
SUPPLEMENT TO “TESTING IDENTIFYING ASSUMPTIONS IN
FUZZY REGRESSION DISCONTINUITY DESIGNS”

YOICHI ARAIa YU-CHIN HSUb TORU KITAGAWAc ISMAEL MOURIFIÉ d YUANYUAN WANe

We describe how our test differs and complements existing tests in Appendix B. We discuss

several extensions in Appendix C. We formally state the asymptotic validity of our test in Appendix

D. All proofs are collected in Appendix E. Additional empirical results of Section 5 are provided in

Appendix G.

APPENDIX B. COMPARISON BETWEEN OUR APPROACH AND THE EXISTING APPROACH

We provide a detailed analytical discussion of how our testing approach differs from and comple-

ments the existing approach in terms of assessing the local continuity (LC) assumption.

Let X ∈ X ⊂ Rdx be observable covariates. Assuming that all the probability densities in the

following equations are well defined, we can write

fYd(r),T|r−r0 ||R,X(y, t|r, x) =
fR|Yd(r),T|r−r0 |,X

(r|y, t, x)

fX|R(x|r) fR(r)
fYd(r),T|r−r0 |,X

(y, t, x), (B.1)

where fYd(r),T|r−r0 ||R,X(y, t|r, x) denotes the conditional density of (Yd(r), T|r−r0|) given R, X. On the

right-hand side of the equation, the continuity of fR|Yd(r),T|r−r0 |,X
(r|y, t, x) in r near r0 is essentially

Lee (2008)’s stronger local continuity (SLC) assumption (with different notation), which was

originally introduced in the sharp RD framework and later discussed in Dong (2018) in the context of

the FRD setting. Since the SLC assumption is not directly testable, the existing literature has derived
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tests for two of its implications: (i) the continuity of fR(r), see for instance McCrary (2008), Otsu,

Xu, and Matsushita (2013), Cattaneo, Jansson, and Ma (2020), and Bugni and Canay (2018), and (ii)

the continuity of FX|R(x|r) in r, see Canay and Kamat (2018). We can see from equation (B.1) that

LC can be considered as an implication of SLC. It is, however, important to note that LC neither

implies nor is implied by continuity of fR(r) and continuity of FX|R(x|r) in r. As a result, there

are important empirical scenarios in which the conclusions of the existing tests are not necessarily

informative about validity or invalidity of LC, as we illustrate below.

Scenario 1: The existing approach accepts continuity of fR and FX|R while our approach

refutes LC:

This scenario corresponds to the case that the existing approach of testing continuity of fR and

FX|R at r = r0 overlooks the failure of FRD-design, while our approach detects it. To be specific,

consider an empirical context in which multiple programs share the same running variable R and

the common threshold r0, e.g., a household can participate in two social programs and both of them

use the same poverty index and poverty line to determine eligibility. Let D, Z ∈ {0, 1} denote the

treatment statuses, respectively. The researcher is interested in the causal effect of treatment in the

first programme, i.e., the effect of D. For simplicity, let us assume that the assignment of the second

program is sharp, Z = 1[R ≥ r0]. In such a context, the potential outcome model can be written as

Y = {Y11Z + Y10(1− Z)}︸ ︷︷ ︸
Y1

D + {Y01Z + Y00(1− Z)}︸ ︷︷ ︸
Y0

(1− D), (B.2)

where Ydz(r), d ∈ {1, 0} and z ∈ {1, 0}, are the potential outcomes indexed by the two treat-

ments. As can be seen, if the researcher is unaware of the second treatment, the potential outcome

Yd that she specifies would be Yd = Yd1Z + Yd0(1− Z). Suppose now fR|Ydz(r),T|r−r0 |,X
(r|y, t, x)

is continuous in r for any y, t, x, then fR(r) and FX|R(x|r) are continuous. However, the den-

sity fR|Yd(r),T|r−r0 |,X
(r|y, t, x) can be discontinuous if the second treatment Z affects the outcome.

Specifically, since we have (for d = 1)

lim
r↓r0

fR|Y11Z+Y10(1−Z),T|r−r0 |,X
(r|y, t, x)− lim

r↑r0
fR|Y11Z+Y10(1−Z),T|r−r0 |,X

(r|y, t, x)

= lim
r↓r0

fR|Y11,T|r−r0 |,X
(r|y, t, x)− lim

r↑r0
fR|Y10,T|r−r0 |,X

(r|y, t, x)

=

[
lim
r→r0

fY11,T|r−r0 |
|R,X(y,t|r,x)

fY11,T|r−r0 |
|X(y,t|x) − lim

r→r0

fY10,T|r−r0 |
|R,X(y,t|r,x)

fY10,T|r−r0 |
|X(y,t|x)

]
fR|X(r0|x),
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where the first equality follows since the assignment of Z is sharp, and the second equality follows

from Bayes rule and continuity of fR|Ydz(r),T|r−r0 |,X
(r|y, t, x) in r. The two terms in the brackets do

not have to cancel out as Y10 and Y11 are two different potential outcomes, with and without the

second treatment. Therefore, in this scenario, learning continuity of fR(r) and FX|R(x|r) does not

inform about failure of LC. Our approach, in contrast, can detect violation of LC, if the distributional

differences between Yd0 and Yd1 at the cut-off leads to violation of the testable implications of

Theorem 1 (i) in the main text.

For ease of exposition, we consider binary Z here and interpret it as an unobservable treatment

sharing the running variable and cut-off. It is straightforward to generalize the current argument

to cases where Z is nonbinary and its discontinuity at r0 is in terms of its conditional distribution

given r. We can also interpret Z as any unobservable factor affecting the outcome, whose distribution

changes discontinuously at the cut-off. For instance, the existence of such a Z is often suspected

when geographical boundaries are used for regression discontinuity.

Scenario 2: The existing approach rejects continuity of fR and FX|R while FRD-validity

holds (so that our approach does not refute):

This scenario corresponds to the case that FRD-validity holds but the existing approach finds

discontinuity of fR and FX|R at the cut-off. This can happen for a data generating process in which

the discontinuity of either fR(r) or fX|R(x|r) (or both) is compensated exactly by the discontinuity

of fR|Y1(r),T|r−r0 |,X
(r|y, t, x) in such a way that fYd(r),T|r−r0 ||R,X(y, t|r, x) remains continuous. This

scenario is not pathological, and is likely to happen in empirical applications where the manipulation

is made independently of the potential outcomes. For instance, in the context of the empirical

application relating to Maimonides’s rule in Israel, Angrist, Lavy, Leder-Luis, and Shany (2019)

argues that the presence of discontinuity in the running variable (school enrollment) is mainly due to a

school board administration objective to increase their budgets and was “unrelated to socioeconomic

characteristics conditional on a few controls" (please refer to Section 5.1 for detailed discussion).

