubin (1997). They show that under RTA
and MPR, the distribution of complier�s treated outcome and that of complier�s control
outcome are point-identi�ed. But, from the data, the point estimator of the complier�s
outcome densities can take negative values on some subsets in the outcome support. We
focus on this phenomenon as a clue to refute the instrumental validity. That is, if we

1MPR considered in this paper stands for the restriction termed as "monotonicity" in Imbens and Angrist
(1994). The reason that we call it MPR is to distinguish the monotonicity between one�s participation
response and instrument from the monotonicity between one�s outcome response and instrument considered
in Manski and Pepper (2000).
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obtain negative estimates for complier�s treated outcome or control outcome density on
some regions in the outcome support, we interpret it as a counter-evidence for the joint
restriction of RTA and MPR since the probability density function cannot be negative. We
derive the condition for the data generating process to yield nonnegative complier�s potential
outcome densities. We demonstrate that the refuting rule based on that condition is most
powerful for screening out the violation of the instrumental validity in the heterogenous
treatment e¤ect model.

The second contribution of this paper is to develop a speci�cation test for the instru-
mental validity based on the aforementioned refutability result. We propose a Kolmogorov-
Sminov type test statistic to measure how serious the nonnegativity of the compliers outcome
density is violated in data. The asymptotic distribution of the proposed test statistic is
not analytically tractable, and therefore the critical values are di¢ cult to obtain. In or-
der to overcome this problem, we develop a bootstrap algorithm to obtain asymptotically
valid critical values. As Romano (1988) demonstrated, the bootstrap is widely applicable
and easy to implement to obtain the critical values of the general Kolmogorov-Sminov type
goodness-of-�t statistic. This is also the case for our test procedure.

The rest of the paper is organized as follows. In Section 2, we demonstrate the refutabil-
ity of the instrumental validity in the heterogeneous treatment e¤ect model. In Section
3, we construct a statistic to test the testable implication obtained in Section 2 and pro-
vide an algorithm of the bootstrap procedure. Monte Carlo simulations and two empirical
applications are provided in Section 4. Proofs are provided in the appendices.

2 Model

Let Y1 represent the potential outcome with a treatment, and Y0 represent the potential
outcome without the treatment. They are scalar variables and their support is denoted by
Y. The observed outcome is denoted by Yobs. Let Dobs indicate the observed participation
response such that Dobs = 1 when one participates to the treatment while Dobs = 0 if one
does not. Thus, the observed outcome is written as Yobs = Y1Dobs + Y0(1 � Dobs): We
denote a binary instrument by Z. As in Angrist and Imbens (1994), we introduce D1 as
the potential participation decision that one would take if Z = 1. Similarly, we de�ne D0
for Z = 0. Associated with the potential selection indicators, we de�ne the individual type
T that indicates individual participation response to the instrument Z.

T = c: complier if D1 = 1; D0 = 0

T = n: never-taker if D1 = 0; D0 = 0

T = a: always-taker if D1 = 1; D0 = 1

T = d: de�er if D1 = 0; D0 = 1:

The following three assumptions guarantee point-identi�cation of the local average treat-
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ment e¤ects for compliers as well as the marginal distributions of the counterfactual out-
comes for compliers (see Imbens and Angrist (1994) and Imbens and Rubin (1997)).

Assumption

1. Random Treatment Assignment (RTA): Z is jointly independenct of (Y1; Y0; D1; D0).

2. Monotonic Participation Response to Instrument (MPR): Without loss of generality,
assume Pr(Dobs = 1jZ = 1) � Pr(Dobs = 1jZ = 0). The potential participation
indicators satisfy D1 � D0 with probability one.

Note that the above assumptions are de�ned in terms of the potential variables. RTA
is stronger than the conventional instrumental exclusion restriction since it only restricts
Z to being independent of the potential outcomes. MPR states that the ordering of the
potential particiation indicators are identical over the entire population and there are no
de�ers in the population Pr(T = d) = 0. Since we never observe all the potential variables of
the same individual, we cannot directly examine these assumptions from data, and therefore
necessary and su¢ cient testable implications for these assumptions are not available. Hence,
we examine the refutability by looking for a testable implication as a necessary condition
for the instrumental validity.

To illustrate our analytical framework, we introduce the following notations. Let P
and Q be the conditional probability distributions of (Yobs; Dobs) 2 Y � f1; 0g given Z = 1
and Z = 0 respectively. We interpret the data generating process to have the two-sample
structure in terms of the assigned value of Z. For a subset A � Y and d = 1; 0, P (Yobs 2
A;Dobs = d) and Q(Yobs 2 A;Dobs = d) represent Pr(Yobs 2 A;Dobs = djZ = 1) and
Pr(Yobs 2 A;Dobs = djZ = 0) respectively. Note that P and Q are the joint distributions
of the observable variables (Yobs; Dobs); and therefore we can consistently estimate P and Q
by data.

We now state the refutability result of the instrumental validity. Provided that the
population has a strictly positive fraction of compliers, the conclusion of the next proposition
is equivalent to the nonnegativity of the complier�s outcome densities pinned down under
the instrumental validity (Imbens and Rubin (1997)). A proof is given in Appendix A.

