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Abstract

Uncertainty about the choice of identifying assumptions is common in causal studies,

but is often ignored in empirical practice. This paper considers uncertainty over models

that impose different identifying assumptions, which, in general, leads to a mix of point- and

set-identified models. We propose performing inference in the presence of such uncertainty

by generalizing Bayesian model averaging. The method considers multiple posteriors for

the set-identified models and combines them with a single posterior for models that are

either point-identified or that impose non-dogmatic assumptions. The output is a set of

posteriors (post-averaging ambiguous belief ) that are mixtures of the single posterior and

any element of the class of multiple posteriors, with weights equal to the posterior model

probabilities. We suggest reporting the range of posterior means and the associated credible

region in practice, and provide a simple algorithm to compute them. We establish that

the prior model probabilities are updated when the models are “distinguishable” and/or

they specify different priors for reduced-form parameters, and characterize the asymptotic

behavior of the posterior model probabilities. The method provides a formal framework for

conducting sensitivity analysis of empirical findings to the choice of identifying assumptions.

In a standard monetary model, for example, we show that, in order to support a negative

response of output to a contractionary monetary policy shock, one would need to attach

a prior probability greater than 0.32 to the validity of the assumption that prices do not

react contemporaneously to such a shock.
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1 Introduction

The choice of identifying assumptions is the crucial step that allows researchers to draw causal

inferences using observational data. This is often a controversial choice, and there can be uncer-

tainty about which assumptions to impose from a menu of plausible ones, but this uncertainty

and its effects on inference have been typically ignored in empirical work. We propose a formal

method for drawing inferences about causal effects in the presence of uncertainty about iden-

tifying assumptions, which we characterize as uncertainty over a class of models that impose

different sets of assumptions. The method can be viewed as a generalization of Bayesian model

averaging to include set-identified models, which commonly arise when the assumptions are

under-identifying or take the form of inequality restrictions.

There are several examples in economics where empirical researchers face uncertainty about

identifying assumptions that lead to point- or set-identification of a common causal parameter

of interest. The first is macroeconomic policy analysis based on structural vector autoregres-

sions (SVARs), where assumptions include causal ordering restrictions (Bernanke (1986) and

Sims (1980)), long-run neutrality restrictions (Blanchard and Quah (1993)), and Bayesian prior

mean restrictions implied by a structural model (Del Negro and Schorfheide (2004)). Subsets

of these assumptions deliver set-identified impulse-responses, as does the use of sign restrictions

(Canova and Nicolo (2002), Faust (1998), and Uhlig (2005)). The second example is microe-

conometric causal effect studies with assumptions such as selection on observables (Ashen-

felter (1978) and Rosenbaum and Rubin (1983)), selection on observables and unobservables

(Altonji, Elder, and Taber (2005)), exclusion and monotonicity restrictions in instrumental

variables methods (Imbens and Angrist (1994), yielding set-identification of the average treat-

ment effect), and monotone instrument assumptions (Manski and Pepper (2000), also yielding

set-identification). The third example is missing data with assumptions such as missing at ran-

dom, Bayesian imputation (Rubin (1987)), and unknown missing mechanism (Manski (1989),

yielding set-identification). Finally, estimation of structural models with multiple equilibria

relies on assumptions about the equilibrium selection rule, with different assumptions (or lack

thereof) delivering point- or set-identification (e.g., Bajari, Hong, and Ryan (2010), Beresteanu,

Molchanov, and Molinari (2011), and Ciliberto and Tamer (2009)).

The common practice in empirical work is to report results based on what is deemed the

most credible set of identifying assumptions, or, sometimes, based on a number of alternative

assumptions, viewed as an informal sensitivity analysis. Our proposed method provides a formal

framework for conducting sensitivity analysis and for aggregating results based on point- and

set-identifying assumptions.

The idea of model averaging has a long history in econometrics and statistics since the

pioneering works of Bates and Granger (1969) and Leamer (1978). The literature has considered

Bayesian approaches (see, e.g., Hoeting, Madigan, Raftery, and Volinsky (1999) and Claeskens
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and Hjort (2008)), frequentist approaches (Hansen (2007, 2014), Hjort and Claeskens (2003),

Hansen and Racine (2012), Liu (2015), Liu and Okui (2013), and Zhang and Liang (2011)),

and hybrid approaches (Hjort and Claeskens (2003), Kitagawa and Muris (2016), and Magnus,

Powell, and Prüfer (2010)), but none of them allows for set-identification in any candidate

model.

We tackle this problem from the angle of Bayesian model averaging. Standard Bayesian

model averaging delivers a single posterior that is a mixture of the posteriors of the candidate

models with weights equal to the posterior model probabilities. This approach could in principle

be extended to our context if one could obtain a single posterior for every set-identified model.

Assuming a single prior is however problematic from the robustness viewpoint as the choice

of a single prior, even an apparently uninformative one, can lead to spuriously informative

posterior inference for the object of interest (Baumeister and Hamilton (2015)). The severity of

the problem is magnified by the fact that the effect of the prior choice persists asymptotically,

unlike in the case of point-identified models (Moon and Schorfheide (2012), Poirier (1998),

among others).

The key innovation of our approach to Bayesian model averaging is that we do not assume

availability of a single posterior for the set-identified models. Rather, we allow for multiple pri-

ors (an ambiguous belief ) within the set-identified models, and then combine the corresponding

multiple posteriors with single posteriors for models that are either point-identified or that im-

pose non-dogmatic identifying assumptions in the form of a Bayesian prior for the structural

parameters (as in (Baumeister and Hamilton (2015))). The output of the procedure is a set of

posteriors (post-averaging ambiguous belief ), that are mixtures of the single posteriors and any

element of the set of multiple posteriors, with weights equal to the posterior model probabilities.

To summarize and visualize the post-averaging ambiguous belief, we recommend reporting the

range of posterior quantities (e.g., the mean or median) and the associated credible region (an

interval to which any posterior in the class assigns a certain credibility level). We show that

these quantities have analytically simple expressions and are easy to compute in practice.

This paper contributes to the growing literature on Bayesian inference for partially identified

models (Giacomini and Kitagawa (2015), Kitagawa (2012), Kline and Tamer (2016), Moon

and Schorfheide (2012), Norets and Tang (2014), Liao and Simoni (2013)). We follow the

multiple-prior approach to model the lack of knowledge within the identified set as in Giacomini

and Kitagawa (2015) and Kitagawa (2012). When the set-identified model is the only model

considered, the range of posteriors generated by the approach leads to the posterior inference

for the identified set proposed in Kline and Tamer (2016), Liao and Simoni (2013), and Moon

and Schorfheide (2011). When there is uncertainty about the identifying assumptions, however,

the usual definition of identified set is not available without conditioning on the model. The

multiple prior viewpoint has an advantage in this case since the range of posteriors has a
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well-defined subjective interpretation even in the presence of model uncertainty.

The method proposed in this paper provides a formal framework for conducting sensi-

tivity analysis of causal inferences to the choice of identifying assumptions. First, when the

set-identified model nests the point-identified model, the method can be used to assess the

posterior sensitivity in the point-identified model with respect to perturbations of the prior in

the direction of relaxing some of the point-identifying assumptions. In this case, we can for-

mally interpret our averaging method as an example of the ε-contamination sensitivity analysis

developed in Huber (1973) and Berger and Berliner (1986), with a particular construction of

the prior class. Second, if the point-identified model can be considered a reasonable bench-

mark, the method offers a simple and flexible way to add non-dogmatic identifying information

to the set-identified model, which results in increasing informativeness of the conclusions in a

transparent manner. Third, the method can be used to perform reverse engineering exercises

that compute the prior probability one would need to attach to a set of identifying assumptions

in order for the averaging to preserve a given empirical conclusion (e.g., the so-called price and

liquidity puzzles in monetary SVARs, respectively discussed by (Sims, 1992) and (Reichenstein,

1987)).

Our proposed method can also be viewed as bridging the gap between point- and set-

identification. When focusing solely on a point-identified model, a researcher who is not fully

confident about the choice of identifying assumptions may doubt the robustness of the conclu-

sions. On the other hand, discarding some of the point-identifying assumptions and reporting

estimates of the identified set may appear “excessively agnostic”, and often results in unin-

formative conclusions. Our averaging procedure reconciles these two extreme representations

of the posterior beliefs by exploiting the prior weights that one can assign to alternative sets

of identifying assumptions. The output of the procedure is a weighted average of the poste-

rior mean in the point-identified model and the range of posterior means in the set-identified

model. When the identified set is a connected interval, the range of posterior means can be

viewed as an estimate of the identified set (Giacomini and Kitagawa (2015)), and thus our

averaging procedure effectively shrinks the identified set estimate toward the point estimate

from the point-identified model, with the degree of shrinkage governed by the posterior model

probabilities.

In addition to developing a novel approach to Bayesian model averaging, we make two main

analytical contributions to the literature on Bayesian model selection and averaging. First, we

clarify under which conditions the prior model probabilities can be updated by data. We show

that the updating occurs if some models are “distinguishable” for some distribution of data

and/or the priors for the reduced-form parameters differ across models. Second, we investigate

the asymptotic properties of the posterior model probabilities and of the averaging method. We

show that when only one model is consistent with the true distribution of the data our method
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asymptotically assigns probability one to it. When multiple models are observationally equiv-

alent and “not falsified” at the true data generating process, the posterior model probabilities

asymptotically assign nontrivial weights to them. We clarify what part of the prior input deter-

mines the asymptotic posterior model probabilities in such case. The consistency property of

Bayesian model selection has been well-studied in the statistics literature (e.g., Claeskens and

Hjort (2008) and references therein), but there is no discussion about the asymptotic behavior

of posterior model probabilities when the models differ in terms of the identifying assumptions

but can be observationally equivalent in terms of their reduced form representations. These

new results therefore could be of separate interest.

The empirical application in this paper considers SVAR analysis with uncertainty over the

classes of identifying assumptions typically used in empirical work: causal ordering restrictions

(Bernanke (1986) and Sims (1980)), sign restrictions (Canova and Nicolo (2002), Faust (1998),

and Uhlig (2005)), and restrictions implied by a Dynamic Stochastic General Equilibrium

(DSGE) model. The choice of identifying assumptions has often been a source of controversy

in this literature, given that researchers have differing opinions about their credibility. One

popular choice is the use of sign restrictions. Although the resulting model is set-identified and

the approach therefore raises serious robustness concern as we discussed above, the common

practice is to consider single-prior Bayesian inference in set-identified SVARs. The large body

of the empirical literature adopting this approach includes Canova and Nicolo (2002), Faust

(1998), Mountford (2005), Rafiq and Mallick (2008), Scholl and Uhlig (2008), Uhlig (2005),

and Vargas-Silva (2008) for applications to monetary policy, Dedola and Neri (2007), Fujita

(2011), and Peersman and Straub (2009) for applications to business cycle model, Mountford

and Uhlig (2009) for applications to fiscal policy, Kilian and Murphy (2012) for applications to

oil prices. Alternative approaches that do not suffer from the pitfalls of single-prior Bayesian

inference are Moon, Schorfheide, and Granziera (2013) and Gafarov, Meier, and Montiel-Olea

(2016a,b), who consider frequentist inference for the identified set and Giacomini and Kitagawa

(2015), who propose a robust Bayesian approach. To our knowledge, little work has been done

on multi-model inference in the SVAR literature, and the methods proposed in this paper could

therefore prove helpful in reconciling the controversies about the identifying assumptions that

are widespread in this literature. As an example, the empirical application documents the

high sensitivity of the conclusion in standard monetary SVARs that output decreases after a

contractionary monetary policy shock to the choice of identifying assumptions.

The remainder of the paper is organized as follows. Section 2 illustrates the motivation

and the implementation of the averaging method in the context of a simple model. Section 3

presents the formal analysis in a general framework and provides a computational algorithm

to implement the procedure. Section 4 discusses the relationship between our method and

existing Bayesian methods, and discusses elicitation of model probabilities. Section 5 applies
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our method to impulse response analysis in monetary SVARs. The Appendix contains proofs

and a microeconometric application.

2 Illustrative Example

We present the key ideas and the implementation of the method in a static model of labor

supply and demand, subject to common types of identifying assumptions.1 The model is:

A

(
Δnt

Δwt

)

=

(
εd
t

εs
t

)

, A =

(
a11 a12

a21 a22

)

, t=1,. . . ,T, (2.1)

where (Δnt, Δwt) are the growth rates of employment and wages and (εd
t , ε

s
t ) is an i.i.d. normally

distributed vector of demand and supply shocks with variance-covariance the identity matrix.

A is the structural parameter and the contemporaneous impulse responses are elements of A−1.

The reduced-form model is indexed by Σ, the variance-covariance matrix of (Δnt, Δwt),

which satisfies Σ = A−1(A−1)′. Denote its lower triangular Cholesky decomposition with

nonnegative diagonal elements by Σtr =

(
σ11 0

σ21 σ22

)

with σ11 ≥ 0 and σ22 ≥ 0, and define the

reduced form parameter as φ = (σ11, σ21, σ22) ∈ Φ = R+ ×R×R+.2 Let the mapping from the

structural parameter to the reduced-form parameter be denoted by φ = g(A).

Suppose the object of interest is the response of the first variable to a unit positive shock in

the first variable, α ≡ (1,1)-element of A−1. Without identifying assumptions, the structural

parameter is set-identified since knowledge of the reduced-form parameter φ cannot uniquely pin

down the structural parameter (φ = g(A) is a many-to-one mapping). Imposing assumptions

can lead to a set or a point for α, depending on the type and number of assumptions.

We now illustrate our proposal for two different types of identifying assumptions.

2.1 Dogmatic Identifying Assumptions

First consider dogmatic identifying assumptions, which are equality or inequality restrictions

on (functions of) the structural parameter that hold with probability one.

Scenario 1: Candidate Models

• Model Mp (point-identified): The labor demand is inelastic to wage, a12 = 0.

