
On global identification in structural vector

autoregressions∗

Emanuele Bacchiocchi† Toru Kitagawa‡

University of Bologna University College London

This draft: 11 March 2021

Abstract

In a landmark contribution to the structural vector autoregression (SVARs) literature, Rubio-

Ramı́rez, Waggoner, and Zha (2010, ‘Structural Vector Autoregressions: Theory of Identification

and Algorithms for Inference,’ Review of Economic Studies) shows necessary and sufficient

conditions for equality restrictions to globally identify the structural parameters of a SVAR.

Among them, the condition shown in their Theorem 7 is the simplest and most attractive for

practitioners, reducing the check for global identification to a counting exercise about the number

of zero restrictions imposed. However, this paper shows by counterexample that this condition

is not sufficient for global identification. Analytical investigation of the counterexample clarifies

that their condition allows for the possibility that restrictions are redundant, in the sense that

one or more restrictions are implied by other restrictions. In this case, the implied restriction

does not add any identifying information and leads to failure of global identification, despite

that the condition of Theorem 7 of RWZ is met. We derive a modified necessary and sufficient

condition for SVAR global identification and show how it can be easily assessed in practice.
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I Introduction

Rubio-Ramı́rez et al. (2010) (henceforth RWZ) provide necessary and sufficient conditions for the

global identification of structural parameters in Structural Vector Autoregressions (SVARs) under

a general class of zero restrictions imposed on the structural parameters and their (non-)linear

transformations, including impulse responses. Exploiting the insights of their global identification

analysis, RWZ also develop efficient and practical algorithms to perform estimation and inference

for structural parameters and impulse responses. Their analytical and computational innovations

have been instrumental to recent developments in the literature, including set-identified SVARs

(Arias et al. (2018, 2021), Giacomini and Kitagawa (2020), Giacomini et al. (2021b), Volpicella

(2020), Amir-Ahmadi and Drautzburg (2021)), locally-identified SVARs (Bacchiocchi and Kitagawa

(2020)), and SVARs with narrative restrictions (Antoĺın-Dı́az and Rubio-Ramı́rez (2018), Giacomini

et al. (2021a)), to list a few. RWZ provide several different versions of the necessary and sufficient

conditions for global identification. The one given in Theorem 7 is the simplest and most attractive

for practitioners, which reduces the check for global identification to a counting exercise about the

number and pattern of imposed zero restrictions without requiring knowledge of the true value

of the structural or reduced-form parameters. For instance, in Arias et al. (2019) and Zviadadze

(2017), the authors apply Theorem 7 of RWZ to judge whether the imposed identifying restrictions

deliver global identification or not.

This paper presents a counterexample refuting the sufficiency in Theorem 7 of RWZ, i.e., the

necessary and sufficient condition of Theorem 7 in RWZ is met but global identification fails. An

analytical investigation of this counterexample reveals why it does not guarantee global identi-

fication. We find that the condition of Theorem 7 of RWZ cannot detect what we refer to as

redundancy of imposed identifying restrictions. In this phenomenon, a set of equality restrictions

on the structural parameters or impulse responses implicitly forces other structural parameters or

impulse responses to zero. If it is present, some (redundant) zero restrictions are already implied by

other imposed equality restrictions, so they do not contribute any further identifying information

to the system. The condition of Theorem 7 of RWZ, however, incorrectly counts the redundant

identifying restrictions as if they reduce the dimension of the admissible structural parameters,

resulting in an erroneous conclusion that the model is globally identified. We argue that the re-

dundancy of the identifying restrictions is relevant for empirical applications, rather than being of

pure theoretical interest.

To modify the sufficiency claim in Theorem 7 of RWZ, we provide a new necessary and sufficient

condition for (exact) global identification that correctly discounts redundant identifying restrictions.

RWZ propose a useful algorithm that sequentially constructs an orthonormal matrix for structural

parameter identification that satisfies the identifying restrictions. Building on and modifying their
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algorithm, our proposed necessary and sufficient condition for global identification checks for the

existence of redundant restrictions by verifying whether the orthonormal matrix generated by this

sequential algorithm is unique. Verifying uniqueness boils down to checking the rank of a sequence

of matrices constraining each column of the orthonormal matrix. Although this algorithm requires

values of the reduced-form parameters as an input, we show that it can detect a lack of global

identification even with redundant restrictions at almost any values of the reduced-form parameters.