This narrative evidence justifies fR|Y1(r),T|r−r0 |,X
(r|y, t, x) = fR|X(r|x) in some local neighborhood

of the cut-off. This reduces equation (B.1) to

fY1(r),T|r−r0 ||R,X(y, t|r, x) =
fY1(r),T|r−r0 |,X

(y, t, x)

fX(x)

3



in the local neighborhood of the cut-off, implying fY1(r),T|r−r0 ||R,X(y, t|r, x) is continuous at r0.

However, either fR(r) or FX|R(x|r) (or both) is discontinuous at r0. This example illustrates that

even when the running variable’s density is discontinuous, FRD-validity can hold.

APPENDIX C. EXTENSIONS

In this section, we briefly discuss several extensions. First, we discuss the relationship between

FRD-validity considered in our paper and other FRD-identifying assumptions considered in the

literature. Second, we show how to incorporate conditioning covariates in our test.

C.1. Relationship with other FRD identifying assumptions. In the LATE framework, de Chaise-

martin (2017) argues that the Wald (IV) estimand can have a well-defined causal interpretation under

a weaker version of instrument monotonicity. A parallel of his weaker monotonicity condition in the

FRD setting can be written as follows: there exists ε > 0 such that

P(T|r−r0| = DF|Yd(r) = y, R = r) ≤ P(T|r−r0| = C|Yd(r) = y, R = r), d ∈ {0, 1}, y ∈ Y

for all r ∈ (r0 − ε, r0 + ε). It can be shown that our Theorem 1 holds by replacing Assumption 1

with this weaker monotonicity assumption and modifying Assumption 2 to include T = DF. That is,

inequalities 2 and 3 remain unimprovable testable implications under this weaker version of the local

monotonicity assumption.

Bertanha and Imbens (2020) consider an alternative local monotonicity assumption that is more

restrictive than Assumption 1.

Assumption C.1 (Strong local monotonicity). There exists ε > 0 such that any individual in the

population is classified into one of the following three types based on their treatment selection

responses:

T =


A, if D(r) = 1, for r ∈ (r0 − ε, r0 + ε),

C, if D(r) = 1{r ≥ r0}, for r ∈ (r0 − ε, r0 + ε),

N, if D(r) = 0, for r ∈ (r0 − ε, r0 + ε).

(C.1)

This monotonicity implies that in some neighborhood of the cut-off, compliance status is invariant

for any given individual. It can be shown that strengthening Assumption 1 to Assumption C.1 does
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not yield further testable implications beyond those of Theorem 1 (i), i.e., Theorem 1 (ii) holds true

even if Assumption 1 in the main text is replaced by Assumption C.1 above.1

The literature has considered the local independence assumption,2 which is a stronger form of

identifying assumption than LC.

Assumption C.2 (Local independence). There exists ε > 0 such that for d = 0, 1, (Yd(r), D(r)) is

jointly independent of R in the neighborhood (r0 − ε, r0 + ε) and lim
r↓r0

Yd(r) = lim
r↑r0

Yd(r) ≡ Yd(r0)

a.s.

The statement of Theorem 1 (i) indeed holds even if LC is replaced by this local independence

assumption.

C.2. Incorporating Covariates. The standard FRD design does not require covariates to identify

treatment effect at the cut-off, but they are often included in practice to increase efficiency. See

Imbens and Kalyanaraman (2012), Calonico, Cattaneo, Farrel, and Titiunik (2019), and Hsu and

Shen (2019). Another motivation for incorporating the conditioning covariates arises if the potential

outcomes can depend on the covariates whose distribution is discontinuous at the cut-off. In this case,

RD analysis without conditioning on covariates leads to violation of the local continuity assumption

(Frölich and Huber (2019)).

In what follows, we consider testing a version of FRD-validity where local monotonicity and local

continuity are imposed conditional on a covariate vector X ∈ X ⊂ Rdx . We allow X to be discrete

or continuous. We assume that there are observations near the cut-off point conditioning on each

realization x. The conditional version of FRD-validity is stated formally as follows:

Assumption C.3. The limits π+(x) ≡ lim
r↓r0

P(D = 1|R = r, X = x) and π−(x) ≡ lim
r↑r0

P(D =

1|R = r, X = x) exist and π+(x) 6= π−(x) for all x ∈ X .

1Our proof of Theorem 1 (ii) in Appendix E constructs a distribution of potential outcomes and selection types that, in fact,
satisfies Assumption C.1.
2This assumption is slightly weaker than the HTV local independence assumption, which involves a local exclusion
restriction that rules out causal dependence of Yd on R in the neighborhood. See Dong and Lewbel (2015), and Dong (2018)
for discussion comparing local continuity and HTV local independence, and the restrictions that HTV local independence
impose on the distribution of observables.
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Assumption C.4 (Local continuity conditional on X). For d = 0, 1, t ∈ {A, C, N}, and B ⊆ Y be

a measurable set, the conditional probability P(Yd(r) ∈ B, T|r−r0| = t|R = r, X = x) is continuous

in r at r0, for all x ∈ X .

Assumption C.5 (Local monotonicity conditional on X). Let t ∈ {DF, I}. There exists a small

ε > 0 such that P(T|r−r0| = t|R = r, X = x) = 0 for all r ∈ (r0 − ε, r0 + ε) and for all x ∈ X .

Theorem 1 can be immediately extended to the conditional version of FRD-validity by conditioning

additionally on X. To fit into our testing framework, it is convenient to rewrite the moment inequalities

conditional on X in terms of moment inequalities unconditional on X.

To do so, let Z = (Y, X) and Z be the support of Z. We obtain the following inequalities as the

testable implications for Assumptions C.3-C.5: for C a hypercube in Z :

lim
r↑r0

EP[1{Z ∈ C}D|R = r]− lim
r↓r0

EP[1{Z ∈ C}D|R = r] ≤ 0, (C.2)

lim
r↓r0

EP[1{Z ∈ C}(1− D)|R = r]− lim
r↑r0

EP[1{Z ∈ C}(1− D)|R = r] ≤ 0. (C.3)

In comparison to inequalities (2) and (3), the only difference is that the indicator functions in

(C.2) and (C.3) index boxes in Z instead of the intervals in Y . Accordingly, by defining a class of

instrument functions as

Gz = {g`(·) = 1(· ∈ C`) : ` ≡ (z, c) ∈ L} , where

C` = ×dx+1
j=1 [zj, zj + c] ∩ Z and

L =
{
(z, c) : c−1 = q, and q · zj ∈ {0, 1, 2, · · · , (q− 1)}dx+1 for q = 1, 2, · · ·

}
, (C.4)

we can implement the testing procedure shown in the main text to assess the conditional version of

FRD-validity.

