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Abstract

This paper develops multiple-prior Bayesian inference for a set-identi�ed parameter whose

identi�ed set is constructed by an intersection of two identi�ed sets. We formulate an econo-

metrician�s practice of "adding an assumption" as "updating ambiguous beliefs." Among

several ways to update ambiguous beliefs proposed in the literature, we consider the Dempster-

Shafer updating rule (Dempster (1968) and Shafer (1976)) and the full Bayesian updating rule

(Fagin and Halpern (1991) and Ja¤ray (1992)), and argue that the Dempster-Shafer updating

rule rather than the full Bayesian updating rule better matches with an econometrician�s com-

mon adoption of the analogy principle (Manski (1988)) in the context of intersection bound

analysis.
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1 Introduction

The intersection bound analysis proposed by Manski (1990, 2003) provides a way to aggregate

identifying information for a common parameter of interest by taking the intersection of multiple

identi�ed sets. This way of constructing and de�ning the identi�ed set innovates a new iden-

ti�cation scheme in econometrics, and it has been applied to a wide range of empirical studies,

e.g., Manski and Pepper (2000) and Blundell, Gosling, Ichimura, and Meghir (2007)). Recently,

Chernozhukov, Lee, and Rosen (2009) develop estimation and inference for the intersected iden-

ti�ed sets from the classical perspective and develop asymptotically valid con�dence intervals for

intersected identi�ed sets.

In this paper, we analyze inference and decision for this class of partially identi�ed models

from the multiple-prior Bayes perspective. Kitagawa (2011) develops a framework of multiple-

prior Bayes analysis that can explicitly take into account robustness/agnosticism pursued in the

partial identi�cation analysis. This paper extends the approach of Kitagawa (2011) to the inter-

section bound analysis with paying special attention to the following questions. Are there any

multiple-prior Bayes (subjective probability) formulation that induces the operation of intersect-

ing multiple identi�ed sets? If so, what kind of subjective-probability-based reasoning do we

have to invoke?

We approach to these questions by modelling an econometrcian�s practice of "imposing an

assumption" that leads him to intersect multiple identi�ed sets" as "updating ambiguous be-

liefs". Among several ways to update ambiguous beliefs proposed in the literature, we consider

the Dempster-Shafer updating rule (Dempster (1968) and Shafer (1976)) and the full Bayesian

updating rule (Fagin and Halpern (1991) and Ja¤ray (1992)). Our main �nding is that the

Dempster-Shafer updating rule instead of the full Bayesian updating rule leads to an aggregation

rule of intersecting multiple (random) identi�ed sets, and it replicates well the econometrician�s

common adoption of analogy principle (Manski (1988)) in the context of intersection bound analy-

sis. This result replicates the belief function analysis of Dempster (1967a) and Shafer (1973),

who deduce an aggregation rule of ambiguous information as intersecting random sets. Also,

an axiomatic analysis on updating ambiguous beliefs by Gilboa and Schmeidler (1993) provides

lucid multiple-prior interpretation behind the Dempster-Shafer updating rule, which also readily

applies to our econometric framework. Given these early results, we consider contributions of

this paper are (i) to clarify a link between the aggregation rule in the Dempster-Shafer�s belief

function analysis and growing literatures on inference on partial identi�ed model, and (ii) to

provide decision theorists some outside-lab evidence that the econometrician�s common way of

updating ambiguous beliefs is in line with the Dempster-Shafer updating rule rather than the full

Bayesian updating rule.
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To keep a tight focus on our theoretical development, we develop our analysis along with

the following simple model of missing data with an instrumental variable (Manski (1990, 2003)).

Suppose a survey targets at inferring the population distribution of a binary variable Y 2 f1; 0g
(e.g., employed or not). In data, not all the sampled subjects respond to the survey, and the

response indicator of a sampled subject is denoted by D 2 f1; 0g: D = 1 if Y is observed and

D = 0 if Y is missing. Suppose that the survey is conducted by two modes, say, either by

E-mail or by phone. Let us indicate the survey mode by a binary random variable Z 2 f1; 2g:
Z = 1 if the individual is surveyed by E-mail and Z = 2 if he/she is surveyed by phone. If the

survey modes are randomized, then it is reasonable to assume that the survey mode indicator

Z is independent of the underlying outcome Y . Associated with this exogeneity restriction, we

consider using Z as an instrumental variable in the following manner.

Consider

Pr(Y = 1jZ = 1) = Pr(Y = 1; D = 1jZ = 1) + Pr(Y = 1jD = 0; Z = 1)Pr(D = 0jZ = 1);
Pr(Y = 1jZ = 2) = Pr(Y = 1; D = 1jZ = 2) + Pr(Y = 1jD = 0; Z = 2)Pr(D = 0jZ = 2):

In the right hand side of the �rst equation, the data let us consistently estimate Pr(Y = 1; D =

1jZ = 1) and Pr(D = 0jZ = 1), while the data are silent about the distribution of missing

outcomes Pr(Y = 1jD = 0; Z = 1). Hence, without any assumptions on Pr(Y = 1jD = 0; Z = 1),

what we could say about Pr(Y = 1jZ = 1) given complete knowledge on the distribution of data
is

Pr(Y = 1jZ = 1) 2 [Pr(Y = 1; D = 1jZ = 1);Pr(Y = 1; D = 1jZ = 1) + Pr(D = 0jZ = 1)] :
(1.1)

Similarly, without any assumptions on Pr(Y = 1jD = 0; Z = 2), it holds that

Pr(Y = 1jZ = 2) 2 [Pr(Y = 1; D = 1jZ = 2);Pr(Y = 1; D = 1jZ = 2) + Pr(D = 0jZ = 2)] :
(1.2)

The instrument exogeneity restriction, Y ? Z, then plays a role to combine these two bounds:

Pr(Y = 1jZ = 1) = Pr(Y = 1jZ = 2) = Pr(Y = 1) implies that the parameter of interest

Pr(Y = 1) must lie within the intersection of the two bounds (1.1) and (1.2),

max

(
Pr(Y = 1; D = 1jZ = 1)
Pr(Y = 1; D = 1jZ = 2)

)
� Pr(Y = 1)

� min

(
Pr(Y = 1; D = 1jZ = 1) + Pr(D = 0jZ = 1)
Pr(Y = 1; D = 1jZ = 0) + Pr(D = 0jZ = 2)

)
: (1.3)
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We use intersecting two identi�ed sets as a procedure to aggregate two independent pieces of

set-identifying information of the common parameter.

As far as identi�cation is concerned, it is �ne to say the complete knowledge on distribution

of data is available, and therefore the operation of intersecting the two identi�ed sets corresponds

to an application of the Boolean logic. With the �nite number of observations, however, it is not

obvious how we can extrapolate the identi�cation scheme of intersection bounds into the �nite

sample situation where we wish to use the language of probabilistic judgement for the parameter

of interest. The main goal of this paper is to answer this question with focusing on a set of

beliefs that represents ambiguity of missing data as well as ambiguous belief for the imposed

restriction.