This almost-sure property is a key to facilitating the implementation of the algorithm in practice,

as it justifies running the algorithm at one or a few points in the reduced-form parameter space

drawn from a prior or posterior distribution or obtained as a maximum likelihood estimate.

As an alternative to their Theorem 7, Theorem 1 in RWZ presents a different form of necessary

and sufficient conditions for global identification. As we illustrate in this note, its proper implement-

ation requires a complete understanding of how the imposed identifying restrictions analytically

constrain the impulse responses and the set of structural parameters. For instance, if redundant

identifying restrictions are present but one is not aware which zero restrictions can be implied by

others, naive implementation of the rank conditions in Theorem 1 of RWZ may also overlook a

lack of global identification. To prevent this, it is important to analytically ascertain how a set of

equality restrictions translate to zero restrictions for other structural objects. This is feasible for

small scale SVARs, but can be less straightforward for medium or large scale SVARs. In contrast,

checking our necessary and sufficient condition remains tractable and attractive even for moderate

to large scale SVARs.

The rest of the paper is organized as follows. We first introduce the model and notation in

Section II. In Section III, we present an example that contradicts Theorem 7 of RWZ. In Section

IV we define the notion of redundant identifying restrictions and provide a modified necessary and

sufficient condition for (exact) global identification. Section V concludes.

II Model

We maintain the notation used in RWZ. Let yt be a n × 1 vector of variables observed over the

sample t = 1, . . . , T . The specification of the SVAR model is

y′tA0 =
p∑

l=1

y′t−lAl + c + ε′t, (1)

where εt is a n×1 multivariate normal white noise process with null expected value and covariance

matrix equal to the identity matrix In. The n × n matrices A0, A1, . . . , Ap are the structural

parameters and c is a 1 × n vector of constant terms. The structural parameters are (A0, A+),
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where A′
+ ≡ (A′

1, . . . , A′
l, c′) is a n × m matrix with m ≡ np + 1. We also assume that the initial

conditions y1, . . . , yp are given and that A0 is invertible. The set of structural parameters is denoted

by PS , an open dense set of R(n+m)n. The structural form can be written compactly as

y′tA0 = x′
tA+ + ε′t (2)

where x′
t =

(
y′t−1, . . . , y′t−p, 1

)
.

The reduced-form representation of (2) is the standard VAR model,

y′t = x′
tB + u′

t, (3)

where Bj = A+A−1
0 , u′

t = ε′tA
−1
0 , and E(ut u′

t) = Σ = (A−1
0 A′

0)
−1. The reduced-form parameters

are (B, Σ), where Σ is a symmetric and positive definite matrix. We denote the set of reduced-

form parameters by PR ⊂ Rnm+n(n+1)/2. The relationship between the structural and reduced-form

parameters is defined by the function g : PS → PR, where g (A0, A+) = (A+A−1
0 , (A0A

′
0)

−1).

The definition of global identification is the standard one provided by Rothenberg (1971); the

absence of observationally equivalent parameters in the parametric space. We consider identification

of the structural parameters by imposing zero restrictions on a transformation f(∙) of the structural

parameter space into the set of k×n matrices, k ≥ 1, with domain U ⊂ PS . Such linear restrictions

are represented by

Qjf(A0, A+)ej = 0, for j = 1, . . . , n. (4)

where Qj is a k×k selection matrix for j = 1, . . . , n, and ej is the j -th column of the n×n identity

matrix In. The rank of Qj is denoted by qj , which also represents the number of restrictions in the

j -th column of the transformed space f(A0, A+). As in RWZ, we order the columns of f(A0, A+)

according to

q1 ≥ q2 ≥ . . . ≥ qn. (5)

We denote the set of orthonormal matrices by O(n) with generic element P .

Following RWZ, we say that this transformation is admissible when the following condition

holds.

Condition 1. The transformation f(∙), with the domain U , is admissible if and only if for any

P ∈ O (n) and (A0, A+) ∈ U , f(A0P,A+P ) = f(A0, A+)P .

Moreover, RWZ impose the following two conditions when proving some of their results.

