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NOTES AND COMMENTS

A TEST FOR INSTRUMENT VALIDITY

BY TORU KITAGAWA1

This paper develops a specification test for instrument validity in the heterogeneous
treatment effect model with a binary treatment and a discrete instrument. The strongest
testable implication for instrument validity is given by the condition for nonnegativ-
ity of point-identifiable compliers’ outcome densities. Our specification test infers this
testable implication using a variance-weighted Kolmogorov–Smirnov test statistic. The
test can be applied to both discrete and continuous outcome cases, and an extension of
the test to settings with conditioning covariates is provided.
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1. INTRODUCTION

CONSIDER A HETEROGENEOUS CAUSAL EFFECT MODEL of Imbens and Angrist
(1994) with a binary treatment and a binary instrument. We denote an observed
outcome by Y ∈ Y ⊂ R, an observed treatment status by D ∈ {1�0} (D = 1
when one receives the treatment while D = 0 when one does not), and a binary
nondegenerate instrument by Z ∈ {1�0}. Let {Ydz ∈ Y : d ∈ {1�0}� z ∈ {1�0}}
be the potential outcomes that would have been observed if the treatment sta-
tus were set at D = d and the assigned instrument were set at Z = z. Fur-
thermore, {Dz : z ∈ {1�0}} are the potential treatment responses that would
have been observed if Z = 1 and Z = 0, respectively. The seminal works of
Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996) showed
that, given Pr(D = 1|Z = 1) > Pr(D = 1|Z = 0), the instrument variable Z
that satisfies the three conditions involving the potential variables is able to
identify the average treatment effects for those whose selection to treatment
is affected by the instrument (local average treatment effect, LATE here-
after). The three key conditions, the joint validity of which is hereafter referred
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to as instrumental variable (IV) validity, are given in the following assump-
tion.2

ASSUMPTION—IV Validity for Binary Z:
(i) Instrument Exclusion: With probability 1, Yd1 = Yd0 for d = 1�0.

(ii) Random Assignment: The variable Z is jointly independent of (Y11�Y10�
Y01�Y00�D1�D0).

(iii) Instrument Monotonicity (No defier): The potential treatment response
indicators satisfy D1 ≥D0 with probability 1.

Despite the fact that the credibility of LATE analysis relies on the validity of
the employed instrument, no test procedure has been proposed to empirically
diagnose IV validity. As a result, causal inference studies have assumed IV va-
lidity based solely on some background knowledge or out-of-sample evidence,
and, accordingly, its credibility often remains controversial in many empirical
contexts.

The main contribution of this paper is to develop a specification test for IV
validity in the LATE model. Our specification test builds on the testable impli-
cation obtained by Balke and Pearl (1997) and Heckman and Vytlacil (2005,
Proposition A.5). Let P and Q be the conditional probability distributions of
(Y�D) ∈Y × {1�0} given Z = 1 and Z = 0, that is,

P(B�d)= Pr(Y ∈ B�D= d|Z = 1)�

Q(B�d)= Pr(Y ∈ B�D= d|Z = 0)

for Borel set B in Y and d = 1�0. Since P and Q are conditional distributions
of observable variables, they are identified by the sampling process. Imbens
and Rubin (1997) showed that, under IV validity,

P(B�1)−Q(B�1)= Pr(Y1 ∈ B�D1 >D0)�

Q(B�0)− P(B�0)= Pr(Y0 ∈ B�D1 >D0)

hold for every B in Y . Since the quantities in the right-hand sides are nonneg-
ative by the definition of probabilities, we obtain the testable implication of
Balke and Pearl (1997) and Heckman and Vytlacil (2005),

P(B�1)−Q(B�1)≥ 0�(1.1)

Q(B�0)− P(B�0)≥ 0

2Note that the null hypothesis of IV validity tested in this paper does not include the instrument
relevance assumption, Pr(D = 1|Z = 1) > Pr(D = 1|Z = 0). The instrument relevance assump-
tion can be assessed by inferring the coefficient in the first-stage regression of D onto Z.
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FIGURE 1.—If the identifiable densities p(y�D = d) and q(y�D = d) are nested as in this
figure, IV validity cannot be refuted. The dotted lines show the marginal probability densities
of the potential outcomes, that is, fYd

(y) is the marginal probability density of Yd ≡ Yd1 = Yd0,
which is not identifiable. Under the instrument exclusion and random assignment, both p(y�d)
and q(y�d) must lie below the potential outcome densities fYd

(·).

for every Borel set B in Y .3 Figures 1 and 2 provide visualizations of these
testable implications for a continuous Y case. The solid lines, p(y�d) and
q(y�d), plot the probability density of P(·� d) and Q(·� d) over the Y -axis at
fixed d ∈ {1�0}. It is important to keep in mind that, in the presence of non-
compliance, integrations of p(y�d) and q(y�d) over y ∈ Y are smaller than 1,
as they are equal to Pr(D= d|z = 1) < 1 and Pr(D= d|z = 0) < 1, respectively.
If the instrument is valid, p(y�1) must nest q(y�1) for treatment outcome and
q(y�0) must nest p(y�0) for control outcome, as plotted in Figure 1.

In contrast, if we observe the densities as plotted in Figure 2, we can refute
at least one of the IV validity assumptions since some of the inequalities (1.1)

FIGURE 2.—If p(y�d) intersects with q(y�d) for at least one of d = 1�0, we can refute IV
validity.