C.3. Joint test. Our test complements the widely used continuity tests for the distribution of

conditioning covariates. Since continuity of the conditional distribution of some covariates at the cut-

off is often considered to be supporting evidence for no-selection around the cut-off, it is worthwhile

to combine our test with a continuity test.

Suppose we want to test the continuity of the distribution of covariates X at the cut-off jointly

with the testable implications of (2) and (3). Since continuity of the distribution of X is expressed as
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a set of local moment equalities, we can obtain a joint test by adding the additional set of equality

constraints to the null hypothesis.

We hence consider testing the inequalities of Theorem 1 (i) in the main text and the set of equalities

indexed by j ∈ J ,

vx(j) ≡ lim
r↑r0

EP[1{X ∈ Cx
j }|R = r]− lim

r↓r0
EP[1{X ∈ Cx

j }|R = r] = 0.

where Cx
j is a hypercube or a quadrant in the space of covariates X, and J forms a countable

collection thereof.

We estimate vx(j) by v̂x(j), the difference of two local linear estimators. Following how Andrews

and Shi (2013) incorporate moment equalities, we modify the KS test statistic as

Ŝjoint
n = max

{
sup

d∈{0,1}, `∈L

√
nh · v̂n,d(`)

σ̂n,d,ξ(`)
, sup

j∈J

√
nh · |v̂x(j)|
σ̂x

n,ξ(j)

}
,

where σ̂x
n,ξ(j) is an estimator for the asymptotic standard deviation of

√
nh(v̂x(j)− vx(j)). Critical

values for this test statistic can be obtained by a procedure similar to Algorithm 1 in the main text.

Some differences are that for the moment equality constraints, we do not have the moment selection

step, and the absolute values are taken for the estimators v̂x(j) and their bootstrap analogues.

APPENDIX D. ASYMPTOTIC PROPERTIES OF THE PROPOSED TEST

In this appendix, we spell out the regularity conditions and state the theorems that guarantee the

asymptotic validity of our test. Their proofs are given in Appendix E.3.

We normalize the support of the observed outcome Y to [0, 1].3 Let P be the collection of

probability distributions of observables (Y, D, R). We denote the Lebesgue density of the running

variable, R, by fR.

Let h2(·, ·) be a covariance kernel on L×L. LetH2 be the collection of all possible covariance

kernel functions on L×L. For any pair of h(1)2 ∈ H2 and h(2)2 ∈ H2, we define the distance between

them as

d(h(1)2 , h(2)2 ) = sup
{`1,`2∈L}

|h(1)2 (`1, `2)− h(2)2 (`1, `2)|. (D.1)

3This support normalization is without loss of generality. If not, we can define Ỹ = Φ(Y) where Φ(·) is the CDF of
standard normal, as in the first step of Algorithm 1.
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Let σP,d(`1, `2|r) = CovP(g`1(Y)Dd(1− D)1−d, g`2(Y)Dd(1− D)1−d|R = r) for d = 1, 0. We

denote their right and left limits at r0 by σP,d,+(`1, `2) = limr↓r0 σP,d(`1, `2|r) and σP,d,−(`1, `2) =

limr↑r0 σP,d(`1, `2|r), respectively. Existence of these limits is implied by the set of assumptions in

Assumption D.1, below.

For j = 0, 1, 2, . . . , let ϑj =
∫ ∞

0 ujK(u)du. Let f+R (r0) = limr↓r0 fR(r0) and f−R (r0) =

limr↑r0 fR(r0). For d = 0, 1 and ? = +,−, define

h2,P,d,?(`1, `2) =

∫ ∞
0 (ϑ2 − uϑ1)

2K2(u)du · σP,d,?(`1, `2)

c? f ?R(r0)(ϑ2ϑ0 − ϑ2
1)

2
, (D.2)

which is the covariance kernel of the limiting process of
√

nh(m̂d,?(`)− mP,d,?(`)), with under-

smoothing bandwidths. It can be shown that the covariance kernel of the limiting processes of
√

nh(ν̂d(`)− νP,d(`)) is h2,P,d = h2,P,d,+ + h2,P,d,−.

We denote the v-th derivative of mP,d(`, r) = EP[g`(Y)Dd(1− D)1−d|R = r] with respect to

the running variable by m(v)
P,d(`, r), d = 1, 0. The v-th derivative of fR is denoted similarly. For

δ > 0, define Nδ(r0) = {r : |r − r0| < δ} as a neighborhood of r around r0. Let N+
δ (r0) =

{r : 0 < r− r0 < δ} and N−δ (r0) = {r : 0 < r0 − r < δ} be one-sided open neighborhoods

excluding r0.

Assumption D.1. Let fR be common for all P ∈ P . There exist δ > 0, ε > 0, 0 < f̄R < ∞, and

0 ≤ M < ∞ such that for all P ∈ P ,

(i) fR(r) > ε on Nδ(r0).

(ii) fR(r) is continuous and bounded from above by f̄R on N+
δ (r0) ∪N−δ (r0), and f+R (r0) and

f−R (r0) exist.

(iii) fR(r) is twice continuously differentiable in r on N+
δ (r0) ∪ N−δ (r0) and | f (1)R (r)| ≤ M

and | f (2)R (r)| ≤ M on N+
δ (r0) ∪N−δ (r0);

(iv) for d = 0, 1 and for all ` ∈ L, mP,d(`, r) is twice continuously differentiable in r on

N+
δ (r0) ∪N−δ (r0);

(v) for d = 0, 1 and for all ` ∈ L, |m(1)
P,d(`, r)| ≤ M and |m(2)

P,d(`, r)| ≤ M on N+
δ (r0) ∪

N−δ (r0);

Assumption D.1 (iii)-(v) imply that with undersmoothing bandwidths, the bias terms of ν̂1(`)

and ν̂0(`) are asymptotically negligible uniformly over ` ∈ L. Note that Assumption D.1 does

8



not restrict the support of Y and allows Y to be discrete, continuous, or some mixture of the two.