Proposition 1 If a population distribution of (Y1; Y0; D1; D0; Z) satis�es RTA and MPR,
then, the data generating process P and Q satis�es the following inequalities for arbitrary
Borel sets B in Y,

P (Yobs 2 B;Dobs = 1) � Q(Yobs 2 B;Dobs = 1);
P (Yobs 2 B;Dobs = 0) � Q(Yobs 2 B;Dobs = 0):

(1)

Conversely, if the data generating process P and Q satis�es these inequalities for all Borel
sets B, then there exists a joint probability law of (Y1; Y0; D1; D0; Z) that is compatible with
the data generating process P and Q; RTA, and MPR.
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Let p(y;Dobs = d) and q(y;Dobs = d) be the probability density function of P and Q on
Y � fdg with respect to a dominating measure �. . In terms of the density functions, the
above two inequalities are equivalent to

p(y;Dobs = 1) � q(y;Dobs = 1) �-a.e.,

p(y;Dobs = 0) � q(y;Dobs = 0) �-a.e.

These inequalities imply that when the instrument is valid, we must observe the con-
�guration of the densities as in Figure 1. The left-hand side �gure corresponds to Y1�s
distribution and the right �gure corresponds to Y0�s distribution. The dotted line in each
�gure represents the probability density of the potential outcomes, i.e., fY1(y) is the marginal
density of the treated outcome and fY0(y) is the marginal density of the control outcome.
The solid lines represent p(y;Dobs = d) and q(y;Dobs = d), which are point-identi�able by
data. Note that their integrals are equal to the probability of Dobs = d conditional on Z.
Therefore, the scale of p(y;Dobs = d) and q(y;Dobs = d) is smaller than fY1(�) and fY0(�).
Furthermore, p(y;Dobs = d) and q(y;Dobs = d) both lie below the potential outcome density
fYd(�). This is because RTA implies

fYd(y) = fYdjZ(yjZ = 1)
= fYd;DobsjZ(y;Dobs = djZ = 1) + fYd;DobsjZ(y;Dobs = 1� djZ = 1)
= p(y;Dobs = d) + fYd;DobsjZ(y;Dobs = (1� d)jZ = 1)

and

fYd(y) = q(y;Dobs = d) + fYd;DobsjZ(y;Dobs = (1� d)jZ = 0):

The second term in the right hand side of the above equations correspond to the density
function for the missing treated or control outcomes, so they must be nonnegative.

When RTA and MPR hold in the population, Proposition 1 implies that the two iden-
ti�able density functions p(y;D = d) and q(y;D = d) must be nested as shown in Figure
1. For the treated outcome densities, p(y;D = 1) must lie above q(y;D = 1) and for
the control outcome densities, q(y;D = 0) must lie above p(y;D = 0). Under RTA and
MSR, we can point-identify the complier�s outcome densities by the areas between these two
densities rescaled by their area (see the proof of Proposition 1 in Appendix A). Thus, the
inequalities of Proposition 1 constitute necessary conditions for the instrument validity.

The converse statement of Proposition 1 clari�es that if the data generating process ad-
mits the inequalities (1), then we can construct a population distribution of (Y1; Y0; D1; D0; Z)
which does not contradict the data generating process and the instrument validity. This
implies that no other refuting rules can screen out violations of the instrument validity more
than the refuting rule based on the inequalities (1) does. In this sense, the refuting rule of
Proposition 1 is most powerful in screening out the violations of the instrument validity.

Note that Proposition 1 does not give an if and only if statement for the instrumental
validity. That is, an invalid instrument does not necessarily imply a violation of the
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Figure 1: When we observe that the observable densities p(y;Dobs = 1) and q(y;Dobs = d)
are nested as in this �gure, the instrumental validity is not refuted.

inequalities. In this sense, testing the inequalities does not guarantee to screen out all the
possible violations of the instrumental validity.

If we observe the con�guration of the densities like Figure 2, we can refute at least one
of the instrumental validity conditions since some of the inequalities (1) are violated on
some subsets of the outcome support. These subsets are labeled as V1 and V2 in Figure
2. Although observing the con�guration of the densities like Figure 2 does not tell us
which conditions are violated in the population, it allows us to conclude that the chosen
instrument is not valid to point-identify the local average treatment e¤ects and, hence, the
classical IV-estimator breaks down.
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Figure 2: When we observe the above con�guration of the densities, we can refute the
instrumental validity since at the subset V1 = [v1;1), the �rst inequality in Proposition 1
is violated. The right-hand side picture shows that the second inequality in Proposition 1 is
violated at V2 = (�1; v2].

3 Test Procedure

P and Q are point-identi�ed by the sampling process, and therefore we can examine the
validity of the inequalities (1) by inferring whether estimators for P and Q satisfy them or
not.

Let sample consist of N i.i.d observations of (Yobs; Dobs; Z): We divide the sample into
two subsamples in terms of the value of Z. Let m be the sample size with Zi = 1 and n the
sample size with Zi = 0. Let (Y 1obs;i; D

1
obs;i); i = 1; : : : ;m be the observations with Z = 1

and (Y 0obs;j ; D
0
obs;j); j = 1; : : : ; n be those with Z = 0. We assume m=N ! � as N ! 1

almost surely where � 2 (�; 1 � �) for some � > 0. We estimate P and Q by the empirical
distributions,

Pm(V; d) � 1

m

mX
i=1

IfY 1obs;i 2 V and D1obs;i = dg;

Qn(V; d) � 1

n

nX
j=1

IfY 0obs;j 2 V and D0obs;j = dg:

We measure the degree of violation of the inequalities (1) by the next statistic.