• Model M s (set-identified): The wage elasticity of demand is non-positive, a12 ≥ 0, and

the wage elasticity of supply is non-negative, a21 ≤ 0.

1See Appendix A.2 for a microeconometric application to a treatment effect model with noncompliance.
2The positive semidefiniteness of Σ does not constrain the value of φ other than σ11 ≥ 0 and σ22 ≥ 0.
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Model Mp restricts A to be lower-triangular, as in the classical causal ordering assump-

tions of Sims (1980) and Bernanke (1986). Combined with the sign normalization restrictions

requiring the diagonal elements of A to be nonnegative, the assumption implies that the con-

temporaneous impulse responses can be identified by A−1 = Σtr. The parameter of interest

can be expressed as α = αMp(φ) ≡ σ11.

Model M s imposes sign restrictions that only set-identify α. Appendix A shows that the

identified set for α is:

ISα(φ) ≡






[
σ11 cos

(
arctan

(
σ22
σ21

))
, σ11

]
, for σ21 > 0,

[
0, σ11 cos

(
arctan

(
−σ21

σ22

))]
, for σ21 ≤ 0.

(2.2)

Note that the identified set is non-empty for any φ. Hence, models Mp and M s are observa-

tionally equivalent at any φ ∈ Φ and neither of them is falsifiable, i.e., for any φ ∈ Φ in both

models there exist a structural parameter A that satisfies the identifying assumptions.3

Our method specifies a prior for the reduced-form parameter in each model. This prior

is updated by the data and thus such a choice does not asymptotically affect the conclusions

about the parameter of interest within a given model. However, as we show in Section 3.5, the

choice of priors for the reduced-form parameter can influence the posterior model probabilities,

even asymptotically. In the example, given the observational equivalence of the two models, it

might be reasonable to specify the same prior for φ:

πφ|Mp = πφ|Ms = π̃φ (2.3)

where π̃φ is a proper prior, such as the one induced by a Wishart prior on Σ. The same prior

for φ in observationally equivalent models leads to the same posterior:

πφ|Mp,Y = πφ|Ms,Y = π̃φ|Y , (2.4)

where Y denotes the sample.

In model Mp, the posterior for φ implies the unique posterior for α, πα|Mp,Y , via the

mapping α = αMp(φ).

In model M s, on the other hand, the posterior for φ does not yield a unique posterior for α,

since the mapping in (2.2) is generally set-valued. Following Giacomini and Kitagawa (2015)

and Kitagawa (2012), we formulate the lack of prior knowledge by considering multiple priors

(ambiguous belief). Formally, given the prior for the reduced form parameter πφ|Ms , we form

3When σ21 > 0, the point-identified α in model Mp is the upper-bound of the identified set in model Ms,

whereas when σ21 < 0, the identified set in model Ms does not contain the point-identified α. This is because in

model Mp we have a12 = − σ21
σ11σ22

, which is positive if σ21 < 0, meaning that the point-identifying assumptions

a12 = 0 and σ21 < 0 are not compatible with the restriction a21 ≤ 0.
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the class of priors for A by admitting arbitrary conditional priors for A given φ, as long as they

are consistent with the identifying assumptions:

ΠA|Ms ≡

{

πA|Ms =
∫

Φ
πA|Ms,φdπφ|Ms : πA|Ms,φ(Asign ∩ g−1(φ)) = 1, πφ|Ms-a.s.

}

,

where Asign = {A : a12 ≥ 0, a21 ≤ 0, diag(A) ≥ 0} is the set of structural parameters that

satisfy the sign restrictions and the sign normalizations and g−1(φ) is the set of observationally

equivalent structural parameters given the reduced-form parameter φ.

Since the likelihood depends on the structural parameter only through the reduced-form

parameter, applying Bayes’ rule to each prior in the class only updates the prior for φ, and

thus leads to the following class of posteriors for A:

ΠA|Ms,Y ≡

{

πA|Ms,Y =
∫

Φ
πA|Ms,φdπφ|Ms,Y : πA|Ms,φ(Asign ∩ g−1(φ)) = 1, πφ|Ms-a.s.

}

.

(2.5)

Marginalizing the posteriors in ΠA|Ms,Y to α leads to the class of α-posteriors:

Πα|Ms,Y ≡

{

πα|Ms,Y =
∫

Φ̃
πα|Ms,φdπφ|Ms,Y : πα|Ms,φ(ISα(φ)) = 1, πφ|Ms-a.s.

}

. (2.6)

We view this class as a representation of the posterior uncertainty about α in the set-identified

model. The class contains any α-posterior that assigns probability one to the identified set,

and it represents the lack of belief therein in terms of Knightian uncertainty (ambiguity). This

is a key departure from the standard approach to Bayesian model averaging, which requires a

single posterior for all models, including those where the parameter is set-identified.

Suppose that the researcher’s prior uncertainty over the two models can be represented by

prior probabilities πMp ∈ [0, 1] for model Mp and (1 − πMp) for model M s.4

Our proposal is to combine the single posterior for α in model Mp and the set of posteriors

for α in model M s according to the posterior model probabilities πMp|Y and πMs|Y (the pos-

terior model probability for model M s depends only on the single prior for the reduced-form

parameter, so it is unique in spite of the multiple priors for the structural parameter). The

combination delivers a class of posteriors Πα|Y , the post-averaging ambiguous belief :

Πα|Y = {πα|Mp,Y πMp|Y + πα|Ms,Y πMs|Y : πα|Ms,Y ∈ Πα|Ms,Y }. (2.7)

As we show in Section 4.1, our proposal can be interpreted as applying Bayes’ rule to each

prior in a class that has the form of an ε-contaminated class of priors (see Berger and Berliner

(1986)).

4We discuss interpretation and elicitation of the prior model probabilities in Section 4.3.
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A key result of the paper is to establish conditions under which the prior model probabilities

are updated by the data, which we show occurs when the models are “distinguishable” for some

reduced-form parameter values and/or they specify different priors for φ (see Lemma 3.1 below).

In the current scenario, the two models are indistinguishable, so the prior model probabilities

are not updated if they use a common φ-prior.

In practice, we recommend reporting as the output of the procedure the post-averaging

range of posterior means or quantiles of Πα|Y and its associated robust credible region with

credibility γ ∈ (0, 1), defined as the shortest interval that receives posterior probability at least

γ for every posterior in Πα|Y . Proposition 3.1 shows that the range of posterior means is the

weighted average of the posterior mean in model Mp and the range of posterior means in model

M s:
[

inf
πα|Y ∈Πα|Y

Eα|Y (α), sup
πα|Y ∈Πα|Y

Eα|Y (α)

]

=πMp|Y Eα|Mp,Y (α) + πMs|Y
[
Eφ|Ms,Y (l(φ)), Eφ|Ms,Y (u(φ))

]
, (2.8)

where (l(φ), u(φ)) are the lower and upper bounds of the nonempty identified set for α shown

in (2.2), a + b[c, d] stands for [a + bc, a + bd], and Eφ|Ms,Y (∙) denotes the posterior mean with

respect to πφ|Ms,Y = π̃φ|Y . Since the range of posterior means can be viewed as an estimator for

the identified set in model M s, our procedure effectively shrinks the estimate of the identified

set in the set-identified model toward the point estimate in the point-identified model, with the

amount of shrinkage determined by the posterior model probabilities.

The robust credible region for α with credibility γ can be computed as follows. We first

draw z1, . . . , zG randomly from a Bernoulli distribution with mean πMp|Y and then generate

g = 1, . . . , G random draws of the “mixture identified set” for α according to

ISmix
α (φg) =






{α(φg)}, φg ∼ πφ|Mp,Y = π̃φ|Y , if zg = 1

[l(φg), u(φg)], , φg ∼ πφ|Ms,Y = π̃φ|Y if zg = 0.
(2.9)

Intuitively, with probability πMp|Y , a draw of the mixture identified set is a singleton cor-

responding to the point-identified value of α, and with probability πMs|Y it is a nonempty

identified set for α. The robust credible region with credibility level γ is approximated by an

interval that contains the γ-fraction of the drawn ISmix
α (φ)’s. The minimization problem in

Step 5 of Algorithm 4.1 in Giacomini and Kitagawa (2015) is solved to obtain the shortest-width

robust credible region.

2.2 Non-dogmatic Identifying Assumptions

Our method allows for identifying assumptions that are expressed as a non-dogmatic prior for

the structural parameter.
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Scenario 2: Candidate Models

• Model MB (single prior): A prior for the structural parameter A.

• Model M s (multiple priors): Same as the set-identified model in Scenario 1.

Model MB assumes availability of a prior for the whole structural parameter. This prior can

reflect Bayesian probabilistic uncertainty about identifying assumptions expressed as equalities

(see, e.g., Baumeister and Hamilton (2015), who propose a prior for a dynamic version of the

current model based on a meta-analysis of the literature). Another key example of a model

that implies a single prior for the structural parameter is a Bayesian DSGE model.

Model MB always yields a single posterior for α. However, the influence of prior choice

does not vanish asymptotically due to the lack of identification. In principle, if the researcher

were confident about the prior specification in model MB , she could perform standard Bayesian

inference and obtain a credible posterior, despite the identification issues. In practice, this is

rather rare. For instance, the prior considered by Baumeister and Hamilton (2015) is based on

the elicitation of first and second moments and the remaining characteristics of the distribution

are chosen for analytical or computational convenience. Further, eliciting dependence among

structural parameters is challenging, and an independent prior could lead to unintended or

counter-intuitive effects on posterior inference.5 These robustness concerns can be addressed

by averaging the Bayesian model MB with the set-identified model M s, which accommodates

the lack of prior knowledge about the structural parameter (beyond the inequality restrictions).

One important consideration in this scenario is that the single prior for A in model MB

implies a single prior for the reduced form parameter. Here we thus allow the prior for φ

in model M s to differ from that in model MB . This, in turn, affects the posterior model

probabilities, which are given by:

πMB |Y =
p(Y |MB) ∙ πMB

p(Y |MB) ∙ πMB + p(Y |M s) ∙ (1 − πMB )
,

πMs|Y =
p(Y |M s) ∙ (1 − πMB )

p(Y |MB) ∙ πMB + p(Y |M s) ∙ (1 − πMB )
, (2.10)

where πMB is the prior weight assigned to model MB , p(Y |M) ≡
∫
Φ p(Y |φ,M)dπφ|M (φ),

M = MB ,M s, are the marginal likelihoods of model M with p(Y |φ,M) the likelihood of the

reduced form parameters. In this scenario the different priors for φ imply p(Y |MB) 6= p(Y |M s),

and therefore the prior model probabilities can be updated by the data.

Given these posterior model probabilities, the construction of the post-averaging ambiguous

belief proceeds as in (2.7). The range of posterior means for α can be obtained similarly to

5“Knowing no dependence” among the parameters differs from “not knowing their dependence.”
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(2.8), where MB replaces Mp. The robust credible region can be constructed as in Scenario 1,

by drawing iid draws z1, . . . , zG ∼ Bernoulli(πMB |Y ) and letting

ISmix
α,g =






{α}, α ∼ πα|MB ,Y , if zg = 1,

[l(φg), u(φg)], , φg ∼ πφ|Ms,Y if zg = 0.
(2.11)

3 Formal Analysis

This section formalizes the idea in a general setting and proves the analytical claims made in

the previous section.

3.1 Notation and Definitions

Consider J + K ≥ 2 candidate models, J,K ≥ 0, that can differ in various aspects, including

the identifying assumptions and the parameterization of the structural model. The class of J

models consists of single-posterior models, whose prior input always (i.e., independent of the

realization of the data) leads to a single posterior for the parameter of interest. Examples are

models that impose dogmatic point-identifying assumptions with a single prior for the reduced-

form parameter (such as model Mp in Scenario 1), or models that assume a single prior for the

structural parameter in spite of it being set-identified (such as model MB in Scenario 2). We

denote the class of single-posterior models by Mp.

The class of K models consists of multiple-posterior models, defined by the following fea-

tures: (1) under the identifying assumptions the parameter of interest is set-identified, i.e.,

knowledge of the distribution of observables (value of the reduced-form parameter) does not

pin down a unique value for the parameter of interest, and (2) they specify a single prior

for the reduced-form parameter. The posterior information in a multiple-posterior model is

characterized by the set of posteriors. We denote the class of multiple-posterior models by Ms.

Let M ≡ Mp ∪Ms. The vector of structural parameters in model M ∈ M is θM ∈ ΘM ,

where ΘM is the set of structural parameters that satisfy the identifying assumptions imposed

in model M . We assume that the scalar parameter of interest α = αM (θM ) ∈ R is well-

defined as a function of θM and it carries a common (causal) interpretation in all models. The

reduced-form parameter φM is a function of the structural parameter, φM = gM (θM ) ∈ RdM ,

where gM (∙) maps a set of observationally equivalent structural parameters subject to the

identifying assumptions in model M to a point in the reduced-form parameter space, defined

as ΦM = gM (ΘM ).6 As reflected in the notation, our most general set-up allows the parameter

6The likelihood p̃(Y |θM , M) in model M depends on θM only through the reduced-form parameter gM (θM )

for any realization of Y , i.e., there exists p(Y |∙, M) such that p̃(Y |θM , M) = p(Y |gM (θM ), M) holds for every Y .

The statistics literature refers to the reduced-form parameter as the minimally sufficient parameter (see, e.g.,

Dawid (1979)).
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space of both structural and reduced-form parameters to differ across models.7 We express the

likelihood in model M ∈ M in terms of the reduced-form parameter by p(Y |φM ,M). For a

multiple-posterior model M ∈ Ms, define the identified set of α by ISα(φM |M) = {αM (θM ) :

θM ∈ ΘM ∩ g−1
M (φM )}, which is a set-valued mapping from ΦM to R.

