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Abstract

We develop a specification test for the independent instrument assumption in the sam-

ple selection model. We test the emptiness of the identification region of Manski (2003):

the set of outcome distributions that are compatible with data and the restriction of

statistical independence between the instrument and outcome. The size of the identi-

fication region is characterized by a scalar parameter, the integrated envelope, and in

particular the identification region is empty if and only if the integrated envelope exceeds

one. Since the empty identification region implies a violation of the exclusion restriction,

we obtain a nonparametric specification test for the instrument exclusion restriction by

developing a testing procedure for whether the integrated envelope exceeds one. This

test procedure has a non-pivotal asymptotic distribution and it is well-known that in this

case the standard nonparametric bootstrap is not valid to obtain the critical values. We

therefore develop a modified bootstrap procedure and show its validity. Monte Carlo

simulations examine the finite sample performance of this bootstrap procedure. We use

the procedure to test the independence of the instrument used by Blundell et al. (2003).
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1 Introduction

The use of instrumental variables is one of the most important development in econometrics,

and many empirical findings in economics rely on the method of instrumental variables. The

crucial condition that validates the instrumental variable method is the instrument exclusion

restriction; the instrument is assigned irrespective of the unobserved outcome heterogeneity

in the population. Recently, Manski (2003) and Pearl (1994b, 2000) clarified refutability of

the instrument exclusion restriction in the models where the exclusion restriction is imposed

in terms of statistical independence of the instrument and outcome. As of this date, however,

no testing procedure based on such testable implication has been developed in the literature.

This paper develops a nonparametric specification test for the instrument exclusion re-

striction in the selection model where an instrument  is specified to be statistically inde-

pendent of the underlying outcome  given observable covariates . The selection problem

that this paper considers is the missing data problem with an instrument (Gronau (1974),

Heckman (1979)): the outcome  is observed if the selection indicator  is one while it

is missing if  is zero, and the researcher has a random sample of ( · ). For

example,  could be potential wages that are observed only for those who are employed,  is

the worker’s observable demographic characteristics, and the instrument  is a variable that

is specifed to be independent of one’s potential wage while it can affect one’s employment

status. For example, a list of instruments that has been used in this potential wage example

includes the number of kids, marital status, a measure of out-of-work income, etc. The test

procedure developed in this paper can be applied to the model with discrete instruments and

discrete covariates. Our object of interest is  |  the population conditional distribution
of  given  Also, the identification of  | leads to identification of location parameters

such as the mean or quantiles of  . In the potential wage example, this problem arises when

the researcher is interested in estimating the wage gaps between male and female, black and

white, or skilled and unskilled.1

The testable implication of the instrument exclusion restriction in this context is obtained

by examining identification of  | without imposing point-identifying restrictions for  | .
That is, our object of interest is the identification region for  | : the set of outcome distrib-
utions conditional on the covariates that are compatible with the empirical evidence and the

model restrictions.2 Manski (2003) analyzes the identification region for the outcome distri-

bution  | under the independence restriction between  and  given . In the partially

identified model, the empty identification region implies a misspecification of the imposed

restriction, so our specification test infers from data the emptiness of the identification re-

gion constructed under the exclusion restriction. Specification tests based on the emptiness

of the identification region for the partially identified parameters have been studied in the

1The point-identificaton of  | is achieved if an available instrument satisfies the exclusion restriction

and the selection probability Pr( = 1| =  = ) attains one for some . This is the identification at

infinity argument (Andrews and Schafgans (1998), Chamberlain (1986), and Heckman (1990)) based on an

extrapolation by the instrument exclusion restriction.
2 In a sequence of seminal papers, Manski (1989, 1990, 1994, 2003, 2007) analyzes the selection model

where some observations of outcome  can be missing in a nonrandom way, and stimulated research in

partial identification analysis. Manski (1990, 1994) introduces the use of an instrumental variable for partial

identification analysis, and analyzes the identification region for the parameters, or for the distribution of

outcomes, under various restrictions on the statistical relationship between the instrument and outcome.
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literature of the moment inequality model.3 Our analysis, however, differs from the moment

inequality model since the independence restriction we consider is a distributional restriction

rather than a moment restriction, and, especially for continuous  , it is not straightforward

to express the identification region for the outcome distribution in terms of the moment in-

equalities. Interestingly, even though the object of interest is in infinite dimensional, the

size of the identification region for the outcome distribution is characterized by a scalar pa-

rameter, the integrated envelope: the integral of the envelope over the conditional densities

of the observed  given  and . In particular, the identification region is empty if and

only if the integrated envelope exceeds one. Therefore, a nonparametric specification test

for the instrument exclusion restriction is obtained by developping an inferential procedure

for whether the integrated envelope exceeds one. We propose an estimator for the integrated

envelope and derive its asymptotic distribution. An asymptotically size correct specification

test for instrument independence is obtained by inverting the one-sided confidence intervals

for the integrated envelope.

This paper also discusses practical implementation of the test procedure. The asymp-

totic distribution of the integrated envelope estimator is given by a supremum functional

of a certain Gaussian process and it is difficult to obtain the critical values analytically.

Furthermore, due to a non-pivotal feature of the asymptotic distribution, the standard non-

parametric bootstrap fails to yield asymptotically valid critical values (Andrews (2000)). We

therefore develop a bootstrap procedure for the integrated envelope estimator and verify its

asymptotic validity. Similarly to the bootstrap procedure for the partially identified model

(Bugni (2010), Canay (2010), and Chernozhukov, Lee, and Rosen (2009)), we first estimate

to which asymptotic distribution the bootstrap approximation should target. Given the

targeted asymptotic distribution, we bootstrap the empirical processes so as to approximate

the Gaussian process component in the targeted asymptotic distribution. In a different con-

text, Anderson, Linton, and Whang (2009) and Lee and Whang (2009) develop an inferential

procedure for parameters that are similar to the integrated envelope considered in this paper.

Our development of asymptotic theory differs from theirs since our procedure relies on the

empirical process theory and it can be applied regardless of smoothness of the underlying

outcome density functions.

Blundell, Gosling, Ichimura, and Meghir (2007) consider testing the instrument indepen-

dence by inferring whether the bounds for the cumulative distribution function (cdf) of  |
intersects or not. Our specification test differs from their method in the following ways.

First, their procedure tests the emptiness of potentially non-tight cdf bounds for  | while

our procedure always tests the emptiness of the tightest cdf bounds, so our procedure can

asymptotically screen out more violations of the instrument exclusion. Second, the asymp-

totic validity of their bootstrap procedure is not formally investigated and its asymptotic

property is not known. Our bootstrap algorithm has an asymptotic justification in terms of

3 In the partially identified model with moment inequalities, a specification test for moment restrictions is

obtained as a by-product of the confidence sets for the partially identified parameters, that is, we reject the

null restriction if the confidence set is empty. A list of the literature that analyzes the confidence sets in

the moment inequality model contains Andrews, Berry and Jia (2004), Andrews and Guggenberger (2009),

Andrews and Jia (2008), Andrews and Shi (2008), Andrews and Soares (2010), Bugni (2010), Canay (2010),

Chernozhukov, Hong, and Tamer (2007), Guggenberger, Hahn, and Kim (2008), Imbens and Manski (2004),

Pakes, Porter, Ho, and Ishii (2006), Romano and Shaikh (2008, 2010), and Rosen (2008).
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correct size.

Monte Carlo simulations illustrate the finite sample performance of our bootstrap test

procedure. While the standard subsampling procedure by Politis and Romano (1994) is

shown to be valid, we present simulation evidence that our bootstrap has better finite sample

performance. We apply the proposed test procedure to the classical model of self-selection

into the labor market using data from Blundell et al. (2007). We test whether the measure

of out-of-work income constructed in Blundell et al. (2003) is independent of the potential

wage given education level, gender, and age. Our test results provide an evidence that the

measure of out-of-work income is not independent of the potential wages conditional on a

certain coarsening of these covariates.

The remainder of the paper is organized as follows. Section 2 introduces the basic nota-

tion and provides the identification region of  | . It also provides a refutability result of

instrument independence based on the integrated envelope. Section 3 develops the estimator

for the integrated envelope and derives its asymptotic distribution. Based on this asymp-

totic distribution, the test procedure is developed with an asymptotically valid bootstrap

algorithm. Section 4 provides simulation results and compares the finite sample perfor-

mance of the bootstrap with other methods. Section 5 tests whether the out-of-work income

constructed in Blundell et al. (2003) is independent of the potential wage given covariates.

Section 6 concludes. Proofs are provided in Appendix A.

2 The identification region of the outcome distribution

2.1 Setup and notation

The random variable  represents a scalar outcome with its support denoted by Y ⊂R. Our
identification analysis allows discrete covariates  with finite support denoted by X , and the
distribution of  conditional on the covariates  is our main interest. We assume that the

distribution of  given  has a probability density function  |(| = ) that is absolutely

continuous with respect to a known dominating measure  on Y. Note that  need not

be continuous and we can interpret  |(| = ) to be a probability mass at  when  is

the point mass measure. The reason to focus on the probability density is that it is more

convenient to present the identification region for the outcome distribution in terms of the

densities rather than the distribution functions.

The model has missing data for the outcome  . We use  to denote the selection

indicator:  = 1 indicates  is observed and  = 0 indicates  is missing, and  is

observable for all sampled units. We suppose the researcher has an instrumental variable

 that is observed for all sampled units. In the model with selection on unobservables

(self-selection), the instrument associated with the instrument exclusion restriction is used

to help identify  | . The analysis of this paper focuses on the case where the instrument
 is discrete with   ∞ points of support,  ∈ Z ={1 2     } The data in our

analysis is given as a random sample of ( ·). In the example of potential wages

in labor economics,  is potential wage that is observed only when one is employed ( = 1),

 can be worker’s characteristic that determines potential wages such as education and job

experience, and the examples of  that have been used in the literature would include the
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number of children, marital status, policy shock in social benefit scheme, the measure of out

of work income, etc.

We denote the density function of ( ·) at  = 1 given  =  and  =  ∈ X by

() ≡ |( = 1| =  = )

Note that (1()     ()) uniquely characterizes the conditional distribution of data

given  =  except for the distribution of  given . Since the distribution of  does not

play an important role for the later analysis. We represent the data generating process of our

model by  = {(1()     ())}∈X ∈ P where P represents the class of data generating
processes. On the other hand,  is used to refer to the probability density of the population

that is characterized by a value of (). It is important to keep in mind that the

density functions () integrate to the selection probability Pr( = 1| =  = ) that

is smaller than one in the presence of missing data.

The main concern of this paper is testing for the instrument exclusion restriction that

takes the form of statistical independence between the instrument and the outcome given

covariates.

Restriction-ER

Exclusion Restriction (ER):  is statistically independent of  given .

ER is a distributional restriction and cannot be represented by a finite number of moment

restrictions if  is continuous. In case our interest is identifying the marginal distribution of

 and the instrument exclusion restriction is imposed in terms of unconditional independence

of  and  , we do not need covariate information at least for the purpose of identifying  .

The analysis of this paper also covers the no-covariate case.

In the classical sample selection model with the structural outcome equation  = ()+,

the standard exogeneity restriction requires that () is independent of the unobserved

heterogeneity  This exogeneity restriction implies ER, so rejecting ER allows us to refute

independence of () and .

2.2 The identification region of  | and refutability of the exclusion re-

striction

ER implies that the conditional distribution of  given  and  does not depend on ,

 | =  | . By applying the law of total probability to the conditional distribution

 | , we can decompose  | into the conditional density of the observed outcomes and

that of the missing outcomes. Using the notation introduced above, we have, for every

 = 1     and  ∈ X ,
 |(| = ) =  |(| =  = ) = () + |( = 0| =  = ),

(2.1)

ER allows us to interpret that the observed outcome distributions {()}=1 provide
distinct identifying information for the common  |(| = ). We aggregate these identi-

fying information for  |(| = ) by taking the envelope,

 |(| = ) ≡ max

{()}
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We refer to  | as the density envelope at  =  and the area below the density envelope

at  =  as the integrated envelope at  = ,4

 =

Z
Y
 |(| = ).

ER is not sufficient to point-identify  | , so we consider constructing the identification
region of  | under ER, whose definition is stated as follows.

Definition 2.1 (the identification region under ER) Let a data generating process 

be given. The identification region for  | under ER, denoted by  | ( |) is the
collection of  |  conditional distributions of  given  for each of which we can find

a probability distribution of () given  that is compatible with the data generating

process and ER.

The identity (2.1) tells that if the density  | belongs to the identification region under
ER, then for every  and  = ,  |(| = ) ≥ () holds because |( =

0| =  = ) appearing in the left hand side of (2.1) must be nonegative. Along this

reasoning, Manski (2003) derives The identification region under ER, that can be given in

the following form.

Proposition 2.1 (the identification region under ER) Assume that the population dis-

tribution of  given  has the conditional probability density  | with respect to a domi-

nating measure  on Y. Let  |(| = ) be the density envelope and  be the integrated

envelope at  =  defined above.

(i) The identification region of  | under ER is

 | ( |)

=

½©
 |(| = )

ª
∈X :

Z
Y
 |(| = ) = 1

and  |(| = ) ≥  |(| = ) -a.e. at every  ∈ X .
o

(2.2)

(ii)  | ( |) is empty if and only if  ≡ max∈X   1.