As emphasized in Manski (1990), another interesting feature of the intersection bounds is

the refutability property. It means that, if the intersection bounds turn out to be empty, we

can refute the imposed restriction which the operation of intersection relies on. The above

intersection bounds (1.3) possess the refutability property, i.e., there exists a distribution of data

that makes the intersected bounds empty. This paper also investigates how to incorporate

ambiguity of the imposed restriction into posterior inference for the parameter of interest. In

the above missing data example, the parameter of interest Pr (Y = 1) is well-de�ned no matter

whether the exogeneity restriction is correctly speci�ed or not. From the single-prior Bayesian

point of view, it is natural to incorporate uncertainty on validity of exogeneity restriction into

posterior inference by utilizing Bayesian model averaging. This paper explores how to extend

the standard Bayesian model averaging to the multiple prior set-up. We derive and analyze the

class of model-averaged posteriors , and discuss how to use it for the subsequent inference and

decision for the parameter of interest.

The rest of the paper is organized as follows. In Section 2, we introduce our analytical

framework. Section 3 provides the main result of the paper; the Dempster-Shafer updating

rule and the full Bayesian updating rule are implemented and compared. In Section 4, we

analyze point estimation and set inference for the set-identi�ed parameter using the class of

beliefs updated by the Dempster-Shafer rule. Model averaging with ambiguous beliefs on imposed

assumption is discussed in Section 5, and Section 6 concludes. Proofs and lemma are provided

in Appendix A.
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2 Multiple-Prior Framework: Preparation

2.1 Setup and Notation

We lay out the framework of our analysis with focusing on the missing data example given in

Introduction. We divide the population of study into two subpopulations that are indexed by

a value of an assigned binary instrument, e.g., a subpopulation to be surveyed by E-mail and

another to be surveyed by phone. Observations are randomly sampled from each of those. We

use subscript j = 1; 2 to index each subpopulation, and we denote the likelihood function of

each sample by p(Xj j�j); �j 2 �j ; where Xj = (YjiDji; Dji : i = 1; : : : ; nj) denotes observations
generated from subpopulation j (the assigned instrument is Zi = j) and �j is an unknown

parameter vector for subpopulation j. The size of a sample generated from subpopulation j is

denoted by nj . A speci�cation of �j must meet the following two requirements, (i) it pins down

a distribution of data in subpopulation j, and (ii) �j pins down the value of a parameter to which

a cross-population restriction is imposed. In the missing data example, �j can be speci�ed as

follows; for j = 1; 2;

�j =
�
�ydjj : y = 1; 0; d = 1; 0

�
2 �j where �ydjj = Pr (Y = y;D = djZ = j) ;

and �j is four-dimensional probability simplex. A cross-population restriction will be imposed on

the conditional mean of Y given Z, �j � Pr (Y = 1jZ = j), j = 1; 2, which is clearly determined
by �j , �j = hj(�j) = �10jj + �11jj 2 [0; 1].

Non-identi�cation of �j is de�ned formally by observational equivalence: �j and �0j are

observationally equivalent if p(Xj j�j) = p(Xj j�0j) for every Xj (e.g., Rothenberg (1971) and
Kadane (1974)). Observational equivalence implies that there exists a reduction of parameters

gj : �j ! �j such that the likelihood satis�es p(Xj j�j) = p̂ (Xj jgj(�j)) : Reduced-form para-

meters in subpopulation j, which is also called su¢ cient parameters in the statistics literature

(e.g., Barankin (1960), Dawid (1979)), �j � gj(�j) 2 �j is de�ned by a function of �j that maps
each observationally equivalent classes of �j to a point in another parameter space �j . In the

example of missing data with an instrumental variable, the observed data likelihood conditional

on the instrument is written as a function of

�j =
�
�11jj ; �01jj ; �misjj

�
� (Pr (Y = 1; D = 1jZ = j) ;Pr (Y = 0; D = 1jZ = j) ;Pr (D = 0jZ = j)) ;

for j = 1; 2, so,

�j = gj(�j) = (�11jj ; �01jj ; �10jj + �00jj): 2 �j

are reduced-form parameters in subpopulation j, where �j is the three-dimensional probability

simplex. Denote the inverse image of gj (�) by �j : �j � �j . In the missing data example, it is
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written as

�j(�j) =
n
�j 2 �j : �11jj = �11jj ; �01jj = �01jj ; �10jj + �00jj = �misjj

o
:�

�j(�j) : �j 2 �j
	
partition �j into regions on each of which the likelihood for �j is �at irrespec-

tive of observations Xj . Note, by construction, �j(�j) 6= ;:

De�ne the identi�ed set for �j = hj (�j) by the range of hj (�j) when the domain of �j is given

by �j
�
�j
�
� �j :

Hj
�
�j
�
=
�
hj (�j) 2 H : �j 2 �j

�
�j
�	

In the missing data example, we have Hj
�
�j
�
=
h
�11jj ; �11jj + �misjj

i
and H = [0; 1]. This

is identical to the Manski�s bounds (Manski (1989)). In what follows, we use the following

short-hand notations, � � (�1; �2) 2 �1 � �2 � �, � � (�1; �2) 2 �1 � �2 � �, � = h (�) �
(h1 (�1) ; h2 (�2)) = (�1; �2) 2 [0; 1]2, X � (X1; X2), � (�) � [�1 (�1)� �2 (�2)] � �, and H (�) �
[H1 (�1)�H2 (�2)] � [0; 1]2.

In the missing data example, the parameter of ultimate interest is the marginal distribution

of Y , Pr (Y = 1). We shall denote it by � 2 [0; 1], which relates to � by

� = ��1 + (1� �) �2,

where � = Pr (Z = 1). In our development of inference for � , we ignore estimation for � and

assume it is known.

2.2 Multiple Priors and Posterior Lower and Upper Probabilities

We assume that the two samples are independent in the sense that the likelihood of the entire

data X = (X1; X2) is written as

p(Xj�) = p(X1j�1)p(X2j�2):
= p̂(X1jg1 (�1))p̂(X2jg2(�2))
= p̂(X1j�1)p̂(X2j�2)
� p̂(Xj�):

Consider the standard Bayesian inference based on �� a single prior distribution on �. For the

given ��, the mapping between parameter � and the reduced-form parameters � = (g1(�1); g2 (�2))
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yields �� a unique prior distribution of the reduced-form parameters � 2 �. The relationship

between �� and �� is written as, for every measurable subset B � �;

��(B) = �� (� (B)) ;

where � (B) = [�2B [�(�)] : In the presence of reduced-form parameters (su¢ cient parameters),

the posterior distribution of � denoted by F�jX(�) is obtained as (see, e.g., Barankin (1960), Dawid
(1979), Poirier (1998)).

F�jX(A) =

Z
�
��j�(Aj�)dF�jX(�); A � �; (2.1)

where F�jX(�jx) is the posterior distribution of the reduced-form parameter � and ��j�(�j�) is the
conditional prior of � given � implied by the initial speci�cation of ��. The expression (2.1)

shows that the conditional prior for � given � is never be updated by data, and only the prior

information for the reduced form parameters are updated because the value of the likelihood

varies only depends on �. Therefore, the shape of posterior for � remains to be sensitive to the

shape of ��j�(�j�) implied by a speci�cation of �� no matter how many observations are available
in data. This sensitivity of the posterior of � to the conditional prior ��j�(�j�) is also carried
over to the posterior of � = (h1 (�1) ; h2 (�2)) and � if they are set-identi�ed.

