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Abstract

In inference for set-identi�ed parameters, Bayesian probability statements about

unknown parameters do not coincide, even asymptotically, with frequentist�s con�dence

statements. This paper aims to smooth out this disagreement from a robust Bayes

perspective. I show that a class of prior distributions exists, with which the posterior

inference statements drawn via the lower envelope (lower probability) of the class of

posterior distributions asymptotically agrees with frequentist con�dence statements for

the identi�ed set. With this class of priors, the statistical decision problems, including

the point and set estimation of the set-identi�ed parameters, are analyzed under the

posterior gamma-minimax criterion.
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1 Introduction

In inferring identi�ed parameters in a parametric setup, the Bayesian probability statements

about unknown parameters are found to be similar, at least asymptotically, to the frequentist

con�dence statements about the true value of the parameters. In partial identi�cation

analyses initiated by Manski (1989, 1990, 2003, 2007), such asymptotic harmony between

the two inference paradigms breaks down (Moon and Schorfheide (2011)). The Bayesian

interval estimates for the set-identi�ed parameter are shorter, even asymptotically, than

the frequentist ones, and they asymptotically lie inside the frequentist con�dence intervals.

Frequentists might interpret this phenomenon, Bayesian over-con�dence in their inferential

statements, as being �ctitious. Bayesians, on the other hand, might consider that the

frequentist con�dence statements, which apparently lack posterior probability interpretation,

raise some interpretative di¢ culty once data are observed.

The primary aim of this paper is to smooth out the disagreement between the two schools

of statistical inference by applying the perspective of a robust Bayes inference, where one

can incorporate partial prior knowledge into posterior inference. While there is a variety of

robust Bayes approaches, this paper focuses on a multiple prior Bayes analysis, where the

partial prior knowledge, or the robustness concern against prior misspeci�cation, is modeled

with a class of priors (ambiguous belief). The Bayes rule is applied to each prior to form a

class of posteriors. The posterior inference procedures considered in this paper operate on

the class of posteriors by focusing on their lower and upper envelopes, the so-called posterior

lower and upper probabilities.

When the parameters are not identi�ed, the prior distribution of the model parameters

can be decomposed into two components: one that can be updated by data (revisable prior

knowledge) and one that can never be updated by data (unrevisable prior knowledge). Given

that the ultimate goal of the partially identi�cation analysis is to establish a "domain of

consensus" (Manski (2007)) among the set of assumptions that data are silent about, a

natural way to incorporate this agenda into the robust Bayes framework is to design a prior

class in such a way that it shares a single prior distribution for the revisable prior knowledge,

but allows for arbitrary prior distributions for the unrevisable prior knowledge. Using this

prior class as a prior input, this paper derives the posterior lower probability and investigates
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its analytical property. For an interval-identi�ed parameter case, I also examine whether

the inferential statements drawn via the posterior lower probability can asymptotically have

any type of valid frequentist coverage probability in the partially identi�ed setting.

Another question this paper examines is, with such class of priors, how to formulate and

solve statistical decision problems including point estimation of the set-identi�ed parame-

ters. I approach this question by adapting the posterior gamma-minimax analysis, which

can be seen as a minimax analysis with the multiple posteriors, and demonstrate that the

proposed prior class leads to an analytically tractable and numerically solvable formulation

of the posterior gamma-minimax decision problem, provided that the identi�ed set for the

parameter of interest can be computed for each possible distribution of data.

1.1 Related Literature

Estimation and inference in partially identi�ed models are a growing research area in the

�eld of econometrics. From the frequentist perspective, Horowitz and Manski (2000) con-

struct con�dence intervals for an interval identi�ed set. Imbens and Manski (2004) propose

uniformly asymptotically valid con�dence sets for an interval-identi�ed parameter, which

are further extended by Stoye (2009). Chernozhukov, Hong, and Tamer (2007) develop a

way to construct asymptotically valid con�dence sets for an identi�ed set based on the crite-

rion function approach, which can be applied to a wide range of partially identi�ed models

including moment inequality models. In relation to the criterion function approach, the

literature on the construction of con�dence sets by inverting test statistics includes, but is

not limited to, Andrews and Guggenberger (2009), Andrews and Soares (2010), and Romano

and Shaikh (2010).

From the Bayesian perspective, Neath and Samaniego (1997), Poirier (1998), and Gustafson

(2009, 2010) analyze how Bayesian updating performs when a model lacks identi�cation.

Liao and Jiang (2010) conduct a Bayesian inference for moment inequality models, based

on the pseudo-likelihood. Moon and Schorfheide (2011) compare the asymptotic properties

of frequentist and Bayesian inferences for set-identi�ed models. My robust Bayes analysis

is motivated by Moon and Schorfheide�s important �ndings on the asymptotic disagreement

between the frequentist and Bayesian inferences. Epstein and Seo (2012) focus on a set-
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identi�ed model of entry games with multiple equilibria, and provide an axiomatic argument

that justi�es a single-prior Bayesian inference for a set-identi�ed parameter. The current

paper does not intend to provide any normative argument as to whether one should proceed

with a single prior or multiple priors in inferring non-identi�ed parameters.

The analysis of lower and upper probabilities originates with Dempster (1966, 1967a,

1967b, 1968), in his �ducial argument of drawing posterior inferences without specifying a

prior distribution. The in�uence of Dempster�s appears in the belief function analysis of

Shafer (1976, 1982) and the imprecise probability analysis of Walley (1991). In the context of

robust Bayes analysis, the lower and upper probabilities have been playing important roles in

measuring the global sensitivity of the posterior (Berger (1984), Berger and Berliner (1986))

and also in characterizing a class of priors/posteriors (DeRobertis and Hartigan (1981),

Wasserman (1989, 1990), and Wasserman and Kadane (1990)). In econometrics, pioneering

work using multiple priors was carried out by Chamberlain and Leamer (1976), and Leamer

(1982), who obtained the bounds for the posterior mean of the regression coe¢ cients when

a prior varies over a certain class. All of these previous studies did not explicitly consider

non-identi�ed models. This paper, in contrast, focuses on non-identi�ed models, and aims

to clarify a link between the early idea of the lower and upper probabilities and a recent

issue on inferences in set-identi�ed models.

The posterior lower probability to be obtained in this paper is an in�nite-order monotone

capacity, or equivalently, a containment functional in the random set theory. Beresteanu

and Molinari (2008) and Beresteanu, Molchanov, and Molinari (2012) show the usefulness

and wide applicability of the random set theory to a class of partially identi�ed models

by viewing observations as random sets, and the estimand (identi�ed set) as its Aumann

expectation. They propose an asymptotically valid frequentist inference procedure for the

identi�ed set by employing the central limit theorem applicable to the properly de�ned sum

of random sets. Galichon and Henry (2006, 2009) and Beresteanu, Molchanov, and Molinari

(2011) propose a use of in�nite-order capacity in de�ning and inferring the identi�ed set

in the structural econometric model with multiple equilibria. The robust Bayes analysis

of this paper closely relates to the literature of non-additive measures and random sets,

but the way that these theories enter to the analysis di¤ers from these previous works in

the following ways. First, the class of models to be considered is assumed to have well-
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de�ned likelihood functions, and the lack of identi�cation is modeled in terms of the "data-

independent �at regions" of the likelihood. Ambiguity is not explicitly modeled at the level

of observations, but instead ambiguity for the parameters is introduced through the absence

of prior knowledge on each �at region of the likelihood. Second, I obtain the identi�ed set as

random sets, whose probability law is represented by the posterior lower probability. Here,

the source of probability that induces the random identi�ed set is the posterior uncertainty

for the identi�able parameters, not the sampling probability of the observations. Third, the

inferential statements to be proposed in the paper are made conditional on data, and they

do not invoke any large-sample approximations.

The decision theoretic analysis in this paper employs the posterior gamma-minimax cri-

terion, which leads to a decision that minimizes the worst case posterior risk over the class

of posteriors. The gamma-minimax decision analysis often becomes challenging, both ana-

lytically and numerically, and the existing analyses are limited to rather simple parametric

models with a certain choice of prior class (Betro and Ruggeri (1992), Chamberlain (2000),

and Vidakovic (2000)). The speci�ed prior class, in contrast, o¤ers a general and feasible

way to solve the posterior gamma-minimax decision problem, provided that the identi�ed

set for the parameter of interest can be computed for each of the identi�ed parameter values.

In a recent study by Song (2012), point estimation for an interval-identi�ed parameter from

the local asymptotic minimax approach is considered.

1.2 Plan of the Paper

The rest of the paper is organized as follows. In Section 2, the main results of this paper are

presented using a simple example of missing data. Section 3 introduces the general frame-

work, where I construct a class of prior distributions that can contain arbitrary unrevisable

prior knowledge. I then derive the posterior lower and upper probabilities. Statistical deci-

sion analyses with multiple priors are examined in Section 4. In Section 5, how to construct

the posterior credible regions based on the posterior lower probability is discussed and their

large-sample behaviors are examined in an interval-identi�ed parameter case. Proofs and

lemmas are provided in Appendix A.
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2 An Illustration: A Missing Data Example

This section illustrates the main results of the paper using an example of missing data

(Manski (1989)). Let Y 2 f1; 0g be the binary outcome of interest (e.g., a worker is
employed or not). Let W 2 f1; 0g be an indicator of whether Y is observed (W = 1) or not

(W = 0), (i.e., the subject responded or not). Data are given by a random sample of size

n, x = f(YiWi;Wi) : i = 1; : : : ; ng.
The starting point of the analysis is to specify a parameter vector � 2 � that pins down

the distribution of the data and the parameter of interest. Here, � can be speci�ed by a

vector of four probability masses: (�yd), �yd � Pr (Y = y;D = d), y = 1; 0, and d = 1; 0.