3As is clear from the derivation, the testable implication can be equivalently interpreted as
the nonnegativity conditions for the compliers’ potential outcome distributions, Pr(Yd ∈ B|D1 >
D0)≥ 0, which are identifiable under IV validity. Imbens and Rubin (1997) noted that, depending
on data, the estimates of the complier’s outcome densities can be negative over some region in
the outcome support.
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FIGURE 3.—Kernel density estimates: draft lottery data. The Gaussian kernel with bandwidth
0.07 is used.

are violated at some subsets in the support of Y , for example, those labeled V1

and V2 in Figure 2.
To see how densities of P(·� d) and Q(·� d) look in real data, Figure 3 plots

kernel density estimates of p(y�d) and q(y�d) for the Vietnam era draft lot-
tery data used in Angrist and Krueger (1992, 1995) and Abadie (2002), where
Y = log((one’s postwar annual earnings)+ 1), the veteran status is D, and the
draft eligibility determined by a low lottery number is Z. See Section 4.1 for the
detailed description of the data. The estimated densities overall exhibit nest-
ing relationships similar to those illustrated in Figure 1;4 therefore, no strong
evidence against IV validity appears to be available. Contrasting density plots
are shown in Figure 4, where the data are from Card (1993), Y is the log-
arithm of one’s weekly earning, D indicates whether one graduated from a
four-year college, and Z indicates whether a four-year college is located in the
area of one’s residence. No conditioning covariates are controlled for when
drawing the densities. Here, we observe that the density estimates intersect,
especially for the control outcome. This is an in-sample visual evidence against

4The probability subdensities have probability masses at Y = 0, as the data include individ-
uals with zero earnings. The sample estimates of these probability masses satisfy (1.1). Qual-
itatively similar estimates of the subdensities are obtained if we define the outcome as Y =
log((weekly wages)+ 1). Our test can be applied without any change even when the distribution
of outcome has probability masses.
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FIGURE 4.—Kernel density estimates: proximity to college data. The Gaussian kernel with
bandwidth 0.08 is used.

IV validity. These eyeball-based assessments are indeed intuitive and useful,
but they fail (i) to take into account sampling uncertainty and (ii) to quantify
the strength of evidence for or against IV validity without relying on a specific
choice of smoothing parameters. A hypothesis test procedure proposed in this
paper solves these important practical issues.

The preceding derivation of (1.1) shows only that inequalities (1.1) are nec-
essary implications of IV validity, so it is natural to ask (i) whether the testable
implications of (1.1) can be further strengthened and (ii) whether there exist
some P and Q for which (1.1) becomes a necessary and sufficient condition for
IV validity. The next proposition shows that the answers to these questions are
negative (see Kitagawa (2015, Appendix A) for a proof).

PROPOSITION 1.1: Assume that P(·� d) and Q(·� d) have a common dominat-
ing measure μ on Y for each d = 1�0.

(i) If distributions of observables, P and Q, satisfy inequalities (1.1), then there
exists a joint probability law of (Y11�Y10�Y01�Y00�D1�D0�Z) that satisfies IV va-
lidity and induces the P and Q.

(ii) For any P and Q satisfying inequalities (1.1), we can construct a joint prob-
ability law of (Y11�Y10�Y01�Y00�D1�D0�Z) that violates IV validity.

To my knowledge, Proposition 1.1 is new in the literature, and it shows the
following important results. First, Proposition 1.1(i) shows an optimality of the
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testable implication (1.1), in the sense that any other feature of the data dis-
tribution cannot contribute to screening out invalid instruments further than
the testable implication of (1.1). Second, Proposition 1.1(ii) highlights a limi-
tation on the learnability of instrument validity in the sense that accepting the
null hypothesis of (1.1) never allows us to confirm IV validity no matter how
large the sample size is. In this precise sense, the IV validity is a refutable but
nonverifiable hypothesis. Such limitation on confirmability of instrument va-
lidity is known in other contexts, such as the classical overidentification test
in the linear instrumental variable method with homogeneous effect5 and the
test of instrument monotonicity in the multivalued treatment case proposed in
Angrist and Imbens (1995).6 See Breusch (1986) for a general discussion on
hypothesis testing of refutable but nonverifiable assumptions.

Our test uses a variance-weighted Kolmogorov–Smirnov test statistic (KS
statistic, hereafter) to measure the magnitude of violations of inequalities (1.1)
in the data. We provide a resampling algorithm to obtain critical values, and
demonstrate that the test procedure attains asymptotically correct size uni-
formly over a large class of data generating processes and consistently rejects
all the data generating processes violating (1.1). A similar variance-weighted
KS statistic has been considered in the literature of conditional moment in-
equalities, as in Andrews and Shi (2013), Armstrong (2014), Armstrong and
Chan (2013), and Chetverikov (2012). As shown in Romano (1988), the boot-
strap is widely applicable and easy to implement to obtain the critical values for
general KS statistics, and it has been instrumental in the context of stochas-
tic dominance testing; see, for example, Abadie (2002), Barrett and Donald
(2003), Donald and Hsu (2015), Horváth, Kokoszka, and Zitikis (2006), and
Linton, Maasoumi, and Whang (2005).

Our test concerns the exogeneity of the instrument defined in terms of sta-
tistical independence, and it can be applied to the context in which objects
of interest are distributional features of a complier’s potential outcome dis-
tribution, for example, the quantile treatment effects for compliers (Abadie,
Angrist, and Imbens (2002)). On the other hand, if only the mean effect is con-
cerned, identification of LATE can, in fact, be attained under a slightly weaker
set of assumptions, such that the instrument is statistically independent of the
selection types while the potential outcomes are only mean independent of Z

5If the instrument is multivalued, we can naively perform the classical overidentification test by
treating the multivalued instrument as a collection of binary instruments. However, as discussed
in Imbens (2014) and Lee (2014), the overidentification test should not be used if causal effects
are considered to be heterogeneous, since heterogeneity of causal effects can lead to misspecified
overidentifying restrictions, even when LATE IV validity is true.