Ambiguity stemming from the lack of identi�cation of �1 and �2 can be modelled in the robust

Bayesian framework by introducing multiple priors. A class of priors for � that is suitable to our

context consists of a class of �� that allows for arbitrary conditional prior ��j�(�j�). Formally,

we can formulate such class of priors as, given a single prior for the reduced-form parameter ��,

M(��) =
�
�� : �� (� (B)) = ��(B) for all measurable B � �

	
;

This class of prior is indexed by ��, meaning that the analysis requires a single prior for

the reduced-form parameters �. In other words, we admit a single belief for the distribution of

data. A rational for this is that fear for misspeci�cation or the lack of prior knowledge is less

severe since we know the prior for � will be well updated by data. We can in principle adopt

the existing selection rules for non-informative priors such as the Je¤reys�prior, the reference

prior, and the empirical Bayes rule in order to specify a "reasonably objective" prior for the

reduced-form parameters � (see Kitagawa (2011) for further discussions).

We use the Bayes rule to update each prior �� 2 M(��), and obtain the class of posteriors

of �, which we denote by F�jX :1 We marginalize each posterior of � in F�jX to form the class of

posteriors of �. We denote thus-constructed class of posteriors of � by F�jX ,

F�jX �
�
F�jX : F�jX (�) = F�jX (h (�) 2 �jX) , �� 2M

�
��
�	
; (2.2)

1For the given speci�cation of prior class, the prior-by-prior updating rule and the Dempster-Shafer updating
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where F�jX is a posterior distribution of � 2 [0; 1]2. Note that F�jX depends on prior for �

through a speci�cation of prior class M
�
��
�
, although our notation does not make it explicit.

We summarize the class of posteriors F�jX by its lower envelope and upper envelope, the so-called
posterior lower probability and posterior upper probability : for D � [0; 1]2 ;

posterior lower probability: F�jX� (D) � inf
F�jX2F�jX

�
F�jX(D)

	
;

posterior upper probability: F ��jX (D) � sup
F�jX2F�jX

�
F�jX(D)

	
:

Note that the posterior lower probability and the upper probability in general have the conjuga-

tion property, F�jX�(D) = 1�F ��jX(D
c), which we will frequently refer to in our analysis. Since

the prior class M(��) is designed to represent the collection of prior knowledge (assumptions)

that will never be updated by data, we can interpret the value of posterior lower probability as

"the posterior probability of � 2 D being at least F�jX� (D) irrespective of the unrevisable prior

knowledge." The posterior upper probability is interpreted similarly by replacing "at least" in

the previous statement with "at most."

The next theorem provides closed form expressions of F�jX� (�) and F ��jX (�) and a list of their
analytical properties.

Theorem 2.1 (i) For measurable subset D � [0; 1]2,

F�jX� (D) = F�jX (f� : H(�) � Dg) ;
F ��jX (D) = F�jX (f� : H(�) \D 6= ;g) :

(ii) F�jX� (�) is supermodular and F ��jX (�) is submodular, i.e., for measurable D1, D2 � [0; 1]
2,

F�jX�(D1 [D2) + F�jX�(D1 \D2) � F�jX�(D1) + F�jX�(D2);

F ��jX(D1 [D2) + F
�
�jX(D1 \D2) � F ��jX(D1) + F

�
�jX(D2):

Proof. For a proof of (i), see Theorem 3.1 in Kitagawa (2011). F�jX� (D) and F ��jX (D) are

containment and capacity functional of random closed sets induced by the posterior distribution

of �, so their supermodularity and submodularity are implied by the Choquet Theorem (see, e.g.,

Molchanov (2005)).

rule (the maximum likelihood updating rule) produces the same class of posteriors for �: This is becauseZ
p (Xj�) d�� =

Z
p̂ (Xj�) d��

holds and, therefore, the probability of observing the sample is identical for any �� 2 M
�
��
�
. Hence, the prior

classM
�
��
�
never shrinks even when we apply the Dempster-Shafer (maximum likelihood) updating rule. This

phenomenon is in accordance with the condition for dynamic consistency (rectangurarity property of a prior class)

discovered by Epstein and Schneider (2003).
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Statement (i) of this theorem says the posterior lower and upper probability correspond to

the containment functional and capacity functional of random closed sets (rectangles) in [0; 1]2.

In the Dempster-Shafer theory, such functionals are called a plausibility function and a belief

function, respectively. In the context partial identi�ed model, thus-constructed lower and upper

probability represent the posterior probability law of the identi�ed sets of � induced by the

posterior distribution for the identi�ed parameters in the model. Our multiple-prior framework

based on prior classM
�
��
�
highlights a seamless link among the random set theory, Dempster-

Shafer theory, and set-identi�ed model in econometrics.

3 Updating Ambiguous Posterior Beliefs

So far, there is no discussion about how to impose assumptions on �. Assumptions to be

imposed for � can be in general represented as a subset DA � [0; 1]2 referred to as an assumption
subset. For instance, the instrument exogeneity restriction in the missing data example speci�es

DA = f� : �1 = �2g, which is the 45-degree line in [0; 1]2. We interpret "imposing an assumption
for �" as updating the class of posteriors F�jX with a conditioning set given by assumption subset
DA. What we shall get after updating F�jX is another class of posteriors for �. By marginalizing
each posterior of � in the updated class for the ultimate parameter of interest � = ��1+(1� �) �2;
we obtain the updated class of posteriors for the ultimate parameter of interest � , which we denote

by F� jX;DA . Our goal is to summarize thus-constructed F� jX;DA by its lower probability and use
it for posterior inference of � .

Literatures has proposed several ways to update a class of probability measures (see, e.g.,

Gilboa and Marinacci (2011) for a survey). As of this date, however, there does not appear general

agreement on which update rule should be preferred to others. In this paper, we shall focus on

two major updating rules, the Dempster-Shafer updating rule (Dempster (1967), Shafer (1973)),

synonymously called the maximum likelihood updating rule (Gilboa and Schmeidler (1993)), and

the full Bayesian updating rule (Fagin and Halpern (1991) and Ja¤ray (1992)).2 We do not

intend to provide normative argument on which updating rule should be applied in this context,

whereas we compare them in order to argue which update rule agrees with the common adoption

of the analogy principle (Manski (1988)) in the context of the intersection bound analysis.

Given assumption subset DA, the class of posteriors for � updated by the Demspter-Shafer

updating rule has the following form: write � = t(�) = ��1 + (1� �) �2 2 [0; 1] and let t�1 (�) be
2Axiomatizations for these updating rules are done by Gilboa and Schmeidler (1993) for the Dempster-Shafer

updating rule and by Pires (2002) for the full Bayesian updating rule.
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its inverse image,

FDS� jX;DA �
(
F� jX;DA (�) =

F�jX
�
t�1 (�) \DA

�
F�jX (DA)

: F�jX 2 F��jX

)
;

where F��jX is the class of posteriors of � de�ned by

F��jX �
�
F�jX : F�jX 2 arg max

F�jX2F�jX
F�jX (DA)

�
.