Note that, by construction, the parameter space of the reduced form parameter ΦM in-

corporates the testable implications, if any, of the imposed identifying assumptions. For a

set-identified model M s ∈ Ms, ΦMs is equivalent to the set of φM ’s that yield a nonempty

identified set, ΦMs = {φMs ∈ RdMs : ISα(φMs |M s) 6= ∅}.8

The next definition introduces the concept of identical reduced-forms among the candidate

models. Our analytical results about the posterior model probabilities shown below (Lemma

3.1 and Proposition 3.3) assume that some or all of the candidate models admit an identical

reduced-form.

Definition 3.1 Let M be a collection of models. M admits an identical reduced-form if

the following conditions hold:

(a) ΦM can be embedded into a common d-dimensional Euclidean space Rd for all M ∈ M

(hence φM can be denoted by φ ∈ Rd).

(b) For every M ∈ M, the reduced-form likelihood p(Y |φM = φ,M) defines a probability

distribution of Y on the extended domain φ ∈ Φ ≡ ∪M∈MΦM , and p(Y |φM = φ,M) =

p(Y |φ) holds for all φ ∈ Φ, where p(Y |φ) is the likelihood common among M ∈ M.

Definition 3.1 formalizes the situation where models imposing different identifying assump-

tions lead to the same parametric family of distributions for the observables (Condition (a)).

Different identifying assumptions, nonetheless, can constrain the class of distributions of ob-

servables in the sense that the domain of reduced-form parameters ΦM can differ among the

models. The key condition in Definition 3.1 is (b), requiring that the distribution of the data

Y in model M (indexed by φ) is well-defined over the extended domain Φ = ∪M∈MΦM and

the likelihood of φ is common among the models M ∈ M. For instance, if M consists of

SVAR models with the same set of variables but subject to different identifying assumptions

(including observationally restrictive ones such as sign restrictions), the conditions of Definition

3.1 are satisfied when the models have the same reduced-form VAR. See also the treatment

effect models of Appendix A.2 as a microeconometrics example where all the candidate models

admit an identical reduced-form. In what follows, whenever we assume that M admits an

7For instance, in the model considered in Section 2, the reduced-form parameter space can differ depending

on how many lagged endogenous variables and/or exogenous variables are included in each model.
8For instance, in a SVAR with observationally restrictive sign restrictions, ΦM is the set of reduced-form

parameters in the VAR yielding a nonempty impulse response identified set, which can be a proper subset of

the reduced-form parameter space of the VAR.
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identical reduced-form, we denote the common reduced-form parameters by φ and the common

reduced-form likelihood by p(Y |φ).

The next set of definitions introduces the concepts of observational equivalence and distin-

guishability of the candidate models.

Definition 3.2 (i) The models in M are observationally equivalent at φ if M admits

an identical reduced-form and φ ∈ ∩M∈MΦM .

(ii) Two distinct models M,M ′ ∈ M that admit an identical reduced-form are distinguish-

able if ΦM 6= ΦM ′ .

(iii) The models in M are indistinguishable if M admits an identical reduced-form and

ΦM = Φ for all M ∈ M.

Models that are observationally equivalent at φ (Definition 3.2 (i)) generate the same dis-

tribution of data (corresponding to φ), implying that knowledge of φ fails to uniquely identify

what model generated the data. Note that our definition of observational equivalence is local

to the given φ, and it does not constrain the relationship among the reduced-form parameter

spaces for different models except that they must have a non-empty intersection. In contrast,

the concept of (in)distinguishability in Definition 3.2 (ii) and (iii) concerns the relationship

among the reduced-form parameter spaces across models. If two models admitting an identical

reduced-form are distinguishable, then there exists some reduced-form parameter value that

allows one to falsify one model in favor of the other. On the other hand, indistinguishability

of Definition 3.1 (iii) can be interpreted as observational equivalence of the models in a global

sense — if the models are indistinguishable, one could not find support for one model rather

than the others based on the data, regardless of any available knowledge about the distribution

of observables.

3.2 Posterior Model Probabilities

This section shows when and how the data update the prior model probabilities when some or

all of the candidate models admit an identical reduced form.

Let (πM : M ∈ M),
∑

M∈M πM = 1, be prior probabilities assigned over M. By Bayes’

rule, the posterior model probability for each model in the class is

πM |Y =
p(Y |M)πM∑

M ′∈M p(Y |M ′)πM ′
. (3.1)

By the definition of reduced-form parameters, the value of the likelihood depends on θM only

through φM , for which we assume a single prior. This implies that the marginal likelihood

depends only on the φM -prior, and thus it can be computed uniquely for all models since every

M ∈ M assumes a single prior for φM (including including multiple-posterior models).
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In situations where the models admit an identical reduced-form, we can simplify the ex-

pression of the posterior model probabilities, as shown in the next lemma.

Lemma 3.1 (i) Suppose that the multiple-posterior models M s ∈ Ms admit an identical

reduced-form with reduced-form parameters φ ∈ Φ = ∪Ms∈MsΦMs ⊂ Rd. Let π̃φ be a proper

prior on Φ and assume that π̃φ(ΦMs) = π̃φ(ISα(φ|M s) 6= ∅) > 0 holds for all M s ∈ Ms. Let

π̃φ|Y be the posterior of φ obtained by updating π̃φ with the likelihood p(Y |φ), which is common

among all M s ∈ Ms. Suppose that the φ-prior in each model is specified according to

πφ|Ms(B) =
π̃φ(B ∩ ΦMs)

π̃φ(ΦMs)
, B ∈ B(Φ) (3.2)

where B(Φ) is the Borel σ-algebra of Φ, i.e., the φ-prior is constructed by trimming the support

of π̃φ to ΦMs . Then the posterior model probabilities are given by






πMp|Y = p(Y |Mp)πMp∑
Mp∈Mp p(Y |Mp)πMp+p̃(Y )

∑
Ms∈Ms OMsπMs

, for Mp ∈ Mp,

πMs|Y = p̃(Y )OMsπMs∑
Mp∈Mp p(Y |Mp)πMp+p̃(Y )

∑
Ms∈Ms OMsπMs

, for M s ∈ Ms,
(3.3)

where OMs is the posterior-prior plausibility ratio of the set-identifying assumptions of model

M s ∈ Ms and p̃(Y ) is the marginal likelihood with respect to π̃φ,

OMs ≡
π̃φ|Y (ΦMs)

π̃φ(ΦMs)
=

π̃φ|Y (ISα(φ|M s) 6= ∅)

π̃φ(ISα(φ|M s) 6= ∅)
, p̃(Y ) =

∫

Φ
p(Y |φ)dπ̃φ(φ). (3.4)

(ii) Suppose that, in addition to Ms, all the single-posterior models Mp admit an identical

reduced-form. Let π̃φ be as defined in (i) of the current lemma and assume π̃φ(ΦM ) > 0 holds

for all M ∈ M. If the φ-prior satisfies (3.2) in every M ∈ M, then the posterior model

probabilities are further simplified to

πM |Y =
OMπM∑

M∈M OMπM
for M ∈ M, (3.5)

where OM =
π̃φ|Y (ΦM )

π̃φ(ΦM ) .

(iii) If all candidate models are indistinguishable and the φ-prior is common among them,

then the model probabilities are never updated, πM |Y = πM for all M ∈ M and for any

realization of Y .

Lemma 3.1 clarifies the sources of updating of the prior model probabilities. In the first

claim, the specification of the φ-prior (3.2) simplifies the marginal likelihood of the set-identified

model M s ∈ Ms to p̃(Y )OMs . The computation of p̃(Y ) and OMs requires one set of Monte

14



Carlo draws of φ each from the prior π̃φ and from the posterior π̃φ|Y , as well as an assessment of

the validity of the identifying assumptions at the drawn φ’s (the emptiness of the corresponding

identified set). Hence, computation time can be saved by avoiding to run separate algorithms

for each set-identified model. If all the candidate models admit an identical reduced-form

(Lemma 3.1 (ii)), the posterior model probabilities only depend on {OM : M ∈ M}, so one

does not even need to compute the marginal likelihoods. The claim in (iii) says that, if all the

candidate models are indistinguishable and share a unique φ-prior, the prior model probabilities

can never be updated. This result is intuitive: assuming the same prior knowledge for φ in

the indistinguishable models (i.e. a common support of φ), all models have the same marginal

likelihood, which therefore cancels out in (3.1).

Scenario 1 in Section 2 satisfies Lemma 3.1 (iii) and thus no update occurs for the model

probabilities. Scenario 2 satisfies Lemma 3.1 (i) with OMs = 1, since the identified set in M s is

never empty. In the example of the treatment effect model in Appendix A.2, the point-identified

and set-identified models are distinguishable since they have distinct testable implications.

Hence, if the common kernel of the prior is maintained as in (3.2), Lemma 3.1 (ii) gives the

formula of the posterior model probabilities.

3.3 Post-Averaging Ambiguous Belief and the Range of Posteriors

Estimation of the single-posterior models proceeds in the standard Bayesian way. We therefore

take πα|Mp,Y , the posterior for α in each single-posterior model Mp ∈ Mp, as given.

We perform posterior inference for model M s ∈ Ms in the robust Bayesian way: we specify

a single proper prior πφMs |Ms that is supported on ΦMs , and form the set of priors for θMs as

ΠθMs |Ms ≡
{
πθMs |Ms : πθMs |Ms(ΘMs ∩ g−1

Ms(B)) = πφMs |Ms(B), ∀B ∈ B(ΦMs)
}

, (3.6)

where B(ΦMs) is the Borel σ-algebra of ΦMs .9 In words, ΠθMs |Ms collects priors for θMs that

satisfy the identifying assumptions with probability one (i.e., πθMs |Ms(ΘMs) = 1) and whose

φMs-marginals coincide with the specified φMs-prior. Applying Bayes’ rule to each θM -prior in

ΠθMs |Ms with the likelihood, p̃(Y |θMs ,M s),10 and marginalizing the resulting posterior of θM

9By noting that the constraints in (3.6) are rewritten as
∫

B
πθMs |φMs ,Ms(ΘMs ∩ g−1

Ms(φ))dπφMs |Ms(φMs) =

πφMs |Ms(B) for all B ∈ B(ΦMs), the prior class (3.6) can be equivalently represented as

ΠθMs |Ms =

{∫

ΦMs

πθMs |φMs ,MsdπΦMs |Ms : πθMs |φMs ,Ms(ΘMs ∩ g−1
Ms(φMs)) = 1, πφMs |Ms,Y -a.s.

}

.

This alternative expression is exploited in the illustrative example of Section 2.
10The likelihood of θM is linked to the likelihood of φM via p̃(Y |θMs , Ms) = p(Y |g(θMs), Ms) by the definition

of reduced-form parameters.
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via α = αM (θM ), we obtain the following set of posteriors for α:11

Πα|Ms,Y

≡

{

πα|Ms,Y =
∫

ΦM

πα|Ms,φMs dπφMs |Ms,Y : πα|Ms,φMs (ISα(φMs |M s)) = 1, πφMs |Ms-a.s.

}

.

(3.7)

Given the posterior model probabilities, a posterior for α with the models averaged out is

written as

πα|Y =
∑

Mp∈Mp

πα|Mp,Y πMp|Y +
∑

Ms∈Ms

πα|Ms,Y πMs|Y ,

where the α-posterior for Mp ∈ Mp is unique, while there are multiple α-posteriors for M s ∈

Ms as shown in (3.7). Since there is no restriction that constrains the choice of posterior across

the set of posteriors, the set of averaged posteriors can be represented as

Πα|Y =

{
∑

Mp∈Mp

πα|Mp,Y πMp|Y +
∑

Ms∈Ms

πα|Ms,Y πMs|Y : πα|Ms,Y ∈ Πα|Ms,Y ∀M s ∈ Ms

}

.

(3.8)

This is a representation of the post-averaging ambiguous belief that generalizes the two-model

case shown in (2.7).

The next proposition provides a formal robust Bayes justification for our averaging formula

(3.8) when the structural parameters are common across all models,12 in which case (3.8) can

be obtained by applying Bayes’ rule to each prior in a certain well-defined class of priors.

Proposition 3.1 Suppose that structural parameters are common in all models, θM = θ ∈ Rdθ

for all M ∈ M, and define Θ = ∪M∈MΘM ⊂ Rdθ . Consider prior model probabilities (πM :

M ∈ M), a prior πθ|Mp for θ in Mp ∈ Mp, and a prior for the reduced-form parameters in

M s ∈ Ms. Define a set of priors for (θ,M) ∈ Θ ×M:

Πθ,M ≡
{
πθ,M = πθ|MπM : πθ|Ms ∈ Πθ|Ms for every M s ∈ Ms

}
, (3.9)

where Πθ|Ms is defined in (3.6). Then, Bayes’ rule applied to each prior in Πθ,M with likelihood

p̃(Y |θ,M) and marginalization to α yields (3.8) as the class of posteriors for α.

The next proposition derives the range of posterior means, posterior quantiles, and the

posterior probabilities when the posterior for α varies within Πα|Y .

11Lemma A.1 in Appendix A shows a formal derivation of Πα|Ms,Y .
12The reason we assume a common structural parameter space is to ensure that we can construct a prior

distribution on the product space of the structural parameter space and the model space.
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Proposition 3.2 Let [l(φMs |M s), u(φMs |M s)] be the convex hull of the identified set ISα(φMs |M s)

in model M s ∈ Ms.

(i) The range of posterior means of Πα|Y is the convex interval with lower and upper bounds:

inf
πα|Y ∈Πα|Y

Eα|Y (α) =
∑

Mp∈Mp

Eα|Mp,Y (α)πMp|Y +
∑

Ms∈Ms

EφMs |Y,Ms [l(φMs |M s)]πMs|Y ,

sup
πα|Y ∈Πα|Y

Eα|Y (α) =
∑

Mp∈Mp

Eα|Mp,Y (α)πMp|Y +
∑

Ms∈Ms

EφMs |Y,Ms [u(φMs |M s)]πMs|Y ,

where EφMs |Y,Ms(∙) is the expectation with respect to the posterior of φMs .