6In the case of multivalued treatment status, Angrist and Imbens (1995) propose a specification
test to assess instrument monotonicity by inferring the stochastic dominance of the distribution
functions of the treatment status conditional on the instrument; see Barua and Lang (2009) and
Fiorini, Stevens, Taylor, and Edwards (2013) for applications of the Angrist and Imbens test. In
the binary treatment case, however, the Angrist and Imbens test cannot be applied.
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conditional on each selection type. Huber and Mellace (2013) show that this
weaker LATE identifying condition has a testable implication given by a finite
number of moment inequalities. Since our test builds on the distributional re-
strictions implied from statistical independence, it screens out a larger class of
data generating processes compared to the test of Huber and Mellace. In addi-
tion, the set of detectable alternatives and the p-value of our test are invariant
to any monotonic transformation of the outcome variables, whereas this invari-
ance property does not hold for the Huber and Mellace test. Mourifié and Wan
(2014) recently proposed an alternative way to test the same instrument valid-
ity condition by transforming the testable implication (1.1) into conditional
moment inequality restrictions. For the binary Y case, Machado, Shaikh, and
Vytlacil (2013) develop a multiple hypothesis testing procedure that jointly in-
fers IV validity and the sign of the average treatment effect.

The rest of the paper is organized as follows. Section 2 presents implemen-
tation of our test when D and Z are binary and shows its asymptotic validity.
Section 3 extends the analysis to settings with a multivalued instrument and
with conditioning covariates. Two empirical applications are provided in Sec-
tion 4. The Supplemental Material (Kitagawa (2015)) provides proofs and the
results of Monte Carlo experiments.

2. TEST

2.1. Test Statistics and Implementation

Let a sample be given by N observations of (Y�D�Z) ∈ Y × {1�0}2. We di-
vide the sample into two subsamples based on the value of Z, and we consider
the sampling process as being conditional on a sequence of instrument val-
ues. Let (Y 1

i �D
1
i ), i = 1� � � � �m, be observations with Z = 1 and let (Y 0

j �D
0
j ),

j = 1� � � � � n, be those with Z = 0, and assume that the observations of (Y 1
i �D

1
i )

and (Y 0
j �D

0
j ) are drawn independently and identically from P and Q, respec-

tively. We assume a deterministic sequence λ̂ = m/N → λ as N → ∞, where
0 < λ< 1.7 We denote the empirical distributions of P and Q by

Pm(B�d)≡ 1
m

m∑
i=1

I
{
Y 1

i ∈ B�D1
i = d

}
�

Qn(B�d)≡ 1
n

n∑
j=1

I
{
Y 0

j ∈ B�D0
j = d

}
�

7If one wants to perform the test without conditioning on observations of Z, instruments need
to be resampled as well in the bootstrap algorithm given below.
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To test the null hypothesis given by inequalities (1.1), we consider a variance-
weighted KS statistic,

TN =
(
mn

N

)1/2

max
{

sup
−∞≤y≤y′≤∞

{
Qn

([
y� y ′]�1

) − Pm

([
y� y ′]�1

)
ξ ∨ σPm�Qn

([
y� y ′]�1

)
}
�(2.1)

sup
−∞≤y≤y′≤∞

{
Pm

([
y� y ′]�0

) −Qn

([
y� y ′]�0

)
ξ ∨ σPm�Qn

([
y� y ′]�0

)
}}

�

where ξ is a positive constant specified by the user and

σ2
Pm�Qn

([
y� y ′]� d) = (1 − λ̂)Pm

([
y� y ′]� d)(

1 − Pm

([
y� y ′]� d))

+ λ̂Qn

([
y� y ′]� d)(

1 −Qn

([
y� y ′]� d))

�

If the sample counterpart of the first (second) inequality of (1.1) is violated
at some interval, then the first (second) supremum in the max operator be-
comes positive. For each interval [y� y ′], σ2

Pm�Qn
([y� y ′]� d) is a consistent estima-

tor of the asymptotic variance of (mn
N
)1/2(Pm([y� y ′]� d)− Qn([y� y ′]� d)). Thus,

the proposed test statistics quantifies a variance-adjusted maximal violation of
the inequalities (1.1) over a class of connected intervals including unbounded
ones. The exact suprema can be computed by evaluating the maximand at the
finite number of intervals, because to compute the first (second) supremum
in the statistic, it suffices to evaluate the differences of the empirical distribu-
tion functions at every interval, the boundaries of which are given by a pair of
Y values observed in the subsample of {D = 1�Z = 0} ({D = 0�Z = 1}). The
suprema are searched over a smaller class of subsets than the class of Borel
sets for which the population inequalities (1.1) are examined. Nevertheless,
this reduction of the class of sets does not cause any loss of information, in the
sense that any data generating processes that violate (1.1) for at least one Borel
set can be screened out asymptotically (Theorem 2.1(ii) below). Note that the
proposed test statistic and asymptotic validity of the test are not restricted to a
continuous Y case. The same statistic can be used for any ordered discrete Y
or a mixture of discrete and continuous Y .8