Condition 2. The transformation f(∙), with the domain U , is regular if and only if U is open and

f is continuously differentiable with f ′ (A0, A+) of rank kn for all (A0, A+) ∈ U .

4



Condition 3. The transformation f(∙), with the domain U , is strongly regular if and only if it is

regular and f(U) is dense in the set of k × n matrices.

To fix the sign of structural shocks, we need to impose sign normalization rules. Following

RWZ, we define them as follows:

Definition 1 (Normalization rule). A normalization rule can be characterized by a set N ⊂ PS

such that for any structural parameter point (A0, A+) ⊂ PS , there exists a unique n × n diagonal

matrix D with plus or minus ones along the diagonal such that (A0D,A+D) ∈ N .

We are now able to define the set of restricted structural parameters as

R = {(A0, A+) ∈ U ∩ N |Qjf(A0, A+)ej = 0 for j = 1, . . . , n} . (6)

Following RWZ, we consider the following definition of identification when discussing whether or

not the imposed restrictions can globally identify the structural parameters.

Definition 2 (Exact identification). Consider an SVAR with restrictions represented by R. The

SVAR is exactly identified if and only if, for almost any reduced-form parameter point (B,Σ), there

exists a unique structural parameter point (A0, A+) ∈ R such that g (A0, A+) = (B,Σ).

In this definition, if the set of structural parameters under the restrictions R constrains the

reduced-form parameters, the domain of the reduced-form parameters for which the almost-sure

property is required is restricted to P̃R ⊂ PR, where P̃R is the set of reduced-form parameters

generated by the structural parameters satisfying R. For instance, if f(∙) maps the structural

parameters to long-run impulse responses, its domain U restricts the reduced-form VARs to being

invertible. Then, P̃R corresponds to the set of reduced-form parameters constrained to invertible

VARs.

III An Illustrative Counterexample

In the setting described in the previous section, RWZ shows a variety of necessary and sufficient

conditions for the identifying restrictions R with admissible f(∙) to globally identify the structural

parameters. Among those, the necessary and sufficient condition for exact identification presented

in Theorem 7 of RWZ is the simplest and most attractive in practice, as it reduces verification of

exact identification to a simple exercise of computing the ranks of the matrices Qj , 1 ≤ j ≤ n. So

that our exposition is self-contained, we present Theorem 7 of RWZ here:
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Theorem 7 in RWZ: Consider an SVAR with admissible and strongly regular restrictions repres-

ented by R.1 The SVAR is exactly identified if and only if qj = n − j for 1 ≤ j ≤ n.

The first result in this note is that the “if” statement of this theorem is false, as shown by the

following counterexample.

III.1 A counterexample

Consider a trivariate SVAR characterized by the following restrictions

A0 =







a11 a12 a13

0 a22 a23

0 a32 a33





 and IR0 =







× 0 ×

× × ×

× × ×





 (7)

where IR0 = (A−1
0 )′ is the contemporaneous impulse response matrix, the symbol ‘×’ indicates

that no restriction is imposed, and ‘0’ represents a zero (or exclusion) restriction. The function

f(A0, A+) will be

f(A0, A+) =

(
A0

IR0

)

=















a11 a12 a13

0 a22 a23

0 a32 a33

× 0 ×

× × ×

× × ×















. (8)

The matrices of restrictions defined in (4) can be specified as

Q1 =















0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0















, Q2 =















0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0















. (9)

According to Theorem 7 in RWZ, the SVAR is exactly (globally) identified, as the ranks of the

restriction matrices follow q1 = n − 1 = 2, q2 = n − 2 = 1 and q3 = n − 3 = 0. However, analytical

investigation shows the current set of identifying restrictions fails to achieve global identification.

1Admissible and strongly regular restrictions represented by R mean f(∙) in (6) is admissible and strongly regular.
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Let us express the reduced-form covariance matrix and its Cholesky decomposition as

Σ =







σ11 σ21 σ31

σ21 σ22 σ32

σ31 σ32 σ33





 ⇒ Σtr =







l11 0 0

l21 l22 0

l31 l32 l33





 . (10)

Imposing triangularity on A0, we can obtain A0 and IR0 = A−1′
0 as

A′
0 = Σ−1

tr =







1
l11

0 0

− l21
l11l22

1
l22

0
l21l32−l22l31

l11l22l33
− l32

l22l33
1

l33





 ⇒ IR0 = A−1′

0 =







l11 0 0

l21 l22 0

l31 l32 l33





 . (11)

Consider applying Algorithm 1 in RWZ to determine an orthogonal matrix P that maps the

(A0, A+) parameters under triangularity to the one satisfying the imposed restrictions.