Proof. See Appendix A.

Figure 1 provides a graphical illustration of the identification region for the binary in-

strument case without covariates.

4Note that the envelope density is not a probability density function on Y since it does not necessarily

integrate to unity.
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Figure 1: Consider the case with a continuous  and a binary  ∈ {1 2} without covariates.
The dotted curve represents  the probability density of the outcome  . The identities (2.1)

and the nonnegativity of the missing outcome densities require that the two densities 1()

and 2() must lie below  . This implies that any  which cover both 1() and 2()

are compatible with ER and the empirical evidence. Hence, the identification region of 
is obtained as the collection of the probability distributions such that the individual densities

each cover both 1() and 2(). The right-hand side figure shows the envelope density

 () = max{1() 2()}. The integrated envelope  =
R
 () is the area below the

envelope density (shadow area). If  exceeds one, then, no probability density function can

cover the entire envelope density and we obtain the empty identification region.

Notice that  | ( |) becomes empty if and only if the integrated envelope  ex-
ceeds one at some  ∈ X . This is because the probability density function  | must

integrate to one at every  =  and, if  exceeds one at  = ∗, then there do not exist
the probability density  |(| = ∗) that can cover the entire density envelope at this
value of ∗. Thus, refutability of ER depends only on the estimable parameter  = sup∈X 
and testing the emptiness of  | ( |) is reduced to inferring whether   1 from data.

Note that the same refutability condition for instrument independence is found in Manski

(2003) in the missing data model and Pearl (1994b) in the context of causal inference with

an instrument.

If  | ( |) is nonempty, then for each  ∈ X ,  |(| = ) has the representation

of a mixture of two probability densities weighted by ,

 |(| = ) = 

³
 |(| = )

´
+ (1− )() (2.3)

where  | is the normalized envelope density depending only on the data generating
process and () is a probability density function that can be arbitrarily chosen to span

the identification region. Thus, another way to view  | ( |) is the set of probability
distributions generated from (2.3) by choosing an arbitrary probability density (). By

this way of representing  | ( |),  | the conditional cdf of  given  whose density

belongs to  | ( |) is written as

 |(| = ) =

Z
(−∞]

 |(| = )+ (1− )Γ()
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where Γ(·) is the cdf of (·). Since we can choose any values between zero and one for

Γ(), the tight cdf bounds of  are obtained asZ
(−∞]

 |(| = ) ≤  |(| = ) ≤
Z
(−∞]

 |(| = )+ 1− . (2.4)

Note that these cdf bounds can be strictly narrower than the cdf bounds constructed in

Blundell et al. (2007). (See Appendix B.)

The tight bounds for the mean ( |) also follow from (2.3). Let  have a compact

support Y = [ ]. By specifying () as the degenerate distribution at the lower or upper
bound of the outcome support, we obtain the tight bounds for ( |) under ER,

(1− )+

Z
Y
 |(| = ) ≤ ( | = ) ≤

Z
Y
 |(| = )+(1− )

(2.5)

Since statistical independence is a stronger restriction than the moment type restriction,

these mean bounds can be strictly narrower than the tight mean bounds under the mean

independence restriction, ( |) = ( |) constructed in Manski (1994).

Recall that ER only assumes conditional independence between the outcome  and instru-

ment  given , while it is silent about how the instrument affects one’s selection response

and how it is related to the unobserved heterogeneity in the selection mechanism. One might

wonder whether one can strengthen the refutability condition by introducing the structural

selection equation and imposing instrument joint independence of  and the selection het-

erogeneity conditional on . It turns out that, if we allow the selection equation to have

threshold crossing with nonadditive errors, i.e.,  = 1 {() ≥ 0} where  represents

the unobserved heterogeneity in the selection response, the identification region for  | does
not change even when we strengthen ER to the instrument joint independence (See Appendix

C for a proof of this claim).

Furthermore, if threshold crossing selection with an additive error is assumed in addition

to instrument joint independence, i.e.,  = 1 {̃()−  ≥ 0} with a scalar unobserved
heterogeneity  in the selection response, then we must observe () ≥ 0() -a.e.

or () ≤ 0() -a.e. for every  6= 0 and  ∈ X  That is, for each  ∈ X , the
 observed densities {()}=1 must show the nesting configurations where a density

with higher selection probability Pr( = 1| =  = ) nests ones with lower selection

probabilities, and none of the observed densities intersect with the others. Conversely, it can

be shown that if data exhibits such nesting configuration, the identification region under joint

independence and the threshold crossing selection with an additive error takes the identical

form to  | ( |) (See Appendix C for details). This implies that the structural

selection model with additively separable latent utility constrains the data generating process

without further narrowing the identification region than ER. The density envelope provides

the maximal identifying information for  | based only on the empirical evidence, and

optimality of this aggregating scheme is free from the assumptions that only constrain the

data generating process.5

5Note that the condition of () ≥ 0() -a.e. or () ≤ 0() -a.e. for every  6= 0 and
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3 Estimation of the integrated envelope

Our identification analysis clarified that the emptiness of the identification region under ER is

summarized by the estimable parameter . Hence, the rest of the paper focuses on estimation

and inference for  so as to develop a specification test for the instrument independence

assumption. In this section, we first consider the case where there are no covariates and

ER is given as the unconditional independence of  and  . A slightly more complicated

situation where there are covariates and ER takes the form of conditional independence of 

and  given  is considered in Section 3.4.

Without losing any distributional information of data, we may denote an outcome obser-

vation recorded in data by  ≡  +(1−) {} and express data as i.i.d observations
of ( ),  = 1      where {} indicates that the observation of  is missing. Note
that, except for the marginal distribution of , the data generating process in this case is

characterized by the conditional distributions of  given  =  for  = 1    , which

have the support Y ∪ {}. On the support Y, () defined in our identification analysis
can be seen as the density function of  given  =  that is assumed to be absolutely

continuous with respect to a dominating measure  on Y. So, for a subset  ⊂ Y, we have

( ) ≡ Pr( ∈  | = ) =

Z


(),

and the data generating process is represented by  = {}=1 We divide the full sample
into  subsamples based on the assigned value of  ∈ {1     }. We denote the size

of these subsamples by . We assume  ≡ Pr( = )   for some   0 and let

 = (1     ) and ̂ = (̂1     ̂) where ̂ ≡  ,  = 1     We adopt the

-sample problem with nonrandom sample size, i.e., our asymptotic analysis is conditional

on the sequence { :  = 1 2 }. Since  → ∞ and ̂ →  with probability one for

every  = 1     as  → ∞, we interpret the stochastic limit with respect to  → ∞
equivalent to the limit with respect to  →∞ and ̂ →  for all  = 1    .

The test strategy considered in this paper is as follows. The null hypothesis is that the

identification region of  under ER is nonempty, that is,  =
R
Y max{()} ≤ 1. Since

this null hypothesis is the necessary but not a sufficient condition of instrument independence,

our test is interpreted as a test for a refutable hypothesis (Breusch (1986)).

Let ̂ be the point estimator of  such that
√
(̂ − ) has an asymptotic distribution,

√
(̂ − )Ã (·; )

where "Ã" denotes weak convergence and (·; ) represents the cdf of the asymptotic
distribution that can depend on  and . We infer whether or not  ≤ 1 with a prespecified
maximal false rejection rate  by inverting the one-sided confidence intervals with coverage

1−. That is, our goal is to obtain ̂1− a consistent estimator of the (1−)-th quantile of
(·; ) 1−( ), and to check whether the one-sided confidence intervals [̂ − ̂1−√


∞)

 ∈ X provides a testable implication for the joint restriction of joint independence and additively separable

latent utility. We leave a development of testing procedure of the nesting configuration for future research,

and, in this paper, we focus on testing ER with the refutability condition   1.
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contain 1 or not. We reject the null hypothesis if we observe ̂ − ̂1−√


 1. This procedure

yields a pointwise asymptotically size correct test6 since for every  satisfying the null  ≤ 1,
we have

Prob

µ
̂ − ̂1−√


 1

¶
≤ Prob

µ
̂ − ̂1−√


 

¶
= Prob

³√
(̂ − )  ̂1−

´
→∞−→ 1− (1−( ); ) = 

Our development of the inferential procedure is decomposed into four parts. First, in

order to illustrate the main idea on the inferential procedure, we consider a toy example

such that the model has a binary  and a binary  (Section 3.1). Second, we develop

an estimator of  and derive the asymptotic distribution of
√
(̂ − ) for a more general

case including continuous  (Section 3.2). Third, we extend the analysis to the case with

discrete covariates  (Section 3.3). Last, we analyze how to get an asymptotically valid

critical values (Section 3.4).

3.1 An illuminating example: binary  and binary  without covariates.

When  ∈ {1 0} and  ∈ {1 2}, the data generating process  can be represented by a

pair of three probability masses. To simplify the notations, we write those probability masses

by (1 0 ) and (1 0 ) where  and   = 1 0 {} are the probabilities of
 =  given  = 1 and  = 2 respectively. Here, the integrated envelope  becomes

 ≡ max{1 1}+max{0 0} (3.1)

A sample analogue estimator for  is constructed as

̂ = max{̂1 ̂1}+max{̂0 ̂0}

where (̂1 ̂0) and (̂1 ̂0) are the maximum likelihood estimators of (1 0) and (1 0)

that are the sample fractions of the observations classified in the corresponding category

conditional on . The standard central limit theorem yields

√


⎛⎜⎜⎝
̂1 − 1

̂0 − 0

̂1 − 1

̂0 − 0

⎞⎟⎟⎠Ã

⎛⎜⎜⎝
1

0

 1

 0

⎞⎟⎟⎠ ∼ N µ
0

µ
Σ 

 Σ

¶¶


where

6Andrews and Guggenberger (2008), Canay (2007), Imbens and Manski (2004), and Romano and Shaikh

(2008) analyze the uniform asymptotic validity of the confidence regions for partially identified parameters in

the moment inequality model. In this paper, we establish the pointwise asymptotic valdity of our inferential

procedure for the integrated envelope. It is not yet known whether our inferential procedure for the integrated

envelope is uniformly asymptotically valid.
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Σ = −11

µ
1
¡
1− 1

¢ −10
−10 0(1− 0)

¶
,

Σ = (1− 1)
−1
µ

1
¡
1− 1

¢ −10
−10 0(1− 0)

¶
 and 1 = Pr( = 1)

Although the maximum likelihood estimators for  and  are asymptotically normal, ̂

is not necessarily normal due to the max operator. Specifically, asymptotic normality fails

when the data generating process has ties in the max operator in (3.1), meaning 1 = 1

and/or 0 = 0

In order to summarize all the possible asymptotic distributions, we introduce

1 = 1 + 0 1 = 1 +0

2 = 1 + 0 2 = 1 + 0

3 = 1 + 0 3 = 1 +0

4 = 1 + 0 4 = 1 + 0

where  ,  = 1     4, are the candidates of  and at least one of them achieves the true

integrated envelope  each represents the Gaussian random variable that is obtained from

the asymptotic distribution of
√
(̂ − ) where ̂ is the sample analogue estimator of  .

Using this notation, the asymptotic distribution of
√
(̂ − ) is expressed as

√
(̂ − ) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
(̂1 − )√
(̂2 − )√
(̂3 − )√
(̂4 − )

⎫⎪⎪⎪⎬⎪⎪⎪⎭Ã max
{:=}

{} (3.2)

where the index set of the max operator { :  = } tells which  achieves  and the size

of this index set indicates whether or not there are ties between (1 0) and (1 0). For

instance, in case of 1 = 1 and 0  0, we have { :  = } = {1 3}  If { :  = }
is a singleton, we obtain asymptotic normality, while if it contains more than one element,

asymptotic normality fails and the asymptotic distribution is given by the extremum value

among the normal random variables { :  = }. Thus,
√
(̂ − ) is not uniformly

asymptotically normal over the data generating process.

The failure of uniform asymptotic normality of a statistic is known as discontinuity of

the asymptotic distribution and it arises in many contexts in econometrics (e.g., weak instru-

ments, unit root, etc.). The integrated envelope also has this issue, and it raises difficulties

in conducting inference on  since we do not know which asymptotic distribution gives a

better approximation for the sampling distribution of
√
(̂− ). The issue of discontinuity

of the asymptotic distribution of
√
(̂−) cannot be bypassed by standard implementation

of the nonparametric bootstrap. By following an argument similar to Andrews (2000), it

can be shown that the nonparametric bootstrap fails to consistently estimate the asymptotic

distribution of
√
(̂ − ).

There are several procedures available for asymptotically valid inference on . One ap-

proach estimates the asymptotic distribution max{:=}{} in two steps. In the first step,

11



the index set Vmax≡{ :  = } is estimated and, in the second step, the estimated joint dis-
tribution of  ’s are plugged into the maximum operator. The latter part is straightforward

in this example since the  ’s are Gaussian and their covariance matrix can be consistently

estimated. For the former part, we can estimate Vmax using the sequence of slackness vari-
ables  ≥ 0,  = 1 2 . This two-step procedure is analogous to the moment selection

approach in the inference on moment equalitiy model (Andrews and Soares (2010), Andrews

and Jia (2009), Bugni (2010), Canay (2010)), and has also been considered in the test of

superior predictive ability (Hansen (2005)).