TN =
�mn
N

�1=2
max

(
supV 2VfQn(V; 1)� Pm(V; 1)g;
supV 2VfPm(V; 0)�Qn(V; 0)g

)
; (2)

where V is a collection of subsets in Y.
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This test statistic is designed to measure the degree of the violations of the inequalities
(1) using the empirical distributions. If the sample counterpart of the inequality (1) is
violated for a subset V , then, the �rst supremum in the max operator of the test statistic is
positive. Similarly, when the sample counterpart of the inequality (??) is violated for some
subset V , then the second term becomes positive. The proposed test statistic returns the
maximal deviations of the above inequalities where the maximum is searched over a class of
subsets V.

The test statistic can be seen as a variant of the Kolmogorov-Sminov type nonparamet-
ric distance test statistic (Romano (1988)). This test statistic is not pivotal due to the
discreteness of Dobs and the asymptotic distribution can depend on P and Q. Choice of V
will not a¤ect the size of test while it can a¤ect power of the test.

Although Proposition 1 suggests us to take V as the Borel �-algebra of Y, we cannot take
it to be as rich as the Borel �-algebra unless Y is discrete. In order for the above test statistic
to have an asymptotic distribution, a speci�ed V has to guarantee the uniform convergence
property of the empirical processes of Pm and Qn. A class of subsets which meets this
requirement is the Vapnik-µCervonenkis class (VC-class). For example, a collection of left
unbounded intervals f(�1; y]; y 2 Rg and a collection of the �nite number of disjoint
intervals are the examples of the VC-classes. (See e.g., Dudley (1999) and van der Vaart
and Wellner (1996) for the general construction of the VC-classes).

We will employ two speci�c VC-classes in our Monte Carlo studies and empirical appli-
cations given in the next section. They are the half unbounded interval class Vhalf and
the histogram class Vhist. The half unbounded interval class is simply a collection of right
unbounded intervals and left unbounded intervals,

Vhalf= f(�1; y]; y 2 Rg [ f[y;1); y 2 Rg : (3)

The histogram class is the power set of the histogram bins whose breakpoints can �oat
over R. Algebraically, this can be expressed as follows. Let h > 0 be a �xed positive
number representing the binwidth and L be the number of bins. Pick an initial breakpoint
y0 2 R and consider equally distanced L points �1 < y0 < y1 < � � � < yL�1 < 1
where yl = y0 + lh, l = 1; : : : ; (L � 1). Denote the (L + 1) disjoint intervals formed
by these L points by H0(y0; h) = (�1; y0], Hl(y0; h) = [yl�1; yl], l = 1; : : : ; (L � 1); and
HL(y0; h) = [yL�1;1). Let Ij(L), j = 1; : : : ; 2L+1 represent all the possible subsets of the
indices f0; 1; : : : ; Lg. Given Y0 a set of the smallest breakpoint y0, the histogram class with
binwidth h and the number of bins L is de�ned as

Vhist(h; L;Y0)=

8<: [
l2Ij(L)

Hl(y0; h) : y0 2 Y0; j = 1; : : : ; 2L+1
9=; : (4)

In contrast to a rather complicated expression, the histogram class is �exible and simple to
implement.

For the test statistic (2), P = Q is the least favorable null hypothesis among the compos-
ite null hypotheses de�ned by the inequalities (1). Therefore, we will �nd the critical value
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with a nominal level � by estimating the (1� �)-th quantile of the asymptotic distribution
of TN under the least favorable null P = Q. If the estimated critical values are consistent
to the (1 � �)-th quantile of the asymptotic distribution of TN under the least favorable
null, the resulting testing procedure has correct size.

As discussed in Romano (1988), the resampling method is an attractive approach to
estimate asymptotically valid critical values for the Kolmogorov-Sminov type test statistic
since its asymptotic distribution generally does not have an analytically tractable distribu-
tion function. Bootstrap resolves this issue by estimating the null distribution of the statistic
by the empirical distribution of the resampled test statistics. Given that the the composite
null has the least favorable null, bootstrap samples are drawn from P̂ and Q̂; which is consis-
tent to the least favorable null hypothesis, i.e., P̂ = Q̂. In the two sample hypothesis testing
problem with the null hypothesis given by the equality of the two distributions, one choice of
the resampling distribution is the pooled empirical distribution HN , the empirical distribu-
tion of the pooled data (Y 1obs;1; D

1
obs;1); : : : ; (Y

1
obs;m; D

1
obs;m); (Y

0
obs;1; D

0
obs;1); : : : ; (Y

0
obs;n; D

0
obs;n).

Abadie (2002) proposes the bootstrap procedure to test hypotheses on distributional fea-
tures between the complier�s treated and control outcomes. Although the null hypothesis
and test statistic are di¤erent, our bootstrap procedure shown below is analogous to Abadie
(2002).

Bootstrap procedure:

1. Sample (Y �obs;i; D
�
obs;i); i = 1; : : : ;m randomly with replacement from the pooled empir-

ical distribution HN and construct the bootstrap empirical distribution P �m: Similarly,
sample (Y �obs;j ; D

�
obs;j); j = 1; : : : ; n randomly with replacement from the pooled empir-

ical distribution HN and construct the bootstrap empirical distribution Q�n:

2. Compute the test statistic T �N de�ned in (2) by plugging in the bootstrapped empirical
distributions P �m and Q�n.

3. Iterate Step 1 and Step 2 and get the empirical distribution of T �N : For a chosen
nominal level � 2 (0; 1=2); we obtain the bootstrapped critical value ĉboot(1� �) from
its empirical (1� �)-th quantile .