First, f(A0, A+) is

f(A0, A+) =

(
A0

IR0

)

=















1
l11

− l21
l11l22

l21l32−l22l31
l11l22l33

0 1
l22

− l32
l22l33

0 0 1
l33

l11 0 0

l21 l22 0

l31 l32 l33















. (12)

As in RWZ, let Q̄1 and Q̄2 be the matrices of indicators for the restricted elements of f(A0, A+)

obtained by removing the row vectors of zeros from Q1 and Q2. Algorithm 1 in RWZ suggests

calculating

Q̃1 = Q̄1f(A0, A+) =

(
0 1

l22
− l32

l22l33

0 0 1
l33

)

, (13)

and finding a unit-length vector that is orthogonal to the row vectors of Q̃1. The QR decomposition

of Q̃1 and a sign normalization lead to p1 = (1, 0, 0)′ as a unique unit vector satisfying Q̃1p1 = 0,

so we can pin down the first column vector of P .

Next, to find the second column vector p2 of P , we form the matrix

Q̃2 =

(
Q̄2f(A0, A+)

p′1

)

=

(
l11 0 0

1 0 0

)

(14)

and search for a unit vector p2 satisfying Q̃2 p2 = 0. Since the rank of Q̃2 is one for any value of
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l11, we cannot pin down a unique p2 (up to the sign normalization). From a geometric point of

view, any vector belonging to the unit circle in R3 orthogonal to the unit vector p1 =
(

1 0 0
)′

is admissible as p2. This implies that given any reduced-form parameter value of Σ, the imposed

restrictions fail to pin down a unique orthogonal matrix P , implying that, contrary to the claim in

Theorem 7 of RWZ, global identification does not hold in this example.

Some packaged algorithms for the QR decomposition, including the Matlab function qr(∙), yield

an orthogonal vector p2 irrespective of whether it is unique or not. That is, if Q̃2 is not full-rank,

these algorithms implicitly select one unit vector p2 from infinitely many admissible ones. As a

result, an application of the “if” statement of Theorem 7 and naive implementation of Algorithm

1 in RWZ may fail to detect the failure of global identification and mislead subsequent impulse

response analysis.

III.2 Analytical investigation

To understand why the “if” statement of Theorem 7 of RWZ breaks down and how it can be

modified, it is useful to determine analytically the special feature of the identifying restrictions

specified in (7).

We begin with the inversion of the A0 matrix; the determinant of A0 is

|A0| = a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33 (15)

and the adjunct matrix is

Adj(A0) =







a22a33 − a32a23 −(a12a33 − a32a13) a12a23 − a22a13

−(a21a33 − a31a23) a11a33 − a31a13 −(a11a23 − a21a13)

a21a32 − a31a22 −(a11a32 − a31a12) a11a22 − a21a12





 . (16)

The inverse is A−1
0 = |A0|−1 Adj(A0). Substituting the two zero restrictions on A0, a21 = 0 and

a31 = 0, into A−1′
0 leads to

A−1′
0 =

1
a11(a22a33 − a23a32)







a22a33 − a32a23 0 0

−(a12a33 − a32a13) a11a33 −(a11a32 − a31a12)

a12a23 − a22a13 −a11a23 a11a22





 = IR0. (17)

It is evident that the two restrictions on A0 imply two zero restrictions on IR0, (A−1′
0 )[1,2] =

(A−1′
0 )[1,3] = 0. One of these, (A−1′

0 )[1,2] = 0, is exactly the zero restriction specified for IR0 in (7).

In other words, we intended to impose the three restrictions, but the two imposed on A0 imply the

third imposed on IR0, so this third restriction was redundant. Due to this redundancy, the third

8



restriction does not further constrain the admissible orthonormal matrix P , which translates into

rank deficiency of Q̃2.