(ii) For any measurable subset H in R, the lower bound of the posterior probabilities on {α ∈ H}

in the class Πα|Y (the lower posterior probability of Πα|Y ) is

inf
πα|Y ∈Πα|Y

πα|Y (H) =
∑

Mp∈Mp

πα|Mp,Y (H)πMp|Y +
∑

Ms∈Ms

πφMs |Y,Ms(ISα(φMs |M s) ⊂ H)∙πMs|Y .

(iii) The lower and upper bounds of the cumulative distribution function (cdf) of πα|Y ∈ Πα|Y

are

πα|Y (a) ≡ inf
πα|Y ∈Πα|Y

πα|Y ([−∞, a])

=
∑

Mp∈Mp

πα|Mp,Y ([−∞, a])πMp|Y +
∑

Ms∈Ms

πφMs |Y,Ms ({u(φMs |M s) ≤ a}) πMs|Y ,

π̄α|Y (a) ≡ sup
πα|Y ∈Πα|Y

πα|Y ([−∞, a])

=
∑

Mp∈Mp

πα|Mp,Y ([−∞, a])πMp|Y +
∑

Ms∈Ms

πφMs |Y,Ms ({l(φMs |M s) ≤ a}) πMs|Y ,

and the range of posterior τ -th quantiles, τ ∈ (0, 1), is
[
inf{a : π̄α|Y (a) ≥ τ}, inf{a : πα|Y (a) ≥ τ}

]
.

If a set-identified model delivers ISα(φMs |M s) as a connected interval at every reduced-

form parameter value, then we can view
[
EφMs |Y,Ms [l(φMs |M s)], EφMs |Y,Ms [u(φMs |M s)]

]
as an

estimator of the identified set in model M s. We can therefore interpret the range of post-

averaging posterior means as the weighted Minkowski sum of the Bayesian point estimators

(posterior means) in the point-identified models and the identified set estimators in the set-

identified models. The second claim of the proposition provides an analytical expression for the

lower probability of Πα|Y . This lower probability is a mixture of the containment functionals

of the random sets, which in turn can be viewed as the containment functional of the mixture

random sets Pr(ISmix
α ⊂ A), where ISmix

α is generated according to

M ∼ Multinomial
(
{πM |Y }M∈M

)
, (3.10)

ISmix
α =






{α}, α|(Mp, Y ) ∼ πα|Mp,Y for Mp ∈ Mp,

ISα(φMs |M s), φMs |(M s, Y ) ∼ πφMs |Ms,Y for M s ∈ Ms.
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This way of interpreting the lower probability of Πα|Y simplifies its computation and justifies

the algorithm presented in (2.9).

3.4 Computation

To report the range of posteriors based on the analytical expressions in Proposition 3.2, we

need to compute (I) the posterior model probabilities (equivalently, the marginal likelihood in

each M ∈ M), (II) the posterior of α for each single-posterior model, and (III) the identified

set ISα(φMs |M s) and the posterior of φMs for each multiple-posterior model. Estimation of

the single-posterior models in (II) is standard, and we assume some suitable posterior sampling

algorithm is applicable to obtain Monte Carlo draws of α ∼ πα|Mp,Y . For (I), efficient and

reliable algorithms to compute the marginal likelihood are available in the literature, e.g.,

see Chib and Jeliazkov (2001), Geweke (1999), and Sims, Waggoner, and Zha (2008). When

Lemma 3.1 (i) or (ii) applies, such as in the empirical application in Section 5, the computation

of the marginal likelihoods for multiple-posterior models can be reduced to the computation

of the posterior-prior plausibility ratios OM . Since OM ’s and the quantities in (III) are less

standard, this section briefly discusses how to compute them under the setting of Lemma 3.1(i)

or (ii), i.e., when Ms admits an identical reduced-form.

In each multiple-posterior model, if one can assess the non-emptiness of the identified set

at each φ ∈ Φ, the posterior-prior plausibility ratio OMs can be computed simply by plugging

in numerical approximations for the prior and posterior probabilities of the non-emptiness of

the identified set into (3.4). The denominator of OMs is computed by drawing many φ’s from

the prior π̃φ and computing the fraction of draws that yield nonempty identified sets. The

numerator of OMs is computed similarly except that the φ’s are drawn from the posterior

π̃φ|Y .13

Monte Carlo draws of the lower and upper bounds of the identified set in model M ∈ Ms

can be obtained by first drawing φ’s from the posterior π̃φ|Y , then retaining the draws of φ

that yield a nonempty ISα(φ|M s), and computing the corresponding l(φ|M s) and u(φ|M s).

Their sample averages approximate Eφ|Ms,Y (l(φ|M s)) and Eφ|Ms,Y (u(φ|M s)). Implementation

of this procedure relies on computability of the lower and upper bounds of the identified set

for each φ. Whether it is a simple task or not depends on the type of application. In the

SVAR application of Section 5, we compute l(φ|M s) and u(φ|M s) by numerical optimization.

Alternatively, adopting the criterion function approach of Chernozhukov, Hong, and Tamer

(2007), the computation of the lower and upper bounds of the identified set can be facilitated

13For instance, in the SVAR application considered in Section 5, we can assess non-emptiness of the identified

set by drawing many non-identified parameters (rotation matrices) from the uniform distribution (Haar measure

on the space of orthonormal matrices) using the sampling algorithm of Uhlig (2005), and then verifying if any

of the draws satisfy the imposed sign restrictions. See also Algorithm 5.1 in Giacomini and Kitagawa (2015).
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by applying the slice sampling algorithm proposed by Kline and Tamer (2016).

Utilizing the mixture random set representation shown in (3.10), we can use the following

algorithm to approximate the lower posterior probability:

Algorithm 3.1

Step 1: Draw a model M ∈ M from a multinomial distribution with parameters (πM |Y : M ∈ M).

Step 2: If the drawn M belongs to Mp, then draw α ∼ πα|M,Y and set ISmix
α = {α} (a singleton).

If the drawn M belongs to Ms, draw φM ∼ πφ|M,Y and set ISmix
α = ISα(φM |M).14

Step 3: Repeat Steps 1 and 2 many (G) times and obtain G draws of ISmix
α : ISmix

α,1 , . . . , ISmix
α,G .

Step 4: Let [lmix
g , umix

g ] be the lower and upper bounds of ISmix
α,g , g = 1, . . . , G, where lmix

g = umix
g

if ISmix
α,g is a singleton (i.e., g-th draw of M belongs to Mp). Approximate the mean

bounds of the post-average posterior class by

inf
πα|Y ∈Πα|Y

Eα|Y (α) =
1
G

G∑

g=1

lmix
g , sup

πα|Y ∈Πα|Y

Eα|Y (α) =
1
G

G∑

g=1

umix
g . (3.11)

Approximate the lower probability of the post-averaging posterior class at H ⊂ R by

inf
πα|Y ∈Πα|Y

πα|Y (H) ≈
1
G

G∑

g=1

1{ISmix
α,g ⊂ H}. (3.12)

The draws of ISmix
α obtained in Steps 1-3 in Algorithm 3.1 are also useful for constructing

the robust credible regions. The robust credible region with credibility γ ∈ (0, 1) is defined as

the shortest interval to which every posterior in the class assigns probability at least γ;

Cγ ≡ arg min
C∈C

length(C), s.t. inf
πα|Y ∈Πα|Y

πα|Y (C) ≥ γ, (3.13)

where C is the class of connected intervals in R. Since the constraint in (3.13) can be interpreted

equivalently as Pr(ISmix
α ⊂ C) ≥ γ, the computation of Cγ can be reduced to finding the

shortest interval that contains the γ-proportion of the Monte Carlo draws of ISmix
α . A simple

computation algorithm for this optimization problem is shown in Proposition 5.1 of Kitagawa

(2012) and it can be readily applied to the current context.

14Note that since πφ|M,Y is supported only on the set of φ’s yielding a nonempty identified set, ISα(φ|M)

computed subsequently is nonempty.
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3.5 Asymptotic Properties

This section analyzes the asymptotic properties of our method. The procedure is finite-sample

exact (up to Monte Carlo approximation errors) and does not rely on asymptotic approxima-

tions. The asymptotic analysis is nevertheless valuable, as it highlights what aspects of the

prior input, if any, remain influential even in large samples. In this section, we make the sample

size explicit in our notation by denoting a size n sample by Y n.

We assume that M admits an identical reduced-form (Definition 3.1) and that at least one

model is correctly specified, so that the data-generating process is given by p(Y n|φtrue), where

φtrue ∈ Φ is the true reduced-form parameter value. We denote the unconstrained maximum

likelihood estimator for φ by φ̂ ≡ arg maxφ∈Φ p(Y n|φ) and the true probability law of the

sampling sequence {Y n : n = 1, 2, . . . } by PY ∞|φtrue
.

For our asymptotic analysis, we impose the following regularity assumptions:

Assumption 3.2 (i) M admits an identical reduced-form and every M ∈ M satisfies either

one of the following conditions:

(A) ΦM contains φtrue in its interior.

(B) Φc
M contains φtrue in its interior.

MA, denoting the set of models satisfying condition (A), is nonempty.

(ii) Let ln(φ) ≡ n−1 log p(Y n|φ). There exist an open neighborhood B of φtrue and n0 ≥ 1,

such that for any {Y n : n = n0, n0 + 1, . . . }, ln(∙) is third-time differentiable with the

third-order derivatives bounded uniformly on B.

(iii) Let Hn(φ̂) ≡ −∂2ln(φ̂)
∂φ′∂φ . Hn(φ̂) is a positive definite matrix and lim infn→∞ det(Hn(φ̂)) >

0, with PY ∞|φtrue
-probability one.

(iv) For any open neighborhood B of φtrue,

lim sup
n→∞

sup
φ∈Φ\B

{ln(φ) − ln(φtrue)} < 0

holds with PY ∞|φtrue
-probability one.

(v) For every M ∈ M, πφ|M has probability density fφ|M (φ) ≡
dπφ|M

dφ (φ) with respect to

the Lebesgue measure on ΦM and fφ|M (φ) is continuously differentiable with a uniformly

bounded derivative. For every M ∈ MA, fφ|M (φtrue) > 0.

Assumption 3.2 (i) implies that none of the models has φtrue on the boundary of its reduced-

form parameter space. MA defined in Assumption 3.2 (i) collects the models that are obser-

vationally equivalent at φtrue in the sense of Definition 3.2 (i). The requirement that φtrue
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be in the interior of ΦM implies that ΦM , M ∈ MA, has a nonempty interior in Rd. For a

set-identified model, condition (A) implies that M s ∈ MA has a nonempty identified set in

an open neighborhood of φtrue, and condition (B) implies that M s ∈ Ms \MA has an empty

identified set in an open neighborhood of φtrue. Assumptions 3.2 (iii) and (iv) impose regular-

ity conditions that imply almost sure consistency of φ̂. Assumptions 3.2 (ii) and (v), imposing

smoothness of the log-likelihood and φ-prior, allow an application of the Laplace method to

approximate the large sample marginal likelihood. Assumptions similar to Assumptions 3.2

(ii) - (v) appear in Kass, Tierney, and Kadane (1990) in their validation of the higher-order

expansion of the marginal likelihood.

The next proposition, which is a large sample analogue of Lemma 3.1, derives the limits of

the posterior model probabilities.

Proposition 3.3 (i) Suppose Assumption 3.2 holds. Then

πM |Y ∞ ≡ lim
n→∞

πM |Y n =






fφ|M (φtrue)∙πM∑
M ′∈MA

fφ|M ′ (φtrue)∙πM ′
, for M ∈ MA,

0, for M /∈ MA.
(3.14)

with PY ∞|φtrue
-probability one.

(ii) Suppose that Assumption 3.2 holds and a prior for φ given M is constructed according

to (3.2) with a proper prior π̃φ. If π̃φ(ΦM ) > 0 for all M ∈ M,

πM |Y ∞ =






π̃φ(ΦM )−1∙πM∑
M ′∈MA

π̃φ(ΦM ′ )−1∙πM ′
, for M ∈ MA,

0, for M /∈ MA.
(3.15)

with PY ∞|φtrue
-probability one.

(iii) Under the assumptions of Lemma 3.1 (iii), πM |Y ∞ = πM holds for every M ∈ M for any

sampling sequence {Y n : n = 1, 2, . . . }.

The proposition clarifies the large sample behavior of the posterior model probabilities when

the models admit an identical reduced-form. First, it shows that our procedure asymptotically

screens out misspecified models M /∈ MA, as their posterior probabilities converge to zero irre-

spective of the prior probabilities. If there is only one model consistent with the data generating

process, asymptotically it has probability one. Second, if MA contains multiple models, their

asymptotic probabilities are determined by the prior model probabilities and the densities of the

φ-priors evaluated at φtrue. This implies that the sensitivity of the post-averaging posterior to

the choices of φ-priors and prior model probabilities does not vanish asymptotically when mul-

tiple models are observationally equivalent at φtrue. Third, when the φ-priors share a common

kernel, as assumed in Proposition 3.3 (ii), the asymptotic model probabilities are proportional
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to the reciprocal of the prior probability (in terms of π̃φ) that the distribution of data is con-

sistent with the identifying assumptions. Hence, the asymptotic posterior model probabilities

are higher for more observationally restrictive models, i.e., if ΦM1 ⊂ ΦM2 for M1,M2 ∈ MA,

we have πM1|Y ∞ ≥ πM2|Y ∞ . This result is in line with the principle of parsimony (Ockham’s

razor), which the standard Bayesian model selection/averaging is typically equipped with —

we should prefer a more parsimonious model among those that explain the data equally well.