4. Reject the null hypothesis if TN > ĉboot(1� �).

Note that the bootstrap sample is drawn from the pooled empirical distribution because
our interest is in estimating the null distribution of TN under the least favorable null hy-
pothesis, P = Q. This enables us to control the supremum of the asymptotic false rejection
probabilities at the chosen nominal level �,

sup
(P;Q)2H0

lim
N!1

Pr(TN > ĉboot(1� �)) = �: (5)

This is the conventional de�nition of the pointwise consistency of test.
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The asymptotic validity of the proposed bootstrap is stated in the next proposition. A
proof is given in Appendix B.

Proposition 2 Let V be a VC-class and � 2 (0; 1=2). i) For the null hypothesis of P
and Q given by the inequalties (1), the proposed bootstrap test procedure provides pointwise
correct asymptotic size (5). ii) If, for a �xed alternative, there exist some V 2 V which
violates (1), then the proposed bootstrap testing procedure is consistent, i.e., the rejection
probability converges to one as N !1.

4 Monte Carlo Studies and Empirical Applications

4.1 Small sample performance

To examine the �nite sample performance of our bootstrap test, we perform a Monte Carlo
simulation. We specify the sampling process as the least favoralble null P = Q, and
therefore the test asymptotically achieves nominal size.

p(y;D = 1) = q(y;D = 1) = 0:5�N (1; 1);
p(y;D = 0) = q(y;D = 0) = 0:5�N (0; 1):

We consider two speci�cations of V. One is the half unbounded interval class Vhalf and
the other is the histogram class Vhist de�ned in Section 3. The histgram class provides
a �ner collection of subsets than the half unbounded interval class. This implies that the
histogram class has more refutability power in the sense that it can asymptotically reject
more alternatives than the half unbounded interval class. In the �nite sample situation,
however, there will be a trade-o¤ between asymptotic refutability power and �nite sample
test power. In order to see the e¤ect of a choice of the binwidth of Vhist to test size and
power, we consider two di¤erent choices of binwidth, 0:8 and 0:4: The number of bins are
12 and 24 respectively. The set of initial breakpoints are Y0 = [�4:4;�3:6) for the former
histogram class and Y0 = [�4:4;�4:0) for the latter.

For each speci�cation of the sample size (m;n), we simulate the test procedure 2000
times with 500 bootstrap iterations. Table 1 shows that for every speci�cation of V, the
test has good size performance even for relatively small sample size, (m;n) = (50; 50). The
unbalanced sample case, (m;n) = (50; 250), shows a slight size distortion, while size of the
test is overall satisfactory. In addition, we can see that size of the test is not a¤ected by
the choice of V.
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Table 1: Test Size in Small Samples
Monte Carlo iterations 2000, Bootstrap iterations 500.

Speci�cation of V
Nominal test size

Vhalf Vhist binwidth 0.8 Vhist binwidth 0.4
sample size (m,n) .10 .05 .01 .10 .05 .01 .10 .05 .01

(50,50) .085 .042 .008 .098 .049 .009 .106 .053 .010

(50,250) .124 .073 .022 .098 .046 .008 .118 .058 .014

(100,100) .108 .054 .015 .113 .052 .015 .104 .054 .001

(500,500) .092 .046 .011 .104 .057 .017 .112 .062 .014

s.e. .007 .005 .002 .007 .005 .002 .007 .005 .002
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Figure 3: Simulation of Test Power: Speci�cation of Densities. The instrumental
validity is refuted since for the treated outcomes the two observable densities intersect. Note
that in each panel the density drawn to cover the other two represents the probability density
of the potential outcomes.
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Table 2: Power against the Fixed Alternative
Monte Carlo iterations 2000, Bootstrap Iterations 500

speci�cation of V
signi�cance level
Vhist with binwidth 0.8 Vhist with binwidth 0.4
.10 .05 .01 .10 .05 .01

sample size rejection probability rejection probability
(50,50) .067 .033 .007 .062 .028 .006

(100,100) .118 .068 .017 .071 .037 .009
(250,250) .343 .227 .090 .234 .141 .045
(500,500) .710 .595 .356 .521 .396 .189

In order to see �nite sample power of our test procedure, we simulate the empirical
rejection rate of the bootstrap test against a �xed alternative. The data generating process
is specifed as

p(y;D = 1) = 0:55�N (1; 1:44); q(y;D = 1) = 0:45�N (0:2; 1)
p(y;D = 0) = 0:45�N (0; 1); q(y;D = 0) = 0:55�N (0; 1):

Figure 3 presents the densities of the speci�ed data generating process. From this �gure,
we can observe that the instrumental validity is refuted by the con�guration of the treated
outcome densities since p(y;D = 1) intersects with q(y;D = 1). Table 2 presents the
simulated rejection probabilities. We specify V as the histogram classes with the binwidth
0:8 or 0:4, the number of bins 12 or 24, and the set of initial breakpoints Y0 = [�6:2;�5:4)
or Y0 = [�6:2;�5:8). For the speci�ed alternative, we �nd that the simulated power is very
poor in the small sample case. It is even lower than nominal size when (m;n) = (50; 50).
The test procedure gains power for relatively large sample size (m;n) = (500; 500). We can
also observe that Vhist with the shorter binwidth is less powerful than that with the wider
binwidth. This can be explained that as the binwidth gets �ner, the distribution of the test
statistic under the least favorable null P = Q has more variance and it raises the bootstrap
critical values. This makes our test procedure less powerful. This suggests that given the
�nite sample there is a trade-o¤ between the richness of V, or equivalently, asymptotic
refuting power and the �nite sample power. Regardless of its practical importance in
choosing V, we make the choice of V out of scope of this paper and leave that as a part of
future research.
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4.2 Empirical Applications

We illustrate a use of the test procedure with using the following two data sets. The �rst
one is the draft lottery data during Vietnam era used in Angrist (1991). The second one
is from Card (1993) on returns to schooling using geographical proximity to college as an
instrument.