Note also that we allow fR(r) to be discontinuous at the cut-off, reflecting the fact that the testable

implications of FRD-validity that we are focusing on do not require continuity of fR(r) at the cut-off.

Assumption D.2. The kernel function K(·) and bandwidth h satisfy

(i) K(·) is nonnegative, symmetric, bounded by K̄ < ∞, and has a compact support (say

[−1, 1]),

(ii)
∫

R
K(u)du = 1, and

∫
R

u2K(u)du > 0,

(iii) h→ 0, nh→ ∞ and nh5 → 0 as n→ ∞.

Assumption D.2 is standard, and the triangular kernel used in our Monte Carlo studies and

empirical applications satisfies this assumption. Note that nh5 → 0 as n → ∞ corresponds to an

undersmoothing choice of bandwidth so that the bias term of v̂n,d converges to zero even after
√

nh

is multiplied.

Assumption D.3. Let {Ui : 1 ≤ i ≤ n} be a sequence of i.i.d. random variables E[U] = 0,

E[U2] = 1, and E[|U|4] < M1 for some M1 < ∞, and {Ui : 1 ≤ i ≤ n} is independent of the

sample {(Yi, Di, Ri) : 1 ≤ i ≤ n}.

Assumption D.3 is standard for the multiplier bootstrap (see, e.g., Hsu (2016)). Note the standard

normal distribution for U satisfies Assumption D.3.

Assumption D.4. {an} is a sequence of nonnegative numbers satisfying limn→∞ an = ∞ and

limn→∞ an/
√

nh = 0. {Bn} is a sequence of nonnegative numbers that is nondecreasing, limn→∞ Bn =

∞ and limn→∞ Bn/an = 0.

In our Monte Carlo study and empirical applications, we specify an = (0.3 ln(n))1/2 and

Bn = (0.4 ln(n)/ ln ln(n))1/2 following Andrews and Shi (2013, 2014).

Let P0 ⊂ P be the set of distributions of observables that satisfy the null hypothesis given in

equation (5) in the main text. The next assumption states that P0 contains a distribution of data that

satisfies the moment inequalities {vP,d(`) : d = 0, 1, ` ∈ L} with equality for some ` ∈ L.

Assumption D.5. Let Lo
P,d ≡ {` ∈ L : νP,d(`) = 0}. There exists Pc ∈ P0 such that
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(i) Either Lo
Pc,1 or Lo

Pc,0 under Pc is nonempty.

(ii) For d = 0, 1, h2,Pc,d,+ ∈ H2,cpt and h2,Pc,d,− ∈ H2,cpt, whereH2,cpt is a compact subset of

H2 with respect to the norm defined in equation (D.1).

(iii) Either h2,Pc,1 = h2,Pc,1,+ + h2,Pc,1,− restricted to Lo
Pc,1 × Lo

Pc,1 is not a zero function or

h2,Pc,0 = h2,Pc,0,+ + h2,Pc,0,− restricted to Lo
Pc,0 ×Lo

Pc,0 is not a zero function.

Theorem D.1. Suppose Assumptions D.1-D.4 hold. Then, for every compact subset H2,cpt of H2,

the following claims hold for the testing procedure presented in Algorithm 1:

(a) lim supn→∞ sup{P∈P0 : d∈{0,1},h2,P,d,+,h2,P,d,−∈H2,cpt} P(Ŝn > ĉη(α)) ≤ α.

(b) If Assumption D.5 also holds, then

lim
η→0

lim supn→∞ sup
{P∈P0: d∈{0,1},h2,P,d,+,h2,P,d,−∈H2,cpt}

P(Ŝn > ĉη(α)) = α.

Theorem D.1 (a) shows that our test has asymptotically uniformly correct size over a compact set

of covariance kernels. Theorem D.1 (b) shows that our test is at most infinitesimally conservative

asymptotically when the null contains at least one Pc defined in Assumption D.5. Theorem D.1

extends Theorem 2 of Andrews and Shi (2013) and Theorem 5.1 of Hsu (2017) to local moment

inequalities in the context of RD designs.

The next theorem shows consistency of our test against a fixed alternative.

Theorem D.2. Suppose Assumptions D.1-D.4 hold and α < 1/2. If there exists ` ∈ L such that

either νP1,1(`) > 0 or νP1,0(`) > 0, then limn→∞P(Ŝn > ĉη(α)) = 1.

We can also show that our test is unbiased against some
√

nh-local alternatives. We consider a

sequence of Pn ∈ P\P0 such that

νPn,d(`) = νPc,d(`) +
δd(`)√

nh
, (D.3)

for d = 1, 0 and some Pc ∈ P0 defined in Assumption D.5. Here, δd(`) > 0 specifies local violation

of the null hypothesis inside the interval ` ∈ L. We consider local alternatives that satisfy the next

set of assumptions:

Assumption D.6. A sequence of local alternatives {Pn ∈ P\P0 : n ≥ 1} satisfies the following

conditions:
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(i) (D.3) holds under Pn,

(ii) for d = 0, 1, δd(`) ≥ 0 if ` ∈ Lo
Pc,d,

(iii) for d = 0, 1, δd(`) > 0 for some ` ∈ Lo
Pc,d.

(iv) for d = 0, 1, limn→∞ d(h2,Pn,d,+, h∗2,d,+) = 0 and limn→∞ d(h2,Pn,d,−, h∗2,d,−) = 0 for some

h∗2,d,+ ∈ H2 and h∗2,d,− ∈ H2.

Assumption D.6 (i) requires that the local alternatives converge to a boundary null Pc at rate

(nh)−1/2. Assumption D.6 (ii) ensures that our test is unbiased and Assumption D.6 (iii) makes sure

that each Pn in the sequence is not in P0. Assumption D.6 (iv) restricts the asymptotic behavior of

the covariance kernels as considered in LA1(c) of Andrews and Shi (2013).

The following theorem shows that the asymptotic local power of our test is greater than or equal

to α when η tends to zero, i.e., our test is unbiased against those local alternatives that satisfy

Assumption D.6.

Theorem D.3. Suppose Assumptions D.1 to D.4 hold and α < 1/2. If a sequence of local alternatives

{Pn : n ≥ 1} satisfies Assumption D.6, then limη→0 limn→∞P(Ŝn > ĉη(α)) ≥ α.

APPENDIX E. PROOFS

We first introduce a lemma that allows us to extend inequalities (2) and (3) to any Borel set in Y .

