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Abstract

This online material supplements The Identification Region of the Potential Outcome Distri-

butions under Instrument Independence. In Appendix C, the identification region of the potential

outcome distributions and of the Average Treatment Effect (ATE) are shown to coincide with

the Balke-Pearl bounds (Balke and Pearl, 1997) when the outome is binary. In Appendix D, a

geometric illustration is provided that shows how to construct the ATE bounds under Random As-

signment (RA) when the outcome is continuous, which provides further intuition as to the source

of the identification gain in strengthening Marginal Statistical Independence to RA.

Appendix C: Comparison with the Balke-Pearl Bounds in the Binary

Outcome Case

In this appendix, we show that IRATE(P,Q|RA), which is presented in Proposition 4.1, coincides with

the expression for the ATE that is derived from the Balke-Pearl bounds (Balke and Pearl, 1997) when

the outcome is binary. Since the dominating measure µ puts point mass on {1, 0}, each pYj (yj) or

qYj (yj) for yj ∈ {1, 0} and j = 1, 0 represents Pr(Y = yj , D = j|Z = 1) or Pr(Y = yj , D = j|Z = 0).

By solving a certain linear optimization problem, Balke and Pearl (1997) derives the following
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bound formulas for E(Y1) and E(Y0).

max



pY1(1)

qY1(1)

pY0(0) + pY1(1)− qY0(0)− qY1(0)

pY0(1) + pY1(1)− qY1(0)− qY0(1)


≤ E(Y1), (C.1)

min



1− pY1(0)

1− qY1(0)

pY0(1) + pY1(1) + qY0(0) + qY1(1)

pY0(0) + pY1(1) + qY0(1) + qY1(1)


≥ E(Y1), (C.2)

and

max



qY0(1)

pY0(1)

qY0(1) + qY1(1)− pY0(0)− pY1(1)

qY1(0) + qY0(1)− pY0(0)− pY1(0)


≤ E(Y0), (C.3)

min



1− qY0(0)

1− pY0(0)

qY1(0) + qY0(1) + pY0(1) + pY1(1)

qY0(1) + qY1(1) + pY1(0) + pY0(1)


≥ E(Y0). (C.4)

In addition, Balke and Pearl (1997) shows that the ATE bounds are equal to the difference between

each upper and lower bound. That is, the lower bound of E(Y1)−E(Y0) is equal to the lower bound

of E(Y1) less the upper bound of E(Y0), and the upper bound of E(Y1)−E(Y0) is equal to the upper

bound of E(Y1) less the lower bound of E(Y0).

To facilitate comparison, we note that E(Y1) = fY1(1) and E(Y0) = fY0(1), and use this notation

interchangeably. Moreover, we rewrite the Balke-Pearl bounds, exploiting the following results. For

each j = 1, 0,

pYj (·) + qYj (·) = max{pYj (·), qYj (·)}+ min{pYj (·), qYj (·)}, (C.5)

and

pY0(0) + pY1(0) + pY0(1) + pY1(1) = 1, (C.6)

qY0(0) + pY1(0) + qY0(1) + qY1(1) = 1. (C.7)
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We also combine the first and second element of each lower bound and each upper bound into a single

element.

max


max{pY1(1), qY1(1)}

max{pY1(1), qY1(1)}+ min{pY1(1), qY1(1)}+ pY0(0) + qY0(1)− 1

max{pY1(1), qY1(1)}+ min{pY1(1), qY1(1)}+ qY0(0) + pY0(1)− 1

 ≤ E(Y1), (C.8)

min


max{pY1(1), qY1(1)}+ (1− δY1)

max{pY1(1), qY1(1)}+ min{pY1(1), qY1(1)}+ pY0(0) + qY0(1)

max{pY1(1), qY1(1)}+ min{pY1(1), qY1(1)}+ qY0(0) + pY0(1)