One such estimator for Vmax is

V̂max( ) = { ∈ {1 2 3 4} :
√
(̂ − ̂) ≤ }

where

√

→ 0 and

√
log log

→∞ as  →∞.

Another In this construction of V̂max( ), we determine which  achieves the population

 in terms of whether the estimator of  is close to ̂ = max{̂} or not. The value of


√
 gives the cut-off value for how small (̂ − ̂) should be in order for such  to be

included in the estimator of Vmax. As we claim in this estimator for Vmax is asymptotically
valid in a certain sense if the slackness sequence { :  ≥ 1} meets the above divergence
rate, which is implied by the law of iterated logarithm (see, e.g., Shiryaev (1996)). Other

estimators for Vmax are available. For example, given that the null hypothesis becomes least
favorable at  = 1, we may estimate Vmax by { ∈ {1 2 3 4} : √(̂ − ̂) ≤ }

By combining these two estimations, we are able to consistently estimate the asymptotic

distribution max∈Vmax{} by

max
∈V̂max( )

{̂}

where the ̂ ’s are Gaussian and their covariance matrix is estimated from the sample.

Instead of plugging in ̂ ’s, we can incorporate the nonparametric bootstrap for estimat-

ing the asymptotic distribution; given the estimator V̂max( ) and ̂ , we resample,

max
∈V̂max( )

{
√
(̂

∗
 − ̂)}

where ̂
∗
 is the bootstrapped ̂ . Since the standard argument of the bootstrap consis-

tency ensures
√
(̂

∗
 − ̂) Ã  , we can obtain a valid approximation of the asymptotic

distribution. In Section 3.3, we extend this approach to a more general setting.7

7As Andrews (2000) points out, another asymptotically pointwise valid method is subsampling (Politis and

Romano (1994)). This is also the case for the inference of the integrated envelope, while as shown in the

Monte Carlo studies, subsampling performs relatively poorer than the bootstrap.
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3.2 Estimation of the integrated envelope and its asymptotic property

without covariates

We generalize the toy example considered above to a general case where  can be an arbitrary

scalar random variable and  can be a multi-valued discrete instrument with finite points of

support.

We first rewrite the integrated envelope without covariates in the following way,

 =

Z
Y
max

{()}  =

X
=1

() (3.3)

where E = (1     ) is a -partition of the outcome support such that each  cor-

responds to the subset in Y where () is greater than the other densities, i.e.,  =

{ ∈ Y : () ≥ () ∀  6= } and ( ∩ ) = 0 for all  6= . Let B(Y) be the Borel
-algebra on Y, and consider a class of -partitions of the outcome support generated by
B(Y),

VB= {V =(1     ) :  ∈ B(Y) ∀ and ( ∩ ) = 0 ∀ 6= } 

We introduce an equivalence relationship to the partition class such that two partitions

V =(1     ) and V
0 = ( 01      

0
) are equivalent if their difference has measure zero,

i.e., V = V0 if
P

=1 (4 0) = 0.
Define a function (·) that maps VB to R+ as

(V) =

X
=1

() (3.4)

Then, by noting that E ∈VB and (V) achieves its maximum at E, the integrated envelope

of (3.3) is expressed as

 = sup
V∈VB

(V) (3.5)

Recall, in the binary  and binary  example, we could write the true integrated envelope

by

 = max

⎧⎪⎪⎨⎪⎪⎩
1 + 0

1 + 0

0 + 1

1 + 0

⎫⎪⎪⎬⎪⎪⎭ = max

⎧⎪⎪⎨⎪⎪⎩
1({1 0}) + 2(∅)
1({1}) + 2({0})
1({0}) + 2({1})
1(∅) + 2({1 0})

⎫⎪⎪⎬⎪⎪⎭
= max

(12)
{1(1) + 2(2)} (3.6)

where (1 2) is a partition of Y ={1 0}. Here, 1(1) + 2(2) is seen as a function from

the partition class on {1 0} to R+ and the integrated envelope is defined as its maximum
over the possible partitions of Y ={1 0}. Thus, the expression (3.5) can be seen as a direct
analogue of (3.6) for a more complex Y, and the only complication appears in the class of
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partitions of Y on which the supremum operates.

Let ̂,  = 1    , be the empirical probability measures for { :  = }, i.e.,
for  ∈ B(Y), ̂( ) ≡ 1



P
:=

{ ∈  }. We define a sample analogue of (·) by
replacing the population distribution of (·) in (3.4) with the empirical distributions ̂(·),

̂(V) =

X
=1

̂() (3.7)

Analogous to the construction of the integrated envelope in (3.5), we propose an estimator

of  by maximizing ̂(·) over the partition class V generated by a class of subsets V ⊂B(Y),8

̂ ≡ sup
V∈V

{̂(V)}, (3.8)

where V = {V =(1     ) :  ∈ V ∀ and ( ∩ ) = 0 ∀ 6= }  (3.9)

When  is discrete, V can be specified as the power set of the support points as in the
binary  case (3.6). On the other hand, when  is continuous, we cannot take V as large
as B(Y). The reason is that otherwise we can almost surely find the partitions that yield

the trivial maximum
P

=1 
−1


P
:=

 Note it provides little information on the true

integrated envelope no matter how large the sample size is since it almost surely converges

to
P

=1 Pr( = 1| = ).

A suitable restriction to avoid such overfitting and to guarantee the consistency of the

estimator ̂ to the true integrated envelope  is that V is the Vapnik-Červonenkis class (VC-
class) (see, e.g., Dudley (1999) for the definition of VC-class). For instance, the class of

closed intervals in R ∪ {−∞∞} including the empty set is an example of the VC-class.
Accompanied by such restriction on the class of possible partitions, we shall assume that the

partition class V contains some V that attain (V) = . This assumption, or, for short, the

specification of V, may be interpreted as restrictions on the global properties of the densities
rather than the local properties such as smoothness. For example, when we specify V as
the class of closed intervals, we are imposing a restriction on the configuration of {()}=1
such that { ∈ Y : () ≥ () for every  6= } is convex or empty for each  = 1    .9

As we saw in the binary  case, ties among the densities cause a non-Gaussian asymptotic

distribution for the estimator of . Let us define the maximizer partition class

Vmax = {V ∈ V : (V) = }
8Forming an estimator by maximizing a set function with respect to a class of subsets is found in the

literature of estimation for the density contours (Hartigan (1988) and Polonik (1995)).
9Throughout our asymptotic analysis, we do not explicitly specify V. Provided that the assumptions given

below are satisfied, the main asymptotic results of the present paper are valid independent of the choice of

V. In practice, however, there is a trade-off between the flexibility of V (richness of V) and the precision of
the estimator ̂. That is, as we choose a larger V for a given sample size, we will have more upward-biased ̂

due to data overfitting. On the other hand, as we choose a smaller V, the assumption that V contains some
 satisfying ( ) = () becomes less credible. Regardless of its practical importance, we do not discuss

how to choose V in this paper and leave it for future research.
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If Vmax consists of a single element Vmax, it implies Vmax is the only one that partitions

the outcome support into { : () ≥ ()} and { : ()  ()}. Hence, there are no

ties between  and  (with respect to the specification of V). On the other hand, if ()
and () for some  6=  are tied on a set with positive measure, Vmax can contain multiple
elements.10

The main conditions that are needed for our asymptotic results are given as follows.

Condition A

(A1) Uniform Convergence: For each  = 1    , the set-indexed empirical processes

(·) =
√


³
̂(·)− (·)

´
converge uniformly in law to tight mean zero Gaussian

processes in ∞(V):

( )Ã ( )

where (( ) (
0)) = ( ∩  0)− ( )(

0).

(A2) Optimal partition: There exists a nonemptymaximizer partition class Vmax ⊂ V defined
by

Vmax = {V ∈ V : (V) = }

(A3) Existence of Maximizers: There exists random partitions V̂ ∈ V and V̂max
 ∈ Vmax

such that

̂(V̂ ) = sup
V∈V

n
̂(V)

o
 ̂(V̂max

 ) = sup
V∈Vmax

n
̂(V)

o
with probability one.

Note condition (A1) generally holds for discrete  , and, for continuous  , it is implied

by the restriction for V to a VC-class of measurable subsets in Y. Condition (A2) implies

that the partition class V defined in (3.9) contains at least one optimal subset at which the
function (·) achieves the true integrated envelope. Since these partitions maximize (·), we
refer to the collection of these partitions as the maximizer partition class Vmax. We allow

Vmax to contain more than one element in order to handle the aforementioned issue of ties
among the densities. The condition (A3) says that the supremum of ̂(V) on V and the one
on Vmax can be evaluated by ̂(V̂) and ̂(V̂max

 ) for some sequences V̂ ∈ V and V̂max


almost surely. It trivially holds if V is a finite set. This condition is only for mathematical
convenience, and it does not seem to have practical restriction.

The derivation of the asymptotic distribution of ̂ relies on the functional limit theorem

for the set index empirical processes as assumed in Condition (A1). By the definition of ̂,

we have
√
(̂ − ) = sup

V∈V

n√
(̂(V)− (V)) +

√
((V)− )

o
 (3.10)

10For instance, suppose that 1() = 2()  () for  = 3 4     on a subset  ⊂ B(Y) with positive
measure. Let V = (1 2     ) be a maximizer of (·) over V such that  ⊂ 1 holds. If 1 \ ∈ V and
2 ∪ ∈ V, then V0 = (1 \2 ∪3     ) ∈ V also maximizes (·) that is, (V) = (V0) =  holds.
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The first term in the supremum of (3.10) can be written as the sum of independent empirical

processes on V,
√
(̂(V)− (V)) =

P
=1 ̂

−12
 (), so that condition (A1) implies

the uniform convergence of
√
(̂(V) − (V)) to tight Gaussian processes on the partition

class V (see the proof of Proposition 3.1 in Appendix A.) On the other hand, the second
term in the supremum of (3.10) vanishes for V ∈ Vmax and it diverges to negative infinity
for V ∈ Vmax. Therefore, for large  the supremum should operate only over Vmax. This
argument implies that the asymptotic distribution of

√
(̂ − ) is given by the supremum

of the partition indexed Gaussian processes over the maximizer partition class Vmax.

Proposition 3.1 (asymptotic distribution of ̂) Under condition (A1), (A2), and (A3),

√
(̂ − )Ã sup

V∈Vmax
{(V)}  (3.11)

where (V) is the mean zero tight Gaussian process in ∞(V) with the covariance function,
for V, V0 ∈ V,

((V) (V
0)) =

X
=1

−1
£
( ∩  0)− ()(

0
)
¤


In particular, if Vmax is a singleton with the unique element Vmax = ( max1       max ), then

̂ is
√
-asymptotically normal,
√
(̂ − )Ã N (0 2( ))

where

2( ) =

X
=1

−1 (
max
 ) [1− (

max
 )] 

Proof. See Appendix A.

The asymptotic distribution of
√
(̂ − ) depends not only on the data generating

process  and  but also on the maximizer partition class Vmax. If Vmax contains multiple
elements, the asymptotic distribution is not normal and it is given by the extremum of

the Gaussian processes as we have seen in the toy example of Section 3.1. On the other

hand, if Vmax has the unique element Vmax, then, the distribution of (3.11) is given by

the projection of the Gaussian processes onto Vmax so
√
(̂ − ()) is asymptotically

normal. This asymptotic normality with the consistently estimable variance makes inference

straightforward. In some situations, however, the singleton assumption seems to be too

restrictive. For instance, consider the case where the instrument is weak in the sense that

the densities () do not vary much over , then it would be reasonable to allow for the

situation where Vmax is nonsingleton. In the next section, we consider how to approximate
such asymptotic distribution without a priori assuming Vmax to be a singleton.
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3.3 Estimation of the integrated envelope with discrete covariates

If we have some covariates  in the model, our interest can be testing for the conditional

independence of  and  given . Our approach developed in the previous section can be

extended to this case if the covariates are all discrete. If some of the covariates are continuous,

discretizing the covariates may reduce the refutability power of the test procedure, while

rejection still allows us to refute conditional independence of  and  given .

Let X be a finite set, and, for a subset  ⊂ Y, let () ≡ Pr( ∈  = 1| = ,

 = ) for each  = 1     and  ∈ X  We denote its sample counterpart by ̂( ), i.e.,
with  being the size of subsample with  =  and  = , We make our asymptotic

analysis being conditional on the the sequence of instrument and conditioning covariates

{()}∞=1 and, therefore, the subsample size  and  ≡
P

=1 are nonrandom.

̂( ) =
1



X
:= and =

 { ∈  } .

With the class of partitions defined in (3.9), the estimator for each  is constructed analo-

gously to (3.8),

̂ = sup
V∈V

{̂(V)} where ̂(V) =

X
=1

̂()

By plugging these into  = max∈X {}, the estimator for  is obtained as

̂ = max
∈X

n
̂

o
= sup
(V)∈V×X

{̂(V)}

Under certain regularity conditions (see Appendix A), the asymptotic property of this esti-

mator is obtained as follows.

Proposition 3.2 Under the regularity conditions provided in Appendix A,

√
(̂ − )Ã sup

(V)∈(V×X )max
{(V)} 

where (V × X )max is the subclass of V × X defined as {(V) ∈ V × X : (V) = } and
(V) is a mean zero tight Gaussian process in ∞(V × X ).

Proof. See Appendix A.