On the other hand, the updated class of posteriors for � with the full Bayesian updating rule is

written as

FFB� jX;DA �
(
F� jX;DA (�) =

F�jX
�
t�1 (�) \DA

�
F�jX (DA)

: F�jX 2 F�jX

)
;

where F�jX is as de�ned in (2.2). A comparison of these de�nitions highlight the di¤erence

between the Dempster-Shafer updating rule and the full Bayesian updating rule. The Dempster-

Shafer rule �rst reduces class of posteriors F�jX by discarding F�jX that fails to put maximal

belief on the assumption subset DA; and, subsequently, applies the standard Bayes rule with

conditioning set DA to each of the remaining ones. By contrast, the full Bayesian updating rule

retains all the posteriors in F�jX irrespective of what value F�jX 2 F�jX puts on DA, and applies
the standard Bayes rule to all members in F�jX .

With a metaphor of multiple experts as used in Gilboa and Marinacci (2011), the di¤erence

between the two updating rules in our context can be illustrated as follows. Consider a situation

that we consult multiple experts about their opinion on � . Assume they all agrees with the

single prior for �, but each of them has di¤erent belief for non-identi�ed part of the model, i.e.,

��j� di¤ers among them. If we decide to "assume DA" and to obtain updated opinions by

applying the Dempster-Shafer rule, what we actually do is to collect the updated belief of only

those experts who are most optimistic on DA, and, on the other hand, we completely ignore the

opinions of the rest of experts. Such stringent selection of multiple experts corresponds to the

reduction of posterior class to F��jX . If we "assume DA" and apply the full Bayesian updating

rule, we do ask the opinions (conditional on DA is true) of all the experts no matter how much

they believe in DA.

The next theorem is the main result of this paper that provides the lower probability of

FDS� jX;DA and F
FB
� jX;DA .

Theorem 3.1 Let DA be the assumption subset corresponding to the instrument exogeneity re-
striction, DA = f� : �1 = �2g, and let F�jX be as obtained in (2.2). Denote the intersected

identi�ed set by H\ (�) � [H1 (�1) \H2 (�2)] � [0; 1].

10



(i)

F�jX� (DA) = F�jX (f� : H1(�1) and H2 (�2) are singletons and H1 (�1) = H2 (�2)g)
F ��jX (DA) = F�jX (f� : H\ (�) 6= ;g) ;

(ii) If F ��jX (DA) is bounded away from zero, then the posterior lower probability for � induced

by the Dempster-Shafer updating rule is well de�ned and given by, for T � [0; 1],

FDS� jX;DA�(T ) � inf
n
F� jX;DA (T ) : F� jX;DA 2 F

DS
� jX;DA

o
= F�jH\(�) 6=;;X (H\ (�) � T ) : (3.1)

where F�jH\(�) 6=;;X (�) is a posterior distribution of � 2 � conditional on that H\ (�) 6= ;.
(iii) If F�jX� (DA) is bounded away from zero, then the posterior lower probability for �

induced by the full Bayesian updating rule is well-de�ned and given by, for T � [0; 1],

FFB� jX;DA�(T ) � inf
n
F� jX;DA (T ) : F� jX;DA 2 F

FB
� jX;DA

o
=

F�jX (H1(�1) = H2 (�2) = f�g � T )
F�jX (H\ (�) \ T c 6= ;) + F�jX (H1(�1) = H2 (�2) = f�g � T )

:

(iv) If FDS� jX;DA�(�) and F
FB
� jX;DA�(�) are well-de�ned, i.e., F�jX� (DA) is bounded away from

zero, then FDS� jX;DA�(�) � F
FB
� jX;DA�(�) holds for every sample X.

Proof. See Appendix A.

Statement (i) shows that the posterior lower and upper probabilities of f� 2 DAg (i.e., cred-
ibility for the exogeneity restriction) correspond to the posterior probabilities that the two iden-

ti�ed sets become identical singletons and that they intersect, respectively. Intuition of this

result is that, given the prior for �, most optimistic belief for exogeneity restriction �1 = �2

is formed by the posterior belief that the empirical evidence is compatible with �1 = �2, i.e.,

H1(�1) \ H2 (�2) 6= ;: On the other hand, the most conservative belief for �1 = �2 is formed

by the posterior belief that the empirical evidence implies �1 = �2, i.e., H1(�1) and H2 (�2)

are identical singletons. These two extreme ways of forming belief determine the range of the

posterior beliefs for �1 = �2.

The second result (ii) clari�es that updating F�jX by the Dempster-Shafer rule yields the

lower probability for � that represents the posterior probability law of nonempty intersected

identi�ed sets. If we view the posterior distribution of � as the source of belief in the language

of Dempster-Shafer theory, this result coincides with the aggregation rule of the belief function

proposed in Dempster (1967a) and Shafer (1973).

In statement (iii), the condition of F�jX� (DA) > 0 needed for the full Bayesian updating rule

requires that the prior for �must put a positive probability to the event f� : H1(�1) and H2 (�2) are singletons and H1 (�1) = H2 (�2)g.

11



Since this event has Lebesgue measure zero in �, we are not able to apply the full Bayesian up-

dating rule if �� is absolutely continuous with respect to the Lebesgue measure. By contrast,

implementability of the Dempster-Shafer updating rule requires a much weaker condition for ��.

It is known that FFB� jX;DA�(T ) is supermodular (Proposition 2.5 in Denneberg (1994) whose proof

refers to Sundberg and Wagner (1992) and Ja¤ray (1992)), while, being di¤erent from FDS� jX;DA�(�),
FFB� jX;DA�(�) cannot be interpreted as a containment functional of some random sets.

Which of the above update rules would match with econometrician�s practice of "imposing

an assumption" in a set-identi�ed model? It is common among econometricians to develop an

estimation and inference procedure by examining the distribution of a "sample analogue" of the

identi�ed estimand. This is also the case in partially identi�ed models with intersection bounds:

investigation of the distribution of the sample analogue of the lower and upper bounds of the

true identi�ed set is considered as a stepping-stone to inference for set-identi�ed parameters.

As shown in the above theorem, drawing posterior inference for � based on the Dempster-Shafer

updated class is equivalent to drawing probabilistic judgement based on a posterior probability law

of nonempty intersected identi�ed sets H\ (�). In contrast, such interpretation is not available

if we employ the full Bayesian updating. We therefore think, from the multiple-prior Bayes

perspective, what econometricians mean for "adding an assumption" is in line with updating

(conditioning) ambiguous beliefs by the Dempster-Shafer updating rule.