Although this redundancy phenomenon can occur in some realistic applications,2 whether or

not any of the imposed set of restrictions are redundant cannot be directly assessed by the simple

necessary and sufficient condition in Theorem 7 of RWZ. As a way to uncover such redundancy,

one may want to examine how a set of zero restrictions imposed on one structural object translates

to zero restrictions on other objects. In Section IV below, we modify the necessary and sufficient

condition of Theorem 7 of RWZ by offering a systematic way to detect redundancy of the imposed

identifying restrictions.

III.3 Detecting the failure of global identification

In their Theorem 6, RWZ provides an alternative necessary and sufficient condition for exact

identification of SVARs. If we properly take into account that the imposed zero restrictions imply

zero restrictions on other objects, this alternative approach can correctly detect a lack of global

identification. We illustrate how in our example.

For 1 ≤ j ≤ n and any k × n matrix X, let Mj(X) be a (k + j) × n matrix defined by

Mj(X) =

(
QjX

Ij×j Oj×(n−j)

)

,

where Qj is a k × k matrix defined in (4). Theorem 6 of RWZ provides a necessary and sufficient

condition for exact identification through the rank conditions for Mj(f(A0, A+)).

Theorem 6 in RWZ: Consider an SVAR with admissible and strongly regular restrictions repres-

ented by R. The SVAR is exactly identified if and only if the total number of restrictions is equal

to n(n − 1)/2 and for some (A0, A+) ∈ R, Mj(f(A0, A+)) is of rank n for 1 ≤ j ≤ n.

In the current example, the total number of restrictions imposed is 3 and it meets the condition

for the total number of restrictions with n = 3. We hence focus on checking the rank condition for

Mj(f(A0, A+)), j = 1, 2, 3. In this check, we substitute the following matrices into f(A0, A+):

A0 =







a11 a12 a13

0 a22 a23

0 a32 a33





 and IR0 =







× 0 0

× × ×

× × ×





 , (18)

2Many influential empirical papers combine restrictions on both contemporaneous relationships among the endo-
genous variables and the contemporaneous impulse responses. Examples include Blanchard (1989), Blanchard and
Perotti (2002), Bernanke (1986).
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where the symbol ‘×’ denotes the parameters in Eq. (17). We obtain, if a22a33 − a32a23 6= 0,

M1 (f(A0, A+)) =







0 a22 a23

0 a32 a33

1 0 0





 rank (M1) = 3

M2 (f(A0, A+)) =







a22a33 − a32a23 0 0

1 0 0

0 1 0





 rank (M2) = 2 < 3.

(19)

Hence, the rank condition of Theorem 6 in RWZ fails. This is consistent with the conclusion in our

analysis above; the imposed restrictions uniquely pin down the first column vector of P , but not the

second column vector of P . Thus, plugging in the expression of f(A0, A+) obtained analytically

under the imposed restrictions, the rank condition of Theorem 6 of RWZ correctly detects the

failure of global identification due to the redundancy among the imposed identifying restrictions.

It is important to note that understanding analytically the whole set of constraints implied by

the imposed restrictions is crucial to correctly performing the check of the rank condition in Theorem

6 of RWZ. For instance, in the current example, if we were not aware of the redundancy issue of

the identifying restrictions and incorrectly let the (1, 3)-element of M2(f(A0, A+)) be an unknown

potentially nonzero free parameter, we would have erroneously claimed that M2(f(A0, A+)) were

of rank 3 and concluded that the exact identification holds. If the dimension of the SVAR is

large, exhaustively investigating and figuring out the entire set of constraints implied by the zero

restrictions on f(A0, A+) is challenging. In such a case, immediate implementation of the rank

conditions of Theorem 6 of RWZ is limited.

IV Modified necessary and sufficient condition for exact identific-

ation

In this section we provide a modified necessary and sufficient condition for exact identification

that eliminates the redundancy issue invalidating Theorem 7 of RWZ. Our proposal relies on the

sequential feature of Algorithm 1 in RWZ and checks the rank condition for uniqueness of the j-th

column vector pj for each j = 1, . . . , n.