Note that the expression of the asymptotic distribution of
√
(̂ − ) is similar to the

one obtained in Proposition 3.1 except that here the Gaussian processes are indexed by both

partitions  and the conditioning covariate value .
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3.4 Obtaining Critical Values by Resampling

In this section, we discuss a resampling method to obtain an asymptotically valid critical

values. The resampling methods are particularly useful since the asymptotic distribution of√
(̂ − ) given in Proposition 3.1 and 3.2 has the form of a supremum functional of the

Gaussian processes, and, especially when Vmax or (V × X )max is not a singleton, it is difficult
to obtain the critical values analytically (Romano (1988)).

The expression of the asymptotic distribution (Proposition 3.1 and 3.2) implies that the

asymptotic normality fails depending on the size of maximizer subclass of partitions Vmax or
(V × X )max In this sense, the asymptotic distribution is not pivotal, and this complicates
consistent inference for ̂. As we illustrated in Section 3.1 with a binary outcome and a

binary instrument without covariates, we argued approximating the asymptotic distribution

by the distribution of sup
V∈V̂max

n√
(̂

∗
(V)− ̂(V))

o
where V̂max is an estimator for Vmax

and
√
(̂

∗
(V)− ̂(V)) is the bootstrap analogue of

√
(̂(V)−(V)). Below, we generalize

this approach to the models covered in Section 3.2 and 3.3.

Let Y represent the original sample of  with  =  and  =  whose size is

. The size of sample with  =  is given by  =
P

=1 . Our bootstrap algorithm

is summarized as follows. If there is no covariate in the model, we may drop the subscript

 in the description below.

Algorithm: bootstrap for the integrated envelope

1. GIven the sample, compute ̂(·) ̂ and ̂.

2. Let { :  ≥ 1} for each  ∈  be the slackness sequences that satisfy

√


→ 0
√

log log

→∞ as  →∞.

3. Estimate the maximizer partition class by

\(V × X )max =
n
(V ) ∈ V × X :

p
(1− ̂(V)) ≤ 

o


If \(V × X )max is empty, we do not reject the null. If \(V ×X )max is not empty, we
proceed to the next step.11

4. For each  = 1     and  ∈ , we sample  observations from Y randomly

with replacement to construct  ∗(·) the empirical measure based on the bootstrapped
11Alternatively, it is also possible to estimate (V × X )max by

(V × X )max =
(V ) ∈ V × X :

√


(1− ̂(V)) (̂(V)) ≤ 


where the criterion function 1− ̂(V) is weighted by the marginal variance of ̂(V). We may expect that

controlling the marginal variance makes it easier to find an appropriate value of  . Nevertheless, we do

not so far find such practical gain through our simulation study.
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sample. Using the constructed
n
 ∗(·)

o
=1
, obtain the bootstrap analogue of ̂(·)

̂
∗
(V) =

X
=1

 ∗() V ∈ V.

5. Compute

sup

(V)∈ \(V×X )max

n√
(̂

∗
(V)− ̂(V))

o


6. Iterate Step 3 and 4 many times and obtain ̂1− as the sample (1− )-th quantile of

the iterated statistics 

7. Reject the null hypothesis  ≤ 1 if ̂ − ̂1−√


 1.

In Step 2, we specify values of the tuning parameters ,  ∈ X  Given the choice of
these tuning parameters, we estmate (V × X )max in Step 3 to be the collection of a pair of
partition V and the covariate value  such that

√
(1 − ̂(V)) is less than the specified

threshold 
. The above rate of divergence for 

and the construction of \(V ×X )max
guarantees the estimator to be consistent in a certain sense to (V × X )max under the least
favorable null  = 1 (see Lemma A.2 in Appendix A). When the data generating process has

  1, then, the probability of obtaining empty \(V × X )max will approach one as the sample
size gets large. So, for these null hypothesis, the asymptotic rejection probability is zero.

The asymptotic argument only governs the speed of divergence of 
, and it provides little

guidance on how to set their values in practice. We address a practical issue regarding this

in the Monte Carlo study of Section 5.

Given \(V × X )max in Step 4 and 5, we bootstrap the function ̂(·) and plug in √(̂∗(·)−
̂(·)), a bootstrap analogue of

√
(̂(·)−(·)) to the supremum operator sup

(V)∈ \(V×X )max {·}.
By combining consistency of \(V × X )max and bootstrap validity of

√
(̂

∗
(·)− ̂(·)) in ap-

proximating (·), the statistic sup(V)∈ \(V×X )max
n√

(̂
∗
(V)− ̂(V))

o
asymptotically

replicates the distribution of sup(V)∈(V×X )max{(V)}.
The next proposition validates our specification test based on the above bootstrap algo-

rithm.

Proposition 3.3 (bootstrap validity) Under the regularity condition of Proposition 3.2

and the assumption of Lemma A.2 given in Appendix A, the above bootstrap test procedure

yields a pointwise asymptotically size correct test for the null  ≤ 1, that is, for every data
generating process satisfying  ≤ 1,

lim
→∞

Prob
̂

Ã
̂ − ̂1−√


 1

!
≤ 

and the equality holds for any null with  = 1.
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Proof. See Appendix A.

Due to the restriction on the richness of the partition class, the test procedure is not

able to screen out all the data generating processes that have   1. In order for asymp-

totic power of the test to be one against a fixed alternative, the alternative must meet the

condition.sup(V)∈V×X{(V)}  1. This implies that, for continuous  , a specification

of V from which the partitions are generated affects the asymptotic refutability power of the

test procedure. For instance, as we specify a smaller class of partitions, less alternatives can

be screened out by the test.

4 Monte Carlo simulations

In order to evaluate the finite sample performance of the proposed test procedures, we conduct

Monte Carlo studies for various specifications of data distribution with a binary instrument

 ∈ {1 2} with no covariates. Since the asymptotically valid test procedure attains the

nominal size when  = 1 we set the integrated envelope equal to one for every specification.

We specify  to be continuous on the unit interval Y = [0 1]. As for a specification of

the VC-class V, we employ the half unbounded interval class

V = {[0 ] :  ∈ (0 1]} ∪ {( 1] :  ∈ (0 1]} ∪ ∅.
In particular, the partition class V is given by

V = {(  ) :  ∈ V} 
Our Monte Carlo specifications all satisfy the optimal partition condition of condition (A2).

Let ( ) be the normal density with mean  and standard deviation  whose support

is restricted on [0 1] (the truncated normal). The following four specifications of 1(·) and
2(·) are simulated (see Figure 2). We denote size of the sample drawn from 1(·) and 2()
by 1 and 2 respectively.

Design 1: No ties, 1() = 054× (065 010)

2() = 054× (035 010)

Design 2: No ties, 1() = 084× (060 020)

2() = 075× (046 023)

Design 3: Partially tied 1() =

½
070× (050 020) for  ≤ 066
058× (070 025) for   066

,

2() =

½
070× (050 020) for   034

058× (030 025) for  ≤ 034
Design 4: Completely tied, 1() = 2() = (050 023)

In Design 1 and Design 2, there are no ties between 1() and 2(), while 1() and 2()

differ more significantly in Design 1 than in Design 2. Design 3 represents the case where

1() and 2() are tied on a subset of the outcome support. As an extreme case, Design 4

features a 1() that is identical to 2().
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Monte Carlo Specifications
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Figure 2: There are no ties in Design 1 and Design 2. In Design 3, the two densities are

partially tied. In Design 4, the two densities are identical.
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We estimate the critical values using four different methods. The first method uses the

critical values implied from asymptotic normality of the statement of asymptotic normality

in Proposition 3.1. Here, the variance-covariance matrix is estimated by

̂2 =
1

2
1(̂

max
1 )(1− 1(̂

max
1 )) +

1

2
2((̂

max
1 ))(1− 2((̂

max
1 )))

with ̂ max1 = arg sup1∈V
n
̂1(1) + ̂2(


1 )
o
.

The second method uses the naive implementation of the nonparametric bootstrap, that

is, given ̂, we resample
√
(̂

∗ − ̂) where ̂
∗
is the bootstrap analogue of ̂. The third

method is subsampling, which also provides pointwise asymptotically valid critical values.

We consider three different choices of the blocksizes, (1  2) = (13 23) (16 26)

and (110 210). As the fourth method, we apply our bootstrap procedure with three

choices of the slackness variable,  = 50 20 and 05. The Monte Carlo simulations are

replicated 3000 times. Subsampling and bootstrap are iterated 300 times for each Monte

Carlo replication.

Table 1 shows the simulated rejection probabilities for nominal test size,  = 025 010,

005 and 001. The result shows that, except for Design 1, the normal approximation and

the naive bootstrap over-reject the null. In particular, their test size is seriously biased

when the two densities have ties, as our asymptotic analysis predicts. It is worth noting

that, against the asymptotic normality in Proposition 3.1, the normal approximation does

not perform well in Design 2. This is because the finite sample distribution of the statistic

is approximated better by the distribution with ties than the normal distribution. Although

the naive bootstrap is less size-distorted than the normal approximation, we can confirm

that it also suffers from ties (Design 3 and 4). Thus, our simulation results indicate that,

except for the case where 1() and 2() are significantly different as in Design 1, the normal

approximation and the naive bootstrap are not useful for inferring .

Subsampling shows a good finite sample performance for Design 1 and Design 2 when

the blocksizes are specified as (110 210). However, if the blocksize is large such as

(13 23), the test performance is as bad as the normal approximation. Although sub-

sampling can be shown to be valid for any data generating processes, the simulation results

suggest that the subsampling can be contaminated by the ties.

Among the four methods simulated, the modified bootstrap has the best size performance

given an appropriate tuning of  , i.e.,  = 05 for Design 2,  = 2 for Design 3, and

 = 5 for Design 4. However, test size is rather sensitive to the choice of  . As we set 
larger than optimal, we obtain a smaller rejection rate and the test becomes conservative. On

the other hand, by setting  smaller than optimal, the rejection rate tends to be upwardly

biased and approaches that of the naive bootstrap.
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Table 1-I (Design 1): Simulated Rejection Rates

3000 MC replications. 300 subsampling/bootstrap replications.

Sample size 1= 2= 300 1= 2= 1000

Nominal rejection prob. 25% 10% 5% 1% 25% 10% 5% 1%

Normal Approx. 28.6% 13.2% 6.5% 1.6% 26.9% 12.1% 6.9% 1.3%*

Naive bootstrap 26.0%* 10.8%* 5.8%* 1.7% 25.9%* 10.7%* 6.1% 1.6%

Subsampling (13 23) 31.6% 16.1% 10.7% 4.4% 29.4% 15.4% 10.6% 4.1%

(16 26) 27.5% 13.5% 7.6% 2.4% 26.6%* 12.8% 7.6% 2.4%

(110 210) 25.9%* 12.2% 6.9% 1.9% 24.7%* 11.2% 6.4% 1.8%

Our bootstrap = 5 12.9% 4.6% 2.3% 0.6%* 14.7% 5.6% 2.4% 0.6%*

= 2 17.1% 6.1% 3.2% 0.9%* 18.1% 7.1% 3.3% 0.7%*

= 05 21.1% 8.5% 4.4%* 1.1%* 21.8% 9.3%* 4.8%* 1.0%*

Blundell et al.’s bootstrap 0% 0% 0% 0% 0% 0% 0% 0%

s.e. 0.8% 0.5% 0.4% 0.2% 0.8% 0.5% 0.4% 0.2%

*: the estimated rejection rate is not significantly different from the nominal size at the 1% level.

Table 1-II (Design 2)

3000 MC replications. 300 subsampling/bootstrap replications.

Sample size 1= 2= 300 1= 2= 1000

Nominal rejection prob. 25% 10% 5% 1% 25% 10% 5% 1%

Normal Approx. 41.8% 20.1% 10.4% 2.7% 37.2% 16.9% 9.3% 2.0%

Naive bootstrap 32.4% 14.1% 8.2% 2.4% 29.4% 13.3% 7.0% 1.8%

Subsampling (13 23) 38.8% 20.0% 13.6% 5.7% 33.9% 18.5% 12.5% 4.9%

(16 26) 30.3% 14.8% 9.0% 3.1% 28.2% 13.4% 7.6% 2.4%

(110 210) 26.3%* 12.1% 7.3% 2.4% 24.6%* 11.3% 6.1% 2.0%

Our bootstrap = 5 11.8% 5.1% 2.5% 0.5% 12.3% 4.6% 2.3% 0.6%*

= 2 15.8% 6.2% 3.3% 0.8%* 15.6% 6.0% 3.0% 0.8%*

= 05 25.6%* 10.7%* 6.0%* 1.5% 23.6%* 9.9%* 5.1%* 1.3%*

Blundell et al.’s bootstrap 2.7% 0.3% 0.1% 0% 2.0% 0.1% 0% 0%

s.e. 0.8% 0.5% 0.4% 0.2% 0.8% 0.5% 0.4% 0.2%

*: the estimated rejection rate is not significantly different from the nominal size at the 1% level.
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Table 1-III (Design 3)

3000 MC replications. 300 subsampling/bootstrap replications.

Sample size 1= 2= 300 1= 2= 1000

Nominal rejection prob. 25% 10% 5% 1% 25% 10% 5% 1%

Normal Approx. 61.5% 35.0% 21.5% 5.9% 62.2% 35.9% 23.0% 5.9%

Naive bootstrap 45.5% 24.2% 14.1% 4.6% 46.2% 25.8% 15.4% 4.6%

Subsampling (13 23) 53.0% 32.6% 23.6% 10.5% 52.0% 33.7% 24.5% 10.8%

(16 26) 42.7% 23.7% 15.2% 5.7% 43.3% 24.8% 15.5% 5.9%

(110 210) 37.3% 20.3% 11.6% 4.3% 38.5% 20.3% 12.2% 4.0%

Our bootstrap = 5 21.5% 8.9% 4.5%* 0.8%* 23.2%* 9.0%* 4.9%* 1.1%*

= 2 23.6%* 9.8%* 5.2%* 1.1%* 25.8%* 10.3%* 5.3%* 1.5%

= 05 37.3% 17.9% 10.2% 3.0% 39.5% 20.2% 10.7% 3.1%

Blundell et al.’s bootstrap 10.5% 2.7% 0.9% 0.1% 10.9% 1.9% 0.7% 0%

s.e. 0.8% 0.5% 0.4% 0.2% 0.8% 0.5% 0.4% 0.2%

*: the estimated rejection rate is not significantly different from the nominal size at the 1% level.