The observed data likelihood for � is written as

p(xj�) = �n1111 �
n01
01 [�10 + �00]

nmis ;

where n11 =
Pn

i=1 YiWi; n01 =
Pn

i=1(1 � Yi)Wi; nmis =
Pn

i=1(1 � Wi). This likelihood

function depends on � only through the three probability masses, � = (�11; �01; �mis) �
(�11; �01; �10 + �00); � 2 �, no matter what the observations are, so that the likelihood for �
has "data-independent" �at regions, which are expressed as a set-valued map of �,

�(�) � f� 2 � : �11 = �11; �01 = �01; �10 + �00 = �misg :

The parameter of interest is the mean of Y; which is written as a function of �, � � Pr(Y =
1) = �11 + �10. The identi�ed set of �, H (�), as the set-valued map of � is de�ned by the

range of � when � varies over � (�),

H(�) = [�11; �11 + �mis];

which are the Manski (1989)�s bounds of Pr(Y = 1).

The standard Bayes inference for � would proceed as follows; specify a prior of �, update it

using the Bayes rule, and marginalize the posterior of � to �. If the likelihood for � has data-

independent �at regions as represented by f� (�) : � 2 �g, then the prior for � conditional on
f� 2 � (�)g (i.e., belief on how the proportion of missing observations, �mis, is divided into
�10 and �00) will never be updated by data. Consequently, the posterior of � and possibly

that of � become sensitive to the speci�cation of such conditional priors of � given �. The
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robust Bayes procedure considered in this paper aims to make the posterior inference free

from such sensitivity concerns by introducing multiple priors for �. The way to construct a

prior class is as follows. I �rst specify a single prior �� for the identi�ed parameters �. In

view of �, prior �� speci�es how much prior belief should be assigned to each �at region of the

��s likelihood � (�), whereas, depending on ways to allocate the assigned belief over � 2 � (�)
(for each �), the implied prior for � may di¤er. Therefore, by collecting all the possible

ways of allocate the assigned belief over f� 2 � (�)g for each �, I can construct the following
class of prior distributions of �,M

�
��
�
=
�
�� : �� (� (B)) = �� (B) for all B � �

	
, where

�� denotes a prior distribution for �.

By applying the Bayes rule to each �� 2 M
�
��
�
and marginalizing each posterior of �

for �, I obtain the class of posteriors of �,
�
F�jX : �� 2M

�
��
�	
. I now summarize the class

of posteriors of � by its lower envelope (lower probability), F�jX� (D) = inf��2M(��) F�jX (D),

which maps subset D in the parameter space of � to [0; 1]. In words, the posterior lower

probability evaluated at D says that the posterior belief allocated for f� 2 Dg is at least
F�jX� (D), no matter which �� 2M

�
��
�
is used.

The main theorem of this paper shows that the posterior lower probability satis�es

F�jX� (D) = F�jX (f� : H (�) � Dg) ,

where F�jX denotes the posterior distribution of � implied from the prior ��. The key

insight of this equality is that, with prior classM
�
��
�
, drawing inference for � based on its

posterior lower probability is done by analyzing the probability law of random sets H (�),

� � F�jX .
Leaving their formal analysis to the later sections of this paper, I now outline the imple-

mentation of the posterior lower probability inference for � proposed in this paper.

1. Specify a prior for � and update it by the Bayes rule. When a credible prior for � is

not available, a reasonably "non-informative" prior may be used as far as the posterior

of � is proper.1

2. Let f�s : s = 1; : : : ; Sg be random draws of � from the posterior of �. The mean and

median of the posterior lower probability of � can be de�ned via the gamma-minimax

1See Kass and Wasserman (1996) for a survey of �reasonably�non-informative priors.
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decision criterion, and they can be approximated by

argmin
a

1

S

SX
s=1

sup
�2H(�s)

(a� �)2 and argmin
a

1

S

SX
s=1

sup
�2H(�s)

ja� �j ;

respectively.

3. The posterior lower credible region of � at credibility level 1 � �, which can be inter-
preted as a (1� �)- level set of the posterior lower probability of �, is de�ned by the
smallest interval that contains H (�) with posterior probability 1� � (Proposition 5.1
in this paper proposes an algorithm to compute the posterior lower credible region for

interval-identi�ed cases). Under certain regularity conditions that are satis�ed in the

current missing data example, the posterior lower credible region of � asymptotically

attains the frequentist coverage probability 1 � � for the true identi�ed set H (�0).
where �0 is the value of � corresponding to the sampling distribution of data.

3 Multiple-prior Analysis and the Lower and Upper

Probabilities

3.1 Likelihood and Set Identi�cation: The General Framework

Let (X;X ) and (�;A) be measurable spaces of a sample X 2 X and a parameter vector

� 2 �, respectively. The analytical framework of this paper covers both a parametric model
� = Rd, d < 1, and a non-parametric model where � is a separable Banach space. The

sample size is implicit in the notation. Let �� be a marginal probability distribution on

the parameter space (�;A), referred to as a prior distribution for �. Assume that the

conditional distribution of X given � exists and has the probability density p(xj�) at every
� 2 � with respect to a �-�nite measure on (X;X ).
The parameter vector � may consist of parameters that determine the behaviors of the

economic agents, as well as those that characterize the distribution of the unobserved het-

erogeneities in the population. In the context of the missing data or counterfactual causal

models, � indexes the distribution of the underlying population outcomes or the potential

outcomes. In all of these cases, the parameter � should be distinguished from the parameters
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that are solely used to index the sampling distribution of observations. The identi�cation

problem of � typically arises in this context. If multiple values of � generate the same

distribution of data, then these ��s are observationally equivalent and the identi�cation of

� fails. In terms of the likelihood function p(xj�), the observational equivalence of � and
�0 6= � means that the values of the likelihood at � and �0 are equal for every possible sam-
ple, i.e., p(xj�) = p(xj�0) for every x 2 X (Rothenberg (1971), Drèze (1974), and Kadane

(1974)). I represent the observational equivalence relation of ��s by a many-to-one function

g : (�;A)! (�;B):

g(�) = g(�0) if and only if p(xj�) = p(xj�0) for all x 2 X:

The equivalence relationship partitions the parameter space � into equivalent classes, in

each of which the likelihood of � is ��at�, irrespective of observations, and � = g(�) maps

each of these equivalent classes to a point in another parameter space �. In the language

of structural models in econometrics (Hurwicz (1950), and Koopman and Reiersol (1950)),

� = g(�) is interpreted as the reduced-form parameter that carries all the information for

the structural parameters � through the value of the likelihood function. In the literature of

Bayesian statistics, � = g(�) is referred to as the minimally su¢ cient parameter (su¢ cient

parameter for short), and the range space of g(�), (�;B), is called the su¢ cient parameter
space (Barankin (1960), Dawid (1979), Florens and Mouchart (1977), Picci (1977), and

Florens, Mouchart, and Rolin (1990)).2

In the presence of su¢ cient parameters, the likelihood depends on �, only through the

function g(�), i.e., there exists a B-measurable function p̂(xj�) such that

p(xj�) = p̂(xjg(�)) 8x 2 X and � 2 � (3.1)

holds (Lemma 2.3.1 of Lehmann and Romano (2005)).

Denote the inverse image of g(�) by �:

�(�) = f� 2 � : g(�) = �g ,
2Florens and Simoni (2011) provide comprehensive discussions on the relationship between frequentist

and Bayesian identi�cation.
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where �(�) and �(�0) for � 6= �0 are disjoint, and f�(�) ; � 2 �g constitutes a partition of
�. I assume g(�) = �; so �(�) is non-empty for every � 2 �.3

In the set-identi�ed model, the parameter of interest � 2 H is a subvector or a trans-

formation of � denoted by � = h(�), h : (�;A) ! (H;D). The formal de�nition of the
identi�ed set of � is given as follows.

De�nition 3.1 (Identi�ed Set of �)

(i) The identi�ed set of � is a set-valued map H : �� H de�ned by the projection of �(�)

ontoH through h(�), H(�) � fh(�) : � 2 �(�)g :

(ii) The parameter � = h(�) is point-identi�ed at � if H(�) is a singleton, and � is set-

identi�ed at � if H (�) is not a singleton.

Note that the identi�cation of � is de�ned in the pre-posterior sense because it is based on

the likelihood evaluated at every possible realization of a sample, not only for the observed

one.

3.2 Examples

I now provide some examples, in addition to the illustrating example of Section 2, both to

illustrate the above concepts and notations, and to provide a concrete focus for the later

development.

Example 3.1 (Bounding ATE by Linear Programming) Consider the treatment ef-

fect model with incompliance and a binary instrument Z 2 f1; 0g, as considered in Imbens
and Angrist (1994), and Angrist, Imbens, and Rubin (1996). Assume that the treatment

status and the outcome of interest are both binary. Let (W1;W0) 2 f1; 0g2 be the poten-
tial treatment status in response to the instrument, and W = ZW1 + (1 � Z)W0 be the

observed treatment status. (Y1; Y0) 2 f1; 0g2 is a pair of treated and control outcomes and
3 In an observationally restrictive model, in the sense of Koopman and Reiersol (1950), p̂(xj�) likelihood

function for the su¢ cient parameters, is well de�ned for a domain larger than g(�) (see Example 3.1 in

Section 3.2). In this case, the model possesses the falisi�ability property, and � (�) can be empty for some

� 2 �.
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Y = WY1 + (1 �W )Y0 is the observed outcome. Data is a random sample of (Yi;Wi; Zi).

Following Imbens and Angrist (1994), consider partitioning the population into four subpop-

ulations de�ned in terms of the potential treatment-selection responses:

Ti =

8>>>>><>>>>>:
c if W1i = 1 and W0i = 0 : complier,

at if W1i = W0i = 1 : always-taker,

nt if W1i = W0i = 0 : never-taker,

d if W1i = 0 and W0i = 1 : de�er,

where Ti is the indicator for the types of selection responses.