The user-specified trimming constant ξ plays a role in ensuring that the in-
verse weighting terms are sufficiently away from zero. Note that when ξ ≥ 1/2,
the proposed test statistic is identical up to a constant to the nonweighted KS

8A similar test statistic can be defined also for unordered discrete Y and multidimensional Y .
In the case of unordered discrete Y , the supremum can be defined over every support point of Y ,
and in the case of multidimensional Y , the supremum can be defined over a class of rectangles in
the support of Y .
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statistic,

TN�nw =
(
mn

N

)1/2

max
{

sup
−∞≤y≤y′≤∞

{
Qn

([
y� y ′]�1

) − Pm

([
y� y ′]�1

)}
�(2.2)

sup
−∞≤y≤y′≤∞

{
Pm

([
y� y ′]�0

) −Qn

([
y� y ′]�0

)}}
�

Hence, variance-weighting is effective only when ξ is smaller than 1/2. The
Monte Carlo studies presented in Kitagawa (2015, Appendix D) show that the
test size is insensitive to a choice of ξ even in small sample situations. The fi-
nite sample power of the test, on the other hand, can be sensitive to a choice
of ξ depending on a specification of alternative. Specifically, when violations
of the testable implications occur at the tail parts of P and Q, our Monte Carlo
experiments suggest that smaller ξ yields a higher power. In contrast, if vio-
lations occur at an interval where P and Q have high probabilities, a larger ξ
tends to show a slightly higher power. Although a formal discussion regarding
an optimal choice of ξ is beyond the scope of this paper, our informal recom-
mendation is to specify ξ to a value in the range of 0�05 and 0�1 to avoid a big
power loss when violations are occurring at the tail parts of P and Q. Alterna-
tively, reporting the test results with several choices of ξ is also recommended
so as to showcase the range of p-values over different choices of ξ.

To obtain asymptotically valid critical values for the test, we focus on a data
generating processes on the boundary of the one-sided null hypothesis, such
that P and Q are identical to some probability measure H. Specifically, we
set H at the pooled probability measure (the unconditional distribution of
(Y�D)),9

H = λP + (1 − λ)Q�(2.3)

and aim to estimate the quantiles of the null distribution of the statistic as if
the data were generated from P = Q =H.10

We now summarize a bootstrap algorithm for obtaining critical values for TN .

9Instead of the pooled probability measure, a different convex combination of P and Q,

H = cP + (1 − c)Q� c ∈ [0�1]�
can be used to generate the bootstrap samples without distorting the size property of the test. The
power of the test, on the other hand, can vary depending on the choice of c. We leave investigation
about a desirable choice of c for future research.

10The finite sample power may be improved if critical values are obtained from the null distri-
bution of the supremum statistic over a preestimated set of y , where p(y�d) = q(y�d) (contact
set). See Lee, Song, and Whang (2011), Linton, Song, and Whang (2010)), Donald and Hsu
(2015), and the literatures on generalized moment selection including Andrews and Barwick
(2012), Andrews and Shi (2013), and Andrews and Soares (2010), among others. Estimation of
the contact set relies on a user-specified tuning parameter, and the test size can be affected by its
choice.
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ALGORITHM 2.1:
Step 1. Sample (Y ∗

i �D
∗
i ), i = 1� � � � �m, randomly with replacement from

HN = λ̂Pm + (1− λ̂)Qn and construct empirical distribution P∗
m. Similarly, sam-

ple (Y ∗
j �D

∗
j ), j = 1� � � � � n, randomly with replacement from HN and construct

empirical distribution Q∗
n.

Step 2. Calculate a bootstrap realization of test statistic11

T ∗
N =

(
mn

N

)1/2

max
{

sup
−∞≤y≤y′≤∞

{
Q∗

n

([
y� y ′]�1

) − P∗
m

([
y� y ′]�1

)
ξ ∨ σP∗

m�Q∗
n

([
y� y ′]�1

)
}
�

sup
−∞≤y≤y′≤∞

{
P∗
m

([
y� y ′]�0

) −Q∗
n

([
y� y ′]�0

)
ξ ∨ σP∗

m�Q∗
n

([
y� y ′]�0

)
}}

�

where

σ2
P∗
m�Q∗

n

([y� y ′]� d) = (1 − λ̂)P∗
m

([y� y ′]� d)
(1 − P∗

m

([y� y ′]� d))
+λ̂Q∗

n

([y� y ′]� d)
(1 −Q∗

n

([y� y ′]� d))
�

Step 3. Iterate Steps 1 and 2 many times and get the empirical distribution
of T ∗

N . For a chosen nominal level α ∈ (0�1/2), we obtain a bootstrap critical
value cN�1−α from its empirical (1 − α)th quantile.

Step 4. Reject the null hypothesis (1.1) if TN >cN�1−α. The bootstrap p-value
is obtained according to the proportion of bootstrap repetitions such that T ∗

N

exceeds TN .

2.2. Asymptotic Uniform Size Control and Consistency

This section formally claims that the test procedure of Algorithm 2.1 is
asymptotically valid uniformly over a certain class of data generating processes.
Let P be a set of probability measures defined on the Borel σ-algebra of
Y × {0�1}, and the set of data generating processes satisfying (1.1) is denoted
by

H0 = {
(P�Q) ∈P2 : inequalities (1.1) hold

}
�

The uniform validity of our test procedure is based on the following two weak
regularity conditions.