 ≥ E(Y1), (C.9)

and

max


max{pY0(1), qY0(1)}

max{pY0(1), qY0(1)}+ min{pY0(1), qY0(1)}+ pY1(0) + qY1(1)− 1

max{pY0(1), qY0(1)}+ min{pY0(1), qY0(1)}+ qY1(0) + pY1(1)− 1

 ≤ E(Y0), (C.10)

min


max{pY0(1), qY0(1)}+ (1− δY0)

max{pY0(1), qY0(1)}+ min{pY0(1), qY0(1)}+ pY1(0) + qY1(1)

max{pY0(1), qY0(1)}+ min{pY0(1), qY0(1)}+ qY1(0) + pY1(1)

 ≥ E(Y0). (C.11)

We refer to the first element of each bound as the Manski bounds (Manski, 1990). The remaining

two elements of each bound are due to the additional identifying information that is provided by RA

(versus MSI). If the first element of every bound is binding then we say that the Manski bounds are

all binding and, if so, then we conclude that RA provides no additional identification gain beyond

MSI for the given data generating process. There are several cases to consider.

The first case is where the data generating process reveals δY1 > 1 or δY0 > 1. In this case,

the Balke-Pearl bounds and IR(fY1 ,fY0 )
(P,Q|RA) both yield empty sets, and so trivially coincide.

Equally, IRATE(P,Q|RA) is empty. In all other cases, we assume that this condition is satisfied so

that the identification region is non-empty.

The second case is where the data generating process reveals λY1 = 1 − δY0 . Consider (C.8).

Observe that

max{pY0(0) + qY0(1), qY0(0) + pY0(1)} ≤ δY0 = 1− λY1 (C.12)

and

min{pY0(1), qY0(1)} − 1 ≤ λY1 − 1. (C.13)
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Adding (C.12) and (C.13), it follows that the second and third elements of (C.8) are less than or

equal to the first element. Next, consider (C.9). Observe that

min{pY0(0) + qY0(1), qY0(0) + pY0(1)} ≥ λY0 = 1− δY1 (C.14)

by Lemma A.2, and so the first element of (C.9) must be less than or equal to its second and third

elements. Similarly, it is straightforward to show that the first element of (C.10) is greater than or

equal to its second and third elements, and that the first element of (C.11) is less than or equal to

its second and third elements. The Manski bounds are all binding.

To show that IRATE(P,Q|RA) coincides with the expression that is derived from the Balke-Pearl

bounds, it is sufficient to show that IR(fY1 ,fY0 )
(P,Q|MSI) is equivalent to the Balke-Pearl bounds

above (since Proposition 3.2 establishes that IR(fY1 ,fY0 )
(P,Q|RA) coincides with IR(fY1 ,fY0 )

(P,Q|MSI)

in this case). For convenience, we write

FenvfY1
(P,Q) = {E(Y1) : E(Y1) ≥ max{pY1(1), qY1(1)}, 1− E(Y1) ≥ max{pY1(0), qY1(0)}} , (C.15)

FenvfY0
(P,Q) = {E(Y0) : E(Y0) ≥ max{pY0(1), qY0(1)}, 1− E(Y0) ≥ max{pY0(0), qY0(0)}} . (C.16)

Notice though that these sets coincide with the set of values of E(Y1) and E(Y0) that are defined

by the Manski bounds. Therefore, we have shown coincidence with the Balke-Pearl bounds in this

case.

The third case is where the data generating process reveals λY1 > 1− δY0 . This is the final case

that we consider since the opposite case, where the data generating process reveals λY1 < 1− δY0 , is

comparable. If λY1 > 1 − δY0 , the data generating process reveals that pY0 and qY0 cross, and we

rewrite (C.10) and (C.11) as

max

 max{pY1(1), qY1(1)}

max{pY1(1), qY1(1)}+ min{pY1(1), qY1(1)} − (1− δY0)

 ≤ E(Y1), (C.17)

min

 max{pY1(1), qY1(1)}+ (1− δY1)

max{pY1(1), qY1(1)}+ min{pY1(1), qY1(1)}+ λY0

 ≥ E(Y1). (C.18)