Note that the notion of parsimony here refers to the size of the reduced-form parameter spaces,

and has nothing to do with the strength of the identifying assumptions (often measured by the

width of the identified set for α).15

A combination of the asymptotic posterior model probabilities obtained in Proposition

3.3 and the asymptotic behavior of πα|M,Y n for single-posterior models and of Πα|M,Y n for

multiple-posterior models yields the asymptotic convergence properties of the range of post-

averaging posteriors. To be specific, in addition to Assumption 3.2, we assume that (i) the

posterior for φ is consistent for φtrue with PY ∞|φtrue
-probability one, (ii) for Mp ∈ Mp ∩

MA, αMp(∙) is continuous at φtrue and the posterior of αMp(φ) is uniformly integrable with

PY ∞|φtrue
-probability one, and (iii) for M s ∈ Ms∩MA, ISα(φ|M s) is a compact and continuous

correspondence at φtrue and the posteriors of l(φ|M s) and u(φ|M s) are uniformly integrable

with PY ∞|φtrue
-probability one. Then, the range of post-averaging posterior means considered

in Proposition 3.2 (i) has the following limits:

lim
n→∞

[

inf
πα|Y n∈Πα|Y n

Eα|Y n(α), sup
πα|Y n∈Πα|Y n

Eα|Y n(α)

]

=
∑

Mp∈Mp∩MA

αMp(φtrue)πMp|Y ∞ +




∑

Ms∈Ms∩MA

l(φtrue|M
s)πMs|Y ∞ ,

∑

Ms∈Ms∩MA

u(φtrue|M
s)πMs|Y ∞



 .

4 Discussion

4.1 Relationship with ε-contaminated Class of Priors

The method proposed in this paper has a close link to performing robust Bayes analysis using

an ε-contaminated class of priors (Huber (1973), Berger and Berliner (1986)). To clarify

this, consider the simple case of one single posterior model and one multiple posterior model,

M = {Mp,M s}. Further assume that the models share the same parameterization of the

15For instance, in a SVAR, a model point-identified by a set of equality restrictions is not observationally

restrictive, while a model set-identified by sign restrictions is observationally restrictive if the number of sign

restrictions is larger than the number of variables in the SVAR system. If the φ-priors satisfy (3.2) and the

two models are observationally equivalent at φtrue, then, relative to the prior model weights, the sign-restricted

model receives a larger weight than the point-identified model in large sample.
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structural model and the likelihood for the common structural parameters θ does not depend

on the model.

Given (πMp , πMs), πθ|Mp , and Πθ|Ms in the form of (3.6), consider the set of priors for θ

constructed by marginalizing Πθ,M of Proposition 3.1 to θ;

Πθ ≡
{
πθ = πθ|MpπMp + πθ|MsπMs : πθ|Ms ∈ Πθ|Ms

}
. (4.1)

Similarly to Proposition 3.1, we obtain the post-averaging ambiguous belief Πα|Y by updating

Πθ prior-by-prior with the common likelihood of θ and marginalizing to α.

A general formulation of an ε-contaminated class of priors is given by

Πε
θ ≡

{
πθ = (1 − ε)π0

θ + εqθ : qθ ∈ Q
}

, (4.2)

where 0 ≤ ε ≤ 1 is a prespecified constant, π0
θ is a benchmark prior for θ, and Q is a set of priors

of θ. Following Berger and Berliner (1986), a motivation for considering the ε-contaminated

class of priors can be stated as follows. The researcher can express an initial believable prior

for θ as π0
θ , but the elicitation process is subject to error by some amount specified by ε.

qθ captures in what way π0
θ differs from the most credible prior and Q specifies the set of

possible departures. Huber (1973) and Berger and Berliner (1986) show the ranges of posterior

probabilities for various specifications of Q when a prior varies over Πε
θ.

Despite the fact that the motivation for our averaging procedure differs from the original

motivation of the ε-contaminated class of priors, the prior input of our averaging procedure

specified in (4.1) has the same form as the ε-contaminated class of priors (4.2) — Πθ is an

ε-contaminated class of priors where the benchmark prior is the single-prior (point-identified)

model π0
θ = πθ|Mp , the amount of contamination is the prior model probability assigned to the

set-identified model ε = πMs , and the set of priors Q corresponds to the multiple priors for

the set-identified model Πθ|Ms . This clarifies a robust Bayes interpretation of our averaging

method.16 If the single-posterior (point-identified) model plays the role of a sensible benchmark

model subject to potential misspecification, averaging it with the set-identified model with

weight πMs can be interpreted as performing sensitivity analysis by contaminating the prior

of the point-identified model by an amount πMs in every possible direction subject to the

set-identifying assumptions.

The robust Bayes literature on ε-contaminated priors has considered several specifications

of Q that lead to analytically tractable classes of posteriors (Berger and Berliner (1986)). To

16As an alternative to the prior-by-prior updating, Berger and Berliner (1986) also considers the Type-II

Maximum Likelihood updating rule (empirical Bayes updating rule) of Good (1965). This alternative approach

resolves ambiguity by selecting from the class a prior that maximizes the marginal likelihood. Note that the

Type-II Maximum Likelihood procedure fails to select a unique prior from Πθ, because πθ|Ms ∈ Πθ|Ms sharing

a common prior for φ has a constant marginal likelihood.
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our knowledge, however, the class of priors in the form of Πθ|Ms has not been investigated.

Motivated by partial identification analysis, our analysis offers a new way to specify Q without

losing analytical and numerical tractability.

4.2 Relationship with Hierarchical Bayesian Approach

Point-identifying assumptions or a prior for structural parameters sometimes come from a

structural econometric model based on economic theory. A set-identified model, in contrast,

may represent a “semi-structural” heuristic description of the underlying causal mechanisms

with a flexible functional form. For instance, in empirical macroeconomic policy analysis, we

can view a DSGE model as a single-posterior model and a sign restricted SVAR model as a

set-identified model.

In such contexts, averaging models offers a way to combine the structural modelling ap-

proach and a more “reduced-form” approach.17 The macroeconometrics literature has proposed

using hierarchical Bayesian methods to bridge the gap between structural and “reduced-form”

approaches (Del Negro and Schorfheide (2004)), in which the structural parameters in the

DSGE model act as hyperparameters of a prior for SVAR parameters.

The robust Bayes averaging approach, albeit similar in motivation in such contexts, differs

from the hierarchical Bayesian approach in several ways. First, the hierarchical Bayesian ap-

proach always leads to a single posterior for the impulse responses, no matter whether they are

identified or not in the SVAR model. If they are not, this means that the prior for the structural

parameters in the DSGE model and the prior for the SVAR parameters (given the hyperpa-

rameters) have some part that is unrevisable by the data. Hence, if one cannot specify these

priors with full confidence, posterior sensitivity may well become a concern. In contrast, our

procedure classifies the DSGE model as a single posterior model and the set-identified SVAR

as a multiple-posterior model. Limited credibility in the prior for the Bayesian DSGE model

can be incorporated into the posterior inference by averaging it with the set-identified SVAR

model with carefully specified πMs . Second, in the hierarchical Bayesian approach, tightness

of the prior around the mean predicted by the DSGE model plays the role of prior confidence

assigned to the structural model. In our procedure, the model probability assigned to the

structural model governs the degree of confidence. It is however important to distinguish the

notions of confidence between the two approaches, since the former is in the scale of Bayesian

probabilistic uncertainty while the latter is in the scale of ambiguity (Knightian uncertainty).

17What we mean by “reduced-form” approach here differs from the technical terminology of the reduced-form

model/parameters in our expositions.
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4.3 Eliciting Prior Model Probabilities

The key prior input of our procedure is the prior model probability. A natural starting point

is to assume a uniform distribution of prior probabilities, however our procedure can readily

accommodate non-uniform probabilities. Discussions on how to determine prior probabilities

in Bayesian averaging are in, e.g., George (1999) in the discussion of Clyde (1999), where, in

order to prevent from overvaluing similar models, he suggests a ”dilution” technique, i.e., if

some models are similar, the weight attached to the original model should be split between that

model and its duplicates. Among others, Chipman (1996) attaches smaller prior probabilities

to models that are unlikely, Hoeting, Madigan, Raftery, and Volinsky (1999) rely on variable

selection in regression models to determine prior probabilities and Clyde and George (2004)

propose a Bernoulli specification.

In our context, the robust Bayesian viewpoint based on the ε-contaminated class of priors

can help clarify the interpretation of the prior model probabilities and facilitate their elicitation.

Suppose again that the set of candidate models consists of one point-identified model Mp

and one set-identified model M s. Assume in addition that Mp is nested in M s, in the sense

that the identifying assumptions in Mp include those in M s. In this case, the prior model

probability assigned to Mp can be interpreted as the minimal amount of credibility assigned

to the identifying assumptions in model Mp, and the prior model probability assigned to the

set-identified model can be interpreted as the maximal amount of contamination given to the

point-identifying assumptions imposed in Mp but not in M s. The reason that πMp is giving the

credibility lower bound for model Mp is that, when model M s nests model Mp, the set of priors

specified in model M s contains beliefs that assign full or partial credibility to the identifying

assumptions in Mp. As a result, any prior probability between [πMp , 1] can be attained for the

credibility of the identifying assumptions in Mp.

The interpretation of the prior model probabilities differs when the identifying assumptions

in models Mp and M s are non-overlapping. In this case, the prior model probabilities are

interpreted as the standard probabilistic belief assigned over mutually exclusive models.

When the identifying assumptions in models Mp and M s are non-nested but overlapping

(e.g., Scenario 1 in Section 2), interpreting the model probabilities may not appear as clear-cut

as in the previous two cases. However, the lower credibility bound interpretation of πMp given

in the nested case above remains valid. What differs from the nested case is that the maximal

credibility that can be assigned to the identifying assumptions in Mp can be strictly less than

one.
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5 Empirical Application

We illustrate our method in the context of a conventional monetary SVAR for the federal funds

rate it, real output growth Δyt and inflation πt, as in Aruoba and Schorfheide (2011), Moon,

Schorfheide, and Granziera (2013) and Giacomini and Kitagawa (2015). Following Notation

3.1 in Giacomini and Kitagawa (2015), we order the variables so that we can easily verify the

conditions guaranteeing convexity of the identified set using their Lemmas 5.1 and 5.2.

A0






it

Δyt

πt




 = c +

4∑

j=1

Aj






it−j

Δyt−j

πt−j




+






εi
t

εΔy
t

επ
t




 for t = 1, . . . , T (5.1)

where

A0 =






a11 a12 a13

a21 a22 a23

a31 a32 a33




 . (5.2)

Assume εt =
[
εi
t, ε

Δy
t , επ

t

]′
are i.i.d. normally distributed with mean zero and variance-covariance

the identity matrix I3. The corresponding reduced-form VAR is:

yt = b +
4∑

j=1

Bjyt−j + ut, (5.3)

where b = A−1
0 c,Bj = A−1

0 Aj , ut = A−1
0 εt, var(ut) = E(utu

′
t) = Σ = A−1

0 (A−1
0 )′. The reduced

form parameter is φ = (b,B1, . . . , B4, Σ).

The first equation in (5.1) is interpreted as a monetary policy function: the Federal Reserve

reacts to price and GDP, as well as lags of all variables. The second and third equations

represent aggregate demand (AD) and aggregate supply (AS), respectively. The data are

quarterly observations from 1965:1 to 2005:1 from the FRED2 database.

The prior for the reduced-form parameter is conjugate,18 relatively loose and belongs to the

Normal Inverse-Wishart family:

Σ ∼ IW(Ψ, d), β|Σ ∼ N (b̄, Σ ⊗ Ω),

where β ≡ vec([b,B1, . . . , B4]′). Ψ is the location matrix of Σ, d is a scalar degrees of freedom

hyperparameter and b̄ and Ω are the prior mean and variance-covariance matrix of β.

Following Christiano, Eichenbaum, and Evans (1999), we impose the sign normalization

restrictions so that the diagonal elements of A0 are nonnegative. As a result, we can interpret

a unit positive change in a structural shock as a one standard-deviation positive shock to the

corresponding variable.
18In order to reduce the computational burden, we use a conjugate prior as its posterior and marginal likelihood

is analytically available.
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5.1 Averaging Indistinguishable Models

Suppose we are interested in the output response to a unit positive shock in the federal funds

rate εi
t at horizon h, IRh

Δyi, and consider the following two sets of identifying assumptions.

• Model 1 (M1, point-identified)

Consider the standard recursive causal ordering restrictions (Bernanke (1986) and Sims

(1980)), assuming that AD and AS do not react on impact to the interest rate shock:

This identification scheme restricts A0 in (5.1) and (5.2) so that a21 = a31 = a23 = 0.

• Model 2 (M2, set-identified through zero restrictions)

The identification scheme in Model 1 is controversial. For example, assumption a31 = 0,

implying that prices do not react contemporaneously to the interest rate shock, can be

difficult to justify if the researcher relies on the stock price index rather than the GDP

deflator.19 Thus, in Model 2 we leave AS unrestricted, i.e., AS can react to the interest

rate within a quarter and the zero restrictions are now a21 = a23 = 0. By Lemma 5.1 in

Giacomini and Kitagawa (2015), Model 2 delivers a convex identified set for IRh
Δyi for

every value of the reduced form parameters.

Figure 1 focuses on the output response at horizon h = 3 implied by Model 1, Model 2 and

their averages for different sets of prior probabilities. In the top panel, the vertical solid lines

for Model 1 are the 90% credible region for the point-identified output response based on a

single posterior for the impulse response; the vertical dashed lines for Model 2 are the posterior

mean bounds (consistent estimator of the identified set) for the output response and the solid

line represents credible regions piled up from the 95% (bottom) to 5% (top) with increasing

credibility by 5%. The bottom panels report the model average results when the prior weight

assigned to model 1 is w1 = .5 or w1 = .8. The vertical dashed lines for the averaged model can

be viewed as shrinking the identified set estimator from Model 2 towards the point estimator

from Model 1. Figure 2 reports the output response credible sets for multiple horizons for the

same models as in Figure 1.

Note that, as is common for standard recursive causal ordering restrictions in small-scale

SVARs, the point-identified Model 1 shows a negative response of output in the short run,

whereas the set-identified Model 2 supports both positive and negative effects. Averaging the

models still does not support a negative output response, as the 90% robust credibility region

always crosses the zero line. Note that in this case the models are indistinguishable and so the

prior probabilities are not updated.

19See Kilian (2013) for details over the limitations of point-identifying assumptions.
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5.2 Averaging Distinguishable Models

Here we consider two additional models that are widely used in empirical applications: a sign-

restricted SVAR and a structural DSGE model.