Lemma E.1. Under the conditions of Theorem 1 (i), inequalities (2) and (3) hold for any closed

interval [y′, y], −∞ ≤ y′ ≤ y ≤ ∞, if and only if they hold for any Borel set in Y .

Proof. We focus on inequality (2). The claim concerning inequality (3) can be shown analogously.

The “if” part is trivial. We apply Andrews and Shi (2013, Lemma C1) to show the “only if” part. Let

C ≡ {[y, y′] : −∞ ≤ y ≤ y′ ≤ ∞} be the class of intervals and C be a generic element of C. Let

µ1(·) = limr↓r0 EP[1{Y ∈ ·}D|R = r]− limr↑r0 EP[1{Y ∈ ·}D|R = r], which is a well-defined

set function if Assumptions 1 and 2 hold. See the proof of Theorem 1 (i) below for existence of

the left and right limits of EP[1{Y ∈ ·}D|R = r]. It then holds that µ1 : C → R is a bounded

and countably additive set function satisfying µ1(∅) = 0 and µ1(C) ≥ 0 for any C. Applying

Andrews and Shi (2013, Lemma C1), since the smallest σ-algebra generated by C coincides with the

Borel σ-algebra B(Y), it follows that µ1(C`) ≥ 0 for any C` ∈ L implies that µ1(B) ≥ 0 for any

B ∈ B(Y). �
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E.1. Proof of Theorem 1: Claim (i): Let B ⊂ R be an arbitrary closed interval. We have

lim
ε→0

EP[1{Y ∈ B}D|R = r0 + ε] ≥ lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| ∈ {A, C}}|R = r0 + ε]

= lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| = C}|R = r0 + ε]+ lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| = A}|R = r0 + ε],

where the first inequality follows since the set of selection types such that D(r) = 1 at r0 ≤ r <

r0 + ε includes {A, C}. On the other hand, we have

lim
ε→0

EP[1{Y ∈ B}D|R = r0 + ε]

≤ lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| ∈ {A, C}}|R = r0 + ε] + lim
ε→0

P(T|r−r0| = I|R = r0 + ε)

= lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| = C}|R = r0 + ε]+ lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| = A}|R = r0 + ε]

where the third line follows by Assumption 1. Hence,

lim
ε→0

EP[1{Y ∈ B}D|R = r0 + ε]

= lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| = C}|R = r0 + ε] + lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| = A}|R = r0 + ε].

(E.1)

Similarly, we have limε→0 EP[1{Y ∈ B}D|R = r0 − ε] ≥ limε→0 EP[1{Y1(r) ∈ B, T|r−r0| =

A}|R = r0 − ε] and

lim
ε→0

EP[1{Y ∈ B}D|R = r0 − ε]

≤ lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| = A}|R = r0 − ε] + lim
ε→0

P(T|r−r0| ∈ {I, DF}|R = r0 − ε)

= lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| = A}|R = r0 − ε],

implying

lim
ε→0

EP[1{Y ∈ B}D|R = r0 − ε] = lim
ε→0

EP[1{Y1(r) ∈ B, T|r−r0| = A}|R = r0 − ε]. (E.2)
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Taking the difference of equation (E.1) and equation (E.2) and employing Assumption 2 leads to the

desired inequality:

lim
r↓r0

EP[1{Y ∈ B}D|R = r]− lim
r↑r0

EP[1{Y ∈ B}D|R = r]

= lim
r↓r0

EP[1{Y1(r) ∈ B, T|r−r0| ∈ {C}}|R = r] ≥ 0. (E.3)

Similarly we can show that

lim
r↑r0

EP[1{Y ∈ B}(1− D)|R = r]− lim
r↓r0

EP[1{Y ∈ B}(1− D)|R = r]

= lim
r↓r0

EP[1{Y0(r) ∈ B, T|r−r0| ∈ {C}}|R = r] ≥ 0. (E.4)

Note that the proof is also valid when Assumption 1 is replaced by Assumption C.1.

Claim (ii): Suppose that the distribution of observables (Y, D, R) satisfies inequalities (2) and

(3). By Lemma E.1, they hold for an arbitrary Borel set. By the absolute continuity assumption, we

have the conditional density of (Y, D) given R denoted by fY,D|R(y, d|r). We denote the left and

right limits of fY,D|R at r0 by fY,D|R(y, d|r0,−) = limr↑r0 fY,D|R(y, d|r) and fY,D|R(y, d|r0,+) =

limr↓r0 fY,D|R(y, d|r), respectively.

In what follows, we construct a joint distribution of potential variables (Ỹ1(r), Ỹ0(r), D̃(r) : r ∈

R) that satisfies Assumptions 1 and 2 and matches with the given distribution of observables.

First, for d ∈ {0, 1}, consider outcome responses that are invariant to the running variable,

Ỹd(r) = Ỹd(r′) for all r, r′ ∈ R, a.s., i.e., the running variable has no direct causal impact for anyone

in the population. We can hence drop index r from the notation of the potential outcomes and reduce

them to (Ỹ1, Ỹ0) ∈ Y2. For the treatment selection response to the running variable, consider that

only the following selection responses are allowed in the population:

D̃(r) =


1{r ≥ r0}, labeled as T̃ = C

1, labeled as T̃ = A

0, labeled as T̃ = N.

With these simplifications, we construct a joint distribution of (Ỹ1(r), Ỹ0(r), D̃(r) : r ∈ R) given R

by constructing a joint distribution of (Ỹ1, Ỹ0, T̃) ∈ Y2×{C, A, N} given R, where T̃ does not vary

in |r− r0|. To distinguish the probability law of observables corresponding to the given sampling
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process and the probability law of (Ỹ1, Ỹ0, T̃) to be constructed, we use P and f to denote the former

probability law and its density, and P to denote the latter probability law.

Let B ⊂ R be an arbitrary Borel Set. For the always-takers’ potential outcome distributions,

consider

P(Ỹ1 ∈ B, T̃ = A|r) =


P(Y ∈ B, D = 1|r), for r < r0,

∫
B min

 fY,D|R(y, D = 1|r0,−),

fY,D|R(y, D = 1|r)

 dµ, for r ≥ r0,

and

P(Ỹ0 ∈ B, T̃ = A|r) =


Q(B)P(D = 1|r), for r < r0,

Q(B)
∫
Y min

 fY,D|R(y, D = 1|r0,−),

fY,D|R(y, D = 1|r)

 dµ, for r ≥ r0,
,

where Q(·) is an arbitrary probability measure on Y . The joint distribution of (Ỹ1, Ỹ0, T̃ = A) can

be constructed by coupling these distributions assuming, for instance, that Ỹ1 and Ỹ0 are independent

conditional on (T̃, R).