That is, either pY0(0) > qY0(0) and qY0(1) > pY0(1) or pY0(0) < qY0(0) and qY0(1) < pY0(1). If,

instead, pY0 and qY0 were to nest then either λY1 = 1− δY0 (if pY1 and qY1 nest) or λY1 < 1− δY0 (if

pY1 and qY1 cross), in violation of the maintained assumption. We now show that the Balke-Pearl

bounds define a set of values of E(Y1) that coincides with F∗fY1 (P,Q). There are three possibilities.
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Note that, since F∗fY1 (P,Q) ⊆ FenvfY1
(P,Q), common to all three possibilities is the requirement

that fY1 ≥ fY1 . Any feasible fY1 must then satisfy this property, allocating the remaining mass

1− δY1 between the two points of support.

The first possibility is where 1 − δY0 < min{pY1(0), qY1(0)} and 1 − δY0 < min{pY1(1), qY1(1)}.

Note that if these two conditions hold then the second elements of (C.17) and (C.18) are binding

(i.e., the Manski bounds are not all binding). Note that the Manski bounds allocate the remaining

mass 1− δY1 to one of the two points of support.1 Such an allocation is not feasible here since

min{1− δY1 ,min{pY1(0), qY1(0)}}}+ min{0,min{pY1(1), qY1(1)}}} = min{pY1(0), qY1(0)} (C.19)

< λY1 − (1− δY0),

min{0,min{pY1(0), qY1(0)}}}+ min{1− δY1 ,min{pY1(1), qY1(1)}}} = min{pY1(1), qY1(1)} (C.20)

< λY1 − (1− δY0),

which imply that the remaining mass 1− δY1 must be split between both points of support. In this

setting,

[min{pY1(1), qY1(1)}]rtrim1−δY0
= min{pY1(1), qY1(1)} − (1− δY0), (C.21)

[min{pY1(0), qY1(0)}]ltrim1−δY0
= min{pY1(0), qY1(0)} − (1− δY0), (C.22)

but these are precisely the amounts that (C.19) and (C.20) are, respectively, less than λY1 − (1− δY0)

by. As such, we obtain

fY1(1) ≥ fY1(1) + [min{pY1(1), qY1(1)}]rtrim1−δY0
, (C.23)

fY1(1) ≤ fY1(1) + (1− δY1)− [min{pY1(1), qY1(1)}]ltrim1−δY0
, (C.24)

which simplify to yield the second elements of (C.17) and (C.18) respectively. In particular,

[min{pY1(0), qY1(0)}]ltrim1−δY0
= (1− δY1)− λY0 −min{pY1(1), qY1(1)}, (C.25)

by Lemma A.2.

The second possibility is where 1 − δY0 < min{pY1(0), qY1(0)} and 1 − δY0 ≥ min{pY1(1), qY1(1)}.

That is, the lower Manski bound for E(Y1) is binding but the upper Manski bound is not. In this

1If δY1 ≤ 1 and δY0 ≤ 1 then 1−δY1 ≥ λY1−(1−δY0) due to Lemma A.2. Furthermore, if 1−δY0 < min{pY1(0), qY1(0)}

and 1 − δY0 < min{pY1(1), qY1(1)}, then 1 − δY1 ≥ min{pY1(0), qY1(0)} and 1 − δY1 ≥ min{pY1(0), qY1(0)}. The lower

Manski bound on E(Y1) allocates all of the remaining mass 1− δY1 to y = 0 while the upper Manski bound on E(Y1)

allocates all of the remaining mass 1− δY1 to y = 1.
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setting,

[min{pY1(1), qY1(1)}]rtrim1−δY0
= 0, (C.26)

[min{pY1(0), qY1(0)}]ltrim1−δY0
= min{pY1(0), qY1(0)} − (1− δY0), (C.27)

which is compatible with the lower Manski bound for E(Y1) being binding.

The third possibility is where 1 − δY0 ≥ min{pY1(0), qY1(0)} and 1 − δY0 < min{pY1(1), qY1(1)}.