4.2.1 Draft Lottery Data

The draft lottery data consist of a sample of 10,101 white men, born in 1950-1953. The data
source is March Current Population Surveys of 1979 and 1981-1985. The outcome variable
is measured in terms of the logarithm of weekly earnings imputed by the annual labor
earnings divided by weeks worked. The treatment is whether one has a Vietnam veteran
status or not. Since the enrollment for the military service possibly involves self-selection
based on one�s future earning, the veteran status is not considered to be randomly assigned.
In order to solve this endogeneity issue, Angrist (1991) constructs the binary indicator of
the draft eligibility, which is randomly assigned based on one�s birthdate through the draft
lotteries. A justi�cation of the instrumental validity here is that the instrument is generated
being independent of any individual characteristics. Hence, it is reasonable to argur that
the instrument satis�es RTA. On the other hand, the validity of MPR is less credible since
the existence of de�ers are not eliminated by the sampling design, i.e., in the sample there
are observations who participate to the military service even though they are not initially
drafted.

The proposed testing procedure gives a solution to validate these assumptions from data.
Figure 4 plots the kernel density estimates for the observed outcome distribution multiplied
by the selection probability. We observe that the con�guration of the densities in Figure 4
is similar to Figure 1. Therefore, we do not expect that the instrumental validity is refuted
by the testing procedure. As Table 3 shows, p-value of the bootstrap test is almost one,
and we do not refute the instrumental validity from the data.

4.2.2 Returns to Education: Proximity to College Data

The Card data is based on National Longitudinal Survey of Young Men (NLSYM) began in
1966 with age 14-24 men and continued with follow-up surveys through 1981. Based on the
respondents�county of residence at 1966, the Card data provides the presence of a 4-year
college in the local labor market. Observations of years of education and wage level are
based on the follow-ups�educational attainment and wage level responded in the interview
in 1976.

The idea of using the proximity to college as an instrument is stated as follows. Presence
of a nearby college reduces a cost of college education by allowing students to live at home,
while one�s inherited ability is presumably independent of his birthplace. Compliers in this
context can be considered to be those who grew up in relatively low-income families and who
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Figure 4: Kernel Density Estimates for the Draft Lottery Data. The Gaussian
kernel with bandwidth 0.06 is used. In each panel, we draw a normal density to illustrate
the scale of the estimated densities.
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Table 3: Test Results of the Empirical Applications
Bootstrap iterations 500

Draft lottery data Proximity to college data

Full sample Full sample Restricted sample

sample size (m,n) (2780,7321) (2053,957) (1047,144)

Pr(D = 1jZ = 1); Pr(D = 1jZ = 0) 0.31, 0.19 0.29, 0.22 0.35,0.24

Vhist binwidth 0.8 0.4 1.0 0.5 1.0 0.5

Bootstrap test, p-value 0.988 1.00 0.00 0.00 0.997 0.997

were not able to go to college without living with their parents. We make the educational
level as a binary treatment which indicates one�s education years to be greater or equal to
16 years. Roughly speaking, the treatment is considered as a four year college degree.

We specify the measure of outcome to be the logarithm of weekly earnings. In the �rst
speci�cation, we do not control any demographic covariates. This simpli�cation raises a
concern for the violation of RTA. For instance, one�s region of residence, or whether they
were born in the standard metropolitan area or rural area may a¤ect one�s wage levels and
the proximity to colleges if the urban areas are more likely to have colleges and has higher
wage level compared with the rural areas. This kind of confounder may contaminate the
validity of RTA. In fact, Card (1993) emphasizes an importance of controlling for regions,
residence in the urban area, race, job experience, and parent�s education in order to make
use of the college proximity as an instrument.

Figure 5 presents the kernel density estimates for observed oucome densities. In contrast
to Figure 4, the kernel density estimates in Figure 5 intersect especially for those of the
control outcomes. That is, the con�guration of the densities are similar to Figure 2, and
this indicates the violation of the instrument validity. Our test procedure yields zero p-value
and this provides an empirical evidence that, without any covariates, college proximity is
not a valid instrument.

We next look at how the test result changes once we control for some covariates. Con-
trolling discrete covariates can be done by simply making the whole analysis conditional on
the speci�ed value of the covariates. We consider restricting the sample to be white workers
(black dummy is zero), not living in south states in 1966 (south66 dummy is zero ), and
living in a metropolitan area in 1966 (SMSA66 dummy is one). That is, we are controlling
for race, whether or not one grew up in southern states, and whether or not one grew up
in urban area. The size of the restricted sample is 1191 (m = 1047, n = 144). Figure
6 indicates that the kernel density estimates do not reveal a clear evidence for a violation
of the instrumental validity. This observation is also supported by the high p-value of the
proposed test. Thus, we conclude that the instrumental validity is not refuted once we
control for these covariates.
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Figure 5: Kernel Density Estimates for the Proximity to College Data (No co-
variates controlled). The Gaussian kernel with bandwidth 0.07 is used. In each panel,
we draw a normal density to illustrate the scale of the estimated densities.
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Figure 6: Kernel Density Estimates for the Proximity to College Data (white
workers, not living in south states, and living in a metropolitan area). The
Gaussian kernel with bandwidth 0.1 is used. In each panel, we draw a normal density to
illustrate the scale of the estimated densities.
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5 Concluding Remarks