11Since P∗
m and Q∗

n are drawn from the common pooled empirical distribution, recentering of
the bootstrap empirical measures with respect to the original Pm and Qn is not needed.
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CONDITION RG:
(a) Probability measures in P are nondegenerate and have a common dom-

inating measure μ for the Y coordinate, where μ is the Lebesgue measure, a
point mass measure with finite support points, or their mixture. The density
functions p(y�d) ≡ dP(·�d)

dμ
are bounded uniformly over P , that is, there exists

M < ∞ such that p(y�d) ≤ M holds at μ-almost every y ∈ Y and d = 0�1 for
all P ∈P .

(b) The set P is uniformly tight, that is, for arbitrary ε > 0, there exists a
compact set K ⊂ Y×{0�1} such that

sup
P∈P

{
P

(
Kc

)}
< ε�

The asymptotic validity of the proposed test is stated in the next proposition
(see Kitagawa (2015, Appendix B) for a proof).

THEOREM 2.1: Let α ∈ (0�1/2).
(i) Suppose Condition RG. The test procedure of Algorithm 2.1 has asymptoti-

cally uniformly correct size for null hypothesis H0,

lim sup
N→∞

sup
(P�Q)∈H0

Pr(TN > cN�1−α)≤ α�

(ii) For a fixed data generating process that violates inequalities (1.1) for some
Borel set B, the test based on TN is consistent, that is, the rejection probability
converges to 1 as N → ∞.

This theorem establishes asymptotic uniform validity of the proposed test
procedure over P . The second claim of the proposition concerns the power of
the test at a fixed alternative, and it shows that any alternatives violating the
testable implication (1.1) can be consistently rejected.

2.3. Power Against N−1/2-Local Alternatives

In this section, we show that the proposed test has nontrivial power against
a class of nonparametric N−1/2-local alternatives. Let {(P [N]�Q[N]) ∈ P2 : N =
1�2� � � �} denote a sequence of probability measures on Y × {1�0} shrinking to
(P0�Q0) ∈H0. The next assumption defines a class of local alternatives, against
which we derive the power of our test.

ASSUMPTION LA: A sequence of true alternatives {(P [N]�Q[N]) ∈ P2 : N =
1�2� � � �} is represented by

P [N] = P0 +N−1/2β[N]
1 �(2.4)

Q[N] =Q0 +N−1/2β[N]
0 �
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where (P0�Q0) ∈ P2 is a pair of probability measures on Y × {1�0} and
{(β[N]

1 �β[N]
0 ) : N = 1�2� � � �} is a sequence of bounded signed measures on

Y × {1�0}.
(a) We have (P0�Q0) ∈ H0 and P0([y� y ′]� d) = Q0([y� y ′]� d) > 0 for some

−∞ ≤ y ≤ y ′ ≤ ∞ and d ∈ {1�0}.
(b) For all N , −N1/2P0 ≤ β[N]

1 < ∞ and −N1/2Q0 ≤ β[N]
0 < ∞ hold and

β[N]
1 (Y� d)= β[N]

0 (Y� d)= 0 for d = 1�0.
(c) The relation β[N]

1 −β[N]
0 converges in terms of the sup metric over Borel sets

to a bounded signed measure 
β as N → ∞.
(d) For some ([y� y ′]� d) satisfying (a), 
β([y� y ′]�1) < 0 and/or 
β([y� y ′]�

0) > 0 hold.

Assumption LA(a) says that (P0�Q0) ∈ H0, to which (P [N]�Q[N]) converges,
has a nonempty contact set with a positive measure in terms of P0 = Q0. As-
sumption LA(b) ensures (P [N]�Q[N]) ∈ P2 and Pr(D = 1|Z = 1) ≥ Pr(D =
1|Z = 0) for all N , and P [N] and Q[N] are in an N−1/2 neighborhood of P0

and Q0 in terms of the total variation distance. Assumption LA(c) implies
that

√
N(P [N] − Q[N])([y� y ′]� d) → 
β([y� y ′]� d) at every [y� y ′] contained in

the contact set of P0 and Q0. Accordingly, combined with Assumption LA(d),
(P [N]�Q[N]) violates the IV-validity testable implication at some [y� y ′] con-
tained in the contact set for all large N .

The next theorem provides a lower bound of the power of our test along
N−1/2-local alternatives satisfying Assumption LA.

THEOREM 2.2: Assume Condition RG and that {(P [N]�Q[N]) ∈ P2 : N =
1�2� � � �} satisfies Assumption LA. Then

lim
N→∞

Pr
P[N]�Q[N]

(TN > cN�1−α)≥ 1 −�(t)�

where �(·) is the cumulative distribution function of the standard normal distri-
bution,

t =
(
σ2

P0�Q0

([
y� y ′]�1

)
ξ2 ∧ 1

)−1

×
[
c1−α − [

λ(1 − λ)
]1/2

∣∣
β([
y� y ′]� d)∣∣

ξ ∨ σP0�Q0

([
y� y ′]�1

)
]
�

c1−α is the limit of the bootstrap critical value of Algorithm 2.1 that is bounded
and depends only on (α�ξ�λ�P0�Q0), and ([y� y ′]� d) is as defined in Assump-
tion LA(a) and (d).



A TEST FOR INSTRUMENT VALIDITY 2055

Note that the provided lower bound of the power is increasing in
|
β([y� y ′]� d)| and it approaches 1 as a deviation from the null |
β([y� y ′]� d)|
gets larger. Hence, we conclude that for some N−1/2-local alternatives satis-
fying Assumption LA, the power is greater than the size of the test for every
α ∈ (0�1/2).