Assume a randomized instrument, Z ? (Y1; Y0;W1;W0). Then, the distribution of

observables and the distribution of potential outcomes satisfy the following equalities for

y 2 f1; 0g:

Pr(Y = y;W = 1jZ = 1) = Pr(Y1 = y; T = c) + Pr(Y1 = y; T = at); (3.2)

Pr(Y = y;W = 1jZ = 0) = Pr(Y1 = y; T = d) + Pr(Y1 = y; T = at);

Pr(Y = y;W = 0jZ = 1) = Pr(Y0 = y; T = d) + Pr(Y1 = y; T = nt);

Pr(Y = y;W = 0jZ = 0) = Pr(Y0 = y; T = c) + Pr(Y1 = y; T = nt):

Ignoring the marginal distribution of Z, a full parameter vector of the model can be speci�ed

by a joint distribution of (Y1; Y0; T ):

� = (Pr(Y1 = y; Y0 = y
0; T = t) : y = 1; 0; y0 = 1; 0; t = c; nt; at; d) 2 �;

where � is the 16-dimensional probability simplex. Let ATE be the parameter of interest.

� � E(Y1 � Y0) =
X

t=c;nt;at;d

[Pr(Y1 = 1; T = t)� Pr(Y0 = 1; T = t)]

=
X

t=c;nt;at;d

X
y=1;0

[Pr(Y1 = 1; Y0 = y; T = t)� Pr(Y1 = y; Y0 = 1; T = t)]

� h(�):

The likelihood conditional on Z depends on � only through the distribution of (Y;W ) given

Z, so the su¢ cient parameter vector consists of eight probability masses:

� = (Pr(Y = y;W = wjZ = z) : y = 1; 0; d = 1; 0; z = 1; 0) :
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The set of equations (3.2) de�nes �(�) the set of observationally equivalent distributions of

(Y1; Y0; T ) ; when the data distribution is given at �. Balke and Pearl (1997) derive the

identi�ed set of ATE, H(�) = h(�(�)); by maximizing or minimizing h(�), subject to � 2 �
and constraints (3.2). This optimization can be solved by linear programming and H(�) is

obtained as a convex interval.

Note that, in this model, special attention is needed for the su¢ cient parameter space

� to ensure that �(�) is non-empty. Pearl (1995) shows that the distribution of data is

compatible with the instrument exogeneity condition, Z ? (Y1; Y0;W1;W0) ; if and only if

max
w

X
y

max
z
fPr(Y = y;W = w)jZ = zg � 1: (3.3)

This implies that in order to guarantee � (�) 6= ;, a prior distribution for � puts probability
one for � that ful�ll (3.3).

Example 3.2 (Linear Moment Inequality Model) Consider the model where the para-

meter of interest � 2 H is characterized by linear moment inequalities,

E(m(X)� A�) � 0;

where the parameter space H is a subset of RL, m(X) is a J-dimensional vector of known

functions of an observation, and A is a J � L known constant matrix. By augmenting

the J-dimensional parameter � 2 [0;1)J , these moment inequalities can be written as the
J-moment equalities,4

E(m(X)� A� � �) = 0:

To obtain a likelihood function for the current moment equality model, specify the full pa-

rameter vector to be � = (�; �) 2 H� [0;1)J , and consider the exponentially tilted empirical
likelihood for � as considered in Schennach (2005). Let x = (x1; : : : ; xn) be a size n random

sample of observations, and de�ne g(�) = A� + �. If the convex hull of [i fm(xi)� g(�)g
contains the origin, then the exponentially tilted empirical likelihood is written as

p(xj�) =
Y
wi(�);

4I owe the Bayesian formulation of the moment inequality model shown here to Tony Lancaster (personal

communication 2006).
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where

wi(�) =
exp f(g(�))0 (m(xi)� g(�))gPn
i=1 exp f(g(�))0 (m(xi)� g(�))g

;

(g(�)) = arg min
2RJ+

(
nX
i=1

exp f0 (m(xi)� g(�))g
)
:

Thus, the parameter � = (�; �) enters the likelihood only through g(�) = A� + �. Conse-

quently, I take � = g(�) to be the su¢ cient parameters. The identi�ed set for � is given

by

�(�) =
�
(�; �) 2 H � [0;1)L : A� + � = �

	
:

The coordinate projection of �(�) onto H yields H(�), the identi�ed set for � (Bertsimas

and Tsitsiklis (1997, Chap.2) for an algorithm for projecting a polyhedron).

3.3 Unrevisable Prior Knowledge and a Class of Priors

Let �� be a prior of � and �� be the marginal probability measure on the su¢ cient parameter

space (�;B) induced by �� and g(�):

��(B) = ��(�(B)) for all B 2 B.

Let x 2 X be sampled data. The posterior distribution of �, denoted by F�jX (�), is obtained
as

F�jX(A) =

Z
�

��j�(Aj�)dF�jX(�); A 2 A, (3.4)

where ��j�(Aj�) denotes the conditional distribution of � given �, and F�jX(�) is the posterior
distribution of �.

The posterior distribution of � given in (3.4) shows that the prior distribution for �

marginalized to � can be updated by data, while the conditional prior of � given � is never

be updated by the data because the likelihood is �at on �(�) � � for any realizations of

the sample. In this sense, the prior information marginalized to the su¢ cient parameter ��

can be interpreted as the revisable prior knowledge, and the conditional priors of � given �,�
��j� (�j�) : � 2 �

	
can be interpreted as the unrevisable prior knowledge. If one wants to
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summarize the posterior uncertainty of � in the form of a probability distribution on (�;A),
as recommended in the Bayesian paradigm, he needs to have a single prior distribution of �,

which necessarily induces unique unrevisable prior knowledge ��j�. If he could justify his

choice of ��j� by any credible prior information, the standard Bayesian updating (3.4) would

yield a valid posterior distribution of �: A challenging situation would arise if one is short

of a credible prior distribution of �. In this case, the researcher, who is aware that ��j�

will never be updated by data, might feel anxious in implementing the Bayesian inference

procedure, because an uncon�dently speci�ed ��j� can have a signi�cant in�uence to the

subsequent posterior inference.

The robust Bayes analysis in this paper speci�cally focuses on such a situation, and

introduce ambiguity for the conditional prior
�
��j� (�j�) : � 2 �

	
in the form of multiple

priors. Speci�cally, given �� a prior on (�;B) speci�ed by the researcher, consider the class
of prior distributions of � de�ned by:

M(��) =
�
�� : ��(�(B)) = ��(B) for every B 2 B

	
:

M(��) consists of prior distributions of � whose marginal distribution for the su¢ cient

parameters coincides with the prespeci�ed ��.
5 This paper proposes to use M(��) as a

prior input for the posterior analysis, meaning that, with accepting to specify a single prior

distribution for the su¢ cient parameters �, I leave the conditional priors ��j� unspeci�ed

and allow for arbitrary ones as long as ��(�) =
R
�
��j�(�j�)d�� yields a probability measure

on (�;A).6

In the subsequent analysis, I shall not discuss how to select ��, and shall treat �� as

given. The in�uence of �� on the posterior of � will diminish as the sample size increases,

so the sensitivity issue of the posterior of � is expected to be less severe when the sample

size is moderate or large.

5I thank Jean-Pierre Florens for suggesting this representation of the prior class.
6Su¢ cient parameters � are de�ned by examining the entire model fp (xj�) : x 2 X ; � 2 �g, so that the

prior classM(��) is, by construction, model dependent. This distinguishes the current approach from the

standard robust Bayes analysis where a prior class represents the researcher�s subjective assessment of his

imprecise prior knowledge (Berger (1985)).
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3.4 Posterior Lower and Upper Probabilities

The Bayes rule is applied to each prior in M(��) to generate the class of posterior distri-

butions of �. Consider summarizing the posterior class by the posterior lower probability

F�jX�(�) : A ! [0; 1] and the posterior upper probability F ��jX(�) : A ! [0; 1], de�ned as

F�jX�(A) � inf
��2M(��)

F�jX(A);

F ��jX(A) � sup
��2M(��)

F�jX(A):

Note that the posterior lower probability and the upper probability have a conjugate prop-

erty, F�jX�(A) = 1�F ��jX(Ac), so it su¢ ces to focus on one of them in deriving their analytical
form. In order to obtain F�jX�(�), the following regularity conditions are assumed.

Condition 3.1

(i) A prior for �, ��, is proper and absolutely continuous with respect to a �-�nite measure

on (�;B).

(ii) g : (�;A) ! (�;B) is measurable and its inverse image �(�) is a closed set in �,
��-almost every � 2 �.

(iii) h : (�;A)! (H;D) is measurable and H (�) = h (�(�)) is a closed set in H, ��-almost
every � 2 �:

These conditions are imposed for �(�) and H (�) to be interpreted as random closed sets

induced by a probability measure on (�;B).7 The closedness of �(�) and H (�) are implied,

for instance, by continuity of g (�) and h (�).

Theorem 3.1 Assume Condition 3.1.
7The inference procedure proposed in this paper can be implemented as long as the posterior of � is

proper. However, how to accommodate an improper prior for � in the development of the analytical results

is beyond the scope of this paper.
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(i) For each A 2 A,

F�jX�(A) = F�jX(f� : �(�) � Ag); (3.5)

F ��jX(A) = F�jX (f� : �(�) \ A 6= ;g) ; (3.6)

where F�jX(B); B 2 B, is the posterior probability measure of �.

(ii) De�ne the posterior lower and upper probabilities of � = h (�) by

F�jX�(D) � inf
��2M(��)

F�jX(h
�1(D));

F ��jX(D) � sup
��2M(��)

F�jX(h
�1(D)); for D 2 D.

It holds

F�jX�(D) = F�jX(f� : H(�) � Dg);

F ��jX(D) = F�jX(f� : H(�) \D 6= ;g):

Proof. For a proof of (i), see Appendix A. For a proof of (ii), see equation (3.7).