For the never-takers’ potential outcome distributions, consider

P(Ỹ0 ∈ B, T̃ = N|r) =


P(Y ∈ B, D = 0|r), for r ≥ r0,

∫
B min

 fY,D|R(y, D = 0|r0,+),

fY,D|R(y, D = 0|r)

 dµ, for r < r0,

and

P(Ỹ1 ∈ B, T̃ = N|r) =


Q(B)P(D = 0|r), for r ≥ r0,

Q(B)
∫
Y min

 fY,D|R(y, D = 0|r0,+)

fY,D|R(y, D = 0|r)

 dµ, for r < r0.
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For the compliers’ potential outcome distributions, if π+ = π−, we specify that no compliers

exist in the population. If π+ > π−, consider

P(Ỹ1 ∈ B, T̃ = C|r)

=



P(Y ∈ B, D = 1|r)−
∫

B min

 fY,D|R(y, D = 1|r0,−),

fY,D|R(y, D = 1|r)

 dµ, for r ≥ r0,

(π+ − π−)−1

P(D = 1|r)−
∫
Y min

 fY,D|R(y, D = 1|r0,−),

fY,D|R(y, D = 1|r)

 dµ


×
[
limr↓r0 P(Y ∈ B, D = 1|r)− limr↑r0 P(Y ∈ B, D = 1|r)

]
, for r < r0.

and

P(Ỹ0 ∈ B, T̃ = C|r)

=



P(Y ∈ B, D = 0|r)−
∫

B min

 fY,D|R(y, D = 0|r0,+),

fY,D|R(y, D = 0|r)

 dµ, for r < r0,

(π+ − π−)−1

P(D = 1|r) +−
∫
Y min

 fY,D|R(y, D = 1|r0,−),

fY,D|R(y, D = 1|r)

 dµ


×
[
limr↑r0 P(Y ∈ B, D = 0|r)− limr↓r0 P(Y ∈ B, D = 0|r)

]
, for r ≥ r0.

If the distribution of (Y, D, R) satisfies the testable implications shown in the first claim, then it

can be shown that the conditional distribution of (Ỹ1, Ỹ0, T̃) given R = r constructed in this way is

a proper probability distribution (i.e., nonnegative, additive, and sum up to one) for all r. We can

also confirm that the constructed distribution of (Ỹ1, Ỹ0, T̃) given R matches with the distribution of

observables, i.e., it satisfies, for any d = 1, 0, r ∈ R, and measurable set B ⊂ Y ,

P(Y ∈ B, D = d|r) = ∑
T̃:D̃(r)=d

P(Ỹd ∈ B, T̃|r).

We now check the conditional distribution of (Ỹ1, Ỹ0, T̃) given R constructed above satisfies As-

sumptions 1 and 2. First, by the construction of treatment selection response, P(T̃ = {DF, I}|r) = 0

for any r. Hence, Assumption 1 holds.
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To check Assumption 2, note that

lim
r↓r0

P(Ỹ1 ∈ B, T̃ = A|r) = lim
r↓r0

∫
B

min

 fY,D|R(y, D = 1|r0,−),

fY,D|R(y, D = 1|r)

 dµ

=
∫

B
min

 fY,D|R(y, D = 1|r0,−),

fY,D|R(y, D = 1|r0,+)

 dµ =
∫

B
fY,D|R(y, D = 1|r0,−)dµ

= lim
r↑r0

P(Y ∈ B, D = 1|r) = lim
r↑r0

P(Ỹ1 ∈ B, T̃ = A|r),

where the third equality follows by the assumption that the distribution of (Y, D, R) satisfies in-

equality (2). Hence, P(Ỹ1, T̃ = A|r) is continuous at r = r0. Similar arguments apply to show that

P(Ỹ0, T̃ = A|r), P(Ỹ1, T̃ = N|r), and P(Ỹ0, T̃ = N|r) are all continuous at r0. For compliers, we

have

lim
r↓r0

P(Ỹ1 ∈ B, T̃ = C|r)

= lim
r↓r0

P(Y ∈ B, D = 1|r)−
∫

B
min

 fY,D|R(y, D = 1|r0,−),

fY,D|R(y, D = 1|r)

 dµ


= lim

r↓r0
P(Y ∈ B, D = 1|r)− lim

r↑r0
P(Y ∈ B, D = 1|r).

Also, by noting limr↓r0

∫
Y min

 fY,D|R(y, D = 1|r0,−),

fY,D|R(y, D = 1|r)

 dµ = π−, we obtain

lim
r↑r0

P(Ỹ1 ∈ B, T̃ = C|r) = lim
r↓r0

P(Y ∈ B, D = 1|r)− lim
r↑r0

P(Y ∈ B, D = 1|r).

Hence, we have shown that the constructed distribution of (Ỹ1, Ỹ0, T̃) given R satisfies Assumption 2.

This completes the proof of the second claim.

E.2. Identification of the compliers’ potential outcome distributions.

Proposition E.1. If Assumptions 1 to 3 hold, then the compliers’ potential outcome distributions at

the cut-off,

FY1(r0)|C,R=r0
(y) ≡ lim

r→r0
P
(
Y1(r) ≤ y|T|r−r0| = C, R = r

)
,

FY0(r0)|C,R=r0
(y) ≡ lim

r→r0
P
(
Y0(r) ≤ y|T|r−r0| = C, R = r

)
,
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are identified by

FY1(r0)|C,R=r0
(y) =

lim
r↓r0

EP[1{Y ≤ y}D|R = r]− lim
r↑r0

EP[1{Y ≤ y}D|R = r]

π+ − π−
,

FY0(r0)|C,R=r0
(y) =

lim
r↑r0

EP[1{Y ≤ y}(1− D)|R = r]− lim
r↓r0

EP[1{Y ≤ y}(1− D)R = r]

π+ − π−
.

Proof. We first note that under Assumptions 1 and 2, π+ − π− = limr→r0 P(T|r−r0| = C|R = r).

Based on (E.3) in the proof of Theorem 1, we have

lim
r↓r0

EP[1{Y ≤ y}D|R = r]− lim
r↑r0

EP[1{Y ≤ y}D|R = r]

= FY1(r0)|C,R=r0
(y) · lim

r→r0
P(T|r−r0| = C|R = r)

= FY1(r0)|C,R=r0
(y) · (π+ − π−)

Hence, the identification result of FY1(r0)|C,R=r0
(y) is shown.