4 Set Inference and Decision for � Based on Ambiguous Beliefs
FDS� jX;DA

4.1 Posterior Lower Credible Region

One di¢ culty of the lower-probability-based inference is that it is not possible to visualize it as

we do for a posterior density in the standard Bayesian inference. To overcome this problem,

Kitagawa (2011) proposes to report contour sets of the lower probability referred to as the lower

credible region. The general de�nition of the lower credible region C1��� of a lower probability

for � 2 [0; 1], say F� (�), with credibility level (1� �) 2 [0; 1] is given by

C1��� � argmin
C2C

V ol(C) (4.1)

s.t. F�(C) � 1� �;

where V ol(C) is the volume of subset C in terms of the Lebesgue measure, and C is a family of
subsets in [0; 1] over which the volume minimizing credible region is searched. When F�(�) is
given by FDS� jX;DA�(�), we can interpret C1��� as a smallest set on which posterior credibility for �
is at least (1� �) when posterior beliefs for � vary over FDS� jX;DA . As Kitagawa (2011) shows, it

12



is feasible to compute the thus-de�ned posterior credible regions at each credibility level 1 � �;
when the lower probability corresponds to a containment functional of convex random intervals,

so, we can readily plot the contour sets of FDS� jX;DA�(�).
To obtain the lower credible region of FDS� jX;DA�(�), what we want to compute is a smallest

subset C � [0; 1] that satis�es

F�jH\(�) 6=;;X (H\ (�) � C) � 1� �: (4.2)

A computational algorithm for computing it is summarized as follows. Let f�s : s = 1; : : : ; Sg
be random draws of � from its posterior, and let f�s�gS

�

s�=1 be the subset of f�s : s = 1; : : : ; Sg
such that H\ (�s�) is nonempty. De�ne a distance from � 2 H to H\ (�s�) by

d (� ;H\(�s�)) � sup
� 02H\(�s� )

���� � � 0��	 .
At each � 2 [0; 1], we compute the empirical (1� �)-th quantile of fd(� ;H\(�s�))gS

�

s�=1, and we

�nd �1��� 2 [0; 1] that minimizes it. The volume minimizing posterior lower credible region

C1��� is approximated by the interval centered at �1��� with radius equal to the minimized

value of the empirical (1� �)-th quantile.
In contrast to FDS� jX;DA�(�), F

FB
� jX;DA�(�) cannot be computed by a containment probability of

some random sets, so the above algorithm is not applicable for computing the posterior lower

credible regions based on FFB� jX;DA�(�). We leave how to compute them for future research.

4.2 Gamma Minimax Decision with Ambiguous Beliefs

In this section, we derive point estimation for the parameter of interest � = ��1 + (1� �) �2 by
solving a statistical decision problem. Speci�cally, we formulate the conditional decision problem

with adopting the posterior gamma-minimax criterion (see, e.g., Berger (1985, p205), Betro

and Ruggeri (1992), and Vidakovic (2000)). As Kitagawa (2011) demonstrates, an algorithm

to approximate a solution of the gamma minimax decision problem is available when a lower

probability of a class of posteriors is a containment functional of random sets. Along that

approach, this section solves the gamma-minimax problem when a class of posteriors for � is

given by FDS� jX;DA .
Let a 2 [0; 1] be an action, which is interpreted as reporting a particular point estimate for

� . Given action a is taken and �0 being the true state of nature, a loss function L(�0; a) :

[0; 1] � [0; 1] ! R+ yields how much cost the decision maker owes by taking such action. The

posterior risk conditional on exogeneity restriction DA = f� : �1 = �2g is de�ned by

�(a; F� jX;DA) �
Z 1

0
L(� ; a)dF� jX;DA(�) (4.3)
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where the second argument F� jX;DA represents the dependence of the criterion on posterior for

� . Our posterior analysis deals with multiple posterior distributions in FDS� jX;DA , so a class of

posterior risks,
n
�(a; F� jX;DA) : F� jX;DA 2 FDS� jX;DA

o
will be considered.

De�nition 4.1 De�ne the posterior upper risk over F� jX;DA 2 FDS� jX;DA by

��(a;FDS� jX;DA) � sup
n
�(a; F� jX;DA) : F� jX;DA 2 F

DS
� jX;DA

o
;

A posterior gamma-minimax action with the class of posteriors FDS� jX;DA is an action that mini-
mizes ��(a;FDS� jX;DA).

The next proposition shows that these posterior gamma minimax actions can be obtained by

minimizing certain objective functions that can be approximated if draws of � from its posterior

are available.

Proposition 4.1 Assume loss function L(� ; a) is nonnegative. The gamma-minimax action

with class of posteriors FDS� jX;DA solves

a� = arg min
a2[0;1]

Z
�

"
sup

�2H\(�)
L(� ; a)

#
dF�jH\(�) 6=;;X (�) ; (4.4)

Proof. A proof proceeds by writing the gamma minimax criteria in the form of Choquet expec-

tations. See the proof of Proposition 4.1 in Kitagawa (2011) for further details.

The expression of (4.4) shows that the posterior gamma-minimax criterion conditional on

exogeneity restriction DA is written as the expectation of the worst-case loss sup�2H\(�) L(�; a)

when the bounds of � are nonempty intersection bounds H\ (�). The supremum part comes from

the researcher�s consideration of the worst-case scenario associated with ambiguity of � : what the

researcher knows about � is only that it lies within the intersected identi�ed set H\ (�) ; but he

does not have any probabilistic judgement on where the true � is likely to be within H\ (�). On

the other hand, the expectation with respect to F�jH\(�) 6=;;X (�) represents posterior uncertainty
for the nonempty identi�ed set H\ (�).

A closed form expression of a� is not in general available, while this proposition suggests a

simple numerical algorithm to approximate it. Let f�sgSs=1 be S random draws of � from its

posterior F�jX(�). Among these S draws of �, let f�s�gS
�

s�=1 be the subset of S draws that yield

nonempty intersection bounds H\ (�s) 6= ;. Then the posterior upper risk appearing in (4.4)

can be approximated by

1

S�

S�X
s�=1

sup
�2H\(�s� )

L(� ; a).

So, an approximation of a� is obtained by numerically �nding a minimizer of this function.
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5 Extensions and Discussions

5.1 Model Averaging with Multiple Priors

In some intersection bound analysis, we can refute the imposed assumptions (given the complete

knowledge of distribution of data) if the intersection bounds become empty. As we can see

from the expression of (3.1), the lower probability (ambiguous beliefs) updated by the Dempster-

Shafer rule focuses only on the nonempty identi�ed sets (H\ (�) 6= ;) by leaving the empty
ones out of the conditioning event in the probability calculation. In the example of missing

data, the parameter of interest � = Pr (Y = 1) is well de�ned no matter whether �1 = �2 is

valid or not. Hence, even when �1 = �2 is refuted (H (�) = ;), we can still construct the
identi�ed set for � without invoking the exogeneity restriction. In such situation, we may

be interested in incorporating uncertainty/ambiguity about �1 = �2 into posterior inference on

� . One widely applied Bayesian treatment for incorporating model or assumption uncertainty

is model averaging: take the weighted average of the posterior distribution conditional on the

assumption being valid and the one conditional on the restriction not-being valid with the weight

corresponding to the posterior probability for validity of the restriction. In what follows, we

examine whether such model averaging idea can be formulated in the intersection bound analysis

with refutability property.