Given the reduced-form parameter (B,Σ), set (A0, A+) to be an unrestricted set of structural

parameters satisfying Σ = (A′
0)

−1(A0)−1 and B = A+A−1
0 , such as A′

0 = Σ−1
tr and A+ = B(Σ−1

tr )′.
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Let

Q̃1 = Q1f(A0, A+), and Q̃j =










Qjf(A0, A+)

p′1
...

p′j−1










for j = 2, . . . , n. (20)

By Theorem 5 and Algorithm 1 of RWZ, the exact identification of SVARs follows if and only if,

for almost every reduced-form parameters (B,Σ), the orthogonality conditions Q̃jpj = 0 combined

with the sign normalization restrictions pin down a unique orthogonal matrix P .

For P to be uniquely determined, it is necessary to have qj = n − j for all 1 ≤ j ≤ n. This is,

however, not a sufficient condition, because if any of the orthogonal vectors (p1, . . . , pj−1) is linearly

dependent on the row vectors of Qjf(A0, A+), a rank-deficient Q̃j fails to pin down a unique pj .

This is exactly the mechanism that caused the systematic failure of global identification in our

illustrative counterexample. To rule out such rank-deficiency in the characterization of the global

identification condition, we introduce the following concept:

Definition 3 (Non-redundant restrictions). Given reduced-form parameter (B,Σ), let A′
0 = Σ−1

tr

and A+ = B(Σ−1
tr )′. Identifying restrictions for a SVAR that are represented by zero restrictions

Qjf(A0, A+)ej = 0, j = 1, . . . , n, are non-redundant at given reduced-form parameter point, (B,Σ)

if for every j = 2, . . . , n, orthogonal vectors (p1, . . . , pj−1) are linearly independent of the row vectors

of Qjf(A0, A+), i.e., Q̃j defined in (20) is full row-rank for all j = 2, . . . , n.

If the imposed zero restrictions are non-redundant and the rank condition of Theorem 7 in RWZ

holds, we can guarantee

rank (Q̃j) = rank










Qjf(A0, A+)

p′1
...

p′j−1










= n − 1 (21)

for all j = 1, . . . , n. We can therefore solve for an orthonormal matrix P uniquely by sequentially

solving Q̃jpj = 0, for j = 1, . . . , n. If non-redundancy of the imposed restrictions holds for almost

any reduced-form parameter point (B,Σ), we can achieve exact identification. We hence obtain

the following theorem that modifies Theorem 7 of RWZ. We provide a proof in the Appendix.

Theorem 1 (A necessary and sufficient condition for exact identification). Consider an SVAR

with admissible and strongly regular restrictions represented by R. The SVAR is exactly identified

if and only if qj = n − j for j = 1, . . . , n and the restrictions are non-redundant at almost any

reduced-form parameter (B,Σ).
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In comparison to Theorem 7 of RWZ, our Theorem 1 adds the almost-sure non-redundancy

condition of the imposed restrictions as a part of necessary and sufficient condition. Accordingly,

the modified necessary and sufficient condition of our Theorem 1 may not appear as simple as

checking the ranks of Qj matrices. However, the next theorem, which extends Theorem 3 of RWZ

to the current setting, leads to an easy-to-implement procedure for assessing the almost-sure non-

redundancy condition:

Theorem 2. Consider an SVAR with admissible and regular restrictions represented by R that

satisfies qj = n − j for 1 ≤ j ≤ n. Let P̃R ⊂ PR be the set of reduced-form parameters (B,Σ)

generated by the structural parameters satisfying R. Let K be the set of reduced-form parameters

(B,Σ) ∈ P̃R that satisfy the non-redundancy condition, i.e., the rank conditions of Definition 3

holds. Either K is empty or the complement of K is of measure zero in P̃R.

A practical implication of this theorem is that we can assess exact identification of SVARs by

checking the rank conditions of non-redundancy at some finite number of points of (B,Σ) ∈ P̃R

drawn from a probability distribution supporting P̃R. Such probability distribution can be a prior

or posterior distribution for the reduced-form parameters in a Bayesian VAR. Building on and

modifying Algorithm 1 of RWZ, the next algorithm correctly judges if exact identification holds or

not, almost surely in terms of the sampling probability therein.