The expression for F�jX�(A) implies that the posterior lower probability on A calculates

the probability that the set �(�) is contained in subset A in terms of the posterior probability

law of �. On the other hand, the upper probability is interpreted as the posterior probability

that the set �(�) hits subset A. The second statement of the theorem provides a procedure

for marginalizing the lower and upper probabilities of � into those of the parameter of interest

�. The expressions of F�jX�(D) and F ��jX(D) are simple and easy to interpret: the lower

and upper probabilities of � = h(�) are the containment and hitting probabilities of the

random sets obtained by projecting �(�) through h(�). This marginalization rule of the

lower probability follows from

F�jX�(D) = F�jX�(h
�1(D))

= F�jX(
�
� : �(�) � h�1(D)

	
)

= F�jX(f� : H(�) � Dg). (3.7)
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Note that, In the standard Bayesian inference, marginalization of the posterior of � to �

is conducted by integrating the posterior probability measure of � for �, while in the lower

probability inference, marginalization for � corresponds to projecting random sets � (�) via

� = h (�). This stark contrast between the standard Bayes and the multiple prior robust

Bayes inference highlights how the introduction of ambiguity changes the way of eliminating

the nuisance parameters in the posterior inference.

As is known in the literature (e.g., Huber (1973)), the lower probability of a set of proba-

bility measures is a monotone nonadditive measure (capacity). Furthermore, in the current

speci�cation of the prior class, the representation of the lower probability obtained in Theo-

rem 3.1 implies that the resulting posterior lower and upper probabilities are supermodular

and submodular, respectively.

Corollary 3.1 Assume Condition 3.1. The posterior lower and upper probabilities of � are

supermodular and submodular, respectively. For A1, A2 2 A subsets in �,

F�jX�(A1 [ A2) + F�jX�(A1 \ A2) � F�jX�(A1) + F�jX�(A2);

F ��jX(A1 [ A2) + F ��jX(A1 \ A2) � F ��jX(A1) + F
�
�jX(A2):

Also, the posterior lower and upper probabilities of � are supermodular and submodular,

respectively. For D1, D2 2 D subsets in H,

F�jX�(D1 [D2) + F�jX�(D1 \D2) � F�jX�(D1) + F�jX�(D2);

F ��jX(D1 [D2) + F
�
�jX(D1 \D2) � F ��jX(D1) + F

�
�jX(D2):

The results of Theorem 3.1 (i) can be seen as a special case of Wasserman�s (1990) general

construction of the posterior lower and upper probabilities. Whereas, one notable di¤erence

from Wasserman�s analysis is that, with prior class M
�
��
�
, the lower probability of the

posterior class becomes an1-order monotone capacity (a containment functional of random
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sets).8 This plays a crucial role in simplifying the gamma minimax analysis considered in

the next section.

4 Posterior Gamma-minimax Analysis for � = h(�)

In the standard Bayesian posterior analysis, a statistical decision problem involving � (e.g.,

point estimation for �) is straightforward, minimizing the posterior risk. When the posterior

information of � is summarized by the class of posteriors, how should the optimal statistical

action be solved? This section studies this problem by adapting the posterior gamma-

minimax analysis.

Let a 2 Ha be an action, whereHa is an action space. In the case of the point estimation

problem for �, an action is interpreted as reporting a non-randomized point estimate for �,

where action space Ha is a subset of H. Given an action a to be taken, and � being the

true state of nature, a loss function L(�; a) : H �Ha ! R+ yields the cost to the decision

maker of taking action a. I assume that the loss function L(�; a) is non-negative.

If a single prior for �, ��, were given, the posterior risk would be de�ned by

�(��; a) �
Z
H
L(�; a)dF�jX(�); (4.1)

where the �rst argument �� in the posterior risk represents the dependence of the posterior

of � on the speci�cation of the prior for �. Our analysis involves multiple priors, so the class

of posterior risks
�
�(��; a) : �� 2M(��)

	
is considered. The posterior gamma-minimax

criterion9 ranks actions in terms of the worst case posterior risk (upper posterior risk):

��(��; a) � sup
��2M(��)

�(��; a),

8Wasserman (1990, p.463) posed an open question asking which class of priors can assure the posterior

lower probability to be a containment functional of random sets. Theorem 3.1 provides an answer to his

open question in the situation where the model lacks identi�ability.
9In the robust Bayes literature, the class of prior distributions is often denoted by �. This is why it

is called the gamma-minimax criterion. Unfortunately, in the literature of belief functions and lower and

upper probabilities, � often denotes a set-valued mapping that generates the lower and upper probabilities.

In this paper, we adopt the latter notational convention, but still refer to the decision criterion as the

gamma-minimax criterion.
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where the �rst argument in the upper posterior risk represents the dependence of the prior

class on a prior for �.

De�nition 4.1 A posterior gamma-minimax action a�x with respect to prior class M
�
��
�

is an action that minimizes the upper posterior risk, i.e.,

��(��; a
�
x) = inf

a2Ha

��(��; a) = inf
a2Ha

sup
��2M(��)

�(��; a).

The gamma-minimax decision approach involves a favor for a conservative action that

guards against the least favorable prior within the class, and it can be seen as a compromise

of the Bayesian decision principle and the minimax decision principle.

The next proposition shows that the upper posterior risk ��(��; a) equals the Choquet

expected loss with respect to the posterior upper probability.

Proposition 4.1 Under Condition 3.1, the upper posterior risk satis�es

��(��; a) =

Z
L(�; a)dF ��jX(�) =

Z
�

sup
�2H(�)

L(�; a)dF�jX(�), (4.2)

whenever
R
L(�; a)dF ��jX(�) <1, where

R
L(�; a)dF ��jX(�) is the Choquet integral.

Proof. See Appendix A.

The third expression in (4.2) shows that the posterior gamma-minimax criterion is

written as the expectation of the worst-case loss function, sup�2H(�) L(�; a), with respect to

the posterior of �. The supremum part stems from the ambiguity of �: given �, what the

researcher knows about � is only that it lies within the identi�ed set H (�), and, following

the minimax principle, he forms the loss by supposing that the nature chooses the worst

case in response to his/her action a. On the other hand, the expectation in � represents

the posterior uncertainty of the identi�ed set H (�): with the �nite number of observations,

the identi�ed set of � is known with some uncertainty as summarized by the posterior of

�. The posterior gamma-minimax criterion combines such ambiguity of � with the posterior

uncertainty of the identi�ed set H (�) to yield a single objective function to be minimized.10

10The posterior gamma minimax action a�x can be interpreted as a Bayes action for some posterior dis-

tributions in the class. For instance, in case of the quadratic loss, the saddle-point argument implies that

the gamma-minimax action a�x corresponds to the mean of a posterior distribution (Bayes action) that has

maximal posterior variance in the class.
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Although a closed-form expression of a�x is not, in general, available, this proposition

suggests a simple numerical algorithm for approximating a�x using a random sample of �

from its posterior F�jX . Let f�sg
S
s=1 be S random draws of � from posterior F�jX . Then,

a�x can be approximated by

â�x � arg min
a2Ha

1

S

SX
s=1

sup
�2H(�s)

L(�; a).

The gamma minimax decisions are usually dynamically inconsistent; a posteriori optimal

gamma-minimax action does not coincide with an unconditional optimal gamma-minimax

decision. This is also the case with out prior class, and this will imply that a�x fails to be a

Bayes decision with respect to any single prior in the classM
�
��
�
. See Appendix B for an

example and further discussion.

As an alternative to the posterior gamma-minimax action, the gamma-minimax regret

criterion may be considered (Berger (1985, p. 218), and Rios Insua, Ruggeri, and Vidakovic

(1995)). Appendix B provides some analytical results of the posterior gamma-minimax

regret analysis where the parameter of interest � is a scalar and the loss function is quadratic,

L(�; a) = (� � a)2. There, it is shown that the posterior gamma-minimax regret decision

can di¤er from the posterior gamma-minimax decision derived above, but that they converge

to the same limit asymptotically.

5 Set Estimation of �

In the standard Bayesian inference, set estimation is often conducted by reporting the contour

sets of the posterior probability density of � (highest posterior density region). If the

posterior information for � is summarized by the lower and upper probabilities, how should

we conduct set estimation of �?

5.1 Posterior Lower Credible Region

For � 2 (0; 1), consider a subset C1�� � H such that the posterior lower probability

F�jX�(C1��) is greater than or equal to 1� �:

F�jX�(C1��) = F�jX(H(�) � C1��)) � 1� �. (5.1)
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C1�� is interpreted as �a set on which the posterior credibility of � is at least 1��, no matter
which posterior is chosen within the class�. If I drop the italicized part from this statement,

I obtain the usual interpretation of the posterior credible region, so C1�� de�ned in this way

seems to be a natural extension of the Bayesian posterior credible regions to those of the

posterior lower probability. Analogous to the Bayesian posterior credible region, there are

multiple C1���s that satisfy (5.1). For instance, given a posterior credibility region of � with

credibility 1 � �, B1�� � �, C1�� = [�2B1��H (�) considered in the 2009 working paper
version of Moon and Schorfheide (2011) satis�es (5.1).

In proposing set inference for �, I resolve the multiplicity issue of set estimates by focusing

on the smallest one,

C1��� � argmin
C2C

Leb(C) (5.2)

s.t. F�jX(H(�) � C)) � 1� �;

where Leb(C) is the volume of subset C in terms of the Lebesgue measure and C is a family of
subsets inH over which the volume-minimizing lower credible region is searched. I thereafter
refer to C1��� de�ned in this way as a posterior lower credible region with credibility 1� �.
Note that focusing on the smallest set estimate has a decision theoretic justi�cation; C1���

can be supported as a posterior gamma minimax action:

C1��� = argmin
C2C

24 sup
��2M(��)

Z
L (�; C) dF�jx

35
with a loss function that penalizes the volume and non-coverage,

L (�; C) = Leb (C) + b (�) [1� 1C (�)] ;

where b (�) is a positive constant that depends on credibility level 1 � �, and 1C (�) is the
indicator function for subset C. Here, the loss function is written in terms of parameter �,

so the object of interest is �, rather than identi�ed set H (�).

Finding C1��� is challenging if � is multi-dimensional and no restriction is placed on class

of subsets C. I therefore restrict our analysis to scalar � and constrain C to the class of
closed connected intervals. The next proposition shows how to obtain C1���.