• Model 3 (M3, set-identified through sign restrictions)

We consider the following sign restrictions: the inflation response to a contractionary

monetary policy shock is nonpositive for two quarters; the interest rate response is non-

negative for two quarters. As in Uhlig (2005), the output response is unrestricted. By

Lemma 5.2 in Giacomini and Kitagawa (2015), the identified set in Model 3 is convex.

Consider averaging Model 1 and Model 3 with equal prior probabilities. In contrast to the

previous example, the prior probabilities can now be updated using equation (3.5) because the

candidate models are distinguishable due to the imposition of observationally restrictive sign

restrictions. Figures 3 and 4 report the results of averaging the two models: as in the case

of Model 2, Model 3 does not support a negative output response (this is also the conclusion

of Uhlig (2005), however based on a single-prior approach). Table 1 shows that the posterior

model probabilities strongly favour Model 3 (with posterior probability 0 .68), and the average

of the two models does not support a negative output response.

• Model 4 (M4, DSGE)

We consider the Bayesian DSGE model in An and Schorfheide (2007), which is a simplified

version of Smets and Wouters (2003) and Christiano, Eichenbaum, and Evans (2005). In

order to estimate the model, we rely on the prior specification in An and Schorfheide

(2007), Table 2 and use output, inflation and interest rate as observables. We use the

Laplace approximation to compute the marginal likelihood.

Figures 5 and 6 show the results of averaging Models 3 and 4. Note that these models do

not admit an identical reduced form, so the (equal) prior probabilities are updated according to

equation (3.3). We see that Model 4 implies a negative output response, however its posterior

model probability is only 0.27, and the averaged model does not support a negative response.

Finally, Figures 7 and 8 report the results of averaging all models (with equal prior weights).

The posterior model probabilities (Table 1, sixth column) show strong evidence for the sign-

restricted SVAR, while the support for the DSGE model is again weak. As in all previous

cases, the averaged model does not support a negative output response.

5.3 Reverse-Engineering Prior Model Probabilities

Our method lends itself to useful reverse-engineering exercises that help shed light on the role

of identifying assumptions in drawing inferences. Specifically, we compute the prior probability
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one needs to attach to a set of assumptions in order for the averaging to preserve certain model’s

conclusions. In our application, for example, we saw that the negative response of output to a

contractionary monetary policy shock disappears once relaxing either standard causal ordering

restrictions or the restrictions embedded in a DSGE model. We can thus compute the prior

weight one would assign to a given set of restrictions in order to preserve the negative output

response.

First consider Model 1 (point-identification through causal ordering restrictions) and Model

2 (set-identification by relaxing one restriction from Model 1). Letting w be the prior probability

of Model 1, the post-averaging interval of posterior means is

[

inf
πα|Y ∈Πα|Y

Eα|Y (α), sup
πα|Y ∈Πα|Y

Eα|Y (α)

]

=

= πM1|Y Eα|M1,Y (α) + πM2|Y

[
Eφ|Y,M2(l(φM2 |M2)), Eφ|Y,M2(u(φM2 |M2))

]

and the posterior model probabilities are equal to the prior probabilities (since the models are

indistinguishable), i.e., πM1|Y = w and πM2|Y = 1 − w.

We want to compute the prior model probability w such that the post-averaging interval

of posterior means is negative at h = 4. This is equivalent to solving a system of inequalities

where w is the unknown.

We find that one would need to attach a prior probability greater than 0.32 to the validity

of the assumption that prices do not react contemporaneously to an interest rate shock in order

to preserve a negative output response to a contractionary monetary policy shock.

We next consider Model 1 and Model 3 (set-identification through sign restrictions). The

reverse-engineering exercise proceeds as before, with the only difference that now the posterior

model probabilities are updated and are equal to

πM1|Y =
O1 ∙ w

O1 ∙ w + O3 ∙ (1 − w)
and πM3|Y =

O3 ∙ (1 − w)
O1 ∙ w + O3 ∙ (1 − w)

.

We find that the post-averaging interval of posterior means is negative only if w > 0.88. As

expected, one would need to attach very high prior probability to the causal ordering restrictions

to obtain a negative output response.

Another possibility is to conduct reverse engineering on robust credible region rather than

on post-averaging interval of posterior means. We can thus compute the prior weight one would

assign to a given set of restrictions in order to preserve the negative output response response

at 90% credibility level. When averaging Model 1 and Model 2 one would need to attach a

prior probability greater than 0.89 to the validity of the assumption that prices do not react

contemporaneously to an interest rate shock in order to get a negative output response at h = 4
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to a contractionary monetary policy.20 However, this exercise is sensitive to the choice of the

credibility level of the robust credible region we focus, as the robust credible region tightens up

as soon as the credibility level falls below the model probability assigned to the single posterior

model.

Similar reverse engineering exercises could usefully shed light on the role of identifying

assumptions in generating so-called price and liquidity puzzles in monetary SVARs.21

6 Conclusion

We proposed a method to average point-identified models and set-identified models from the

multiple prior (ambiguous belief) viewpoint. The method combines single priors in point-

identified models with multiple priors in set-identified models, and delivers a set of posteriors.

The post-averaging set of posteriors can be summarized by the range of posterior means and

robust credible regions, which are easy to compute MCMC methods. Our averaging method

can effectively reduce the amount of ambiguity (the size of the posterior class) relative to

the analysis based on a set-identified model only, and hence offers a simple and flexible way

to introduce additional identifying information into the set-identified model. In the opposite

direction, when the set-identified model nests the point-identified model, our method can also

offer a simple and flexible way to conduct sensitivity analysis for the point-identified model.

A Appendix

A.1 Omitted Proofs

Derivation of identified set (2.2). Following Uhlig (2005), we reparameterize A via the

Cholesky matrix Σtr and a rotation matrix Q =

(
cosρ −sinρ

sinρ cosρ

)

with spherical coordinate

ρ ∈ [0, 2π]. We can then express α as a function of φ and the non-identified parameter ρ

indexing a rotation matrix;

A−1 = ΣtrQ =

(
σ11 cos ρ −σ11 sin ρ

σ21 cos ρ + σ22 sin ρ −σ21 sin ρ + σ22 cos ρ

)

and the parameter of interest is α = α(ρ, φ) ≡ σ11 cos ρ. We impose the sign normalization

restrictions throughout by constraining the diagonal elements of A to being nonnegative,

σ22 cos ρ − σ21 sin ρ ≥ 0 and σ11 cos ρ ≥ 0. (A.1)

20The prior model probability jumps to 0.98 if we weight Model 1 and Model 3.
21The price puzzle occurs when contractionary monetary policy shocks produce a positive response of the

price level (Sims, 1992). The liquidity puzzle refers to shocks in monetary aggregates leading to an initial rising

rather than falling of interest rates (Reichenstein, 1987).
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The sign restrictions a12 ≥ 0 and a21 ≤ 0 are expressed as

σ11 sin ρ ≥ 0 (A.2)

−σ22 sin ρ − σ21 cos ρ ≤ 0. (A.3)

Given φ, the identified set for α = σ11 cos ρ is given by its range as ρ varies over the range

characterized by the restrictions (A.1) - (A.3). Since the second constraint in (A.1) and (A.2)

imply ρ ∈ [0, π/2], we focus on how the other two restrictions (the first constraint in (A.1) and

(A.3)) tighten up ρ ∈ [0, π/2].

Assume σ21 > 0. Then, they imply arctan(−σ21/σ22) ≤ ρ ≤ arctan(σ22/σ21). Intersecting

this interval with ρ ∈ [0, π/2] leads to [0, arctan(σ22/σ21)] as the identified set for ρ. Hence,

the identified set for α in the σ21 > 0 case follows. A similar argument leads to the α identified

set for the σ21 ≤ 0 case.

Proof of Lemma 3.1. (i) By the construction of φ-prior (3.2), the marginal likelihood for

M ∈ Ms can be rewritten as

p(Y |M) =
∫

Φ
p(Y |φ,M)dπφ|M (φ)

=
∫

Φ
p(Y |φ) ∙

1{ISα(φ|M) 6= ∅}
π̃φ(ISα(φ|M) 6= ∅)

dπ̃φ(φ)

= p̃(Y )
∫

φ

1{ISα(φ|M) 6= ∅}
π̃φ(ISα(φ|M) 6= ∅)

dπ̃φ|Y (φ)

= p̃(Y )
π̃φ|Y (ISr(φ|M) 6= ∅)

π̃φ(ISr(φ|M) 6= ∅)
= p̃(Y )OM ,

where the second line uses the assumption that the set-identified models admit an identical

reduced-form and the third line follows from the Bayes theorem for the reduced-form param-

eters, p(Y |φ)π̃φ(φ) = p̃(Y )π̃φ|Y (φ). Plugging this expression of the marginal likelihood into

(3.1) leads to the claim.

(ii) Under the additionally imposed assumptions, the marginal likelihood of model Mp ∈

Mp is given by p̃(Y )OMp . Hence, combined with p(Y |M s) = p̃(Y )OMs shown in part (i), (3.5)

follows.

(iii) The claim follows immediately by noting that the imposed assumptions imply OM = 1

for all M ∈ M and setting OM , M ∈ M, to one in (3.5).

Derivation of Πα|Ms,Y in equation (3.7). We derive Πα|Ms,Y in the next lemma:

Lemma A.1 For a set-identified model M s with the structural parameters θMs ∈ ΘMs and

reduced-form parameters φMs = gMs(θMs) ∈ ΦMs = gMs(ΘMs), let a prior for φMs , πφMs |Ms

be given. Define the class of priors of θMs by

ΠθMs |Ms ≡
{
πθMs |Ms : πθMs |Ms(ΘMs ∩ g−1

Ms(B)) = πφMs |Ms(B), ∀B ∈ B(ΦMs)
}

.
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Updating ΠθMs |Ms prior-by-prior with the likelihood p̃(Y |θMs ,M s) and marginalizing the result-

ing posteriors via α = αMs(θMs) leads to the following set of posteriors for α:

Πα|Ms,Y

≡

{

πα|Ms,Y =
∫

ΦM

πα|Ms,φMs dπφMs |Ms,Y : πα|Ms,φMs (ISα(φMs |M s)) = 1, πφMs |Ms-a.s.

}

.

(A.4)

Proof of Lemma A.1. The prior-by-prior updating rule updates ΠθMs |Ms to

ΠθMs |Ms,Y ≡
{
πθMs |Ms,Y : πθMs |Ms,Y (ΘMs ∩ g−1

Ms(B)) = πφMs |Ms,Y (B), ∀B ∈ B(ΦMs)
}

.

Since πθMs |Ms,Y (ΘMs ∩ g−1
Ms(B)) can be written as

πθMs |Ms,Y (ΘMs ∩ g−1
Ms(B)) =

∫

B
πθMs |φMs ,Ms(ΘMs ∩ g−1

Ms(φMs))dπφMs |Ms,Y (φMs),

the φMs-marginal constraints for πθMs |Ms,Y are equivalent to

∫

B
πθMs |φMs ,Ms(ΘMs ∩ g−1

Ms(φMs))dπφMs |Ms,Y (φMs) = πφMs |Ms,Y (B).

This equality holds for all B ∈ B(ΦMs) if and only if πθMs |φMs ,Ms(ΘMs ∩ g−1
Ms(φMs)) = 1,

πφMs |Ms,Y -a.s. Accordingly, an equivalent representation of the class of posteriors for θMs is

ΠθMs |Ms,Y =

{∫

ΦMs

πθMs |φMs ,MsdπΦMs |Y : πθMs |φMs ,Ms(ΘMs ∩ g−1
Ms(φMs)) = 1, πφMs |Ms,Y -a.s.

}

.

(A.5)

Note that we have

πα|φMs ,Ms(ISα(φMs |M s)) = πθMs |φMs ,Ms(α−1
Ms(ISα(φMs |M s)))

= πθMs |φMs ,Ms(ΘMs ∩ g−1
Ms(φMs)),

where the second equality follows by the definition of the identified set of α. Hence, πθMs |φMs ,Ms(ΘMs∩

g−1
Ms(φMs)) = 1, πφMs |Ms,Y -a.s. holds if and only if πα|φMs ,Ms(ISα(φMs |M s)) = 1, πφMs |Ms,Y -

a.s. The class of marginalized posteriors for α (A.4) therefore follows.

Proof of Proposition 3.1. Let πθ,M be a prior of (θ,M) belonging to the proposed Πθ,M .

The corresponding posterior for θ with M integrated out can be computed as follows: for any
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measurable subset H ⊂ Θ,

πθ|Y (H) =

∑
M∈M

∫
H p̃(Y |θ,M)dπθ|M (θ)πM

∑
M∈M

[∫
ΘM

p̃(Y |θ,M)dπθ|M (θ)
]
πM

=

( ∑
Mp∈Mp πθ|Mp,Y (H)p(Y |Mp)πMp

+
∑

Ms∈Ms

[∫
ΦMs

πθ|φMs ,Ms(H)p(Y |φMs ,M s)dπφMs |Ms(φMs)
]
πMs

)

∑
Mp∈Mp p(Y |Mp)πMp +

∑
Ms∈Ms

[∫
ΦMs

p(Y |φMs ,M s)dπφMs |Ms(φMs)
]
πMs

=
∑

Mp∈Mp

πθ|Mp(H)πMp|Y +
∑

Ms∈Ms

[∫

ΦMs

πθ|φMs ,Ms(H)dπφMs |Ms,Y (φMs)

]

πMs|Y

where the second line uses
∫

H
p̃(Y |θ,M)dπθ|M (θ) =

∫

ΦM

[∫

Θ
1{θ ∈ H}p̃(Y |θ,M)dπθ|φM ,M (θ)

]

dπφM |M (φM )

=
∫

ΦM

[∫

Θ
1{θ ∈ H}dπθ|φM ,M (θ)

]

p(Y |φM ,M)dπφM |M (φM )

=
∫

ΦM

πθ|φM ,M (H)p(Y |φM ,M)dπφM |M (φM ).