Consider a posterior distribution of � = t (�) = ��1 + (1� �) �2,

F� jX(T ) = F�jX
�
t�1 (T )

�
= F�jX;DA

�
t�1 (T )

�
F�jX (DA) + F�jX;Dc

A

�
t�1 (T )

�
F�jX (D

c
A) :

The results of Theorem 3.1 concerns the lower probability of F�jX;DA
�
t�1 (T )

�
appearing in the

�rst term. The next theorem, in contrast, concerns the lower probability of F� jX(T ) appearing in

the left hand side. In order to state the result, de�ne H� (�) as the weighted average (Minkowski

sum) of H1 (�1) and H1 (�2) with weight �; i.e.,

H� (�) = f��1 + (1� �) �2 : �1 2 H1 (�1) , �2 2 H2 (�2)g : (5.1)

In the missing data example, H� (�) is nothing else than Manski (1989)�s bounds without an

instrument,

H� (�) =
h
��11j1 + (1� �)�11j2; �

h
�11j1 + �misj1

i
+ (1� �)

h
�11j2 + �misj2

ii
= [Pr (Y = 1; D = 1) ;Pr (Y = 1; D = 1) + Pr (D = 0)] :

Theorem 5.1 (i) Let H\ (�) = H1 (�1) \ H2 (�2) and H� (�) be as de�ned in (5.1). Assume

�� (f� : H\ (�) 6= ;g) > 0. The lower probabilities of F� jX (T ) ; T � [0; 1], when posterior F�jX
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varies over F��jX and F�jX are

FDS� jX�(T ) � inf
n
F� jX (T ) : F�jX 2 F��jX

o
= F�jH\(�) 6=;;X (H\ (�) � T )F�jX (H\ (�) 6= ;)

+F�jH\(�)=;;X (H� (�) � T )F�jX (H\ (�) = ;) ;
FFB� jX�(T ) � inf

�
F� jX (T ) : F�jX 2 F�jX

	
= F�jX (H� (�) � T ) ;

respectively.

(ii) FDS� jX�(�) � F
FB
� jX�(�) holds for every sample X:

Proof. See Appendix A.

The expression of FDS� jX�(�) given in (i) shows that when the researcher imposes the exogene-
ity restriction by implementing the Dempster-Shafer updating rule, then FDS� jX�(T ), the resulting

lower probability for � , is obtained as a mixture of the two containment functionals of random

sets: the containment functional of the nonempty intersection bounds H\ (�) and the contain-

ment functional of the averaged bounds H� (�) ; where the mixture weight corresponds to the

probability of having nonempty intersections and empty intersections, respectively. Intuition

behind this result can be described as follows. When H\ (�) 6= ;, meaning that empirical evi-
dence does not contradict the exogeneity restriction, we then form a belief that the exogeneity

restriction is true and � must be contained in the intersection bounds H\ (�), whereas, we would

form a belief that the exogeneity restriction is wrong and � is contained in H� (�) only when the

empirical evidence implies violation of the exogeneity restriction (H\ (�) = ;). The weighted

average of these two ways to form a belief for � is represented by FDS� jX�(�) obtained in the above
theorem.

The expression of the lower probability of F� jX (�) using all the beliefs in F�jX instead of the
reduced class F��jX results in the ambiguous beliefs for � that we would obtain by ignoring any

information of the instrument. This contrast between FDS� jX�(T ) and F
FB
� jX�(T ) combined with the

result of (ii) show that, when we summarize posterior beliefs for � in terms of the lower probability

of F� jX rather than F� jX;DA ; the instrument helps increase informativeness of statistical inference

only through the reduction of F�jX to a smaller class F��jX .

By noting that FDS� jX�(�) is seen as a containment functional of the mixture of random sets,

H\ (�) and H� (�), we can use the procedure introduced in Section 4 for computing the posterior

lower credible region and the gamma minimax action. Let f�sgSs=1 be S random draws of � from
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the posterior F�jX(�). For each draw of �, construct

H� (�s) =

(
H\ (�s) if H\ (�s) 6= ;
H� (�s) if H\ (�s) = ;

s = 1; : : : ; S: (5.2)

By replacing the simulated intersection bounds fH\ (�s�) : s� = 1; : : : ; S�g with thus-generated
random sets fH� (�s) : s = 1; : : : ; Sg in the algorithm of Section 4, we can obtain approximates

of the lower credible regions based on FDS� jX�(�) and an associated gamma minimax action for � .

6 Conclusion

From the multiple prior Bayes perspective, this paper proposes inference and decision for a

partially identi�ed parameter whose identi�ed set is constructed by intersecting the two identi�ed

sets. The focus of our analysis is what kind of robust Bayes framework can justify the operation

of taking the intersection of the two identi�ed sets even in the �nite sample situation. By

treating "imposing an assumption" as "updating ambiguous belief," we implement the Dempster-

Shafer updating rule and the full Bayesian updating rule and derive the lower probabilities of the

updated class of beliefs for each case. A comparison between them shows that the Dempster-

Shafer updating rule yields a posterior probability law of the intersected identi�ed sets, while

the full Bayesian updating rule does not. This leads us to a claim that the Dempster-Shafer

updating rule somewhat mimics a naive implementation of the analogy principle in the context

of the intersection bound analysis.

It is worth noting that, being di¤erent from Chernozhukov, Lee, and Rosen (2009), our

lower probability inference does not raise any concern about the bias correction for the lower

and upper bound estimators. In case that the true identi�ed sets to be intersected are close

each other, the sample analogue of the lower and upper bounds of the intersected identi�ed sets

tend to be estimated with an inward bias, and the bias correction is therefore needed in order

to ensure the correct frequentist coverage. Our set estimation output (the volume minimizing

lower credible region) does not yield any of such bias correction arguments, and, as a result, the

volume minimizing posterior credible region can lead to a smaller frequentist coverage than the

desired nominal coverage probability. This indicates that the degree of belief represented by the

lower probability of a class of posteriors updated by the Dempster-Shafer rule is fundamentally

di¤erent from the frequentist coverage probability for the true identi�ed set.
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Appendix

A Lemma and Proofs

A.1 Theorem 3.1

A proof of Theorem 3.1 given below applies the formulae of the Dempster-Shafer updating rule

and the full Bayesian updating rule to the class of probability measures F�jX constructed in (2.2).
See Denneberg (1994) for an excellent review and proofs for these formulae.

Proof of Theorem 3.1. Statement (i) is a corollary of Theorem 2.1 (i),

F ��jX (DA) = F�jX (f� : H (�) \DA 6= ;g)
= F�jX (f� : 9�0 2 [0; 1] s.t. �0 2 H (�1) and �0 2 H (�2)g)
= F�jX (f� : H\ (�) 6= ;g) :

As for the lower probability,

F�jX� (DA) = F�jX (f� : H (�) � DAg)
= F�jX� (DA) = F�jX (f� : H1(�1) and H2 (�2) are singletons and H1 (�1) = H2 (�2)g) ;

where the second line follows because a rectangular set H (�) = H1 (�1) � H2 (�2) in [0; 1]2 is
contained in the 45-degree line if and only if H1(�1) and H2 (�2) are singletons and H1 (�1) =

H2 (�2).