In this paper, we develop the bootstrap test procedure to empirically check the conditions
of the instrumental validity of Imbens and Angrist (1994). Our testing strategy focuses
on the nonnegativity of the complier�s outcome densities that are point-identi�ed when the
instrument is valid. The nonnegativity of the complier�s outcome density is equivalently
expressed as the inequalities between the joint probability distributions of Yobs and Dobs
conditional on Z. We demonstrate that the inequalities provide the testable implication
that has most refuting power. Our test statistic is designed to measure the discrepancy of
these inequalities, and it has a form of the supremum statistic on the di¤erence between the
two empirical distributions over a speci�ed VC-class of subsets. We develop the bootstrap
algorithm to derive the critical values since the asymptotic distribution of the proposed
statistic is not analytically tractable.

There are some issues left for future work. First of all, we do not formally investigate how
to choose a VC-class V and how it a¤ects the test performance in the �nite sample case.
We propose the two di¤erent choices of V in our simulation studies, the half unbounded
interval class and the histrogram class. We observe that test size is not a¤ected by the
choice of V while test power is sensitive to the speci�cation of V.

Second, this paper exclusively considers the binary instrument case. When an in-
strument is multi-valued, but as long as its support is discrete, it is possible to test the
instrument validity for every pair of two instrumental values. However, it is not clear what
is a suitable test statistic when we want to test the instrument validity jointly over multiple
instrument values. We leave a further discussion of the multi-valued instrument case for
future work.

18



Appendix A: Proof of Proposition 1

Denote the population distribution of the types by �t � Pr(T = t), t 2 fc; n; a; dg. Under
RTA, P (B; 1); for any Borel set B � Y, is expressed as the following.

P (B; 1) = Pr(Yobs 2 BjDobs = 1; Z = 1)Pr(Dobs = 1jZ = 1)

=

24 X
t2fc;n;a;dg

Pr(Y1 2 V jD1 = 1; Z = 1; T = t) Pr(T = tjD1 = 1; Z = 1)

35
� Pr(D1 = 1jZ = 1)

=
h X
t2fc;n;a;dg

Pr(Y1 2 BjD1 = 1; T = t) Pr(T = tjT 2 fc; ag)
i
Pr(T 2 fc; ag)

=
h
Pr(Y1 2 BjT = a)

�a
�a + �c

+ Pr(Y1 2 V jT = c)
�c

�a + �c

i
� (�a + �c)

= Pr(Y1 2 V jT = a)�a + Pr(Y1 2 V jT = c)�c: (6)

The second line follows by the law of total probability and the fact that the conditioning
event fDobs = 1; Z = 1g is identical to fD1 = 1; Z = 1g. To obtain the third line, we apply
RTA to Pr(T = tjD1 = 1; Z = 1), Pr(D1 = 1jZ = 1); and Pr(Y1 2 BjD1 = 1; Z = 1; T = t):
Note that the type indicator T gives a �ner partition of the sample space than D1; so we
obtain Pr(Y1 2 BjD1 = 1; T = t) = Pr(Y1 2 BjT = t) and Pr(T = tjD1 = 1; Z = 1) =

Pr(T = tjT 2 fc; ag).
The similar operation to Q(B; 1) yields

Q(B; 1) = Pr(Y1 2 BjT = a)�a + Pr(Y1 2 BjT = d)�d: (7)

Under MPR, there do not exist de�ers in the population, i.e., �d = 0. If we take the
di¤erence between (6) and (7), we obtain

P (B; 1)�Q(B; 1) = Pr(Y1 2 BjT = c)�c � 0:

This proves the �rst inequality of the proposition. The second inequality of the proposition
is obtained in an analogous way and we omit its derivation for brevity:

For a proof of converse statement, let a data generating process P and Q satisfying
the inequalities (1) be given. Let p(y; d) and q(y; d) be the densities (with respect to a
dominating measure �) of P and Q on Y�fdg. It su¢ ces to show that we can construct a
joint distribution of (Y1; Y0; T; Z) that is compatible with P and Q and satis�es RTA and
MPR. Since the marginal distribution of Z is not important for the analysis, we focus
on constructing the conditional distribution of (Y1; Y0; T ) given Z. Let us consider the
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nonnegative functions hYd;t(y), d = 1; 0, t 2 fc; n; a; dg,

hY1;c(y) = p(y; 1)� q(y; 1);
hY1;n(y) = 
Y1(y);

hY1;a(y) = q(y; 1);

hY1;d(y) = 0;

hY0;c(y) = q(y; 0)� p(y; 0);
hY0;n(y) = p(y; 0);

hY0;a(y) = 
Y0(y);

hY0;d(y) = 0:

where 
Y1(y) and 
Y0(y) are arbitrary nonnegative functions satisfying
R
Y 
Y1(y)d� = P (Y; 0)

and
R
Y 
Y0(y)d� = Q(Y; 1): We construct a conditional probability law of (Y1; Y0; T ) given

Z as, for an arbitrary Borel sets B1 and B0 in Y;

Pr(Y1 2 B1; Y0 2 B0; T = cjZ = 1) = Pr(Y1 2 B1; Y0 2 B0; T = cjZ = 0)