That is, the upper Manski bound for E(Y1) is binding but the lower Manski bound is not. In this

setting,

[min{pY1(1), qY1(1)}]rtrim1−δY0
= min{pY1(1), qY1(1)} − (1− δY0), (C.28)

[min{pY1(0), qY1(0)}]ltrim1−δY0
= 0, (C.29)

which is compatible with the upper Manski bound for E(Y1) being binding.

With regard to fY0 and its identified set: there are two possibilities, depending upon whether pY1

and qY1 nest or cross. In either case, the second and third elements of (C.10) are bounded from

above by

fY0(1) + λY0 −min{pY0(0), qY0(0)} − (1− δY1), (C.30)

which is less than fY0(1) due to the maintained assumption that λY1 > 1 − δY0 and by Lemma A.2.

Similarly, the second and third elements of (C.11) are bounded from below by

fY0(1) + λY0 −min{pY0(0), qY0(0)}+ λY1 , (C.31)

which is greater than fY1(1)+(1− δY1) due to the maintained assumption that λY1 > 1− δY0 . Hence,

the Manski bounds are binding for E(Y0). Since we have already shown that the Manski bounds

define a set of values of E(Y0) that coincides with FenvfY0
(P,Q), we conclude that the Balke-Pearl

bounds also coincide.

We have shown that the Balke-Pearl bounds define a set of values of E(Y1) and of E(Y0) that

coincide with F∗fY1 (P,Q) and FenvfY0
(P,Q) respectively. Therefore, we have shown coincidence with

the Balke-Pearl bounds in this case. For completeness, note that, in this third case, IRATE(P,Q|RA)

can otherwise be written as

IRATE(P,Q|RA) =
[
fY1(1)− fY0(1) + [min{pY0(1), qY0(1)}]rtrim1−δY0

− (1− δY0)

fY1(1)− fY0(1) + [min{pY0(1), qY0(1)}]ltrim1−δY0
+ λY0

]
, (C.32)
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Figure D.1: A geometric illustration of the ATE bounds under RA.
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The figure depicts a data generating process with λY1 > 1− δY0 (the area of a(0) is less than the area

of a∪ d&c). Here, fY1 and fY0 are purposefully selected to attain the lower bound of the ATE under

RA.

which firmly establishes the coincidence of the Balke-Pearl bounds and IRATE(P,Q|RA) given the

specific values that the trimmed sub-densities take.

What is clear from the preceding analysis is that, unlike the case where the data generating

process reveals continuous sub-densities, it is not guaranteed that RA yields an identification gain

beyond MSI. In particular, in the binary outcome case if 1− δY0 ≥ min{pY1(0), qY1(0)} and 1− δY0 ≥

min{pY1(1), qY1(1)} then the Manski bounds are all binding and there is no identification gain, even if

the data generating process reveals λY1 > 1− δY0 . While λY1 > 1− δY0 (or its reverse) is a necessary

condition for the IR(fY1 ,fY0 )
(P,Q|RA) ⊂ IR(fY1 ,fY0 )

(P,Q|MSI), it is not a sufficient condition when

the marginal distributions of Y1 and Y0 have point mass.

Appendix D: A Geometric Illustration of the ATE Bounds

In this appendix, we provide a geometric illustration of how the definition of IRATE(P,Q|RA) emerges

in constructing the identification region under RA. We consider the case where the data generating

process reveals continuous sub-densities with support on [yl, yu] and λY1 > 1 − δY0 . We restrict

attention to the lower bound of the ATE since the upper bound is constructed in a similar way, and

begin by discussing how IRATE(P,Q|MSI) is constructed.