(ii) Since F ��jB (�) is submodular (Theorem 2.1 (ii)) and F ��jX (DA) > 0 is assumed, Theorem

3.4 in Denneberg (1994) applies, and the upper probability of FDS� jX;DA , de�ned by F
DS�
� jX;DA (�) =

sup

�
F�jX(t�1(�)\DA)

F�jX(DA)
: F�jX 2 F��jX

�
; is obtained by

FDS�� jX;DA (�) =
F ��jX

�
t�1 (�) \DA

�
F ��jX (DA)

:

Note by Theorem 2.1 (i), for T � [0; 1] ;

F ��jX
�
t�1 (T ) \DA

�
= F�jX

�
H (�) \ t�1 (T ) \DA 6= ;

�
= F�jX (t (H (�) \DA) \ T 6= ;)
= F�jX (H\ (�) \ T 6= ;) ;

where the third line follows by noting t (H (�) \DA) = H\ (�) holds. Combining this with the
statement of (i) yields

FDS�� jX;DA (T ) =
F�jX (H\ (�) \ T 6= ;)
F�jX (H\ (�) 6= ;)

= F�jH\(�) 6=;;X (H\ (�) \ T 6= ;) :
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Conjugation of the upper and lower probabilities shows

FDS� jX;DA� (T ) = 1� FDS�� jX;DA (T
c)

= 1� F�jH\(�) 6=;;X (H\ (�) \ T
c 6= ;)

= F�jH\(�) 6=;;X (H\ (�) � T ) :

(iii) Given submodularity of F ��jB (�) and F�jX� (DA) > 0; Proposition 2.1 and Theorem 2.4

in Denneberg (1994) yield a closed form expression of the upper probability of FFB� jX;DA ,

FFB�� jX;DA (�) � sup

(
F�jX

�
t�1 (�) \DA

�
F�jX (DA)

: F�jX 2 F�jX

)

=
F ��jX

�
t�1 (�) \DA

�
F ��jX (t

�1 (�) \DA) + F�jX� ([t�1 (�)]c \DA)
:

By conjugation of upper and lower probability and Theorem 2.1 (i), for T � [0; 1] ;

FFB� jX;DA� (T ) = 1� FFB�� jX;DA (T
c)

=
F�jX�

��
t�1 (T c)

�c \DA�
F ��jX (t

�1 (T c) \DA) + F�jX� ([t�1 (T c)]c \DA)

=
F�jX�

�
t�1 (T ) \DA

�
F ��jX (t

�1 (T c) \DA) + F�jX� (t�1 (T ) \DA)

=
F�jX

�
H (�) �

�
t�1 (T ) \DA

��
F�jX (H\ (�) \ T c 6= ;) + F�jX (H (�) � [t�1 (T ) \DA])

:

Note F�jX
�
H (�) �

�
t�1 (T ) \DA

��
= F�jX (H1(�1) = H2 (�2) = f�g � T ) ; and therefore the

conclusion follows.

(iv) is obvious since F��jX � F�jX .

A.2 Theorem 5.1

For a proof of Theorem 5.1, we introduce the following notations.

M� ���� � ��� 2M �
��
�
: F�jX 2 arg max

F�jX2F�jX
F�jX (DA)

�
:

In words,M� ���� is a set of priors for � that belongs toM �
��
�
and the implied posterior for

� puts maximal probability on DA = f� : �1 = �2g. M� ���� can be also written as
M� ���� = argmax�F�jX (J) : �� 2M �

��
�	
;

where J � h�1(DA) =
[

�02[0;1]

�
h�11 (�0)� h�11 (�0)

�
� �. This subclass appears to depend on

data X by its construction, while it actually does not because max
�
F�jX (J) : �� 2M

�
��
�	
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is attained by specifying conditional prior of �j� as ��j� = 1 f� (�) \ J 6= ;g. (Lemma A.3 of

Kitagawa (2011)). Note also that f� 2 � : H\ (�) 6= ;g is equivalent to f� 2 � : � (�) \ J 6= ;g,
because

[�1 (�1)� �2 (�2)] \
[

�02[0;1]

�
h�11 (�0)� h�11 (�0)

�
6= ;

occurs if and only if there exist some �0 2 [0; 1] such that

[�1 (�1)� �2 (�2)] \
�
h�11 (�0)� h�12 (�0)

�
6= ;;

and, by noting Hj
�
�j
�
= hj

�
�j
�
�j
��
, this is also equivalent to that there exist some �0 2 [0; 1]

such that

�0 2 H1 (�1) and �0 2 H2 (�2) .

To prove the theorem, we introduce the following notations, for A measurable subset in �,

�A = f� : � (�) \A 6= ;g ;
�cA = f� : � (�) \A = ;g ;

where f�A;�cAg partitions �. In particular, if A = J , we have by the above argument

�J = f� : � (�) \ J 6= ;g = f� : H\ (�) 6= ;g ;
�cJ = f� : � (�) \ J = ;g = f� 2 � : H\ (�) = ;g :

We shall prove Theorem 5.1 using the following two lemma.

Lemma A.1 If probability measure on �; ��, belongs to class of priorsM� ���� ; then
�� (� (�J) \ Jc) = 0:

Proof. By Lemma A.3 and Theorem 3.1 of Kitagawa (2011), the upper bound of F�jX(J) when

a prior varies over M
�
��
�
is attained (�� 2 M

�
��
�
) if and only if �� has conditional prior

distribution

�� (J j�) = 1 f� (�) \ J 6= ;g = 1�J (�) , ��-almost surely. (A.1)

Therefore, if �� 2M� ����,
�� (� (�J) \ Jc) = �� (� (�J))� �� (� (�J) \ J)

=

Z
�j

h
1� ��j� (J j�)

i
d��

=

Z
�
[1�J (�)� 1�J (�)] d��

= 0:
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Lemma A.2 Let A be a measurable subset of �.

sup
��2M�(��)

F�jX (A) = F�jX (f� : � (�) \ J \A 6= ;g \ �J)

+F�jX (f� : � (�) \A 6= ;g \ �cJ)

Proof. Fix A 2 A throughout the proof. We �rst show an inequality: for every �� 2M� ����
�� (Aj�) � 1�A\J (�) 1�J (�) + 1�A (�) 1�cJ (�) (A.2)

holds ��-almost surely. To show this, let B 2 B be an arbitrary subset in �, and considerZ
B
�� (Aj�) d�� = �� (A \ � (B))

= �� (A \ � (B) \ � (�J) \ � (�A\J))
+�� (A \ � (B) \ � (�J) \ � (�cA\J))
+�� (A \ � (B) \ � (�cJ) \ � (�A))
+�� (A \ � (B) \ � (�cJ) \ � (�cA)) :

The �rst term is bounded above by �� (� (B) \ � (�J) \ � (�A\J)). As for the second term, by
Lemma A.1,

�� (A \ � (B) \ � (�J) \ � (�cA\J))
= �� ([A \ J ] \ � (B) \ � (�J) \ � (�cA\J))
= 0 ( * [A \ J ] \ � (�cA\J) = ;).