Table 1-IV (Design 4)

3000 MC replications. 300 subsampling/bootstrap replications.

Sample size 1= 2= 300 1= 2= 1000

Nominal rejection prob. 25% 10% 5% 1% 25% 10% 5% 1%

Normal Approx. 99.8% 82.8% 56.8% 18.8% 99.9% 82.5% 55.8% 17.9%

Naive bootstrap 77.9% 50.7% 32.2% 10.9% 77.9% 48.9% 31.6% 10.4%

Subsampling (13 23) 82.7% 63.6% 49.3% 23.4% 83.4% 63.6% 45.8% 22.9%

(16 26) 69.6% 43.3% 31.4% 13.2% 67.7% 41.5% 27.4% 10.9%

(110 210) 63.7% 36.4% 23.0% 9.3% 56.8% 32.2% 20.3% 7.4%

Our bootstrap = 5 24.6%* 10.0%* 5.3%* 1.3%* 23.3%* 9.4%* 5.2%* 1.4%*

= 2 34.7% 19.1% 10.8% 2.5% 33.2% 16.6% 9.9% 2.7%

= 05 68.3% 39.8% 24.7% 7.3% 69.2% 40.0% 23.9% 7.2%

Blundell et al.’s bootstrap 49.6% 22.2% 11.5% 2.9% 50.4% 23.2% 12.1% 2.8%

s.e. 0.8% 0.5% 0.4% 0.2% 0.8% 0.5% 0.4% 0.2%

*: the estimated rejection rate is not significantly different from the nominal size at the 1% level.

A practical difficulty in implementing our bootstrap is that the optimal value of  seem

to depend on the underlying data generating process. The simulation results indicate that

the optimal  tends to be larger as the two densities are more similar, i.e., as the maximizer

partition class Vmax becomes larger.
The tables also provide simulation results for the bootstrap procedure used in Blundell

et al. (2007).12 Note that the bounds for the cdf of  constructed in Blundell et al. is

not always tight depending on the data generating process. But, for our specifications of

the data generating process, the width of their cdf bounds achieves the value of integrated

12Blundell et al. (2007) do not provide asymptotic validity of their bootstrap procedure.
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envelope at least one point in the outcome support (see Proposition B.1 in Appendix B).

Hence, the refuting rule of Blundell et al. such that the upper and lower cdf bounds cross

at some  in the outcome support yields an identical conclusion to the one based on the

integrated envelope. Nevertheless, our simulation results exhibit unstable performance of

their bootstrap. For instance, it is very conservative for Design 1 and Design 2, while it

overrejects the null for Design 4.

5 An empirical application

We apply our bootstrap procedure to test the exogeneity of an instrument used in the classical

problem of self-selection into the labor market. The data set that we use is a subset of the

one used in Blundell et al. (2007). The original data source is the U.K. Family Expenditure

Survey and our sample consists of the pooled repeated cross sections of individuals of age

23 to 54 for the periods from 1995 to the first quarter of 2000. The main concern of our

empirical analysis is whether the out-of-work welfare income is statistically independent of

the potential wage or not.

We introduce the conditioning covariates  which include gender, education, and age.

As in Blundell et al. (2007), three education groups are defined, "statutory schooling", those

who left school by age 16, "high-school graduates", those who left school at age 17 or 18,

and "at least some college", those who completed schooling after 18. In order to guarantee

moderate sample size for each covariate group, we coarsen the covariate values of age by

forming four age groups, 23 -30, 31 - 38, 39 - 46, and 47 - 54. Note that conditional

independence of  and  given such coarsened  is not implied by conditional indepedence

of  and  given . Therefore, rejecting the null in the following test procedure does not

allow us to refute conditional independence of  and  given . How to incorporate the

covariates with many points of support into the test procedure is left for future research.

As an instrument, we use the out-of-work income constructed in Blundell et al. (2003),

which measures the welfare benefit for which the worker would be eligible when he is out

of work (see Blundell et al (2003) for details). The participation indicator  is one if the

worker reported himself being employed or self-employed and earning positive labor income.

Wage is measured as the logarithm of the usual weekly earnings divided by the usual weekly

working hours and deflated by the quarterly U.K. retail price index.

For each covariate group  = , we discretize the instrument by clustering the per-

centile ranks of the out-of-work income with every ten percentiles. Therefore, we treat the

instrument as a discrete variable with ten points of support {}10=1.
As a VC-class to generate the partitions, we consider in this section the histogram class

V, which is defined as the power set of histogram bins with a fixed width whose breakpoints

can float over R. Algebraically, the histogram class is defined as follows. Let   0 be the

bin width and  the number of bins. Pick an initial breakpoint 0 ∈ R and consider equally
distanced  points −∞  0  1  · · ·  −1 ∞ where  = 0 + ,  = 1     (− 1).
Denote the ( + 1) disjoint intervals formed by these  points by 0(0 ) = (−∞ 0],

(0 ) = (−1 ],  = 1     ( − 1) and (0 ) = (−1∞). Let (),  =

1     2+1 indicate all the possible subsets of the indices {0 1     }. Given Y0 a set of
the smallest breakpoint 0, the histogram class with bin width  and the number of bins 
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is expressed as

V(Y0)=
⎧⎨⎩ [

∈()
(0 ) : 0 ∈ Y0  = 1     2+1

⎫⎬⎭  (5.1)

where the binwidth can be an additional tuning parameter. In our testing procedure below,

we specify binwidth  = 04, the number of bins  = 10, and the possible initial breakpoints

Y0 as the grid points within [1 14] with grid size 0.02. Perhaps, the sensitive part in this

testing procedure is how to choose a reasonable value of the slackness sequence 
. First,

we run a Monte Carlo simulation in which the simulated sample size is set to the actual

size and the data generating process is specified as the parametric estimate of the observed

wage distributions. Specifically, for each  and  = 1     10, we specify () as the

normal density (multiplied by the sample selection rate) with the mean and variance equal

to the sample mean and variance of the observed wage within the group { =  = }.
Accordingly, the population integrated envelope  is obtained by numerically integrating the

envelope over the parametric estimates. Second, for each candidate of  , we simulate the

one-sided confidence intervals 1−( ) =
∙
̂ − ̂1−( )√


∞
¸
1500 times with the nominal

coverage (1− ) = 075, 090, 095, and 099 with 300 bootstrap iterations. As for possible

values of , we consider the grid points between 0.5 and 12 with grid size 0.5. After

simulating the empirical coverage for each , we search the value of  that yields the

best empirical coverage in terms of minimizing the squared discrepancy from the nominal

coverage,

∗ = arg min
=0510120

⎧⎪⎨⎪⎩
X

=001 005 01 025

h
(1− )− ̂ ( ∈ 1−())

i2
(1− )

⎫⎪⎬⎪⎭ 

where ̂ ( ∈ 1−()) is the simulated coverage of the one-sided confidence intervals.
As implied by the Monte Carlo study in the previous section, this manner of choosing the

slackness variable is reasonable if the estimated normal densities well represent the similarity

among the underlying densities ().

It is commonly observed in each covariate group that () tends to shift to the right

for as the out-of-work income becomes higher. Two contrasting hypotheses are possible to

explain this observation. The first hypothesis is from the perspective of the violation of

the exclusion restriction. If the out-of-work income is associated with one’s potential wage

positively and the selection process is nearly random, we can observe that the actual wage is

higher as the out-of-work income is higher. Another hypothesis is that a very heterogenous

selection process can generate the configuration of the observed densities. That is, the

instrument satisfies the exclusion restriction, but the less productive workers tend to exit the

labor market as their out-of-work income gets higher, and more productive workers flow to the

labor market as the out-of-work income gets higher. Rejecting the null by our specification

test can empirically refute the latter hypothesis.
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Table 2: The bootstrap specification test of the exogeneity of the out-of-work income

400 Bootstrap iterations

Some college education

Male Female

 Pr ( = 1|) p-value ∗
 Pr ( = 1|) p-value ∗

age 23-30 1047 0.84 0.000*** 4.0 1196 0.80 0.014** 2.0

31-38 1158 0.81 0.184 7.5 1131 0.69 0.998 6.0

39-46 900 0.77 0.196 7.5 840 0.74 1.000 9.0

47-54 675 0.70 0.886 10.5 594 0.75 0.886 8.0

High-school graduates

Male Female

 Pr ( = 1|) p-value ∗
 Pr ( = 1|) p-value ∗

age 23-30 799 0.81 0.016** 5.0 1354 0.72 0.946 3.0

31-38 1014 0.80 0.008*** 6.5 1592 0.68 0.998 5.0

39-46 804 0.78 0.968 7.0 990 0.75 0.680 3.5

47-54 561 0.69 0.050** 4.0 698 0.70 0.966 6.5

Note ***: rejection at 1% significance, **: rejection at 5% significance.

Table 2 shows the result of the bootstrap specification test.13 ∗
indicates the value of

the slackness variable obtained from the Monte Carlo procedure described above. We reject

the null at a 5% significance level for 5 covariate groups, especially for the workers of younger

age. Thus, our test results provide evidence of misspecification of the exclusion restriction

for the out-of-work income conditional on the categorized covariates. By the virtue of partial

identification analysis, this conclusion is based on the empirical evidence alone and free from

any assumptions about the potential wage distribution and the selection mechanism.

6 Concluding remarks

From the partial identification point of view, this paper analyzes the identification region

under the restriction of instrument independence in the selection model. We focus on the

integrated envelope, which is the key parameter for examining the emptiness of the identifica-

tion region. We propose the estimator for the integrated envelope and derive its asymptotic

distribution. Using this asymptotic result, we develop the nonparametric specification test

for instrument independence. Due to ties among the underlying probability densities, the

estimator has a non-pivotal asymptotic distribution and therefore, the standard nonparamet-

ric bootstrap is not valid. To overcome this, we consider the asymptotically valid bootstrap

algorithm for the integrated envelope estimator. Our procedure first selects the target distri-

bution for the bootstrap approximation by estimating whether or not the observable outcome

13For the groups with statutory schooling, the integrated envelope estimates ̂ do not exceed one due to the

low participation rate. Accordingly, we do not reject the null for these groups and the test results for these

groups are not presented in Table 2.
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densities have ties.

The estimation of the ties uses the slackness variable 
 The Monte-Carlo simulations

show that given the appropriate choice of , the proposed bootstrap approximates the

finite sample distribution of the statistic accurately. Although the optimal  seems to

depend on the true data generating process and the test performance is rather sensitive to

a choice of 
, our simulation results indicate that the bootstrap outperforms subsampling

over a reasonable range of values of 
. This paper does not provide a formal analysis on

how to choose 
nor uniform validity of the test procedure (cf. Andrews and Guggenberger

(2009), Andrews and Soares (2010), Romano and Shaikh (2010)), and these issues are left for

furture research. In the empirical application, we search the optimal value of  through

the Monte Carlo simulations where the population data generating process is substituted by

its parametric estimate. This way of tuning  can be seen as a practical solution for

finding its reasonable value.

We apply the proposed test procedure to test whether the measure of out-of-work in-

come constructed in Blundell et al. (2003) is independent of the potential wage. Our test

results provide an evidence that the measure of out-of-work income is not independent of the

potential wages given the coarsen covariates. Since our procedure tests the emptiness of the

identification region, this conclusion is based on the empirical evidence alone and free from

any assumptions about the potential wage distribution and the selection mechanism.

Appendix A: Lemmas and Proofs

Proof of Proposition 2.1. (i) Let  = {(1     )}∈X be given by data and assume  ≤ 1 for

every  ∈ X . Let F∗ be the set of conditional distributions of  given 

F∗ =


 |(| = )

∈X

: for every  ∈ X ,

Y
 |(| = ) = 1

and  |(| = ) ≥  |(| = ) -a.e.


For an arbitrary  | ∈ F∗, we shall construct a joint probability law of () given  that is compatible

with the data generating process  and the identifying restriction ER. Since the distribution of  given 

is irrelevant to the analysis, we focus on the conditional law of () given  and . Let  be an arbitrary

Borel set in Y. In order for the conditional law of () given  and  to be compatible with the data

generating process, we need to have, for every  = 1     and  ∈ X ,

Pr( ∈  = 1| =  = ) =




()

Pin down the probability distribution of { ∈ , = 0} given  =  and  =  to

Pr( ∈  = 0| =  = ) =




[ |(| = )− ()]

Note that the constructed probabilities are nonnegative by construction and they satisfy ER since Pr( ∈
| =  = ) =



 |(| = ). This implies each  | ∈ F∗ is contained in the identification

region under ER.