The class of posteriors for θ can be therefore represented as

Πθ|Y ≡

{
∑

Mp∈Mp

πθ|Mp,Y πMp|Y +
∑

Ms∈Ms

πθ|Ms,Y πMs|Y : πθ|Ms,Y ∈ Πθ|Ms,Y , ∀M s ∈ Ms

}

,

where Πθ|Ms,Y is as defined in (A.5). As shown in the proof of Lemma A.1 above, marginalizing

Πθ|Ms,Y to α leads to Πα|Ms,Y defined in (3.7). We therefore conclude that marginalizing Πθ|Y

to α results in Πα|Y shown in (3.8).

Proof of Proposition 3.2. (i) Since there is no constraint across the posteriors belonging

to different posterior classes, it holds

inf
πα|Y ∈Πα|Y

Eα|Y (α) =
∑

Mp∈Mp

Eα|Mp,Y (α)πMp|Y +
∑

Ms∈Ms

inf
πα|Ms,Y ∈Πα|Ms,Y

{
Eα|Ms,Y (α)

}
∙πMs|Y .

By the construction of Πα|Ms,Y , an application of Proposition 4.1 (ii) of Giacomini and Kita-

gawa (2015) shows infπα|Ms,Y ∈Πα|Ms,Y

{
Eα|Ms,Y (α)

}
= EφMs |Ms,Y (l(φMs |M s)). The claim of

the mean lower bound therefore follows. The mean upper bound can be shown similarly.

(ii) Note that

inf
πα|Y ∈Πα|Y

πα|Y (H) =
∑

Mp∈Mp

πα|Mp,Y (H)∙πMp|Y +
∑

Ms∈Ms

inf
πα|Ms,Y ∈Πα|Ms,Y

{
πα|Ms,Y (H)

}
∙πMs|Y .

Proposition 3.1 of Kitagawa (2012) shows

inf
πα|Ms,Y ∈Πα|Ms,Y

{
πα|Ms,Y (H)

}
= πφMs |Ms,Y (ISα(φMs |M s) ⊂ H).
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(iii) By setting H to [−∞, a], the lower probability obtained in part (ii) yields the lower bound

of the cdfs, since the event ISα(φMs |M s) ⊂ [−∞, a] is equivalent to u(φMs |M s) ≤ a. The

upper bound follows by noting

sup
πα|Ms,Y ∈Πα|Ms,Y

πα|Ms,Y ([∞, a]) = πφMs |Ms,Y (ISα(φMs |M s) ∩ [∞, a] 6= ∅)

= πφMs |Ms,Y (l(φMs |M s) ≤ a).

The range of quantiles then follows by inverting these cdf bounds.

Next, we show two lemmas to be used to prove Proposition 3.3. We denote the set of

candidate models satisfying condition (A) of Assumption 3.2 (i) by MA and the set of those

satisfying condition (B) by MB . Under Assumption 3.2 (i), M = MA ∪MB holds. Note that

through these lemmas and the proof of Proposition 3.3, M is assumed to admit an identical

reduced-form with reduced-form parameter dimension d ≥ 1.

Lemma A.2 Suppose Assumption 3.2 holds. For M ∈ MA,

nd/2 det(Hn(φ̂))1/2p(Y n|M)

(2π)d/2p(Y n|φ̂)
− fφ|M (φ̂) = O(n−1/2),

with PY ∞|φtrue
-probability one.

Proof of Lemma A.2. Denote the reduced-form parameter vector by φ = (φ1, . . . , φd) and

the third-derivative of ln(∙) by hijk(∙) ≡ ∂3

∂φi∂φj∂φk
ln(∙), 1 ≤ i, j, k ≤ d. By Assumptions 3.2 (i),

(ii) and (iv), there exists B∗ an open neighborhood of φtrue such that B∗ ⊂ ΦM holds for all

M ∈ MA, and

sup
φ∈B∗

max
1≤i,j,k≤d

|hijk(φ)| < ∞, (A.6)

and

lim sup
n→∞

sup
φ∈Φ\B∗

{ln(φ) − ln(φtrue)} < 0, with PY ∞|φtrue
-probability one (A.7)

hold. Since Assumptions 3.2 (iii) and (iv) imply the strong convergence of φ̂, for all sufficiently

large n, φ̂ ∈ B∗ holds. Given φ̂ ∈ B∗, consider the third-order mean value expansions of nln(φ):

nln(φ) = nln(φ̂) −
n

2
(φ − φ̂)′Hn(φ̂)(φ − φ̂) +

n

6

∑

1≤i,j,k≤d

hijk(φ̃)(φi − φ̂i)(φj − φ̂j)(φk − φ̂k)

= nln(φ̂) −
1
2
u′Hn(φ̂)u +

1
√

n
R1n(u),

where φ̃ is a convex combination of φ and φ̂, u ≡
√

n(φ−φ̂), and R1n(u) = 1
6

∑
1≤i,j,k≤d hijk(φ̃)uiujuk,

where ui is the i-th entry of vector u. By the boundedness of hijk on B∗, R1n(u) can be bounded
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by a third-order polynomial of u with bounded coefficients on
√

n(B∗ − φ̂), where
√

n(B∗ − φ̂)

is the subset in Rd that translates B∗ by φ̂ and scales up by
√

n. Plugging this expansion in

p(Y n|φ) = exp(nln(φ)) and combining it with the first-order expansion of fφ|M (φ), we obtain

on φ ∈ B∗ (or equivalently on u ∈
√

n(B∗ − φ̂))

p(Y n|φ)fφ|M (φ) = exp

{

nln(φ̂) −
1
2
u′Hn(φ̂)u

}{

1 +
1
√

n
R1n(u) +

1
2n

R1n(u)2 + ∙ ∙ ∙

}

×

{

fφ|M (φ̂) +
1
√

n
R2n(u)

}

= exp

{

nln(φ̂) −
1
2
u′Hn(φ̂)u

}{

fφ|M (φ̂) +
1
√

n
R3n(u)

}

, (A.8)

where the first equality invokes the expansion of exp(x) = 1+x+2−1x2 + ∙ ∙ ∙ , R2n = f ′
φ|M (φ̃)u,

and R3n collects the residual terms that can be bounded uniformly on
√

n(B∗ − φ̂) by a finite

order polynomial of u with bounded coefficients.

Integration of p(Y n|φ)fφ|M (φ) over φ ∈ B∗ is equivalent to integrating (A.8) in u over
√

n(B∗ − φ̂):
∫

B∗
p(Y n|φ)fφ|M (φ)dφ

=n−d/2 exp{nln(φ̂)}

(∫

√
n(B∗−φtrue)

(
fφ|M (φ̂) + R3n(u)

)
exp

{

−
1
2
u′Hn(φ̂)u

}

du

)

=(2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2
(
fφ|M (φ̂)EHn [1√n(B∗−φ̂)(u)] + n−1/2EHn [R3n(u) ∙ 1√n(B∗−φ̂)(u)]

)

=(2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2
(
fφ|M (φ̂) + O(n−1/2)

)
, (A.9)

where EHn(∙) is the expectation taken with respect to u ∼ N (0, Hn(φ̂)−1). Note that the third

equality follows since the replacement of
√

n(B∗ − φ̂) with Rd incurs an error of exponentially

decreasing order and EHn(R3n(u)) is finite, i.e., the multivariate normal distribution has finite

moments at any order.

Consider now integrating p(Y n|φ)fφ|M (φ) over ΦM \ B∗.
∫

ΦM\B∗
p(Y n|φ)fφ|M (φ)dφ

=(2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2

×

(

(2π)−d/2nd/2 det(Hn(φ̂))−1/2

∫

ΦM\B∗
exp{n(ln(φ) − ln(φ̂))}fφ|M (φ)dφ

)

≤(2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2

×

(

(2π)−d/2nd/2 det(Hn(φ̂))−1/2f̄φ|M sup
φ∈Φ\B∗

{exp{n(ln(φ) − ln(φtrue))}}

)

, (A.10)
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where by Assumption 3.2 (v), f̄φ|M ≡ supφ∈Φ fφ|M (φ) < ∞. Assumptions 3.2 (iii) and (iv)

imply that the term in the parentheses of (A.10) converges to zero faster than n−1/2-rate

with PY ∞|φtrue
-probability one. Summing up (A.9) and (A.10) gives the following asymptotic

approximation of the marginal likelihood in model M ∈ MA.

p(Y n|M) =
∫

B∗
p(Y n|φ)fφ|M (φ)dφ +

∫

ΦM\B∗
p(Y n|φ)fφ|M (φ)dφ

= (2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2
(
fφ|M (φ̂) + O(n−1/2)

)
, (A.11)

with PY ∞|φtrue
-probability one. Bringing the multiplicative terms in the right-hand side of

(A.11) to the left-hand side completes the proof.

Lemma A.3 Suppose Assumption 3.2 holds. For model M ∈ MB,

nd/2 det(Hn(φ̂))1/2p(Y n|M)

(2π)d/2p(Y n|φ̂)
= o(n−1/2),

with PY ∞|φtrue
-probability one.

Proof of Lemma A.3. Let B∗ be an open neighborhood of φtrue as defined in the proof of

Lemma A.2.

Consider the marginal likelihood of model M ∈ MB divided by (2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2:

nd/2 det(Hn(φ̂))1/2p(Y n|M)

(2π)d/2p(Y n|φ̂)
=

nd/2 det(Hn(φ̂))1/2

(2π)d/2

∫

ΦM

exp{n(ln(φ) − ln(φ̂))}fφ|M (φ)dφ

≤
nd/2 det(Hn(φ̂))1/2

(2π)d/2
f̄φ|M sup

φ∈ΦM

exp{n(ln(φ) − ln(φ̂))}

≤
nd/2 det(Hn(φ̂))1/2

(2π)d/2
f̄φ|M sup

φ∈Φ\B∗
exp{n(ln(φ) − ln(φtrue))},

(A.12)

where f̄φ|M = supφ fφ|M (φ) < ∞, and the third line follows since B∗ ⊂ Φc
M implies ΦM ⊂ Φ\B∗.

Note that by Assumption 3.2 (iv), the upper bound shown in (A.12) converges to zero faster

than the polynomial rate of n−1/2 with PY ∞|φtrue
-probability one.

Proof of Proposition 3.3. (i) Under Assumption 3.2 (i), the posterior model probability of

model M ∈ M can be written as

πM |Y n =
p(Y n|M)πM∑

M ′∈MA
p(Y n|M ′)πM ′ +

∑
M ′∈MB

p(Y n|M ′)πM ′
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By dividing both the numerator and denominator by (2π)d/2p(Y n|φ̂)n−d/2 det(Hn(φ̂))1/2 and

applying Lemmas A.2 and A.3, we have

πM |Y n =






fφ|M (φ̂)πM
∑

M ′∈MA
fφ|M ′ (φ̂)πM ′

+ O(n−1/2), for M ∈ MA,

o(n−1/2), for M ∈ MB ,

with PY ∞|φtrue
-probability one.

Since fφ|M (∙) is assumed to be continuous and Assumptions 3.2 (iii) and (iv) imply almost

sure convergence of φ̂ to φtrue, πM |Y ∞ of the current proposition follows.

(ii) With the given specifications of the φ-prior, fφ|M (φtrue) is proportional to π̃(ΦM )−1 up

to the model-independent constant (the Lebesgue density of π̃φ evaluated at φ = φtrue). Hence,

(i) of the current proposition is reduced to the asymptotic model probabilities of (ii).

(iii) This trivially follows from Lemma 3.1 (iii).

A.2 Example 2: Treatment Effect Model with an Instrument

This appendix illustrate applicability of our averaging proposal to the treatment effect model

with noncompliance and a binary instrumental variable Z ∈ {0, 1} (Imbens and Angrist (1994)).

Assume that the treatment status and the outcome of interest are both binary. Let

(W1,W0) ∈ {1, 0}2 be the potential treatment status in response to the instrument, and

W = ZW1 + (1 − Z)W0 be the observed treatment status. (Y1, Y0) ∈ {1, 0}2 is a pair of

treated and control outcomes and Y = WY1 + (1 − W )Y0 is the observed outcome. Follow-

ing Imbens and Angrist (1994), consider partitioning the population into four subpopulations

defined in terms of the potential treatment-selection responses:

T =






c if W1 = 1 and W0 = 0 : complier,

at if W1 = W0 = 1 : always-taker,

nt if W1 = W0 = 0 : never-taker,

d if W1 = 0 and W0 = 1 : defier,

where T is the indicator for the types of selection responses.

Assume that the instrument is randomized in the sense that Z ⊥ (Y1, Y0,W1,W0).22 Then,

the distribution of observables and the distribution of potential outcomes satisfy the following

equalities for y ∈ {1, 0}:

Pr(Y = y,W = 1|Z = 1) = Pr(Y1 = y, T = c) + Pr(Y1 = y, T = at), (A.13)

Pr(Y = y,W = 1|Z = 0) = Pr(Y1 = y, T = d) + Pr(Y1 = y, T = at),

Pr(Y = y,W = 0|Z = 1) = Pr(Y0 = y, T = d) + Pr(Y1 = y, T = nt),

Pr(Y = y,W = 0|Z = 0) = Pr(Y0 = y, T = c) + Pr(Y1 = y, T = nt).
22As reflected in the notation of the potential outcomes (Y1, Y0), we assume the exclusion restriction of the

instrument.
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Ruling out the marginal distribution of Z, the structural parameters index a joint distribution

of (Y1, Y0, T ):

θ =
(
Pr(Y1 = y, Y0 = y′, T = t) : y = 1, 0, y′ = 1, 0, t = c, nt, at, d

)
∈ Θ,

where Θ is the 16-dimensional probability simplex.

Let the average treatment effect (ATE) be the parameter of interest.