Algorithm 1. Consider an SVAR with admissible and strongly regular restrictions represented by

R that satisfies qj = n − j, for j = 1, . . . , n. Let (Bm, Σm), m = 1, . . . ,M be M number of draws

of the reduced-form parameters from a probability distribution supporting P̃R. M does not have to

be large and a small integer M ≥ 2 should suffice.

For each m = 1, . . . ,M , perform the following steps:

1. Let A′
0 = Σ−1

tr,m and A+ = Bm(Σ−1
tr,m)′, where Σtr,m is the lower-triangular Cholesky factor of

Σm.

2. For each j = 1, . . . , n, sequentially, check the rank conditions for non-redundancy, i.e., check

if rank (Q̃j) = n − 1 holds, where Q̃1 = Q1f(A0, A+) and

Q̃j =










Qjf(A0, A+)

p′1
...

p′j−1










(22)

for j = 2, . . . , n, and pj is an n × 1 vector satisfying Q̃jpj = 0 which is unique (up to sign

normalization) if rank(Q̃j′) = n − 1 holds for all preceding j′ = 1, . . . , j − 1.
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If at least one drawn reduced-form parameter point passes Step 2 of the current algorithm, we con-

clude that the imposed identifying restrictions R achieve exact identification. If none of the drawn

reduced-form parameter points passes Step 2, we conclude that the imposed identifying restrictions

do not achieve exact identification.

The construction of the orthonormal vectors p1, . . . , pn by solving Q̃jpj = 0 sequentially for

j = 1, . . . , n, as incorporated in Step 2 of Algorithm 1, is proposed in Algorithm 1 of RWZ. For

the purpose of checking exact identification, the important feature of our algorithm is the step of

checking rank(Q̃j) = n − 1 for all j = 1, . . . , n. This extra step, which is absent in Algorithm 1

of RWZ, is necessary to detect failure of exact identification due to redundancy of the identifying

restrictions.

V Conclusion

Based on a counterexample, this note demonstrates that the sufficiency claim in Theorem 7 of RWZ,

commonly used by applied macro-economists because of its simplicity, is not correct. Analytical

investigation of this counterexample reveals the issue of redundancy among the identifying restric-

tions, which the rank conditions of Theorem 7 of RWZ overlook. To rectify this, we present a new

set of necessary and sufficient conditions for exact identification and a computational algorithm

that can correctly detect redundant identifying restrictions and is easy to implement in practice.

We recommend this procedure to any researchers who wish to check global identification of SVARs

under their choice of equality identifying restrictions.
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A Appendix: Proofs of Theorems

The proof proceeds via a sequence of lemmas modifying those shown in RWZ.

Lemma 1. If qj = n− j for j = 1, . . . , n and all the restrictions are non-redundant, then for every
(A0, A+) ∈ U , there exists a P ∈ O (n) such that (A0P, AP ) ∈ R.

Proof. This lemma modifies Lemma 5 in RWZ by adding the non-redundancy condition. Under
the non-redundancy condition, for every j = 1, . . . , n, the rank of Q̃j in Eq. (22) is equal to n − 1.
Algorithm 1 of RWZ is therefore guaranteed to yield a unique unit vector pj .

The next lemma modifies Lemma 6 in RWZ by explicitly assuming non-redundancy.

Lemma 2. If qj = n − j for j = 1, . . . , n and all the restrictions are non-redundant, then there
exists (A0, A+) ∈ R, such that Mj(f(A0, A+)) is of rank n for j = 1, . . . , n.

Proof. The proof proceeds similarly to the proof of Lemma 6 in RWZ, except for the necessary
modification due to the additional assumption we impose for non-redundancy. If the imposed
restrictions are non-redundant as assumed in the current lemma, there are exactly qj = n − j
number of independent restrictions operating for the structural parameters for j = 1, . . . , n. Let
Vj be the column space of (Qjf(A0, A+))′ for (A0, A+) ∈ (U ∩ N). Moreover, let V⊥

j be the linear
subspace of Rn that is orthogonal to Vj . In case of no restrictions for certain j, let V⊥

j be the whole
Rn. Because U is an open dense set, and given the assumption that qj = rank (Qj) = n − j, it is
possible to find some values of (A0, A+) ∈ (U∩N) such that rank (Qjf(A0, A+)) = qj = n−j, which
implies dim (Vj) = n− j and dim (V⊥

j ) = j. For any f(A0, A+) ∈ (U ∩N), let P1:i = (p1, p2, . . . , pi)
be an n × i matrix of orthogonal vectors in Rn. Moreover, let Pi be the linear subspace of Rn

generated by the columns of P1:i and let P⊥
i be the linear subspace of Rn orthogonal to the column

vectors of Pi. The dimension of Pi is clearly equal to i, while that of P⊥
i is n − i. Now, given