On the other hand, consider a conditional distribution  | ∈ F∗ Then, there exists ∗ ∈ X , ∗ ∈ Z,
and a Borel set  with ()  0 such that



[ |(| = 
∗
)− ∗∗()]  0. (A.1)
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Note that the probabilities of { ∈ , = 0} given  = ∗ and  = ∗ are written as

Pr( ∈  = 0| = ∗  = 
∗
) = Pr( ∈ | = ∗  = 

∗
)− Pr( ∈  = 1| = ∗   = 

∗
)

=




[ |(| = ∗  = 
∗
)− ∗∗()]

If ER is true,  | =  | must hold. Then, by (A.1) the above probability becomes negative, and

therefore we cannot construct a conditional law of () given  and  that is compatible with the data

generating process and ER.

Thus, we conclude F∗ is the identification region under ER.
The statement of (ii) is proved as follows. If   1 for some  ∈ X , then no probability density function

 |(| = ) can cover the entire envelope  |(| = ) at these ’s since the probability density must

be integrate to one. On the other hand, if  ≤ 1 for all  ∈ X , there clearly exist some probability densities
 |(| = ) that can cover the envelope  |(| = ). Hence, the conclusion follows.

Notation: For the rest of this appendix A, we use the following notation. Our analysis is conditional on an

infinite sequence of { :  = 1 2     }. For the probability space (ΩF P), the sample space Ω consists of 
i.i.d infinite sequences of {() :  = },  = 1    . We abbreviate almost surely with respect to

P by "a.s." and infinitely often by "i.o.". V always stands for a class of subsets in Y with respect to which

the uniform convergence of the empirical distributions {̂(·)}=1 holds such as a VC-class. The class of

partitions generated by V is denoted by V and each partition is denoted by V = (1     ). We equip V
with the seminorm (VV0) =


=1 (4 0) where  denotes a finite nonnegative measure on B(Y) such

that  is absolutely continuous with respect to  and () ≥ max {()} holds for any  ∈ B(Y). Note

that such  always exists by the definition of (·). Let (̂ − )( ) ≡ ̂( )− ( ). L2 refers to the

space of functions  : Y →R with


2
12

 ∞. We refer to the space of bounded functions on V as

∞(V) where the metric is the sup metric kk∞ = sup ∈V |( )|. Set indexed empirical processes which map
V→ ∞(V) are denoted by (·) ≡

√
(̂−)(·). For a nonmeasurable event , P∗() indicates the

outer probability (see van der Vaart and Wellner (1996) for the definition).

We first provide a lemma that will be used in the proof of Proposition 3.1.

Lemma A.1. Assume condition (A1) through (A3). Let V̂ = (̂1     ̂) and V̂
max = (̂ max1      ̂max )

be sequences of random partitions as defined in condition (A3). Then, (V̂ V̂max)→ 0 as  →∞ a.s.

Proof of Lemma A.1. We first show
(V̂)− 

→ 0 a.s. By condition (A2), Vmax is nonempty, and let us
pick an arbitrary elementVmax = (max1       max ) ∈ Vmax. By noting (V) = ̂(V)−

=1(̂−)(),
we have

0 ≤  − (V̂) = (V
max

)− (V̂)

= ̂(V
max

)− ̂(V̂) +


=1

(̂ − )(̂)−

=1

(̂ − )(
max
 )

≤

=1

(̂ − )(̂)−

=1

(̂ − )(
max
 )

→ 0 as  →∞ a.s.

by condition (A1) and the Glivenko-Cantelli theorem. Thus, (V̂) converges to  a.s.
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Note that the function (·) is continuous on V with respect to the semimetric  since, for V, V0 ∈ V,

(V)− (V
0
)
 ≤


=1

()− (
0
)


≤

=1

(4
0
)

≤

=1

(4
0
)

= (VV
0
).

Given these results, let us suppose that the conclusion is false, that is, assume that there exist positive  and

 such that P({(V̂ V̂max)   i.o.})  . Since the event {(V̂ V̂max)  } implies {V̂ ∈ Vmax}, the
continuity of (·) with respect to the semimetric  and the definition of Vmax imply that we can find   0

such that P({− (V̂)   i.o.})   holds. This contradicts the almost sure convergence of (V̂) to  shown

above. Hence, (V̂ V̂max)→ 0 a.s.

Proof of Proposition 3.1. Our proof consists of two steps. First, we prove the uniform convergence

result for the function ̂(·), i.e.,
√
(̂(·) − (·)) Ã (·) where (·) is a partition-indexed tight Gaussian

process in ∞(V) In the second step, we show that the asymptotic distribution of
√
(̂ − ) is obtained by

supV∈Vmax{(V)}.
Let  (V) =

√
(̂(V) − (V)). By construction,  (V) can be written as the sum of the inde-

pendent empirical processes,

 (V) =


=1

̂
−1

√
[̂()− ()]

=


=1

̂
−1
 ()

Note that, by condition (A1), the asymptotic distribution of  (V) for a fixed V ∈ V is Gaussian. So,

in order to prove the uniform convergence of  (V) it suffices to show that  (V) is asymptotically

uniformly equicontinuous in probability with respect to the semimetric , and that the index set V is totally
bounded with respect to the semimetric  (see Theorem 1.5.4 and 1.5.7 of van der Vaart and Wellner (1996)).

Under condition (A1), for each  = 1    , () is asymptotically uniformly equicontinuous in

probability, so for arbitrary   0 and   0, there exists   0 such that

lim
→∞

inf P∗


sup
(4 0)

( )−(
0
)
 ≤ ̂

12







 1− 

holds. By the definition of  (V),

 (V)− (V
0
)
 ≤ 

=1

̂
−12


()−(
0
)
 (A.2)

holds. Let  = min {}. The way that we define the semimetric  implies that, for any V = (1     )

and V0 = ( 01      
0
) with (VV0) ≤ , (4 0) ≤  holds. Hence, the above inequality (A.2)

implies

sup
(VV0)≤

 (V)− (V
0
)
 ≤ 

=1

̂
−12
 sup

(4 0)

()−(
0
)
 . (A.3)
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Consider the event,
sup

(4 0)

( )−(
0
)
 ≤ ̂

12





for all  = 1    


.

Since the inequality (A.3) shows that the above event implies

sup(VV0)≤

 (V)− (V
0)
 ≤ 


,

we have

P∗


sup
(VV0)≤

 (V)− (V
0
)
 ≤ 



≥ P∗


sup
(4 0)

( )−(
0
)
 ≤ ̂

12





for all  = 1    



=


=1

P∗


sup
(4 0)

( )−(
0
)
 ≤ ̂

12









where the last line follows since the -empirical processes

(·)


=1

are mutually independent given the

sequence of . Note for any nonnegative bounded sequences  and  , lim inf   ≥ lim inf  lim inf  ,
so we obtain

lim inf P∗


sup
(VV0)≤

 (V)− (V
0
)
 ≤ 



≥

=1

lim inf P∗


sup
(4 0)

( )−(
0
)
 ≤ ̂






 (1− )




Since  is arbitrary,  (V) is asymptotically uniformly equicontinuous in probability.

Next, we shall show that the semimetric space (V ) is totally bounded. When  is discrete, the

assertion is trivial so that we consider the case with continuous  and  being the Lebesgue measure. Since

the partition class V can be seen as a subspace of B(Y) , it suffices to show that the semimetric space

(B(Y)  ) is totally bounded. Since B(Y) equiped with the norm  can be seen as a subspace of -

Cartesian product of L1 =

 :

Y | |  ∞


. SInce L1 is a Banach space, (L1) is totally bounded, and

consequently B(Y) equiped with the norm  is also totally bounded. Hence, by Theorem 1.5.4 and 1.5.7 of

van der Vaart and Wellner (1996),  (V) converges weakly to a tight Gaussian processes (V) in ∞(V).
The covariance function of (V) is obtained by noting that (V) is expressed as the weighted sum of the

independent Brownian bridges in ∞(V).
In the second step, using  (V) Ã (V), we shall show that the difference between

√
(̂ − ) and

supV∈Vmax{
√
(̂(V)− (V))} is asymptotically negligible. Since (V) =  on Vmax ⊂ V,

sup
V∈Vmax

{
√
(̂(V)− (V))} = sup

V∈Vmax
{
√
(̂(V)− )}

≤ sup
V∈V

{
√
(̂(V)− )} =

√
(̂ − )

holds. Let V̂ be and V̂max be the maximizer of ̂(·) on V and Vmax respectively, which are assumed to exist
by condition (A3). Then,

0 ≤
√
(̂ − )− sup

V∈Vmax

√
(̂(V)− )


=

√
(̂(V̂)− ̂(V̂

max
))

=


=1

̂
−12



(̂)−(̂

max
 )


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By Lemma A.1, we have (V̂ V̂max)→ 0 a.s. and this implies (̂ ̂
max
 )→ 0 a.s. for all  = 1    .

Then, the asymptotic stochastic equicontinuity for (·) implies that (̂)−(̂
max
 )→ 0 in

outer probability. Thus, we conclude
√
(̂−)−supV∈Vmax{

√
(̂(V)−(V))} = ∗(1) and the asymptotic

distribution of
√
(̂−()) is identical to that of supV∈Vmax{

√
(̂(V)−(V))} = supV∈Vmax{ (V)}.

Since the supremum functional supV∈Vmax{·} on ∞(V) is continuous (with respect to the sup metric), the
continuous mapping theorem and  (V)Ã (V) yields the desired result,

sup
V∈Vmax

{
√
(̂(V)− (V))}Ã sup

V∈Vmax
{(V)} 

Regularity conditions for Proposition 3.2.

We impose the following regularity conditions for Proposition 3.2.

Condition B

(B1) Uniform Convergence: For each  = 1     and  ∈ X , the set indexed empirical processes,
( ) ≡

√
(̂( ) − ( )) converge uniformly in law to tight mean zero Gaussian

processes in ∞(V):

( )Ã (V)

(B2) Optimal partition : For each  ∈ X , there exists a nonempty maximizer partition class Vmax ⊂ V
defined by

Vmax = {V ∈ V : (V) = }

In addition, there exists a nonempty subclass in (V × X )max such that

(V ×X )max = {(V ) ∈ V ×X : (V) = } 

(B3) Existence of Maximizer : With probability one, there exists for each  ∈ X a sequence of random

partitions V̂
∈ V and V̂max

∈ Vmax such that for all  ≥ 1

̂(V̂
) = sup

V∈V


̂(V)


 ̂(V̂

max


) = sup
V∈Vmax


̂(V)


holds.

Proof of Proposition 3.2. We will first show the stochastic process indexed by (V ) ∈ V×X ,
√
(̂(V)−

(V)) converges uniformly to a tight Gaussian process (V ) in ∞(V ×X ). Since X is a finite set, what

matters for the sample path continuity is only in the coordinate of partition V. Furthermore, since we make

the analysis conditional on the sequence of subsample size ,
√
(̂(V)−(V)) and

√
(̂0(V)−0(V))

are independent for every  0 ∈ X . So, in order to prove the claim of uniform convergence, it suffices to show
that for each  ∈ X ,

√
(̂(V)− (V)) converges to a tight Gaussian process in ∞(V). Given regularity

condition B, this can be shown by replicating the proof of Proposition 3.1, and we obtain

√
(̂(V)− (V)) =


=1

√
√


√
(̂()− ())

Ã

=1


−12


() ≡ (V ).
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where the covariance structure of (V ) is given by

((V ) (V
0
 
0
)) = 1


 = 

0 
=1


−1



( ∩ 

0
)− ()(

0
)



where  = Pr( =  = ).

In the next step, we shall show that
√
(̂ − ) weakly converges to sup(V)∈(V×X )max {(V )}.

Under condition (B2), by repeating the same argument as in the proof of Proposition 3.1,

√
(̂ − ) = sup

(V)∈V×X

√
(̂(V)− (V)) +

√
((V)− )


= max

∈X


sup
V∈V

√
(̂(V)− (V)) +

√
((V)− )


+
√
( − )


= max

∈X


sup

V∈Vmax

√
(̂(V)− (V))


+ (1) +

√
( − )



= max
∈X


sup

V∈Vmax

{(V )}+ (1) +
√
( − )


.

Since supV∈Vmax
{(V )} almost surely bounded and √( − ) diverges to negative infinity for  ∈ X

with
√
( − )  0, by letting Xmax = { ∈ X :  = }, we obtain

√
(̂ − ) = max

∈Xmax
sup

V∈Vmax

{(V )}+ (1)

By combining the maximum and supremum operators into sup(V)∈(V×X )max {·}, we obtain the conclusion,
√
(̂ − )Ã sup

(V)∈(V×X )max

√
(̂(V)− (V))


.

The next lemma is used to prove Proposition 3.3. It shows that \(V×X )max constructed in Step 3 of the
bootstrap algorithm is consistent to (V×X )max.