3. EXTENSIONS

3.1. A Multivalued Discrete Instrument

The test procedure proposed above can be extended straightforwardly to a
case with a multivalued discrete instrument, Z ∈ {z1� z2� � � � � zK}. Let p(zk) =
Pr(D = 1|Z = zk) and assume knowledge of the ordering of p(zk), so that
without loss of generality we assume p(z1) ≤ · · · ≤ p(zK). With the multival-
ued instrument, we denote the potential outcomes indexed by treatment and
instrument status by {Ydz : d = 0�1� z = z1� � � � � zK}, and denote potential se-
lection responses by {Dz : z = z1� � � � � zK}. The following assumptions guaran-
tee that the linear two-stage least squares estimator can be interpreted as a
weighted average of the compliers’ average treatment effects (Imbens and An-
grist (1994)).

ASSUMPTION—IV Validity for Multivalued Discrete Z:
(i) Instrument Exclusion. We have Ydz1 = Ydz2 = · · · = YdzK for d = 1�0, with

probability 1.
(ii) Random Assignment. We have that Z is jointly independent of (Y1z1� � � � �

Y1zK �Y0z1� � � � �Y0zK ) and (Dz1� � � � �DzK).
(iii) Instrument Monotonicity. Given p(z1) ≤ · · · ≤ p(zK), the potential se-

lection indicators satisfy Dzk+1 ≥ Dzk with probability 1 for every k = 1� � � � �
(K − 1).

Let P(B�d|zk) = Pr(Y ∈ B�D = d|Z = zk), k = 1� � � � �K, and let
Pmk

(B�d|zk) be its empirical distribution based on the subsample of Zi = zk
with size mk. The testable implication of the binary instrument case is now
generalized to the set of inequalities

P(B�1|z1)≤ P(B�1|z2)≤ · · · ≤ P(B�1|zK)�(3.1)

P(B�0|z1)≥ P(B�0|z2)≥ · · · ≥ P(B�0|zK)
for all Borel set B in Y . Using the test statistic for the binary Z case to measure
the violation of the inequalities across the neighboring values of Z, we can
develop a statistic that jointly tests the inequalities of (3.1),

TN = max{TN�1� � � � � TN�K−1}�(3.2)
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where, for k = 1� � � � � (K − 1),

TN�k =
(

mkmk+1

mk +mk+1

)1/2

× max
{

sup
−∞≤y≤y′≤∞

{
Pmk

([
y� y ′]�1|zk

) − Pmk+1

([
y� y ′]�1|zk+1

)
ξk ∨ σk

([
y� y ′]�1

)
}
�

sup
−∞≤y≤y′≤∞

{
Pmk+1

([
y� y ′]�0|zk+1

) − Pmk

([
y� y ′]�0|zk

)
ξk ∨ σk

([
y� y ′]�0

)
}}

�

σ2
k

([
y� y ′]� d)

=
(

mk+1

mk +mk+1

)
Pmk

([
y� y ′]� d|zk

)(
1 − Pmk

([
y� y ′]� d|zk

))

+
(

mk

mk +mk+1

)
Pmk+1

([
y� y ′]� d|zk

)(
1 − Pmk+1

([
y� y ′]� d|zk

))
�

and ξ1� � � � � ξK−1 are positive constants. Critical values can be obtained by ap-
plying a resampling algorithm of the previous section to each TN�k simultane-
ously.

ALGORITHM 3.1:
Step 1. Let

HN�k(·)=
(

mk+1

mk +mk+1

)
Pmk+1(·|zk+1)+

(
mk

mk +mk+1

)
Pmk

(·|zk)

be the pooled empirical measures that pool the sample of Zi = zk+1 and that
of Zi = zk. Sample (Y ∗

i �D
∗
i ), i = 1� � � � �mk+1, randomly with replacement from

HN�k and construct the bootstrap empirical distribution P∗
mk+1

(·|zk+1). Similarly,
sample (Y ∗

j �D
∗
j ), j = 1� � � � �mk, randomly with replacement from HN�k and

construct the bootstrap empirical distribution P∗
mk
(·|zk).

Step 2. Apply Step 1 for every k = 1� � � � � (K − 1) and obtain (K − 1) pairs
of the resampled empirical measures, (P∗

m1
�P∗

m2
), (P∗

m2
�P∗

m3
)� � � � � (P∗

mK−1
�P∗

mK
).

Define, for k= 1� � � � � (K − 1),

σ∗2
k

([
y� y ′]� d)

=
(

mk+1

mk +mk+1

)
P∗
mk

([
y� y ′]� d|zk

)(
1 − P∗

mk

([
y� y ′]� d|zk

))

+
(

mk

mk +mk+1

)
P∗
mk+1

([
y� y ′]� d|zk+1

)(
1 − P∗

mk+1

([
y� y ′]� d|zk+1

))
�
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T ∗
N�k =

(
mkmk+1

mk +mk+1

)1/2

× max
{

sup
−∞≤y≤y′≤∞

{
P∗
mk

([
y� y ′]�1|zk

) − P∗
mk+1

([
y� y ′]�1|zk+1

)
ξk ∨ σ∗

k

([
y� y ′]�1

)
}
�

sup
−∞≤y≤y′≤∞

{
P∗
mk+1

([
y� y ′]�0|zk+1

) − P∗
mk

([
y� y ′]�0|zk

)
ξk ∨ σ∗

k

([
y� y ′]�0

)
}}

�

where ξk, k = 1� � � � � (K − 1), are positive constants. The bootstrap statistic T ∗
N

is computed accordingly by T ∗
N = max{T ∗

N�1� � � � � T
∗
N�K−1}.