21



Proposition 5.1 Let d : H�D ! R+ measures distance from �c 2 H to set H (�) in terms

of

�d (�c; H(�)) � sup
�2H(�)

fk�c � �kg .

For each �c 2 H, let r1��(�c) be the (1� �)-th quantile of the distribution of �d (�c; H(�))
induced by the posterior distribution of �, i.e.,

r1��(�c) � inf
�
r : F�jX

��
� : �d(�c; H(�)) � r

	�
� 1� �

	
.

Then, C1��� is a closed interval centered at ��c = argmin�c2H r1��(�c) with radius r
�
1�� =

r1��(�
�
c).

Proof. See Appendix A.

5.2 Asymptotic Properties of the Posterior Lower Credible Re-

gion

In this section, I examine the large-sample behavior of the posterior lower probability in

an intervally identi�ed case, where H (�) � R is a closed bounded interval for almost all

� 2 �. From now on, I make the sample size explicit in the notation: a size n sample Xn is

generated from its sampling distribution PXnj�0, where �0 denotes the value of the su¢ cient

parameters that corresponds to the true data-generating process. The maximum likelihood

estimator for � is denoted by �̂.

Provided that the posterior of � is consistent11 to �0 and the set-valued map H (�0) is

continuous at � = �0 in terms of the Hausdor¤ metric dH , it can be shown that random

sets H (�), represented by the posterior lower probability F�jXn (�), converges to true iden-
ti�ed set H (�0) in the sense of limn!1 F�jXn (f� : dH (H (�) ; H (�0)) > �g) = 0 for almost
11Posterior consistency of � means that limn!1 F�jXn (G) = 1 for every G open neighborhood of �0 for

almost every sampling sequence. For �nite dimensional �, this posterior consistency for � is implied by a

set of higher-level conditions for the likelihood of �. We do not list up all those conditions here for the sake

of brevity. See Section 7.4 of Schervish (1995) for details.
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every sampling sequences of fXng. Given such posterior consistency of �, we analyze the
asymptotic coverage property of the lower credible region C1���.

The following set of regularity conditions are imposed to show the asymptotic correct

coverage property of C1���.

Condition 5.1

(i) The parameter of interest � is a scalar and the identi�ed set H(�) is ��-almost surely

a non-empty and connected interval, H (�) = [�l(�); �u(�)], �1 � �l(�) � �u (�) � 1, and
the true identi�ed set H (�0) = [�l(�0); �u(�0)] is a bounded interval.

(ii) For sequence an ! 1, random variables L̂ = �an
�
�l(�0)� �l(�̂)

�
and Û =

an

�
�u(�0)� �u(�̂)

�
converges in distribution to bivariate random variables (L;U), whose

cumulative distribution function J (�) on R2 is Lipschitz continuous and monotonically in-

creasing in the sense of J (cl; cu) < J (cl + �; cu + �) for any � > 0.

(iii) De�ne random variables Ln (�) = �an
�
�l(�)� �l(�̂)

�
and Un (�) = an

�
�u(�)� �u(�̂)

�
,

whose distribution is induced by the posterior distribution of � given sample Xn. The cu-

mulative distribution function of (Ln (�) ; Un (�)) given Xn denoted by Jn (�) is continuous
almost surely under p̂ (xnj�0) for all n:

(iv) At each c � (cl; cu) 2 R2, the cumulative distribution function of (Ln (�) ; Un (�))
given Xn, Jn (c), converges in probability under PXnj�0 to J (c).

Conditions 5.1 (ii) and (iv) imply that the estimators for the lower and upper bounds

of H (�) attain the Bernstein�von Mises property: the sampling distribution of the bound

estimators and the posterior distribution of the bounds coincide asymptotically in the sense

of Theorem 7.101 in Schervish (1995). In case of �nite dimensional �, Condition 5.1 (ii)

and (iv), with an =
p
n and bivariate normal (L;U), are implied from the following set

of assumptions: (a) the regularity of the likelihood of � and the asymptotic normality of
p
n
�
�� �̂

�
, (b) �� puts a positive probability on every open neighborhood of �0 and ���s

density is smooth at �0, and (c) the applicability of the delta method to �l (�) and �u (�) at
� = �0 with non-zero �rst derivatives.

12

12See Schervish (1995, Section 7.4) for further detail on these assumptions.
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The next proposition establishes the large-sample coverage property of the posterior lower

credible region C1���.

Theorem 5.1 (Asymptotic Coverage Property) Assume Conditions 3.1 and 5.1. C1���

can be interpreted as frequentist con�dence intervals for the true identi�ed set H (�0) with a

pointwise asymptotic coverage probability (1� �),

lim
n!1

PXnj�0 (H (�0) � C1���) = 1� �:

Proof. See Appendix A.

This result shows that, for the interval-identi�ed �, the posterior lower credible region

C1��� achieves the exact desired frequentist coverage for the identi�ed set asymptotically

(Horowitz and Manski (2000), Chernozhukov, Hong, and Tamer (2007), and Romano and

Shaikh (2010)). It is worth noting that the posterior lower credible region C1��� di¤ers from

the con�dence intervals for the parameter of interest, as considered in Imbens and Manski

(2004) and Stoye (2009); in case H (�0) is an interval, C1��� will be asymptotically wider

than the frequentist con�dence interval for �. This implies that the set of priorsM
�
��
�
is

too large to interpret C1��� as the frequentist�s con�dence interval for �.

It is also worth noting that the asymptotic coverage probability presented in Theorem

5.1 is in the sense of pointwise asymptotic coverage rather than an asymptotic uniform

coverage over �0. The frequentist literature has stressed the importance of the uniform

coverage property of interval estimates in order to ensure that the intervals estimates can

have an accurate coverage probability in a �nite sample situation (Imbens and Manski (2004),

Andrew and Guggenberger (2009), Stoye (2009), Romano and Shaikh (2010), Andrew and

Soares (2010), among many others). Examining whether or not the posterior lower credible

region constructed above can attain a uniformly valid coverage probability for the identi�ed

set is beyond the scope of this paper and is left for future research.

We note that Condition 5.1 (iv) is a quite delicate condition as illistrated by the following

counterexample.

Example 5.1 Let the identi�ed set be given by H (�) = [max f�1; �2g ;min f�3; �4g]. This
type of bound commonly appears in the intersection bound analysis (Manski (1990)), and has
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attracted considerable attention in the literature (Hirano and Porter (2011), Chernozhukov,

Lee, and Rosen (2011)). Condition 5.1 (iv) does not hold in this class of models when the

true values of the arguments in the minimum or maximum happen to be equal.

Let us focus on the lower bound �l (�) = max f�1; �2g. Assume that the maximum

likelihood estimators �̂1 and �̂2 are independent and �̂1 � N
�
�10;

1
n

�
and �̂2 � N

�
�20;

1
n

�
with �10 = �20. As for the posterior of �1 and �2, assume that �1jxn � N

�
�̂1;

1
n

�
and

�2jxn � N
�
�̂2;

1
n

�
. In this case, the sampling distribution of L = �

p
n
�
�l(�0)� �l(�̂)

�
and the posterior distribution of Ln (�) = �

p
n
�
�l(�)� �l(�̂)

�
are obtained as

L � max

8<: Z1

Z2

9=; ; Ln (�) jxn � min

8<: Z1 +
���Ẑ���

�

Z2 +
���Ẑ���

+

9=; ;
where (Z1; Z2) are independent standard normal variables, Ẑ =

p
n
�
�̂1 � �̂2

�
, jaj� =

�min f0; ag, and jaj+ = max f0; ag. The posterior distribution of Ln (�) fails to converge

to the sampling distribution of
p
n
�
�l(�̂)� �l(�0)

�
due to the non-vanishing Ẑ. Note that,

even when Ẑ happens to be zero, Ln (�)�s posterior distribution di¤ers from the sampling dis-

tribution of L. C1��� will estimate H (�0) with inward bias, and the coverage probability for

H (�0) will be lower than the nominal coverage. A lesson from this example is that, despite

the explicit introduction of ambiguity in the form of prior class M
�
��
�
and the decision

theoretic justi�cation behind the construction of C1���, the robust Bayes posterior inference

procedure based on C1��� does not correct the frequentist bias issue in the intersection bounds

analysis. In contrast, the correct coverage will be attained if C1�� = [�2B1��H (�) is used
as a robusti�ed posterior credible region.

6 Concluding Remarks

This paper proposes a framework of a robust Bayes analysis for set-identi�ed models in

econometrics. I demonstrate that the posterior lower probability obtained from the prior

classM
�
��
�
can be interpreted as the posterior probability law of the identi�ed set (Theo-

rem 3.1). This robust Bayesian way of generating and interpreting the identi�ed set as an

a posteriori random object has not been investigated in the literature, This highlights the
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seamless links among partial identi�cation analysis, robust Bayes inference, and random set

theory, and o¤ers a uni�ed framework of statistical decision and inference for set-identi�ed

parameters from the conditional perspective. I employ the posterior gamma-minimax crite-

rion to formulate and solve for a statistical decision with multiple posteriors. The objective

function of the gamma-minimax criterion integrates the ambiguity associated with the set

identi�cation and posterior uncertainty of the identi�ed set into a single objective function.

It leads to a numerically solvable posterior gamma-minimax action, as long as the identi�ed

sets H (�) can be simulated from the posterior of �.

The posterior lower probability is a non-additive measure, so one complication of the lower

probability inference is that we cannot plot it as we would do for the posterior probability

densities. To visualize it and conduct a set estimation in a decision-theoretically justi�able

way, I propose the posterior lower credible region. For an interval-identi�ed parameter, I

derive the conditions that the posterior lower credible region with credibility (1� �) can be
interpreted as an asymptotically valid frequentist con�dence interval for the identi�ed set

with coverage (1� �). This claim can be seen as an extension of the celebrated Bernstein-

von Mises theorem to the multiple prior Bayesian inference via the lower probability, and

exempli�es a situation where the robust Bayesians can accomplish a compromise of the

Bayesian and frequentist inference.