The identification result for FY0(r0)|C,R=r0
(y) can be shown similarly by using equation (E.4). We

omit the details for brevity. �

E.3. Lemmas and Proofs for Theorems in Appendix D. We show three lemmas that lead to the

theorems in Appendix D.

We first present a lemma that shows a Bahadur representation for m̂d,?, d = 0, 1 and ? = +,−,

uniform in ` ∈ L and P ∈ P subject to Assumption D.1. This lemma extends the undersmoothing

case of Lemma 1 in Chiang, Hsu, and Sasaki (2017) by providing an approximation that is also

uniform over the data generating processes P ∈ P . It also modifies the undersmoothing case of

Theorem 1 in Lee, Song, and Whang (2015) by focusing on the boundary point and uniformity over

the class of intervals rather than quantiles.

Given a class of data generating processes P , we say that a sequence of random variables {Zn}

converges in probability to zero P-uniformly if sup{P∈P} P(|Zn| > ε) → 0 as n → ∞ for any

ε > 0, which we denote by Zn = oP (1).
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Lemma E.2. Let P be a class of data generating processes satisfying Assumption D.1, and m̂d,?,

mP,d, and mP,d,?, d = 1, 0 and ? = +,−, be as defined in Appendix A. Under Assumption D.2,

sup
{`∈L}

∣∣∣∣∣√nh(m̂d,?(`)−mP,d,?(`))−
1√
nh

n

∑
i=1

w?
i Ed,i(`)

∣∣∣∣∣ = oP (1), (E.5)

where

w+
i =

[
ϑ2 − ϑ1

(
Ri−r0

h+

)]
K
(

Ri−r0
h+

)
1{Ri ≥ r0}

c+ f+R (r0)(ϑ0ϑ2 − ϑ2
1)

,

w−i =

[
ϑ2 + ϑ1

(
Ri−r0

h−

)]
K
(

Ri−r0
h−

)
1{Ri < r0}

c− f−R (r0)(ϑ0ϑ2 − ϑ2
1)

,

Ed,i(`) = g`(Yi)Dd
i (1− Di)

1−d −mP,d(`, Ri).

Proof. We provide a proof for the case of d = 1 and ? = + only, as the proofs for the other

cases are similar. Substituting the mean value expansion, g`(Yi)Di = mP,1(`, Ri) + E1,i(`) =

mP,1,+(`) + h+m(1)
P,1(`, r0)

(
Ri−r0

h+

)
+

h2
+
2 m(2)

P,1(`, R̃i)
(

Ri−r0
h+

)2
+ E1,i(`), R̃i ∈ [0, Ri], we obtain

√
nh [m̂1,+(`)−mP,1,+(`)]

=
√

nh3 · c+
n

∑
i=1

w+
n,im

(1)
P,1(`, r0)

(
Ri − r0

h+

)
+
√

nh5 · c2
+

2

n

∑
i=1

w+
n,im

(2)
P,1(`, R̃i)

(
Ri − r0

h+

)2

(E.6)

+
√

nh ·
n

∑
i=1

w+
n,iE1,i(`) (E.7)

The first order conditions for the local linear regression implies the first term in (E.6) is zero. By the

boundedness of m(2)
P,1 (Assumption D.1) (iv), the absolute value of the second term in (E.6) can be

bounded uniformly in ` ∈ L by M
√

nh5 c2
+
2

∣∣∣∣∑n
i=1 w+

n,i

(
Ri−r0

h+

)2
∣∣∣∣. Since we have

n

∑
i=1

w+
n,i

(
Ri − r0

h+

)2

=
(ϑ̂+

2 )
2 − ϑ̂+

1 ϑ̂+
3

ϑ̂+
2 ϑ̂+

0 − (ϑ̂+
1 )

2

=
ϑ2

2 − ϑ1ϑ3

ϑ2ϑ0 − ϑ2
1
+ oP (1),
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where w+
n,i and ϑ̂+

j are as defined in Appendix A, and the second line follows by Lemma 2 in Fan

and Gijbels (1992); for nonnegative finite j,

ϑ̂+
j = f+R (r0)ϑj + oP (1) (E.8)

holds where the P-uniform convergence here follows by Assumption D.1 (i.e., P shares the common

marginal distribution of R). Hence, combined with the undersmoothing bandwidth (Assumption D.2

(iii)), the second term in (E.6) is oP (1).

The conclusion of the lemma is obtained by verifying sup{`∈L}
∣∣∣√nh ∑n

i=1 w+
n,iE1,i(`)− 1√

nh ∑n
i=1 w+

i E1,i(`)
∣∣∣ =

oP (1). Consider

sup
{`∈L}

∣∣∣∣∣√nh
n

∑
i=1

w+
n,iE1,i(`)−

1√
nh

n

∑
i=1

w+
i E1,i(`)

∣∣∣∣∣
≤c−1

+

∣∣∣∣∣ ϑ̂+
2

ϑ̂+
2 ϑ̂+

0 − (ϑ̂+
1 )

2
− ϑ2

f+R (r0)(ϑ2ϑ0 − ϑ2
1)

∣∣∣∣∣︸ ︷︷ ︸
(i)

· sup
{`∈L}

∣∣∣∣∣ 1√
nh

n

∑
i=1

K
(

Ri − r0

h+

)
1{Ri ≥ r0}E1,i(`)

∣∣∣∣∣︸ ︷︷ ︸
(ii)

+ c−1
+

∣∣∣∣∣ ϑ̂+
1

ϑ̂+
2 ϑ̂+

0 − (ϑ̂+
1 )

2
− ϑ1

f+R (r0)(ϑ2ϑ0 − ϑ2
1)

∣∣∣∣∣︸ ︷︷ ︸
(iii)

· sup
{`∈L}

∣∣∣∣∣ 1√
nh

n

∑
i=1

K
(

Ri − r0

h+

)(
Ri − r0

h+

)
1{Ri ≥ r0}E1,i(`)

∣∣∣∣∣︸ ︷︷ ︸
(iv)

.