The third term is bounded above by �� (� (B) \ � (�cJ) \ � (�A)) and the fourth term is zero

because A \ � (�cA) = ;. Hence,Z
B
�� (Aj�) d�� � �� (� (B) \ � (�J) \ � (�A\J)) + �� (� (B) \ � (�cJ) \ � (�A))

=

Z
B

�
1�A\J (�) 1�J (�) + 1�A (�) 1�cJ (�)

�
d��:

Since B 2 B is arbitrary, we obtain inequality (A.2).
In the next step, we show that there exists ��� 2 M� ���� that attains the upper bound

given in (A.2). To construct ���, let �A (�) be a �-valued function de�ned on [�
c
J \ �A] such

that �A (�) 2 [� (�) \A] ; ��-almost every � 2 [�cJ \ �A] : Similarly, let �A\J (�) be a �-valued
function de�ned on [�J \ �A\J ] such that �A\J (�) 2 [� (�) \A \ J ] holds for ��-almost every
� 2 [�J \ �A\J ] : Such �A (�) exists since [� (�) \A] is nonempty whenever � 2 [�cJ \ �A].
Similarly, �A\J (�) exists since [� (�) \A \ J ] is nonempty whenever � 2 [�J \ �A\J ] (Theorem
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2.13 of Molchanov (2005)). Let �� be a probability measure belonging toM� ����, and de�ne
��� a probability measure on � by, for ~A � �,

���

�
~A
�

=

(i)z }| {
��

�
~A \ � (�cJ) \ � (�cA)

�
+

(ii)z }| {
��

�n
�A (�) 2 ~A

o
\ �cJ \ �A

�
+��

�
~A \ � (�J) \ � (�cA\J)

�
| {z }

(iii)

+��

�n
�A\AJ (�) 2 ~A

o
\ �J \ �A\J

�
| {z }

(iv)

: (A.3)

Thus constructed ��� (�) belongs toM� ���� : To check this, we will show ��� (J j�) = 1 f� (�) \ J 6= ;g =
1�J (�) because this is a necessary and su¢ cient condition for �

�
� 2 M

�
��
�
(Lemma A.3 and

Theorem 3.1 of Kitagawa (2011)). For B � �, let ~A = � (B) \ J . We have (i) = 0 because

J \ � (�cJ) = ;. As for (ii), by the de�nition of �cJ , no � 2 [�cJ \ �A] satis�es �A (�) 2 J . So,
(ii) is zero. For (iii), by Lemma A.1 and �� 2M� ����, it holds

�� (� (B) \ J \ � (�J) \ � (�cA\J)) = �� (� (B) \ � (�J) \ � (�cA\J))
= �� (B \ �J \ �cA\J) ;

where � (B)\� (�J)\� (�cA\J) = � (B \ �J \ �cA\J) holds because f� (�) : � 2 �g is a partition
of �. The fourth term (iv) becomes �� (B \ �J \ �A\J) by the construction of �A\J (�). By

combining all these, we have

��� (J \ � (B)) = �� (B \ �J \ �cA\J) + �� (B \ �J \ �A\J)

= �� (B \ �J) =
Z
B
1�J (�) d��,

implying the desired claim, ��� (J j�) = 1��1=�2 (�) ; ��-almost surely. Hence, ��� constructed in

(A.3) belongs toMopt
�
��
�
.

In the �nal step, we will show that ��� constructed in (A.3) achieves the upper bound of (A.2).

Let us set ~A = � (B) \ A for B � �. The �rst term (i) returns zero because A \ � (�cA) = ;.
Regarding (ii), we note that by the construction of �A (�), we have f�A (�) 2 [� (B) \A]g if and
only if f� 2 [B \ �cJ \ �A]g, leading to (ii) = �� (B \ �J \ �A). The third term (iii) is zero by

Lemma A.1, because

�� (� (B) \A \ � (�J) \ � (�cA\J))
= �� (� (B) \A \ J \ � (�J) \ � (�cA\J))
= 0 ( * A \ J \ � (�cA\J) = ;).
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As for the fourth term (iv), f�A\J (�) 2 [� (B) \A]g if and only if f� 2 [B \ �J \ �A\J ]g :
Hence, by summing up these, we obtain

��� (� (B) \A) = �� (B \ �cJ \ �A) + �� (B \ �J \ �A\J) ;

implying that ��� have conditional distribution,

��� (Aj�) = 1�A\J (�) 1�J (�) + 1�A (�) 1�cJ (�) ;

��-almost surely, which achieves the upper bound given in (A.2).

Recall the expression of the posterior F�jX (A) =
R
� ��j� (Aj�) dF�jX (Equation (2.1)). The

above argument has shown that the attainable upper bound of ��j� (Aj�) when �� 2M� ���� is
(A.2). Therefore,

sup
��2M�(��)

F�jX (A) =

Z
�

�
1�A\J (�) 1�J (�) + 1�A (�) 1�cJ (�)

�
dF�jX

= F�jX (f� : � (�) \ J \A 6= ;g \ �J)
+F�jX (f� : � (�) \A 6= ;g \ �cJ) :

Proof of Theorem 5.1. We note that the range of � = � (�) � �h1 (�1)+ (1� �)h2 (�2) when
the domain is � 2 � (�) is given by H� (�), where � (�) : �! [0; 1] and denote ��1 (�) be its inverse
image. Using this result, we �rst derive FFB� jX�(�). By applying Theorem 3.1 (ii) in Kitagawa

(2011), the posterior lower probability of � when prior �� varies overM
�
��
�
is obtained as

FFB� jX�(�) = inf
��2M(��)

F� jX (T ) = F�jX (f� (� (�)) � Tg)

= F�jX (fH� (�) � Tg) :

Next, consider the upper probability under the class of priors M� ���� : By applying Lemma
A.2, it is given by

sup
��2M�(��)

F� jX (T ) = sup
��2M�(��)

F�jX
�
��1 (T )

�
= F�jX

��
� : � (�) \ J \ ��1 (T ) 6= ;

	
\ �J

�
+ F�jX

��
� : � (�) \ ��1 (T ) 6= ;

	
\ �cJ

�
= F�jX (f� : � (� (�) \ J) \ T 6= ;g \ �J) + F�jX (f� : � (� (�)) \ T 6= ;g \ �cJ) :

Since � (� (�) \ J) = t (H\ (�)) = H\ (�), the �rst term in the sum is F�jX (f� : H\ (�) \ T 6= ;g \ �J).
As for the second term, F�jX (f� : � (� (�)) \ T 6= ;g \ �cJ) = F�jX (f� : H� (�) \ T 6= ;g \ �cJ).
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Therefore, the upper probability becomes

sup
��2M�(��)

F� jX (T ) = F�jX (f� : H\ (�) \ T 6= ;g \ fH\ (�) 6= ;g)

+F�jX (fH� (�) \ T 6= ;g \ fH\ (�) = ;g)
= F�jH\(�) 6=;;X (fH\ (�) \ T 6= ;g jH\ (�) 6= ;)F�jX (fH\ (�) 6= ;g)

+F�jH\(�)=;;X (fH� (�) \ T 6= ;g jH\ (�) = ;)F�jX (fH\ (�) = ;g) :

The lower probability FDS� jX�(T ) follows by duality with the upper probability.
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