α ≡ E(Y1 − Y0) =
∑

t=c,nt,at,d

[Pr(Y1 = 1, T = t) − Pr(Y0 = 1, T = t)]

=
∑

t=c,nt,at,d

∑

y=1,0

[Pr(Y1 = 1, Y0 = y, T = t) − Pr(Y1 = y, Y0 = 1, T = t)] .

The reduced-form parameter vector consists of the eight probability masses:

φ = (Pr(Y = y,W = w|Z = z) : y = 1, 0, d = 1, 0, z = 1, 0) .

Consider the following two candidate models.

Candidate Models

• Model Mp (point-identified): In addition to the randomized instrument assumption Z ⊥

(Y1, Y0,W1,W0), the instrument monotonicity (no-defier) assumption of Imbens and An-

grist (1994) holds and the causal effects are homogeneous in the sense that E(Y1−Y0|T =

c) = E(Y1 − Y0|T = at) = E(Y1 − Y0|T = nt) = E(Y1 − Y0).

• Model M s (set-identified): The randomized instrument assumption holds. Heterogeneity

of the treatment effects is unrestricted.

In model Mp, the complier’s average treatment effect is identified by the Wald estimand

(Imbens and Angrist (1994)), and combined with the homogeneity of the causal effects, we

achieve the point-identification of ATE,

αMp(φ) =
Pr(Y = 1|Z = 1) − Pr(Y = 1|Z = 0)
Pr(W = 1|Z = 1) − Pr(W = 1|Z = 0)

.

In model M s, what the Wald estimand identifies is the complier’s average treatment effect,

while ATE becomes set-identified. See Balke and Pearl (1997) for the construction of the ATE

identified set, ISα(φ|M s).

The two models considered admit the identical reduced-form (the distribution of (Y,W )|Z),

whereas these two models are distinguishable, since they have different testable implications.

The testable implication for model Mp is given by the testable implication for the joint re-

striction of randomized instrument and instrument monotonicity shown by Balke and Pearl
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(1997):23

Pr(Y = 1, D = 1|Z = 1) ≥ Pr(Y = 1, D = 1|Z = 0),

Pr(Y = 0, D = 1|Z = 1) ≥ Pr(Y = 0, D = 1|Z = 0),

Pr(Y = 1, D = 0|Z = 1) ≤ Pr(Y = 1, D = 0|Z = 0),

Pr(Y = 0, D = 0|Z = 1) ≥ Pr(Y = 0, D = 0|Z = 0).

Accordingly, ΦMp is given by the set of φ’s that satisfy these four inequalities.

Kitagawa (2009) shows that the instrument inequality of Pearl (1995) gives the sharp

testable implication for the randomized instrument assumption, i.e., ISα(φ|M s)) is empty

if and only if

max
w

∑

y

max
z

{Pr(Y = y,W = w)|Z = z} ≤ 1. (A.14)

Hence, the reduced-form parameter space of model M s, ΦMs , is obtained as the set of φ’s that

fulfills (A.14).

Set prior model probabilities at (πMp , πMs) = (w, 1 − w). Construct a prior for φ in each

model as

πφ|Mp(B) =
π̃φ(B ∩ ΦMp)

π̃φ(ΦMp)
,

πφ|Ms(B) =
π̃φ(B ∩ ΦMs)

π̃φ(ΦMs)
.

for any measurable subset B in the probability simplex that φ lies, where π̃φ is a prior for φ

such as a Dirichlet distribution.

The two models Mp and M s are distinguishable since ΦMp is a proper subset of ΦMs .

With the current construction of the priors for φ, Lemma 3.1 (ii) gives their posterior model

probabilities,

πMp|Y =
OMp ∙ w

OMp ∙ w + OMs ∙ (1 − w)
,

πMs|Y =
OMs ∙ (1 − w)

OMp ∙ w + OMs ∙ (1 − w)
,

where OMp and OMs are the posterior-prior plausibility ratio as defined in Lemma 3.1.

With these posterior model probabilities, the robust Bayes averaging operates as presented

in Scenario 1 of Example 1. The resulting range of posterior means shrinks the Balke and

Pearl’s ATE identified set toward the posterior mean of the Wald estimand that one would

23Under the joint restriction of randomized instrument and instrument monotonicity, additionally imposing

homogeneity of the treatment effects does not strengthen the testable implication of Balke and Pearl (1997).
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report in the point-identified model. Since the posterior model probabilities can differ from the

prior ones, the degree of shrinkage can reflect how well the identifying assumptions fit the data.

The current analysis offers one way to aggregate the Wald instrumental variable estimator and

the ATE bounds with exploiting a partially credible assumption on homogeneity of the causal

effects.
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Magnus, J. R., O. Powell, and P. Prüfer (2010): “A Comparison of Two Model Aver-

aging Techniques with an Application to Growth Empirics,” Journal of Econometrics, 154,

139–153.

Manski, C. F. (1989): “Anatomy of the Selection Problems,” Journal of Human Resources,

24, 343–360.

Manski, C. F., and J. V. Pepper (2000): “Monotone Instrumental Variables: With an

Application to the Returns to Schooling,” Econometrica, 68(4), 997–1010.

Moon, H., and F. Schorfheide (2011): “Bayesian and Frequentist Inference in Partially

Identified Models,” NBER working paper.

43



(2012): “Bayesian and Frequentist Inference in Partially Identified Models,” Econo-

metrica, 80, 755–782.

Moon, H., F. Schorfheide, and E. Granziera (2013): “Inference for VARs Identified with

Sign Restrictions,” unpublished manuscript.

Mountford, A. (2005): “Leaning into the Wind: A Structural VAR Investigation of UK

Monetary Policy,” Oxford Bulletin of Economics and Statistics, 67(5), 597–621.

Mountford, A., and H. Uhlig (2009): “What Are the Effects of Fiscal Policy Shocks?,”

Journal of applied econometrics, 24(6), 960–992.

Norets, A., and X. Tang (2014): “Semiparametric Inference in Dynamic Binary Choice

Models,” Review of Economic Studies, 81(3), 1229–1262.

Pearl, J. (1995): “On the Testability of Causal Models with Latent and Instrumental Vari-

ables,” Uncertainty in Artificial Intelligence, 11, 435–443.

Peersman, G., and R. Straub (2009): “Technology Shocks and Robust Sign Restrictions in

a Euro Area SVAR,” International Economic Review, 50(3), 727–750.

Poirier, D. (1998): “Revising Beliefs in Nonidentified Models,” Econometric Theory, 14,

483–509.

Rafiq, S., and S. Mallick (2008): “The Effect of Monetary Policy on Output in EMU3: A

Sign Restriction Approach,” Journal of Macroeconomics, 30(4), 1756–1791.

Reichenstein, W. (1987): “The Impact of money on short-term interest rates,” Economic

Inquiry, 25(1), 67–82.

Rosenbaum, P., and D. B. Rubin (1983): “The Central Role of the Propensity Score in

Observational Studies,” Biometrika, 70, 41–55.

Rubin, D. B. (1987): Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons,

Hoboken, New Jersey.

Scholl, A., and H. Uhlig (2008): “New Evidence on the Puzzles: Results from Agnostic

Identification on Monetary Policy and Exchange Rates,” Journal of International Economics,

76(1), 1–13.

Sims, C. (1980): “Macroeconomics and Reality,” Econometrica, 48, 1–48.

(1992): “Interpreting the macroeconomic time series facts: The effects of monetary

policy,” European Economic Review, 36(5), 975–1000.

44



Sims, C., D. Waggoner, and T. Zha (2008): “Methods for Inference in Large Multiple-

Equation Markov-Switching Models,” Journal of Econometrics, 146, 255–274.

Smets, F., and R. Wouters (2003): “An estimated dynamic stochastic general equilibrium

model of the euro area,” Journal of the European economic association, 1(5), 1123–1175.

Uhlig, H. (2005): “What are the Effects of Monetary Policy on Output? Results from an

Agnostic Identification Procedure,” Journal of Monetary Economics, 52, 381–419.

Vargas-Silva, C. (2008): “Monetary Policy and the US Housing Market: A VAR Analysis

Imposing Sign Restrictions,” Journal of Macroeconomics, 30(3), 977–990.

Zhang, X., and H. Liang (2011): “Focused Information Criterion and Model Averaging for

Generalized Additive Partial Linear Models,” Annals of Statistics, 39, 174–200.

45



−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4
5

M1: Posterior of IR(y,i), h=3
D

en
si

ty

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
4

0.
8

1.
2

M2: RCR of IR(y,i), h=3

de
ns

ity
/ 1

 −
 c

re
di

bi
lit

y

90% rcr

50%

10%

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
4

0.
8

1.
2

M1,M2(w1=0.5):RCR,IR(y,i),h=3

de
ns

ity
/ 1

 −
 c

re
di

bi
lit

y

90% rcr

50%

10%

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
4

0.
8

1.
2

M1,M2(w1=0.8):RCR,IR(y,i),h=3
de

ns
ity

/ 1
 −

 c
re

di
bi

lit
y

90% rcr

50%

10%

Figure 1: Density and Robust Credible Region of Output Impulse Responses

Note: Output Impulse Response at horizon h = 3. For set-identified models, step lines represent the Robust Credible

Region (RCR) at different credibility levels (90%, 50%, 10% levels are explicitly indicated) as described in the last

paragraph of Section 2.1 by modifying (Step 5) of Algorithm 4.1 in Giacomini and Kitagawa (2015). The vertical dashed

lines represent the posterior mean bounds. For point-identified models (Model 1 and Model 4 in Figure 3), the vertical

solid lines display the standard credible region. In such a case, we reported its posterior density.
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Figure 2: Plots of Output Impulse Responses

Note: for point-identified models, the points plot the (unique) posterior mean and the dashed curve represent the

highest posterior density regions with credibility 90%. For set-identified models (Model 2, the averaged models and Model

3 in Figure 4), the vertical bars show the posterior mean bounds and the dashed curves connect the upper/lower bounds

of posterior robust credible regions with credibility 90%.
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Figure 3: Density and Robust Credible Region of Output Impulse Responses

See the caption of Figure 1 for remarks.
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Figure 4: Plots of Output Impulse Responses

See the caption of Figure 2 for remarks.
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Figure 5: Density and Robust Credible Region of Output Impulse Responses

See the caption of Figure 1 for remarks.
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Figure 6: Plots of Output Impulse Responses

See the caption of Figure 2 for remarks.
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Figure 7: Density and Robust Credible Region of Output Impulse Responses

See the caption of Figure 1 for remarks.
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Figure 8: Plots of Output Impulse Responses

See the caption of Figure 2 for remarks.
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Averaging M1, M2 Averaging M1,M2 Averaging M1,M3 Averaging M3,M4 Averaging M1,M2,M3,M4

Prior w1 0.50 0.80 0.50 / 0.25

Prior w2 0.50 0.20 / / 0.25

Prior w3 / / 0.50 0.50 0.25

Prior w4 / / / 0.50 0.25

O1 1 1 1 / 1

O2 1 1 / / 1

O3 / / 2.16 2.16 2.16

O4 / / / 1 1

ln p̃(Y ) −781.05 −781.05 −781.05 −781.05 −781.05

ln p(Y |M1) −781.05 −781.05 −781.05 / −781.05

ln p(Y |M4) / / / −781.29 −781.29

Posterior w∗
1 0.50 0.80 0.32 / 0.20

Posterior w∗
2 0.50 0.20 / / 0.20

Posterior w∗
3 / / 0.68 0.73 0.44

Posterior w∗
4 / / / 0.27 0.16

Table 1: Output Responses: Prior and Posterior Weights

Note: prior wi, Oi and posterior w∗
i denote prior model probability, posterior-prior credibility ratio and posterior

model probability for candidate Model i, respectively; ln p̃(Y ), ln p(Y |M1) and ln p(Y |M4) represent log marginal

likelihood for the common reduced form, for Model 1 and for Model 4, respectively.
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M1 M2

h = 1 h = 10 h = 20 h = 1 h = 10 h = 20

Post. Mean .122 −.593 −1.281 / / /

90% CR [−.029, .261] [−1.200, .022] [−2.566,−.215] / / /

Post. Mean Bounds / / / [−.050, .183] [−.987, .575] [−1.936, 1.005]

90% robust CR / / / [−.193, .313] [−1.465, 1.281] [−2.851, 2.443]

M3 M4

h = 1 h = 10 h = 20 h = 1 h = 10 h = 20

Post. Mean / / / −.127 −.002 −.000

90% CR / / / [−.157,−.100] [−.004,−.001] [−.000,−.000]

Post. Mean Bounds [−.344, .836] [−1.561, 2.789] [−2.843, 4.867] / / /

90% robust CR [−.538, .979] [−2.350, 3.384] [−4.231, 6.051] / / /

Averaging M1,M2(w1 = 0.5) Averaging M1,M2(w1 = 0.8)

h = 1 h = 10 h = 20 h = 1 h = 10 h = 20

Post. Mean / / / / / /

90% CR / / / / / /

Post. Mean Bounds [.021, .141] [−.748, .059] [−1.526, .016] [.067, .114] [−.592,−.278] [−1.257,−.631]

90% robust CR [−.121, .241] [−1.224, .607] [−2.512, 1.061] [−.103, .255] [−1.285, .347] [−2.528, .821]

Averaging M1,M3 Averaging M3,M4

h = 1 h = 10 h = 20 h = 1 h = 10 h = 20

Post. Mean / / / / / /

90% CR / / / / / /

Post. Mean Bounds [−.205, .603] [−1.225, 1.756] [−2.291, 3.008] [−.284, .568] [−1.126, 2.010] [−2.049, 3.509]

90% robust CR [−.346, .722] [−1.837, 2.229] [−3.339, 4.020] [−.421, .669] [−1.695, 2.440] [-3.047,4.369]

Averaging M1,M2,M3,M4

h = 1 h = 10 h = 20

Post. Mean / / /

90% CR / / /

Post. Mean Bounds [−.158, .400] [−.983, 1.222] [−1.858, 2.095]

90% robust CR [−.248, .481] [−1.373, 1.573] [−2.635, 2.739]

Table 2: Output Responses: Estimation and Inference
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