Step 3. Iterate Steps 1 and 2 many times, get the empirical distribution of
T ∗
N , and obtain a bootstrap critical value cN�1−α from its empirical (1 − α)th

quantile.
Step 4. Reject the null hypothesis (3.1) if TN > cN�1−α. The bootstrap p-value

is obtained by the proportion of T ∗
N ’s greater than TN .

3.2. Conditioning Covariates

Empirical studies commonly use observable conditioning covariates in the
context of instrumental variable methods. One of the major motivations for
introducing them is to control for potential confounders that invalidate the
random assignment assumption. This section briefly discusses how to extend
the IV-validity test proposed above to the settings with conditioning covariates,
X ∈ X⊂R

dx , used for this purpose.
The IV validity to be tested in this case consists of the joint restriction of

instrument exclusion, instrument monotonicity, and the conditional version of
the instrument random assignment assumption, (Y11�Y10�Y01�Y00�D1�D0) ⊥
Z|X . These three assumptions combined with the first-stage rank condition,
Pr(D = 1|Z = 1�X) �= Pr(D = 1|Z = 0�X) for some X , guarantee that the
linear two-stage least squares with a function of (Z�X) used as an instru-
ment (e.g., Pr(D = 1|Z�X)) estimates a certain weighted average of the com-
plier’s conditional causal effects E(Y1 − Y0|D1 > D0�X) (Heckman and Vyt-
lacil (2005)). Moreover, under the same set of assumptions, the semiparamet-
ric IV estimator developed by Abadie (2003) consistently estimates the uncon-
ditional complier’s causal effect E(Y1 −Y0|D1 >D0).

A testable implication with the largest screening power in the sense similar
to Proposition 1.1(i) is given by the conditional version of the inequalities (1.1),
that is, for every Borel set B ⊂Y and X ∈ X,

Pr(Y ∈ B�D= 1|Z = 1�X)− Pr(Y ∈ B�D= 1|Z = 0�X)≥ 0�(3.3)

Pr(Y ∈ B�D= 0|Z = 0�X)− Pr(Y ∈ B�D= 0|Z = 1�X)≥ 0�
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As shown in Kitagawa (2015, Lemma B.8), the use of Theorem 3.1 of Abadie
(2003) and the instrument function argument for conditional moment inequal-
ities as given in Andrews and Shi (2013) and Khan and Tamer (2009) enable
us to reduce (3.3) to the following unconditional moment inequalities without
loss of any information,12

E
[
κ1(D�Z�X)g(Y�X)

] ≥ 0�(3.4)

E
[
κ0(D�Z�X)g(Y�X)

] ≥ 0 for all g(·� ·) ∈ G�

where

κ1(D�Z�X)= D
Z − Pr(Z = 1|X)

Pr(Z = 0|X)Pr(Z = 1|X)
�

κ0(D�Z�X)= (1 −D)
(1 −Z)− Pr(Z = 0|X)

Pr(Z = 0|X)Pr(Z = 1|X)
�

and G is the class of indicator functions for boxes in Y ×X ,

G = {
1
{
(Y�X) ∈ C

} :C = [
y� y ′] × [

x1�x
′
1

] × · · · × [
xdx�x

′
dx

]
�(3.5)

−∞ ≤ y ≤ y ′ ≤ ∞�−∞ ≤ xl ≤ x′
l ≤ ∞� l = 1� � � � � dx�

}
�

Accordingly, a variance-weighted KS statistic to infer (3.4) can be proposed as

TN = √
N max

{
sup
g∈G

−EN

[
κ̂1(D�Z�X)g(Y�X)

]
ξ ∨ σ̂1(g)

�

sup
g∈G

−EN

[
κ̂0(D�Z�X)g(Y�X)

]
ξ ∨ σ̂0(g)

}
�

where κ̂d is an estimate of κd with estimated Pr(Z = 1|X) plugged in, EN(·)
is the sample average, and σ̂2

d(g) is the sample variance of κ̂d(Di�Zi�Xi)×
g(Yi�Xi). Treating κ̂d as given (estimated from the original sample), we obtain
the critical values by bootstrapping the supremum statistic of the recentered

12If the random assignment assumption is strengthened to (Y11�Y10�Y01�Y00�D1�D0�X) ⊥Z,
then it can be shown that the moment conditions of (3.4) are reduced to

Pr
(
(Y�X) ∈ C�D= 1|Z = 1

) − Pr
(
(Y�X) ∈ C�D= 1|Z = 0

) ≥ 0�

Pr
(
(Y�X) ∈ C�D= 0|Z = 0

) − Pr
(
(Y�X) ∈ C�D= 0|Z = 1

) ≥ 0

for any box C in Y ×X . As a result, the test procedure for the no-covariate case can be extended
straightforwardly to this case.
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moments,

T ∗
N = √

N max
{

sup
g∈G

(−[
E∗

N

[
κ̂1(D�Z�X)g(Y�X)

]

−EN

[
κ̂1(D�Z�X)g(Y�X)

]])
/
(
ξ ∨ σ̂∗

1 (g)
)
�

sup
g∈G

(−[
E∗

N

[
κ̂0(D�Z�X)g(Y�X)

] −EN

[
κ̂0(D�Z�X)g(Y�X)

]])

/
(
ξ ∨ σ̂∗

0 (g)
)}

�

where E∗
N(·) is the sample average based on a bootstrap sample that is ob-

tained by resampling (Y�D�Z�X) from the original sample, and σ̂∗2
d (g) is the

variance estimate based on the bootstrap sample.13

In terms of practical implementation, a couple of issues deserve attention.
First, in the presence of many covariates, computation of the statistic involves
an optimization over a large class of indicator functions. This raises a compu-
tational challenge in implementing the test. Second, validity of the test relies
on consistent estimation of Pr(Z = 1|X).