Under MSI, when IR(fY1 ,fY0 )
(P,Q|RA) is non-empty, fY1 ≥ fY1 and fY0 ≥ fY0 . As per Proposition
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4.1, the ATE attains its lower bound when

fY1(yl) = fY1(yl) + (1− δY1) and, for all y1 ∈ (yl, yu], fY1(y1) = fY1(y1), (D.1)

fY0(yu) = fY0(yu) + (1− δY0) and, for all y0 ∈ [yl, yu), fY0(y0) = fY0(y0), (D.2)

or, in words, when all the remaining mass is allocated to the end-points of the support. This

allocation is depicted for the marginal distribution of Y0 in the right-hand panel of Figure D.1, given

the specific data generating process that is imagined. However, under RA, such an allocation would

violate the area constraints due to the fact that λY0 < 1−δY1 , as implied by λY1 > 1−δY0 and Lemma

A.2.

Under RA, fY0 ∈ FenvfY0
(P,Q) and so the marginal distribution of Y0 is not constrained beyond

MSI. As such, the marginal distribution of Y0 that is described in (D.2) remains valid and is the

distribution that attains the lower bound of the ATE. We focus on construction of the marginal

distribution of Y1 that attains the lower bound of the ATE.

Firstly, we know that the area under min{pY1 , qY1} cannot solely comprise always-takers, and must

comprise a mixture of always-takers and defiers or compliers. If, instead, the area under min{pY1 , qY1}

were to comprise always-takers then this would violate the area constraint, as the area labelled a(0)

is smaller than the areas labelled a and d&c combined. The question then is how to partition the

area under min{pY1 , qY1}.

Secondly, we know that wherever min{pY1 , qY1} > fY1,T (y1, a) (the support of the region labelled

d&c in the left-hand panel of Figure D.1),

fY1(y1) ≥ fY1(y1) + min{pY1 , qY1} − fY1,T (y1, a) > fY1(y1) (D.3)

so as to preserve the compatibility constraints. For instance, in the left-hand panel of Figure D.1,

we partition the area under min{pY1 , qY1} into the two regions labelled a and d&c, and to preserve

the compatibility constraints we add the region labelled d&c′. Note that the region labelled d&c′

is the translation of the region labelled d&c above fY1 , and so is otherwise identical to that region.

Integrating over the support, we ascertain that the remaining mass that is left over is (1 − δY1) −

λY1 + (1− δY0), which is the area of the region labelled n(0).

Thirdly, we know that the ATE attains its lower bound for the marginal distribution of Y1 that

allocates as much mass as is possible to the left of the support. The fact that fY1 must envelope the

region labelled d&c′ together with the fact that the area of this region is λY1 − (1− δY0) means that

8



the constraint∫
Y

min{fY1 − fY1 ,min{pY1 , qY1}}dµ ≥ λY1 − (1− δY0) (D.4)

is satisfied. Moreover, the location of the never-takers above this envelope is then unrestricted,

with the area constraint automatically satisfied for this remaining type. As such, the never-takers

concentrate at yl, which yields the region labelled n. Similarly, although the number of compliers and

defiers inside the area under min{pY1 , qY1} is fixed, the location of these two types is not. Specifying

the regions labelled a and d&c as shown in Figure D.1 minimises E(Y1) since the region labelled d&c′

is then as far to the left of the support as is possible.

Note that the data generating process reveals continuous sub-densities. As such, there exists a

value, labelled y∗1l in Figure D.1, satisfying

y∗1l = sup

{
t :

∫ ∞
t

min{pY1 , qY1}dµ ≥ 1− δY0
}
, (D.5)

above which the area under min{pY1 , qY1} is precisely 1−δY0 . Furthermore, y∗1l is clearly distinct from

yl, which is a general property when the data generating process reveals continuous sub-densities.

The immediate implication is that IR(fY1 ,fY0 )
(P,Q|RA) ⊂ IR(fY1 ,fY0 )

(P,Q|MSI). If, instead, the

data generating process reveals point mass at yl or yu then, while it is possible to find y∗1l satisfying

(D.5), it is not necessarily the case that y∗1l partitions the area under min{pY1 , qY1} into two regions

with areas λY1 − (1 − δY0) and 1 − δY0 respectively. This possibility explains the added complexity

of the expressions that appear in Proposition 4.1.
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