�

8<:
R
B1
hY1;c(y)d�R

Y hY1;c(y)d�
�

R
B0
hY0;c(y)d�R

Y hY0;c(y)d�
� [P (Y; 1)�Q(Y; 1)] if [P (Y; 1)�Q(Y; 1)] > 0

0 if [P (Y; 1)�Q(Y; 1)] = 0
Pr(Y1 2 B1; Y0 2 B0; T = njZ = 1) = Pr(Y1 2 B1; Y0 2 B0; T = njZ = 0)

�

8<:
R
B1
hY1;n(y)d�R

Y hY1;n(y)d�
�

R
B0
hY0;n(y)d�R

Y hY0;n(y)d�
� P (Y; 0) if P (Y; 0) > 0

0 if P (Y; 0) = 0
Pr(Y1 2 B1; Y0 2 B0; T = ajZ = 1) = Pr(Y1 2 B1; Y0 2 B0; T = ajZ = 0)

�

8<:
R
B1
hY1;a(y)d�R

Y hY1;a(y)d�
�

R
B0
hY0;a(y)d�R

Y hY0;a(y)d�
�Q(Y; 1) if Q(Y; 1) > 0

0 if Q(Y; 1) = 0
Pr(Y1 2 B1; Y0 2 B0; T = djZ = 1) = Pr(Y1 2 B1; Y0 2 B0; T = djZ = 0)

� 0

Note that this is a valid probability measure since it is nonnegative and satis�esX
t2fc;n;a;dg

Pr(Y1 2 Y; Y0 2 Y; T = tjZ = z) = 1; z = 1; 0:

Furthermore, the proposed probability distribution satis�es RTA and MPR by construction
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and it is consistent with the given data generating process, i.e.,

Pr(Yobs 2 B;Dobs = 1jZ = 1) = Pr(Y1 2 B; T = cjZ = 1) + Pr(Y1 2 B; T = ajZ = 1)

=

Z
B
[hY1;c(y) + hY1;a(y)]d� = P (B; 1);

Pr(Yobs 2 B;Dobs = 0jZ = 1) = Pr(Y0 2 B; T = njZ = 1) + Pr(Y0 2 B; T = djZ = 1)
= P (B; 0)

Pr(Yobs 2 B;Dobs = 1jZ = 0) = Pr(Y1 2 B; T = ajZ = 0) + Pr(Y1 2 B; T = djZ = 0)
= Q(B; 1)

Pr(Yobs 2 B;Dobs = 0jZ = 0) = Pr(Y0 2 B; T = njZ = 0) + Pr(Y0 2 B; T = cjZ = 0)
= Q(B; 0)

This completes the proof. �

Appendix B: Proof of Proposition 2

Throughout the proof, it is assumed that the probability law of a binary instrument Z is
i.i.d Bernoulli with parameter � 2 (�; 1� �) for some � > 0.

i)
Step 1: Derive the asymptotic distribution of the test statistic TN under the null P = Q.

De�ne Pm and Qn as the empirical probability measure of (Y;D) conditional on Z = 1
and Z = 0 respectively,

Pm =
1

m

mX
i=1

�(Y 1obs;i;D
1
obs;i)

; Qn =
1

n

nX
j=1

�(Y 0obs;j ;D
0
obs;j)

;

where �(y;d) represents a unit mass measure on (Yobs; Dobs) = (y; d).
Given V a VC-class of subsets in R, we de�ne the class of indicator functions on

R� f1; 0g, F1 and F0;

F1 = f1f(V; 1)g;V 2 Vg; F0 = f1f(V; 0)g;V 2 Vg

where the �rst coordinate of the indicator function corresponds to a subset V � R and
the second coordinate corresponds to the participation indicator Dobs. Following to the
notation in van der Vaart and Wellner (1996), for a function f : R� f1; 0g ! R, Pf stands
for the expectation of f with respect to P , Pf =

R
fdP . Note that F1 and F0 are VC-class

of functions on R� f1; 0g since the collection of subsets V are assumed to be a VC-class.
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Consider stochastic processes G1;N : F ! R where F is a class of functions on R� f1; 0g,

G1;N (�) =
�mn
N

�1=2
(Qn � Pm)

=
�m
N

�1=2p
n(Qn �Q)�

� n
N

�1=2p
m(Pm � P )

+
�mn
N

�1=2
(Q� P ): (8)

Given the above Donsker class of functions F1, we apply the Donsker theorem (theorem
3.5.1 in van der Vaart and Wellner (1996)) to get the weak convergence of

p
n(Qn �Q)(�)

and
p
m(Pm � P )(�) to the brownian bridges on F1,
p
n(Qn �Q) GQ in l1(F1)p
m(Pm � P ) GP in l1(F1)

where " " notates weak convergence, GP represents the P-brownian bridge, GQ represents
the Q-brownian bridge, and l1(F) denotes the space of l1 functions which map from F
into R. Under the null P = Q, since m=N ! � almost surely, G1;N converges weakly to a
sum of two independent P-brownian bridges GP and G0P .