Lemma A.2. Assume condition B. Let { :  ≥ 1} and { :  ≥ 1} be positive sequences defined in
the description of bootstrap algorithm. Let \(V×X )max be the estimator of ( ×)max constructed in Step

3 of the bootstrap algorithm,

\(V×X )max =

(V ) ∈ V × X :

√
(1− ̂(V)) ≤ 




Define a semimetric on ( ×) as V×X (( ) ( 0 0)) = ( 
0) + 1


 = 0


and define -cover of the

maximizer partition class by

(V×X )max =


(V ) ∈ (V×X ) : inf

(V00)∈(V×X )max

V×X ((V ) (V

0
 
0
))
 ≤ 




We further assume that for each   0, there exists ()  0 such that

inf
(V)∈(V×X )\(V×X )max

{ − (V)}  ()

For the estimator \(V×X )max define a sequence of events



 =


(V×X )max ⊆ \(V×X )max ⊆ (V×X )max



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If the true integrated envelope  is one, then for each   0,

P

lim

→∞
inf 





= 1,

that is, with probability one, 
 occurs for all  with the finite number of exceptions.

If the true integrated envelope is less than one, then for a sequence of events  =


\(V×X )max = ∅

,

P (lim→∞ inf  ) = 1.

Proof of Lemma A.2. We first state the law of the iterated logarithm for empirical processes on VC-classes

(LIL, see Alexander and Talagrand (1989)).

For a VC-class V and set indexed empirical processes ( ) =
√
(̂( )−( )) indexed by

 ∈ V,

(LIL) lim
→∞

sup sup
 ∈V

( )
log log

 ≤ 1 a.s.

First, we consider the case of  = 1. Let  =



√
log log√
log log

√
log log


where  → 0

by the specification of . Then,

sup
V∈V

√



(̂(V)− (V))

 ≤ 
=1

 sup
 ∈V

( )
log log

 
Since  → 0 as  →∞, the right hand side of the above inequality converges to zero a.s. by the LIL.
Hence, by the finiteness of X , we obtain

lim
→∞

sup
(V)∈(V×X )

√



(̂(V)− (V))

 = 0 a.s. (A.4)

Based on this almost sure result, we will show P

lim inf


(V×X )max ⊆ \(V×X )max


= 1. Note that, by the

construction of \(V×X )max, (V×X )max ⊆ \(V×X )max occurs if and only if sup(V)∈(V×X )max
√




(1− ̂(V))


≤

1. Therefore, it suffices to show

lim sup sup
(V)∈(V×X )max

√




(1− ̂(V))


≤ 1 a.s.

When  = 1, (V) = 1 for (V ) ∈ (V × X )max, so

sup
(V)∈(V×X )max

√




(1− ̂(V))


= sup

(V)∈(V×X )max

√




((V)− ̂(V))


≤ sup

(V)∈(V×X )

√




(̂(V)− (V))


→ 0 a.s. by (A.4).

Hence, lim sup sup(V)∈(V×X )max
√




(1− ̂(V))


≤ 1 a.s. holds and P


lim inf


(V×X )max ⊆ \(V×X )max


=

1 is proved.

Next, we show P

lim inf


\(V×X )max ⊆ (V×X )max


= 1. Since the event


\(V×X )max ⊆ (V×X )max


is equivalent to inf(V)∈(V×X )\(V×X )max

√



(1− ̂(V))


 1, it suffices to show

lim
→∞

inf inf
(V)∈(V×X )\(V×X )max

√




(1− ̂(V))


 1 a.s.
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We obtain from (??)

inf
(V)∈(V×X )\(V×X )max

√




(1− ̂(V))


= inf

(V)∈(V×X )\(V×X )max

√





(1− (V))− (̂(V)− (V)


)


≥ inf

(V)∈(V×X )\(V×X )max

√




((1− (V))


− sup
(V)∈(V×X )\(V×X )max

√




(̂(V)− (V)


Note that the second term in the right hand side of the above inequality has been already proved to converge

to zero a.s. For the first term, the assumption implies that there exists ()  0 such that 1− ( )  ()

for any (V ) ∈ (V×X )\(V×X )max . Since
√



→∞ for every , we obtain

inf
(V)∈(V×X )\(V×X )max

√




(1− ̂(V))


→∞

Therefore, lim inf inf ∈V\Vmax

√



(̂ − ̂( ))


=∞ a.s. and this implies P


lim inf


\(V×X )max ⊆ (V×X )max


=

1. Combining these two results completes the proof for  = 1.

Next, we consider the case of   1. Note that the event  =


\(V×X )max = ∅

is equivalent to

inf(V)∈(V×X )
√




((1− ̂(V))


 1


. Since

inf
(V)∈(V×X )

√




((1− ̂(V))


≥ inf

(V)∈(V×X )

√




(1− (V))


− sup
(V)∈(V×X )

√




((̂(V)− (V))




and (1−(V))  0 for every (V ) ∈ (V×X ). Thus, the first term in the right hand side diverges to positive

infinity, and by (A.4) the second term converges to zero a.s. Hence, lim inf inf(V)∈(V×X )
√




((1− ̂(V))




1 a.s. holds and it means P( lim inf  ) = 1.

Proof of Proposition 3.3. We first consider the data generating process with   1. By Lemma A.2,
\(V×X )max = ∅ occurs with probability one for large  . Since we do not reject the null if \(V×X )max = ∅,

the rejection probability converges to 0 for the data generating process with   1.

From now on, we consider the the data generating process with  = 1. For ease of exposition, we

indicate an infinite sampling sequence by  ∈ Ω. Denote a random sequence of the probability laws governing

the randomness in the bootstrap sample by {P :  ≥ 1}. Once we fix , {P :  ≥ 1} can be seen as a
nonrandom sequence of the probability laws. The bootstrap is consistent if, for almost every  ∈ Ω,

sup

(V)∈ \(V×X )max()

√
(̂

∗
(V)− ̂(V)())


Ã sup

 ∈Vmax
{(V )}

where (V ) is the Gaussian processes obtained in Proposition 3.2. Here, the random objects subject to

the probability law of the original sampling sequence are indexed by .

By Lemma A.2, for sufficiently large  ,

sup
(V)∈(V×X )max

√
(̂

∗
(V)− ̂(V)())


≤ sup

(V)∈ \(V×X )max()

√
(̂

∗
(V)− ̂(V)())


≤ sup

(V)∈(V×X )max

√
(̂

∗
(V)− ̂(V)())


(A.5)

35



holds for almost all  ∈ Ω. Let ∗(·) =
√
(̂

∗
 − )(·) be bootstrapped empirical processes

where ̂∗ is the empirical probability measures constructed from the bootstrap sample. By the almost sure

convergence of the bootstrap empirical processes (Theorem 3.6.3 in van der Vaart and Wellner (1996)),

√
(̂

∗
(V)− ̂(V)()) =


=1


−12



∗
()Ã (V )

for almost all . Therefore, for the lower bound term and the upper bound term in (A.5), we have

sup
(V)∈(V×X )max

√
(̂

∗
(V)− ̂(V)())


Ã sup

(V)∈(V×X )max
{(V )} 

sup
(V)∈(V×X )max

√
(̂

∗
(V)− ̂(V)())


Ã sup

(V)∈(V×X )max

{(V )} 

Since the tight Gaussian processes (V ) are almost surely continuous with respect to the semimetric

V×X , the asymptotic stochastic equicontinuity of the Gaussian processes imply

sup
(V)∈(V×X )max

√
(̂

∗
(V)− ̂(V)())


− sup
(V)∈(V×X )max

√
(̂

∗
(V)− ̂(V)())


→ 0

in probability with respect to {P :  ≥ 1} as → 0. Hence, from (A.5), we conclude that

sup

(V)∈ \(V×X )max()

√
(̂

∗
(V)− ̂(V)())


Ã sup

(V)∈(V×X )max
{(V )} 

Since (V ) are non-degenerate Gaussian processes on (V × X )max and, therefore, the distribution of
sup(V)∈(V×X )max {(V )} is absolutely continuous on R (see Proposition 11.4 in Davydov, Lifshits, and
Smorodina (1998)). Therefore, the ̂1− converges to the (1−)-th quantile of sup(V)∈(V×X )max {(V )}
in probability with respect to {P :  ≥ 1} for almost every  ∈ Ω. Hence, for every data generating process

with  = 1,

Prob


̂ − ̂1−√


 1


= Prob

√
(̂ − 1)  ̂


1−


→ 1− (1−; ) = 

By combining the these two results, we obtain the conclusion.

Appendix B: A Comparison with the cdf bounds in Blundell

et al. (2007)

In this appendix, we compare the tightest cdf bounds based on the envelope density (2.4) with the cdf bounds

used in Blundell et al. (2007). We shall show that the latter do not always yield the tightest bounds.

Based on a moment restriction for the cdf of  given ,  |(| ) = ({ ∈ (−∞ ]}| =  =

) = ({ ∈ (−∞ ]}| = ) =  |(|), Blundell et al. (2007) use the mean independence bounds of
Manski (1994) to construct the bounds for  |(|) Using the notation of the main text of this paper,

they are expressed as

max



((−∞ ])

 ≤  |(|) (B.1)

≤ min



((−∞ ]) + ({}) 
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These bounds, which we call the naive cdf bounds hereafter, are not necessarily the tightest possible under

ER (Proposition B.1 below). The reason is that the naive cdf bounds only utilize the restriction that the

probability of the event { ≤ } conditional on  does not depend on . This restriction is certainly weaker

than the conditional statistical independence restriction since the full statistical independence requires that

Pr( ∈ | =  = ) for any subsets  ⊂ Y do not depend on 

For stating the main result of this section, we define the dominating density among {}=1.

Definition B.1 (dominating density) (i) ∗() {}=1 has a dominating density on  ⊂ Y if there
exists an instrumental value ∗such that ∗() ≥ () for all 

∗ 6=  holds on -a.e.  ∈ .

If data reveals the dominating density ∗(), then the rest of {}=1 do not provide identifying
information for  | further than ∗() because the maximal area under  | is occupied by ∗()

alone. The existence of the dominating density guarantees the interchangeability between max operation and

integration, that is,


max

{()} = max






()




if and only if {}=1 has a dominating density on 

This fundamental identity provides the following tightness result of the naive cdf bounds.

Proposition B.1 (tightness of the naive cdf bounds) (i) The naive cdf bounds at  ∈ Y are tight under
ER if and only if {}=1 has a dominating density on (−∞ ] and (∞).
(ii) The naive cdf bounds are tight under ER for all  ∈ Y if and only if {}=1 has a dominating density
on Y.

Proof of Proposition B.1. (i) Fix  ∈ Y. For the lower bound of the naive cdf bounds,

max





()


≤




max

{()}

=


(−∞]

 |(| = )

= the lower bound of the tight cdf bounds.

Note that the inequality holds in equality if and only if {}=1 has a dominating density on (−∞ ].

For the upper bound of the naive cdf bounds,

min



((−∞ ]) + ({}) = min




1−


(∞)

()



= 1−max



(∞)

()



≥ 1−

(∞)

 |(| = )

=


(−∞]

 |(| = )+ 1− 

= the upper bound of the tight cdf bounds,

where the inequality holds in equality if and only if {}=1 has a dominating density on (∞)
The statement (ii) clearly follows from (i).

When we employ the naive cdf bounds, we would refute ER if the lower and upper bound of the cdf cross

at some . This refuting rule is as powerful as the one based on the integrated envelope if the condition in

Proposition B.1 (i) holds at some . However, this condition holds in a rather limited situation (see Figure

3).
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Figure 3: Consider a model with continuous  and binary  ∈ {1 2}, and no covariates.
In the left-hand side figure, the naive cdf bounds at ∗ are tight. On the other hand, when

1() and 2() are drawn as in the right-hand side figure, the naive cdf bounds are not tight

at any  ∈  (Proposition B.1).

Appendix C: Does selection equation help identify  ?

C.1 Identification Region under Joint Independence

The structural selection model formulates the selection mechanism as

 = {() ≥ 0} (C.1)

where () is the latent utility to rationalize the individual selection process, and  represents the un-

observed individual heterogeneities that affect one’s selection response and are possibly dependent on the

outcome  . In the case where we believe  to be independent of any individual unobserved heterogeneities

conditional on the observables , we might want to explicitly impose joint independence between  and

() conditional on . In that case, can we further narrow the identification region by strengthening ER

to joint independence?

An importance of this question can be motivated by a comparison with the counterfactual causal model

with endogenous treatment choice (Imbens and Angrist (1994) and Angrist et al (1996)). Given a pair of

treated and control outcomes (1 0) with the nonseparable selection equation (C.1), it is well known that

the joint independence restriction between  and (1 0 ) yields a narrower identification region for the

distribution of the potential outcomes than a pair of marginal independence of  and 1 and  and 0 does.
14

In constrast to the counterfactual causal model, it has not been clarified whether or not the selection model

with a single missing outcome can enjoy a similar identification gain from the joint independence restriction.