(A0, A+) ∈ (U ∩N), according to Algorithm 1, it is possible to define the elements in P ∈ O (n) in
the following recursive way:

p1 ∈ H1 ≡ V⊥
1

p2 ∈ H2 ≡ V⊥
2 ∩ P⊥

1

p3 ∈ H3 ≡ V⊥
3 ∩ P⊥

2
...

pj ∈ Hj ≡ V⊥
j ∩ P⊥

j−1
...

pn ∈ Hn ≡ V⊥
n ∩ P⊥

n−1

where Hj ∈ Rn is the set of feasible pj given the restrictions on the j -th column of f(A0, A+) and
the set of previous orthogonal vectors collected in P1:(j−1). Given the assumption of non redundant
restrictions, for j = 1, . . . , n, rank (Q̃j) = n − 1, and according to Lemma 1, we obtain that
dim (Hj) = 1. Moreover, being (p1, . . . , pj−1) mutually orthogonal by construction, dim (Pj−1) =
j − 1. Thus, because dim (Pj−1) = j − 1 and dim (Vj) = n − j, in order for rank (Q̃j) to be equal
to n − 1, the vector spaces Vj and Pj−1 must be disjoint. For j = 1, . . . , n, thus, the number of
restrictions effectively operating in the columns of f(A0, A+) is equal to n − j = qj .

Having proved this, the remaining part of the proof follows exactly as the proof of Lemma 6 in
RWZ.

Lemma 3. If qj = n−j for j = 1, . . . , n and all the restrictions are non-redundant, then the SVAR
is exactly identified.
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Proof. This lemma modifies Lemma 7 in RWZ by adding the non-redundancy condition. We have
seen that without the further assumption of non-redundant restrictions, the set of all f(A0, A+) ∈ U
such that there exists an orthogonal matrix P 6= In with (A0P,A+P ) ∈ R, denoted by G in RWZ,
could be of strictly positive measure. According to Lemma 1 and Algorithm 1, the situation of
G having a positive measure is precluded. Accordingly, under the assumption of qj = n − j, for
j = 1, . . . , n, and non-redundancy of the restrictions, the claim of exact identification follows as in
the proof of Lemma 7 in RWZ.

The previous Lemmas 1 to 3 allow to prove the sufficient part of the condition in Theorem 1.
We now move to the other direction and show the following lemma.

Lemma 4. If the SVAR is exactly identified, then qj = n−j for j = 1, . . . , n and all the restrictions
are non-redundant.

Proof. This lemma modifies Lemma 9 in RWZ by explicitly claiming non-redundancy in its conclu-
sion. The first part of the proof, which consists of proving that an exactly identified SVAR presents
a pattern of restrictions of the form qj = n − j, for j = 1, . . . , n, is essentially the same. What we
need to prove is that if the model is exactly identified, then all the restrictions are non redundant.
Using the result in Theorem 5 in RWZ, we can say that if an SVAR is exactly identified, than
for almost every structural parameter point (A0, A+) ∈ U there exists a unique P ∈ O (n) such
that (A0P,A+P ) ∈ R. Moreover, we have seen that such a P matrix can be obtained through our
Algorithm 1. However, sequentially for each j = 1, . . . , n, for the algorithm to obtain a unique pj ,
the rank of Q̃j must be equal to n − 1, proving thus the result.

Proof of Theorem 1. The claim follows from Lemma 3 and Lemma 4.

Proof of Theorem 2. This theorem is based on Lemma 2 given above and Theorem 3 in RWZ.
In fact, according to Lemma 2, if qj = n − j for j = 1, . . . , n and all the restrictions are non-
redundant, then the rank condition in Theorem 1 in RWZ is also met. Getting at this point, the
proof of Theorem 3 in RWZ can be applied as it is and leads to the conclusion of the current
theorem.
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