Appendix

A Lemmas and Proofs

In this appendix, I �rst demonstrate that the set-valued mappings � (�) and H (�) de�ned in

the main text are closed random sets (measurable and closed set-valued mappings) induced

by a probability measure on (�;B).

Lemma A.1 Assume (�;A) and (�;B) are complete separable metric spaces. Under Con-
dition 3.1, � (�) and H (�) are random closed sets induced by a probability measure on (�;B),
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i.e., � (�) and H (�) are closed and, for A 2 A and D 2 H,

f� : � (�) \ A 6= ;g 2 B for A 2 A;

f� : H (�) \D 6= ;g 2 B for D 2 H:

Proof. Closedness of � (�) and H (�) is implied directly from Conditions 3.1 (ii) and (iii).

To prove the measurability of f� : � (�) \ A 6= ;g, Theorem 2.6 in Molchanov is invoked,

which states that, given (�;A) as Polish, f� : � (�) \ A 6= ;g 2 B holds if and only if

f� : � 2 � (�)g 2 B is true for every � 2 �. Since �(�) is an inverse image of the many-

to-one and onto mapping, g : � ! �, a unique value of � 2 � exists for each � 2 �, and
f�g 2 B, since � is a metric space. Hence, f� : � 2 � (�)g 2 B holds.
To verify the measurability of f� : H (�) \D 6= ;g, note that

f� : H (�) \D 6= ;g =
�
� : � (�) \ h�1 (D) 6= ;

	
.

Since h�1 (D) 2 A, by the measurability of h (Condition 3.1 (iii)), the �rst statement of
this lemma implies f� : H (�) \D 6= ;g 2 B.

A.1 Proof of Theorem 3.1

Given the measurability � (�) and H (�), as proven in Lemma A.1, the proof of Theorem 3.1

given below uses the following two lemmas. The �rst lemma says that, given a �xed subset

A 2 A in the parameter space of �; the conditional probability ��j�(Aj�) can be bounded
below by the indicator function 1f�(�)�Ag(�) when �� 2 M(��). The second lemma shows

that for each �xed subset A 2 A, we can construct a probability measure on (�;A) that
belongs to the prior classM(��) and achieves the lower bound of the conditional probability

obtained in the �rst lemma. Theorem 3.1 follows as a corollary of these two lemma.

Lemma A.2 Assume Condition 3.1 and let A 2 A be an arbitrary �xed subset of �. For

every �� 2M(��),

1f�(�)�Ag(�) � ��j�(Aj�)

holds ��-almost surely.
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Proof. For the given subset A, de�ne �A1 = f� : �(�) � Ag � �. Note that, by Lemma

A.1, �A1 belongs to the su¢ cient parameter �-algebra B. To prove the claim, it su¢ ces to
show thatZ

B

1�A1 (�)d�� �
Z
B

��j�(Aj�)d�� (A.1)

for every �� 2M(��) and B 2 B.
ConsiderZ
B

��j�(Aj�)d�� �
Z
B\�A1

��j�(Aj�)d�� = ��(A \ �(B \ �A1 )).

where the equality follows by the de�nition of the conditional probability. By the construc-

tion of �A1 , �(B \ �A1 ) � A holds, so

��(A \ �(B \ �A1 )) = ��(�(B \ �A1 ))

= ��(B \ �A1 )

=

Z
B

1�A1 (�)d��:

Thus, the inequality (A.1) is proven.

Lemma A.3 Assume Condition 3.1. For each A 2 A, there exists ��� 2 M(��) whose

conditional distribution ���j� achieves the lower bound of ��j�(Aj�) obtained in Lemma A.2,
��-almost surely.

Proof. Fix subset A 2 A throughout the proof. Consider partitioning the su¢ cient

parameter space � into three, based on the relationship between � (�) and A,

�A0 = f� : �(�) \ A = ;g ;

�A1 = f� : �(�) � Ag ;

�A2 = f� : �(�) \ A 6= ; and �(�) \ Ac 6= ;g ;

where each of �A0 , �
A
1 , and �

A
2 belongs to the su¢ cient parameter �-algebra B by Lemma

A.1. Note that �A0 , �
A
1 , and �

A
2 are mutually disjoint and constitute a partition of �.

Now, consider a �-valued measurable selection �A (�) de�ned on �A2 such that �A (�) 2
[� (�) \ Ac] holds for ��-almost every � 2 �A2 . Note that such measurable selection
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�A (�) can be constructed, for instance, by �A (�) = argmax�2�(�) d (�; A), where d (�; A) =

inf�02A k� � �0k (see Theorem 2.27 in Chapter 1 of Molchanov (2005) for B-measurability

of such �A (�)). Let us pick a probability measure from the prior class, �� 2 M
�
��
�
, and

construct another measure ��� by

���

�
~A
�
= ��

�
~A \ �

�
�A0
��
+ ��

�
~A \ �

�
�A1
��
+ ��

�n
�A (�) 2 ~A

o
\ �A2

�
; ~A 2 A:

It can be checked that ��� is a probability measure on (�;A): ��� satis�es ��� (;) = 0,

��� (�) = 1, and countable additivity. Furthermore, ��� belongs to M
�
��
�
because, for

B 2 B,

��� (� (B)) = ��
�
� (B) \ �

�
�A0
��
+ ��

�
� (B) \ �

�
�A1
��
+ ��

��
�A (�) 2 � (B)

	
\ �A2

�
= ��

�
�
�
B \ �A0

��
+ ��

�
�
�
B \ �A1

��
+ ��

�
B \ �A2

�
= ��

�
B \ �A0

�
+ ��

�
B \ �A1

�
+ ��

�
B \ �A2

�
= �� (B) ;

where the second line follows because � (�)�s are disjoint and � (�) 2 � (�) holds for almost
every � 2 �A2 . With the thus-constructed ��� and an arbitrary subset B 2 B, consider

���(A \ �(B)) = ��(A \ �(B) \ �(�A0 )) + ��(A \ �(B) \ �(�A1 ))

+��
��
�A (�) 2 [A \ � (B)]

	
\ �A2

�
.

Here, by the construction of
�
�Aj
	
j=1;2;3

and �A (�), it holds that A\�(�A0 ) = ;, �(�A1 ) � A,
and ��

��
�A (�) 2 [A \ � (B)]

	
\ �A2

�
= 0. Accordingly, we obtain

���(A \ �(B)) = ��(�(B) \ �(�A1 ))

= ��
�
B \ �A1

�
=

Z
B

1�A1 (�)d��.

Since B 2 B is arbitrary, this implies that ��� (Aj�) = 1�A1 (�); ��-almost surely. Thus, ���
achieves the lower bound obtained in Lemma A.2.

Proof of Theorem 3.1 (i). Under the given assumptions, the posterior of � is given by

(see equation (3.4))

F�jX(A) =

Z
�

��j�(Aj�)dF�jX(�):
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By the monotonicity of the integral, F�jX(A) is minimized over the prior class by plugging

in the attainable pointwise lower bound of ��j�(Aj�) into the integrand. By Lemmas A.2

and A.3, the attainable pointwise lower bound of ��j�(Aj�) is given by 1f�(�)�Ag(�), so that
it holds

F�jX�(A) =

Z
�

1f�(�)�Ag(�)dF�jX(�) = F�jX(f� : �(�) � Ag):

The posterior upper probability follows by its conjugacy with the lower probability:

F ��jX(A) = 1� F�jX�(Ac) = F�jX(f� : �(�) \ A 6= ;g):

A.2 Proof of Proposition 4.1

The next lemma is used to prove Proposition 4.1. This lemma states that the core of F�jX�

agrees with the set of posteriors of � induced by prior classM(��). In the terminology of

Huber (1973), this property is called the representability of the class of probability measures

by the lower and upper probabilities.

Lemma A.4 Assume Condition 3.1. De�ne the core of the posterior lower probability,

core
�
F�jX�

�
=
�
G� : G� probability measure on (�;A) , F�jX�(A) � G�(A) for every A 2 A

	
:

It holds that

core
�
F�jX�

�
=
�
F�jX : F�jX posterior distribution on (�;A) induced by some �� 2M(��)

	
.

Proof of Lemma A.4. For each �� 2 M(��), F�jX�(A) � F�jX(A) � F ��jX(A) holds for
every A 2 A, by the de�nition of the lower and upper probabilities. Hence, core

�
F�jX�

�
contains

�
F�jX : �� 2M(��)

	
.

To show the converse, recall Theorem 3.1 (i), which shows that the lower and upper

probabilities are the containment and capacity functionals of the random closed set �(�).
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As a result, by applying the selectionability theorem of random sets (Molchanov (2005),

Theorem 1.2.20), it holds that for each G� 2 core
�
F�jX�

�
, there exists a �-valued random

variable �(�), a so-called measurable selection of �(�), such that �(�) 2 �(�) holds for every
� 2 � and G�(A) = F�jX (�(�) 2 A), A 2 A. Let G� 2 core

�
F�jX�

�
be �xed and let ���

be the probability distribution of a corresponding measurable selection � (�) induced by the

prior of �:

���(A) = �� (f� : �(�) 2 Ag) .

Note that such a ��� belongs toM(��) since, for each subset B 2 B in the su¢ cient parameter
space,

���(�(B)) = �� (f� : �(�) 2 �(B)g) = ��(B);

where the second equality holds because f�(�) : � 2 Bg are mutually disjoint and �(�) 2
�(�) for every �. Since the conditional distribution of ���(A) given � is �

�
�j�(Aj�) =

1f�(�)2Ag(�), the posterior distribution of � generated from ��� is, by (3.4),

~F�jX(A) =

Z
1f�(�)2Ag(�)dF�jX(�)

= F�jX (�(�) 2 A)

= G�(A).