Hence, if a parametric estimation for Pr(Z = 1|X) is used to implement the
test, a misspecified functional form in the estimation of Pr(Z = 1|X) can lead
to an erroneous conclusion.

4. EMPIRICAL APPLICATIONS

We illustrate a use of our test using the two data sets mentioned in the In-
troduction.

4.1. Draft Lottery Data

The draft lottery data consist of a sample of 11,637 white men born between
1950 and 1953, extracted from March Current Population Surveys in 1979 and
1981–1985. This data set is a subsample of the sample used in Angrist and
Krueger (1992, 1995). Following Abadie (2002), we define a binary draft eligi-
bility instrument by a dummy variable indicating whether or not one’s lottery
number is less than or equal to 100. See Angrist (1990) for a detailed descrip-
tion of the Vietnam era draft lottery. We apply our test to two outcome mea-
sures, annual labor earnings and weekly wages, which are measured in terms
of 1978 dollars using the consumer price index (CPI). The measure of weekly
earnings is imputed by the annual labor earnings divided by the weeks worked.

13We leave for future research a formal investigation into the influence of estimation errors in
κ̂d on the performance of our test.
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The treatment is whether one has a Vietnam veteran status. Since the draft lot-
tery numbers are randomly assigned based on one’s birth date, it is reasonable
to believe that the constructed instrument is independent of any individual
characteristics. It is hard to believe in the existence of defiers in the current
context even though the sampling design does not exclude the possibility of
having them. A less credible assumption would be instrument exclusion. For
instance, the draft lottery can directly affect control outcomes for some never-
takers if those who were drafted change their career choice, school years, or
migration choice for the purpose of escaping military service.

Table I shows the result of our test. We present the bootstrap p-values of our
test for several different specifications of the trimming constant.

All of them are close to or exactly equal to 1. Hence, we do not reject the
validity of the draft lottery instrument from the data.

4.2. Returns to Education: Proximity to College Data

The data used in Card (1993) are from National Longitudinal Survey of
Young Men (NLSYM) that began in 1966 with 14–24-year old men and con-
tinued with followup surveys through 1981. Based on the respondents’ county
of residence at 1966, the Card data provide the presence of a four-year college
in the local labor market. The observations of years of education and wages
were based on the followup educational attainment and wages reported in the
interview in 1976.

Proximity to college was used as an instrument because the presence of a
nearby college reduces the cost of college education by allowing students to
live at home, while one’s unobservable ability is presumably independent of
students’ residence during their teenage years. Compliers in this context can
be considered as those who grew up in relatively low-income families and who
were not able to go to college without living with their parents. Being different
from the original Card study, we treat the educational level as a binary treat-
ment, with years of education greater than or equal to 16 years, that is, the
treatment can be considered as a four-year college degree.

We specify the measure of outcome to be the logarithm of weekly earnings.
In the first specification, we do not control for any demographic covariates.
This raises a concern regarding the violation of the random assignment as-
sumption. For instance, one’s region of residence, or whether they were born
in a standard metropolitan area or rural area may well be dependent on one’s
wage levels and the proximity to colleges if the urban areas are more likely to
have colleges and higher wage levels compared to the rural areas.

Our test procedure yields zero p-values for each choice of trimming con-
stant. This provides empirical evidence that without controlling for any covari-
ates, college proximity is not a valid instrument.

The original study by Card (1993) indeed emphasized the importance of
controlling for regions, residence in an urban area, race, job experience, and
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TABLE I

TEST RESULTS OF THE EMPIRICAL APPLICATIONS: 500 BOOTSTRAP ITERATIONS

Data: Draft Lottery Data Proximity to College Data
Sample Size (m�n): (3234�8403) (2053�957)

Pr(D= 1|Z = 1),
Pr(D = 1|Z = 0): 0.29, 0.18 0.29, 0.22

Y : Annual Earnings Weekly Wages Weekly Wages Weekly Wages
No Covariate No Covariate No Covariate With Covariatesa

Trimming constant ξ 0.07 0�3 1 0.07 0�3 1 0.07 0�3 1 0.07 0�3 1
Bootstrap test, p-value 0.93 1�00 1�00 1.00 1�00 1�00 0.00 0�00 0�00 0.89 0�71 0�91

aFive dummy variables indicating (i) residence in a standard metropolitan area (SMSA) in 1976, (ii) residence in a SMSA in 1966, (iii) race is black or not, (iv) residence in
southern states in 1976, and (v) residence in southern states in 1966.
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parent’s education, and he included them in his specification of the two-stage
least square estimation. In our second specification, we control for the covari-
ates listed at the bottom of Table I, which are all binary variables. We estimate
Pr(Z = 1|X) using a linear probability regression with these five dummy vari-
ables. The class of indicator functions G we use is

G = {
1
{
(Y�X) ∈ C

} :C = [yq� yq′ ] × {x1} × · · · × {xdx}�
yq is the empirical qth quantile of Y�

q�q′ ∈ {0�0�05� � � � �0�95�1}� q < q′�

xl ∈ {0�1}� l = 1� � � � � dx

}
�

With these covariates, the p-values turn out to be large. We therefore conclude
that we do not reject the validity of the college proximity instrument once these
covariates are controlled for.
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