For an ease of exposition, we do not introduce the covariates  into our analysis. Hence, the joint

independence restriction to be considered is interpreted as joint independence between  and (). The

identification analysis given below can be interpreted as the identification analysis for the outcome distribution

14Balke and Pearl (1997) derives the tight bounds for the average treatment effects (1) − (0) under

the joint independence restriction (1 0 ) ⊥  for the binary outcome case. Kitagawa (2009) provides a

closed-form expression of the identification region as well as the tight bounds of the average treatment effects

for the continuous outcome case and shows that the joint independence restriction (1 0 ) ⊥  can narrow

the identification region for the distribution of (1 0) relative to a pair of marginal independence restriction

(1 ⊥ ) and (0 ⊥ ).
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conditional on each covariate value. We notate the distribution of data by

() = |( = 1| = )

and represent the data generating process by = (1     ). The density envelope is defined as

 () = max

{()}

When we introduce latent utility with unobserved heterogeneities  into the model, we characterize the

population by a joint distribution of () rather than () In particular, if the instrument  is

discrete, the population random variables ( ) can be replaced with ( ) where  is the individual

type that indicates one’s selection response to each value of the instrument as defined in Imbens and Angrist

(1994) (see also Pearl (1994a)). For the -valued instrument, individual’s selection response is uniquely

characterized by an array of  potential selection indicators   = 1    .  indicates whether the

individual is selected when  is exogenously set at . In total, there are 2
 number of types in the population

and we interpret  as a random variable indicating one of the 2 types. Let T be the set of all types and

define T ⊂ T be the set of types with  = 1, T = { ∈ T :  = 1} T is interpreted as the subpopulation
of those who are selected when  = . Then, joint independence of  and () is equivalently stated as

joint independence of  and (  ) (Pearl (1994a)). Accordingly, the definition of the identification region

under joint independence is defined as follows.

Definition C.1 (identification region under joint independence): Given a data generating process

 = (1()     ()), the identification region for  under the joint independence restriction between 

and () is the set of  for each of which we can find a joint probability distribution of (  ) that is

compatible with the data generating process and the joint independence restriction.

We denote the distribution of types by  = Pr( = ),  ∈ T  The source of the nonrandom selection

mechanism is the dependence between  and one’s unobserved selection heterogeneities. This dependence

is reduced to the dependence between  and  , and therefore we can allow distinct outcome distributions

conditional on each type  = . We denote the outcome density conditional on type  =  by () ≡
 | (| = ),  =    .

The main result is stated in the next proposition.

Proposition C.1  ( |) is also the identification region of  under joint independence between 

and ().

This proposition shows that a further identification gain from the joint independence restriction between

 and (), which is known to exist in the causal model with an instrument (Balke and Pearl (1997)),

does not exist in the selection model with a single outcome. This redundancy of the joint independence

restriction implies that the marginal independece of  and  is the only refutable restriction for the instrument

exogeneity.

To prove the above proposition, we first provide the next lemma.

Lemma C.2 If a joint probability distribution on ( ) satisfies the joint independence restriction  ⊥
(), then, the following identities hold -a.e. for all  = 1    ,

() =


∈T ()
 ()− () =


∈T \T ()

(C.2)

where () = ().

Conversely, given a data generating process  and a marginal distribution of outcome  , if there exist
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nonnegative functions (),  =     that satisfy (C.2) -a.e., then we can construct a joint probability

law on ( ) that is compatible with the data generating process and RA.

Lemma C.2 is interpreted that, for a given data generating process P, the set of  for each of which

we can find the nonnegative functions {() :  ∈ T } that satisfy (C.2), for all  = 1    , constitute the
identification region of  under the joint independence restriction.

Proof of Lemma C.2. Assume that a population distribution of ( ) satisfies RA. Then,

() = |( = 1| = )

=  |(  ∈ T| = )

=

∈T

 |(  = | = )

=

∈T

 (  = )

=

∈T

(),

which corresponds to the first identity of (C.2). Note that the second line follows since the event { ∈  = 1| = }
is equivalent to { ∈  ∈ T| = }. The fourth line follows by the joint independence restriction. As

for the second identity of (C.2),

 ()− () =  |(| = )− |( = 1| = )

= |( = 0| = )

=  |(  ∈ T \ T | = )

=


∈T \T
 |(  = | = )

=


∈T \T
().

This completes the proof of the former statement.

To prove the converse statement of the proposition, suppose that, for a given data generating process 

and a marginal distribution  , we have nonnegative functions (·),  ∈ T satisfying the constraints (C.2).

Since the marginal distribution of  is irrelevant to the analysis, we focus on constructing the conditional

law of (  ) given . Let us specify both  |(  = | = ) and  |(  = | = ) to

be equal to () ≥ 0,  ∈ T . These yield valid probability measure since





Y  |(  = | =

) =





Y () =


Y  () = 1, and it satisfies RA by construction. Furthermore, the constructed

probability distribution is compatible with the data generating process since {()} is constructed so as to the
identities of (C.2). Thus, the proposed  is contained in the identification region under joint independence.

By the converse part of the above lemma, the identification region of  under RA is formed as the

collection of  ’s for each of which we can find the feasible nonnegative functions (·),  =     satisfying

(C.2).

Proof of Proposition C.1. If  ( |) is empty, the identification region under joint independence is
clearly empty. So, we assume  (P) is nonempty ( ≤ 1).

Pick an arbitrary  ∈  ( |). Our goal is to find the set of nonnegative functions {()}∈T
that are compatible with the constraints (C.2).

Let S be the subgraph of () and S the supgraph of (), i.e., S = {( ) ∈ Y × R+ : 0 ≤  ≤ ()}
and S = {( ) ∈ Y × R+ :   ()} We denote the subgraph of  by S . Note that, by the
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construction of  (P), S ⊂ S holds for all . Using the  subgraphs {  = 1    } S is

partitioned into 2 disjoint subsets. Each of these is represented by the  intersection of the subgraphs or

supgraphs of () such as S1 ∩ S2 ∩ · · · ∩ S ∩ S .
By noting that each  is one-to-one corresponding to a unique binary array of { :  = 1    } we define
a subset () ⊂ S by assigning one of the disjoint subsets formed within S ,

() =

 
:=1

S

 ∩
 
:=0

S

 ∩ S 
Let us fix  Note that the set of types T = { ∈ T :  = 1} and T \ T = { ∈ T :  = 0} both contain
2−1 distinct types. Consider taking the union of () over  ∈ T and  ∈ T \ T,


∈T

() =

∈T

S ∩
 
 6=:=1

S

 ∩
 
6=:=0

S

 ∩ S
  (C.3)


∈T \T

() =


∈T \T

S ∩
 
 6=:=1

S

 ∩
 
6=:=0

S

 ∩ S
  (C.4)

In the above expressions, the subset

 
6=:=1

S

∩
 
 6=:=0

S

∩S can be seen as one of the disjoint

subsets within  partitioned by the ( − 1) subgraphs 1     −1 +1      . Since each  ∈ T
one-to-one corresponds to one of the partitioned subsets

 
 6=:=1

S

∩
 
 6=:=0

S

∩ S and each

 ∈ T \T also one-to-one corresponds to one of them, the union in the right hand side of (C.3) is the union of
mutually disjoint and exhaustive partitions of  ∩  Therefore, the identities (C.3) and (C.4) are reduced
to 

∈T
() = S ∩ S = S

∈T \T
() = S ∩ S 

For a set  ∈ Y × R+, define the coordinate projection on R+ by Π() = { ∈ R+ : ( ) ∈ }. Since

()’s are mutually disjoint, applying the coordinate projection to the above identities yields
∈T

Π(()) = Π()
∈T \T

Π(()) = Π(

 ∩ S )

We take the Lebesgue measure (·) to the above identities. By noting Π(()) are disjoint over ,

 [Π()] = (), and 

Π(


 ∩ S )


=  ()− (), we have

∈T
 [Π(())] = (),

∈T \T
 [Π(())] =  ()− ().

These equations suggest us to pin down each () to  [Π(())]. Each () is by construction nonneg-

ative and we can see they agree with the constraints (C.2). Since  is arbitrary, this completes the proof.
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C.2 Imposing the monotonic selection response to an instrument

An additional restriction we consider is a functional form specification for latent utility. In the standard

structural selection model, we specify the selection equation in the form of threshold crossing selection with

an additive error,

() = ̃()−  (C.5)

where  is a scalar and ̃() depends only on the instrument. Heckman and Vytlacil (2001a, 2001b) show that

the expression of the bounds of ( ) under mean independence constructed in Manski (1994) provides the

tight bounds even under the joint independence between  and ( ) and the specification of the additively

separable latent utility. This result is somewhat surprising since the tight ( ) bounds under ER can be

strictly narrower than the ( ) bounds under MI, but the latter becomes the tightest once we impose the

joint independence of  and () and threshold crossing with an additive error. We disentangle this puzzle

using the expression of the identification region obtained through the envelope density.

By noting the equivalence result of Vytlacil (2002), the selection process with additively separable latent

utility can be equivalently analyzed by imposing the monotonicity of Imbens and Angrist (1994). Hence,

the identification gain of imposing the additively separable threshold crossing formulation is examined by

adding Imbens and Angrist’s monotonicity to our analysis.15 In this appendix, we refer to the monotonicity

of Imbens and Angrist, or equivalently, threshold crossing selection with an additive error, as the monotonic

selection response to an instrument (MSR). Throughout the analysis, we without loss of generarilty assume

Pr(1 = 1) ≥ Pr(0 = 1). This is equivalent to assuming that the selection probability is nondecreasing

with respect to . Since we can always redefine the value of  compatible with this assumption, we do not

lose any generality by restricting our analysis to this case.

Restriction-monotonic selection response to an instrument (MSR).

Without loss of generality, assume Pr( = 1) ≤ Pr(+1 = 1) for all  = 1     ( − 1). The selection
process satisfies MSR if  ≤ +1 for all  = 1     ( − 1) over the entire population.

Note that the types in T ∩ (T \ T+1) have  = 1 and +1 = 0. Therefore, in terms of the selection

types, MSR is equivalent to


∈T∩(T \T+1)  = 0. Accordingly, the identification region under joint

independence and MSR is defined as follows.

Definition C.2 (identification region under separable utility) Given a data generating process  ,

the identification region for  under joint independence between  and () and the specification of

threshold crossing selection with an additive error is the set of  for each of which we can find a joint

probability distribution of ( ) that is compatible with the data generating process and satisfies the joint

independence restriction of  and (  ) with


∈T∩(T \T+1)  = 0.

Proposition C.2. Suppose that a population distribution of ( ) satisfies the joint independence and

MSR. Then, the data generating process  satisfies

1() ≤ 2() ≤    ≤ () -

Conversely, given the data generating process  = (1()     ()), the identification region under joint

independence and MSR is given by
 ( |) if 1() ≤ 2() ≤    ≤ () -

∅ otherwise.
(C.6)

15Note that the monotonicity of Imbens and Angrist is discussed in the context of the counterfactual

causal model. Although our analysis is for the missing data, we can consider an analogous restriction to

the monotonicity since the monotonicity only concerns the population distribution of the potential selection

indicators.
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This result says that if the data generating process reveals 1() ≤ 2() ≤    ≤ () -a.e., the

identification region under ER is also the identification region under the restrictions of joint independence and

monotonic selection response to an instrument. In this sense, threshold crossing selection with an additive

error does not contribute to identifying  further than ER. This result supports the aforementioned Heckman

and Vytlacil’s result on the ( ) bounds since, given that we observe 1() ≤ 2() ≤    ≤ () -a.e., it

can be shown that the ( ) bounds constructed based upon  ( |) coincide with the Manski’s ( )
bounds under mean independence.

The empty identification region in (C.6) implies that the condition of 1() ≤ 2() ≤    ≤ () -a.e.

provides a testable implication for the joint restriction of joint independence and additively separable latent

utility. That is, we can refute it by checking whether or not the observable densities are nested in the order

of the selection probabilities Pr( = 1| = ).

Proof of Proposition C.2. (i) From (C.2), we have

() =


∈T∩T+1
() +


∈T∩(T \T+1)

()

+1() =


∈T+1∩T
() +


∈T+1∩(T \T)

()

Note that the types in T ∩ (T \ T+1) have  = 1 and +1 = 0 and they do not exist in the population

by MSR. Therefore,


∈T∩(T \T+1) () = 0 holds and we conclude

+1()− () =


∈T+1∩(T \T)
() ≥ 0

This proposition implies the existence of the dominating density.

For the converse statement, we assume that the data generating process reveals 1() ≤ 2() ≤    ≤
() -a.e. Let us pick an arbitrary  ∈  ( |). We construct a joint distribution of ( ) that
is compatible with joint independence and MSR. Note that under MSR the possible types in the population

are characterized by a nondecreasing sequence of  binary variables {}=1. Hence, there are at most

(+1) types allowed to exist in the population. We use ∗   = 1     to indicate the type whose {}=1
is zero up to the l-th element and one afterwards. We denote the type whose {}=1 is one for all  by ∗0
Note that T+1 ∩ (T \ T) the set of types with  = 0 and +1 = 1 consists of only 

∗
 under MSR. Let

∗0 () = 1()

∗

() = +1()− () for  = 1     ( − 1)

∗ () =  ()− ()

() = 0 for the rest of  ∈ T .

This construction provides nonnegative ()’s. The constructed ()’s satisfy (C.2) since for each  =

1     we have


∈T

() =

−1
=0

∗

() = ()


∈T \T

() =


=

∗

() =  ()− ()

Thus, we conclude that there exists a joint probability law of ( ) that is compatible with the data

generating process and satisfies RA and MSR. Since this way of constructing ()’s is feasible for any

 ∈  (P), we conclude that  (P) is the identification under RA and MSR. The emptiness of the

identification region follows immediately from (i).
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