Thus, it is shown that for each G� 2 G�, there exists a prior ��� 2 M(��); with which the

posterior of � coincides with G�. Hence, core
�
F�jX�

�
�
�
F�jX : �� 2M(��)

	
.

Proof of Proposition 4.1. Let core
�
F�jX�

�
be the core of F�jX� as de�ned in Lemma A.4.

I apply Proposition 10.3 in Denneberg (1994a), which states that if the upper probability

F ��jX(�) is submodular, then, for any non-negative measurable function k : �! R+,Z
k(�)dF ��jX = sup

G�2core(F�jX�)

�Z
�

k(�)dG�

�
(A.2)

holds. Corollary 3.1 assures submodularity of F ��jX(�), and Lemma A.4 implies that supG�2core(F�jX�)
�R

�
k(�)dG�

	
is equivalent to sup��2M(��)

�R
�
k(�)dF�jX

	
. Hence, setting k(�) = L(h(�); a) in (A.2) leads
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to the equality of the Choquet integral of L(h(�); a) with respect to F ��jX to the posterior

upper risk:Z
L(h(�); a)dF ��jX = sup

��2M(��)

�Z
�

L(h(�); a)dF�jX

�
(A.3)

= sup
��2M(��)

�Z
H
L(�; a)dF�jX

�
= ��

�
��; a

�
.

Note further that, by the de�nition of the Choquet integral and Theorem 3.1 (ii):Z
L(�; a)dF ��jX =

Z
F ��jX(f� : L(�; a) � tg)dt

=

Z
F ��jX (f� : L(h(�); a)g) dt

=

Z
L(h(�); a)dF ��jX : (A.4)

Combining (A.3) and (A.4) yields the �rst equality of the proposition.

The second equality of the proposition follows from Theorem 5.1 in Molchanov (2005).

A.3 Proof of Proposition 5.1

Proof of Proposition 5.1. The event fH(�) � Cr(�c)g happens if and only if
�
�d(�c; H(�)) � r

	
.

So, r1��(�c) � inf
�
r : F�jX

��
� : �d(�c; H(�)) � r

	�
� 1� �

	
is the radius of the smallest

interval centered at �c that contains random sets H(�) with the posterior probability of at

least (1� �). Therefore, �nding a minimizer of r1��(�c) in �c is equivalent to searching for
the center of the smallest interval that contains H(�) with posterior probability 1��. The
attained minimum of r1��(�c) provides its radius.

A.4 Proof of Theorem 5.1

Throughout the proofs, superscript n will be used to denote random objects induced by size

n sample Xn � PXnj�0 ; the probability law of X
n at � = �0. Convergence in probability
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under PXnj�0 is denoted by "�!P ". I abbreviate "holds for in�nitely many n" by "i.o."

(in�nitely often).

The following three lemmas will be used.

Lemma A.5 Let Jn (�) and J (�) be as de�ned in Condition 5.1. Under Condition 5.1,

sup
c2R2

jJn (c)� J (c)j �!
P
0:

Proof. Lemma 2.11 in van der Vaart (1998) shows a non-stochastic version of this lemma.

It is straightforward to extend it to the case where the pointwise convergence of Jn to J is

assumed in terms of convergence in probability with respect to PXnj�0 .

Lemma A.6 Let Levn1�� and Lev1�� be the (1� �)-level sets of Jn (�) and J (�),

Levn1�� =
�
c 2 R2 : Jn (c) � 1� �

	
;

Lev1�� =
�
c 2 R2 : J (c) � 1� �

	
.

De�ne a distance from point c 2 R2 to set C � R2 in terms of d (c; C) � infc02C kc� c0k,
where k�k is the Eucledean distance. Under Condition 5.1, (a) d

�
c; Levn1��

�
�!
P
0 for every

c 2 Lev1��, and (b) d (cn; Lev1��) �!
P
0 for every fcn : n = 1; 2; : : : g sequence of measurable

selections of Levn1��.

Proof. To prove (a), suppose the conclusion is false. That is, there exist �; � > 0, and

c = (cl; cu) 2 Lev1�� such that PXnj�0
�
d
�
c; Levn1��

�
> �
�
> �, i.o. Event d

�
c; Levn1��

�
> �

implies Jn
�
cl +

�
2
; cu +

�
2

�
< 1� � since

�
cl +

�
2
; cu +

�
2

�
=2 Levn1��. Therefore, it holds that

PXnj�0

�
Jn
�
cl +

�

2
; cu +

�

2

�
< 1� �

�
> �, i.o. (A.5)

Under Condition 5.1 (iv), however,

Jn
�
cl +

�

2
; cu +

�

2

�
� J

�
cl +

�

2
; cu +

�

2

�
�!
P
0.

This convergence combined with

J
�
cl +

�

2
; cu +

�

2

�
> J (c) � 1� �

33



due to strict monotonicity of J (�) implies that PXnj�0
�
Jn
�
cl +

�
2
; cu +

�
2

�
� 1� �

�
! 1 as

n!1. This contradicts (A.5).
To prove (b), suppose again the conclusion is false. This implies there exist �; � > 0, and a

sequence of random variables (measurable selections), cn = (cnl ; c
n
u) with PXnj�0

�
cn 2 Levn1��

�
=

1 for all n, such that PXnj�0 (d (c
n; Lev1��) > �) > �, i.o. Event d (cn; Lev1��) > � implies

J
�
cnl +

�
2
; cnu +

�
2

�
< 1� �, so it holds that

PXnj�0

�
J
�
cnl +

�

2
; cnu +

�

2

�
< 1� �

�
> �, i.o. (A.6)

To �nd contradiction, note that

J
�
cnl +

�

2
; cnu +

�

2

�
=

h
J
�
cnl +

�

2
; cnu +

�

2

�
� J (cnl ; cnu)

i
+ [J (cnl ; c

n
u)� Jn (cnl ; cnu)] + Jn (cnl ; cnu)

> [J (cnl ; c
n
u)� Jn (cnl ; cnu)] + 1� �

�!
P
1� �;

where the convergence in probability in the last line follows from [J (cnl ; c
n
u)� Jn (cnl ; cnu)]!P

0 as implied by Lemma A.5. This implies PXnj�0
�
J
�
cnl +

�
2
; cnu +

�
2

�
� 1� �

�
! 1 as n !

1, which contradicts (A.6).

Lemma A.7 Assume Condition 5.1. Let

Kn = argmin fcl + cu : Jn (c) � 1� �g ;

K = argmin fcl + cu : J (c) � 1� �g ;

which are non-empty and closed since the objective function is continuous and monotonically

decreasing, and level sets Levn1�� and Lev1�� are closed and bounded from below by continuity

of Jn and J (as imposed in Conditions 5.1 (ii) and (iv)). Then, d (ĉn; K) �!
P
0 holds for

every fĉn : n = 1; 2; : : : g sequence of measurable selection from Kn.

Proof. Suppose that the conclusion is false, that is, there exist �; � > 0, and ĉn = (ĉnl ; ĉ
n
u)

with PXnj�0 (ĉ
n 2 Kn) = 1 for all n, such that

PXnj�0 (d (ĉ
n; K) > �) > �; i.o. (A.7)
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By the construction of ĉn, PXnj�0
�
ĉn 2 Levn1��

�
= 1 for all n, so that Lemma A.6 (b) assures

that there exists a random sequence, ~cn = (~cnl ; ~c
n
u) such that PXnj�0 (~c

n 2 Lev1��) = 1 for

all n and kĉn � ~cnk �!
P
0 hold. Consequently, (A.7) implies that an analogous statement

holds for ~cn as well; PXnj�0 (d (~c
n; K) > �) > �, i.o. Let f̂n = ĉnl + ĉ

n
u, ~f

n = ~cnl + ~c
n
u,

and f � = min fcl + cu : J (c) � 1� �g. If PXnj�0 (d (~c
n; K) > �) > �, i.o. is true, then

PXnj�0 (~c
n 2 Lev1��) = 1 implies that there exists � > 0 such that PXnj�0

�
~fn � f � > �

�
> �,

i.o. Whereas, when
���f̂n � ~fn

��� �!
P
0, it holds that

PXnj�0

�
f̂n � f � > �

�
> �; i.o. (A.8)

In order to derive a contradiction, pick c 2 K and apply Lemma A.6 (a) to �nd a

random sequence cn = (cnl ; c
n
u) such that PXnj�0

�
cn 2 Levn1��

�
= 1 for all n and kc� cnk �!

P

0. Along such sequence cn, f � � (cn�l + cn�u ) �!
P

0 holds. Then, (A.8) combined with

f � � (cnl + cnu) �!
P
0 leads to

PXnj�0

�
f̂n � (cnl + cnu) > �

�
> �, i.o.,

implying that the value of the objective function evaluated at feasible point cn 2 Levn1�� is
smaller than that evaluated at ĉn with a positive probability. This contradicts that ĉn is a

minimizer, PXnj�0 (ĉ
n 2 Kn) = 1 for all n.