G1;N  �1=2GP � (1� �)1=2G0P :

Note that the probability law of the process �1=2GP � (1 � �)1=2G0P is identical to the P-
brownian bridge GP . Hence, we have G1;N  GP in l1(F1): Analogously, for stochastic
processes G0;N : F ! R

G0;N =
�mn
N

�1=2
(Pm �Qn)

=
� n
N

�1=2p
m(Pm � P )�

�m
N

�1=2p
n(Qn �Q)

+
�mn
N

�1=2
(P �Q): (9)

we obtain G0;N  GP in l1(F0):
Notice that the test statistic is written as

TN = max

(
sup
f2F1

G1;Nf; sup
f2F0

G0;Nf

)
:

Let F�= F1 [ F0. Note that F� is also a Donsker class. For X 2 l1(F�) with l1(F�)
equipped with the sup metric, the functional supf2F1 Xf is continuous with respect to X,
since for X1; X2 2 l1(F�); j supf2F1(X1�X2)f j � supf2F� j(X1�X2)f j��kX1 �X2k holds.
Since the max operator is clearly continuous, the continuous mapping theorem for stochastic
processes (see, e.g., Pollard (1984)) implies

TN  T = max

(
sup
f2F1

GP f; sup
f2F0

GP f

)
= sup
f2F�

GP f: (10)
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This is the limiting probability law of TN under the null P = Q.

Step 2: Prove the asymptotic consistency of the distribution of the bootstrap statistic.

Let us de�ne the bootstrap empirical measure

P �m =
1

m

mX
i=1

�(Y �obs;i;D
�
obs;i)

; Q�n =
1

n

nX
j=1

�(Y �obs;j ;D
�
obs;j)

:

where (Y �obs;i; D
�
obs;i); i = 1; : : : ;m; and (Y

�
obs;j ; D

�
obs;j); j = 1; : : : ; n; are drawn randomly

from the pooled empirical measure

HN =
m

N
Pm +

n

N
Qn.

The bootstrap test statistic is expressed as

T �N = max

(
sup
f2F1

G�1;Nf; sup
f2F0

G�0;Nf

)

where G�1;N =
�
mn
N

�1=2
(Q�n � P �m) and G�0;N =

�
mn
N

�1=2
(P �m �Q�n). The bootstrap consis-

tency is proved if the distribution of T �N converges weakly to the one obtained in (10) under
the null P = Q for almost every sampling sequences of f(Y 1obs;i; D1obs;i)g and f(Y 0obs;j ; D0obs;j)g.

Let H = �P + (1 � �)Q. By theorem 3.7.7 in van der Vaart and Wellner (1996),p
m(P �m �HN ) GH and

p
n(Q�n �HN ) GH hold with probability one in terms of the

randomness of the sequences, f(Y 1obs;i; D1obs;i)g and f(Y 0obs;j ; D0obs;j)g.
Thus, by the similar argument to Step 1, G�1;N and G�0;N weakly converge to the H-

brownian bridge, i.e.,

G�1;N =
�mn
N

�1=2
(Q�n � P �m)

=
�m
N

�1=2p
n(Q�n �HN )�

� n
N

�1=2p
m(P �m �HN )

 �1=2GH � (1� �)1=2G0H = GH

and G�0;N  GH for almost every sequence of f(Y 1obs;i; D1obs;i)g and f(Y 0obs;j ; D0obs;j)g. There-
fore, by the continuous mapping theorem,

T �N  sup
f2F�

GHf: (11)

Note that, under the null, H = P holds, and therefore the obtained H-brownian bridge
is in fact P-brownian bridge. Hence, T �N  T holds. This implies that the asymptotic
distribution of T �N coincides with that of TN under the null for almost every sequence of
f(Y 1obs;i; D1obw;i)g and f(Y 0obs;j ; D0obs;j)g.

Step 3: Prove the asymptotic consistency of the rejection probability based on the
bootstrap critical value ĉboot(1� �).
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Let JN (�;HN ) be the cdf of the bootstrap statistic T �N (conditional on HN ). The boot-
strap estimates of the critical value is the (1� �)-th quantile of JN (�;HN ); that is,

ĉboot(1� �) � inf fc : ProbHN (T �N > c) � �g :

Let J(�;H) be the cdf of T under the null P = Q(= H) and denote its (1� �)-th quantile
by c(1 � �). Since JN (�;HN ) converges weakly to J(�;H), ĉboot(1 � �) converges to the
c(1� �) if J(�;H) is continuous and strictly increasing at its (1� �)-th quantile (see, e.g.,
Lemma 1.2.1. in Politis, Romano, and Wolf (1999)).

The absolute continuity of J(�;H) follows by the absolute continuity theorem for the con-
vex functional of the Gaussian processes (Theorem 11.1 of Davydov, Lifshits, and Smorodina
(1998)). Note that the test statistic is a convex functional of l1(F�); and for some f 2 F�
with nondegenerate GP f , it holds Pr(T � 0) � Pr(Gf � 0) = 1=2. Therefore, J(t;H) is ab-
solutely continuous for every t > 0: Then, the absolute continuity theorem guarantees that,
for � 2 (0; 1=2); J(t;H) is absolutely continuous at c(1��). Thus, ĉboot(1��)! c(1��)
almost surely in terms of the randomness of HN .

Finally, by the Slutsky�s Theorem, it follows

ProbP=Q=H(TN > ĉboot(1� �))! 1� J(c(1� �);H) = �:

ii)
To examine power of the test against a �xed alternative, consider P and Q such that

(Q� P )f > 0 for some f 2 F1. Then, the last term in (8) diverges to positive in�nitiy at
these f . Since the Brownian bridge processes as the limiting process of

p
m(Pm � P ) andp

n(Qn �Q) are bounded with probability one, supf2F1 G1;Nf ! 1 with probability one.
This implies TN !1 with probability one.

On the other hand, the bootstrap critical value are bounded almost surely (with respect
to the original sampling sequence) because T �N weakly converges to supf2F� GHf with H =

�P + (1� �)Q. Therefore,

ProbP=Q=H(TN > ĉboot(1� �))! 1

as N !1.
�
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