Proof of Theorem 5.1. By denoting a connected interval as C = [l; u], I can write the

optimization problem for obtaining C1��� as

min
l;u
[u� l]

s.t. F�jXn (l � �l (�) and �u (�) � u) � 1� �:

In terms of random variables Ln (�) = �an
�
�l (�)� �l(�̂)

�
and Un (�) = an

�
�u (�)� �u(�̂)

�
,

I can rewrite the constraint as:

F�jXn

�
Ln (�) � �an

�
l � �l(�̂)

�
and Un (�) � an

�
u� �u(�̂)

��
� 1� �:

Therefore, by de�ning cl = �an
�
l � �l(�̂)

�
and cu = an

�
u� �u(�̂)

�
; the above constrained
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minimization problem is written as

min [cl + cu]

s.t. Jn (cl; cu) � 1� �:

Let Kn be the set of solutions of this minimization problem, as de�ned in Lemma A.7. For a

sequence of random variables ĉn = (ĉnl ; ĉ
n
u) such that PXnj�0 (ĉ

n 2 Kn) = 1, the posterior lower

credible region is obtained as C1��� =
h
�l(�̂)�

ĉnl
an
; �u(�̂) +

ĉnu
an

i
. The coverage probability

of C1��� for the true identi�ed set is

PXnj�0 (H (�0) � C1���)

= PXnj�0

�
�l

�
�̂
�
� ĉnl
an
� �l (�0) and �u (�0) � �u(�̂) +

ĉnu
an

�
= PXnj�0

�
�an

�
�l (�0)� �l(�̂)

�
� ĉnl and an

�
�u (�0)� �u(�̂)

�
� ĉnu

�
� Ĵ (ĉn) ,

where Ĵ (�) denotes the cumulative distribution function of the sampling distribution of�
�an

�
�l (�0)� �l(�̂)

�
; an

�
�u (�0)� �u(�̂)

��
, which converges to J (�) pointwise by Condi-

tion 5.1 (ii). By Lemma A.7, there exists a random sequence �cn 2 K such that k�cn � ĉnk �!
P

0. Hence, for � > 0 and such �cn, it holds that

PXnj�0 (H (�0) � C1���) = Ĵ (ĉ
n)

= J (�cn) + J (ĉn)� J (�cn) + Ĵ (ĉn)� J (ĉn) + o (1) (A.9)

Note that J (�cn) = 1 � � because, by strict monotonicity of the objective function and
continuity of J (�), �cn 2 K lies in the boundary of the level set fc 2 R2 : J (c) � 1� �g. By
the Lipschitz continuity of J (�) (Condition 5.1 (ii)), for positive constant M <1,

jJ (ĉn)� J (�cn)j �M�PXnj�0 (kĉ
n � �cnk � �) + 2PXnj�0 (kĉ

n � �cnk > �) =M�+ o (1) :

Furthermore,
���Ĵ (ĉn)� J (ĉn)��� = o (1) holds by the uniform convergence of Ĵ (�) to J (�)

(Lemma 2.11 in van der Vaart (1998)). Therefore, (A.9) leads to��PXnj�0 (H (�0) � C1���)� (1� �)
�� �M�+ o (1) :

Since � > 0 is arbitrary, I complete the proof.
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B More on the Gamma-minimax Decision Analysis

B.1 Gamma-minimax Decision and Dynamic Inconsistency

This appendix examines the unconditional gamma-minimax decision problem (Kudo (1967),

Berger (1985, pp. 213�218), etc.). Let � (�) be a decision function that maps x 2 X to the

action space Ha � H and let � be the space of decisions (a subset of measurable functions

X! Ha.) The Bayes risk is de�ned as:

r(��; �) =

Z
�

�Z
X
L(h(�); �(x))p(xj�)dx

�
d��: (B.1)

Given the prior class M(��), the unconditional gamma-minimax criterion ranks decisions

in terms of the upper Bayes risk, r�(��; �) � sup��2M(��)
r(��; �). Accordingly, the optimal

decision under this criterion is de�ned as follows.

De�nition B.1 An unconditional gamma-minimax decision �� 2 � is a decision rule that

minimizes the upper Bayes risk,

r�(��; �
�) = inf

�2�
r�(��; �) = inf

�2�
sup

��2M(��)

r(��; �).

In the standard Bayes decision problem with a single prior, the Bayes rule that minimizes

r(��; �) coincides with the posterior Bayes action for every possible sample x 2 X. Therefore,
being either unconditional or conditional on data does not matter for the actual action to be

taken. With multiple priors, however, the decision rule that minimizes r�(��; �) does not,

in general, coincide with the posterior gamma-minimax action (Betro and Ruggeri (1992)).

The next example illustrates that such a dynamic inconsistency also arises with the current

speci�cation of prior class.

Example B.1 Consider the identi�ed set for � 2 R to be given by H (�) = [�; �+ c] with

a known constant c > 0. Data X = (X1; : : : ; Xn) are generated i.i.d. from N (�; 1). Let a

prior for � be N (0; 1). Then, the posterior of � is normal with mean n
n+1

�X and variance
1
n+1
, where �X = 1

n

Pn
i=1Xi. Specify the quadratic loss function, L (�; a) = (� � a)2.
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Consider computing the posterior gamma minimax action. With the quadratic loss, the

integrand in the third expression of Proposition 4.1 (4.2) is written as

sup
�2H(�)

L (�; a) =
h
a�

�
�+

c

2

�i2
+ c

���a� ��+ c
2

����+ c2
4
:

Therefore, the posterior upper risk for action a is given by

E�jX

h
a�

�
�+

c

2

�i2
+ cE�jX

���a� ��+ c
2

����+ c2
4
.

Since the posterior of � is symmetric around its posterior mean, the posterior mean of
�
�+ c

2

�
minimizes E�jX

�
a�

�
�+ c

2

��2
and E�jX

��a� ��+ c
2

��� simultaneously. Hence, the posterior
gamma-minimax action is

a�X = E�jXn (�) +
c

2
=

n

n+ 1
�X +

c

2
.

Next, consider the unconditional gamma minimax criterion for a decision function � (X).

Note that the Bayes risk with a single prior is written as

r (��; �) =

Z
�

Z
H

n
V arXj� (� (X)) +

�
EXj� [� (X)]� �

�2o
d��j�d��

=

Z
�

V arXj� (� (X)) d�� +

Z
�

Z
H

�
EXj� [� (X)]� �

�2
d��j�d��,

where V arXj� (�) and EXj� (�) are the variance and expectation with respect to the sampling
distribution of X, which only depends on � by de�nition. By the same argument as in

obtaining the third expression of Proposition 4.1 (4.2), I obtain the upper Bayes risk over

the prior classM
�
��
�
as:

r�(��; �) =

Z
�

V arXj� (� (X)) d�� +

Z
�

sup
�2H(�)

�
EXj� [� (X)]� �

�2
d��.

=

Z
�

V arXj� (� (X)) d��

+

Z
�

�h
EXj� [� (X)]�

�
�+

c

2

�i2
+ c

���EXj� [� (X)]� ��+ c
2

����+ c2
4

�
d��:

The upper Bayes risk evaluated at the posterior gamma-minimax action, � (X) = a�X =

n
n+1

�X + c
2
, is calculated as

r�(��; a
�
X) =

1 + c (2=�)
1
2

n+ 1
+
c2

4
.
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Consider now a decision rule ~� (X) = �X + c
2
that is di¤erent from a�X . The upper Bayes

risk of ~� (X) is obtained as

r�(��; ~�) =
1

n
+
c2

4
,

which is strictly smaller than r�(��; a
�
X) if cn (2=�)

1
2 > 1. Therefore, for some c and n,

~� (X) outperforms a�X in terms of the unconditional gamma minimax criterion. Hence, the

posterior gamma-minimax action a�X fails to be optimal in the unconditional sense.

With the speci�ed prior class, a prior that supprts a�x to be a posterior Bayes action

generally depends on realization of data x. Consequently, one cannot claim that decision

� (x) = a�x is supported as an unconditional Bayes decision with respect to any prior in the

class. On the other hand, the saddle-point argument in the minimax problem shows that

the unconditional gamma-minimax decision �� is ensured to be a Bayes decision with respect

to a least favorable prior in the class. This di¤erence, that �� is a Bayes decision while a�x is

not, results in the descrepancy between the conditional and unconditional gamma minimax

decisions.

To my knowledge, no consensus is available on whether one should condition on data

or not in solving the gamma minimax problem. In the current context, however, the two

decision criteria di¤er in terms of simplicity of computing the optimal actions. The posterior

gamma minimax action is simpler to compute, as shown in the main text, whereas it does

not seem to be the case for the unconditional gamma minimax decision.

B.2 Gamma-minimax Regret Analysis

In this appendix, I consider the posterior gamma-minimax regret criterion as an alternative

to the posterior gamma-minimax criterion considered in Section 4. To maintain analytical

tractability, I consider the point estimation problem for scalar � with quadratic loss, L(�; a) =

(� � a)2.
The statistical decision problem under the conditional gamma-minimax regret criterion

is set up as follows.
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De�nition B.2 De�ne the lower bound of the posterior risk, given ��, by �(��) = infa2H �(��; a).

The posterior gamma-minimax regret action aregx 2 H solves

inf
a2Ha

sup
��2M(��)

�
�(��; a)� �(��)

	
:

Since the loss function is quadratic, the posterior risk �(��; a) for a given �� is minimized

at �̂�� , the posterior mean of �. Therefore, the lower bound of the posterior risk is simply

the posterior variance, �(��) = E�jX(
�
� � �̂��

�2
), and the posterior regret can be written as

�(��; a)� �(��) = E�jX

h
(� � a)2 �

�
� � �̂��

�2i
= E�jX

�
(a� �̂��)

2
�
.

Let
h
�
x
; ��x

i
be the range of the posterior mean of � when �� varies over the prior class

M(��), where
h
�
x
; ��x

i
is assumed to be bounded, m

�
xj��

�
-almost surely. Then, the

posterior gamma-minimax regret is simpli�ed to

sup
��2M(��)

�
�(��; a)� �(��)

	
=

8<: (��x � a)
2 for a � �

x
+��x
2
;�

�
x
� a

�2
for a >

�
x
+��x
2
:

(B.2)

Hence, the posterior gamma-minimax regret is minimized at
�
x
+��x
2
, yielding the posterior

gamma minimax regret action as the midpoint decision, aregx =
�
x
+��x
2
. Since �

x
and ��x are

seen as the posterior means of the lower and upper bounds of the identi�ed sets, reporting aregx

is qualitatively similar to reporting the midpoint of the e¢ cient estimators for the bounds,

which is known to be the local asymptotic minimax regret decision obtained in Song (2012).

Since the lower bound of the posterior risk �(��), in general, depends on the prior

�� 2 M
�
��
�
, the posterior gamma-minimax regret action aregx di¤ers from the posterior

gamma-minimax action a�x obtained in Section 4. For large samples, however, this di¤er-

ence disappears and aregx and a�x converge to the midpoint of the true identi�ed sets in case

of a symmetric loss function.
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