(E.9)

Since (E.8) implies both terms (i) and (iii) in (E.9) are oP (1), it suffices to show that the terms (ii)

and (iv) in (E.9) are stochastically bounded uniformly in P ∈ P . Let j be a nonnegative integer and

f (j)
n,i (`) ≡

1√
h

K
(

Ri − r0

h+

)(
Ri − r0

h+

)j

1{Ri ≥ r0}E1,i(`).
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Consider obtaining a P-uniform bound for P(
√

n sup{`∈L}
∣∣∣ 1

n ∑n
i=1 f (j)

n,i (`)
∣∣∣ > ε) for ε > 0 (i.e.,

term (ii) corresponds to j = 0 and term (iv) corresponds to j = 1). By Markov’s inequality,

P

(
√

n sup
{`∈L}

∣∣∣∣∣ 1n n

∑
i=1

f (j)
n,i (`)

∣∣∣∣∣ > ε

)
≤ ε−1√nEP

[
sup
{`∈L}

∣∣∣∣∣ 1n n

∑
i=1

f (j)
n,i (`)

∣∣∣∣∣
]

= ε−1√n

(
EP

[
max

{
sup
{`∈L}

1
n

n

∑
i=1

f (j)
n,i (`), sup

{`∈L}

1
n

n

∑
i=1

(− f (j)
n,i (`))

}])

= ε−1√nEP

 sup
{ f (j)

n,i ∈F
+
n ∪F−n }

1
n

n

∑
i=1

f (j)
n,i

 , (E.10)

where F+
n ≡ { f (j)

n,i (`) : ` ∈ L} and F−n ≡ {− f (j)
n,i (`) : ` ∈ L}. Note that F+

n and F−n are

VC-subgraph classes whose VC-dimensions are equal to 2 (see, e.g., Lemma A.1 in Kitagawa and

Tetenov (2018)) with a uniform envelope K̄/
√

h and an L2(P) envelope,

sup
{`∈L}

‖ f (j)
n,i (`)‖L2(P) ≤

[
c+ f̄R

∫ ∞

0
K2(u)u2jdu

]1/2

< ∞.

Since F+
n ∪ F−n is a VC-subgraph class sharing the same uniform and L2(P) envelope, a maximal

inequality for the VC-subgraph class of functions with bounded L2(P)-envelope (Lemma A.5 in

Kitagawa and Tetenov (2018)) applies and (E.10) can be bounded from above by

C1

(
c+ f̄R

∫ ∞

0
K2(u)u2jdu

)1/2

n−1/2

for all n satisfying nh ≥ C2K̄2

c+ f̄R
∫ ∞

0 K2(u)u2jdu
, where C1 and C2 are positive constants that do not depend

on P or bandwidth. Since nh → ∞, this maximal inequality with j = 0 and j = 1 imply term (ii)

and term (iv) in (E.9) are stochastically bounded P-uniformly. Hence,

sup
{`∈L}

∣∣∣∣∣√nh
n

∑
i=1

w+
n,iE1,i(`)−

1√
nh

n

∑
i=1

w+
i E1,i(`)

∣∣∣∣∣ = oP (1) (E.11)

holds. �

The next lemma showsP-uniform convergence of the covariance kernel of w?
i Ed,i(·), the summand

in the Bahadur representation of Lemma E.2.
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Lemma E.3. Let d = 1 or 0, and ? = + or −. For `1, `2 ∈ L, define

ĥ2,P,d,?(`1, `2) =
1

nh

n

∑
i=1

(w?
i )

2σP,d(`1, `2|Ri).

Let P be a class of data generating processes satisfying Assumption D.1 and assume that the kernel

function and the bandwidth satisfy Assumption D.2. Then,

sup
{`1,`2∈L}

∣∣∣ĥ2,P,d,?(`1, `2)− h2,P,d,?(`1, `2)
∣∣∣ = oP (1),

where h2,P,d,? is as defined in equation (D.2) above.

Proof. We show the claim for the case of d = 1 and ? = +. The other cases can be proven similarly.

Since

sup
{`1,`2∈L}

∣∣∣ĥ2,P,1,+(`1, `2)− h2,P,1,+(`1, `2)
∣∣∣

≤ sup
{`1,`2∈L}

∣∣∣ĥ2,P,1,+(`1, `2)−EP[ĥ2,P,1,+(`1, `2)]
∣∣∣︸ ︷︷ ︸

(v)

+ sup
{`1,`2∈L}

∣∣∣EP[ĥ2,P,1,+(`1, `2)]− h2,P,1,+(`1, `2)
∣∣∣︸ ︷︷ ︸

(vi)

,

we show P-uniform convergences of term (v) and term (vi) separately.

First, by exploiting Assumption D.1, we can obtain a uniform upper bound of term (vi) as follows:∣∣∣EP[ĥ2,P,1,+(`1, `2)]− h2,P,1,+(`1, `2)
∣∣∣ ≤ 5M f̄R

∫ ∞
0 (ϑ2 − ϑ1u)2uK2(u)du

( f+R (r0))2(ϑ0ϑ2 − ϑ2
1)

2
h, (E.12)

which converges to zero as n→ ∞ since h→ 0. Since the marginal distribution of R is common for

P , this convergence is uniform in P ∈ P , so term (vi) is oP (1).

Regarding term (v), Jensen’s inequality bounds its mean by

EP

[
sup

{`1,`2∈L}

∣∣∣ĥ2,P,1,+(`1, `2)−EP[ĥ2,P,1,+(`1, `2)]
∣∣∣]

≤ 1
[c+ f+R (r0)(ϑ0ϑ2 − ϑ2

1)]
2

EP

[
sup

{`1,`2∈L}

∣∣∣∣∣ 1n n

∑
i=1

fn,i(`1, `2)−EP( fn,i(`1, `2))

∣∣∣∣∣
]

, (E.13)

where fn,i(`1, `2) ≡ 1
h

[
ϑ2 − ϑ1

(
Ri−r0

h+

)]2
K2
(

Ri−r0
h+

)
· 1{Ri ≥ r0}E1,i(`1)E1,i(`2). Since E1,i(`1)E1,i(`2)

can be viewed as the sum of three indicator functions for intervals (indexed by `1 and `2), { fn,i(`1, `2) :
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`1, `2 ∈ L} is a VC-subgraph class of functions with a uniform envelope h−1(ϑ2 + ϑ1)
2K̄2 and

L2(P)-envelope,

[EP( f 2
n,i(`1, `2))]

1/2 ≤ 1√
h

[
c+ f̄R

∫ ∞

0
(ϑ2 − ϑ1u)4 K4 (u) du

]1/2

.

Applying Lemma A.5 in Kitagawa and Tetenov (2018), we obtain

EP

[
sup

{`1,`2∈L}

∣∣∣∣∣ 1n n

∑
i=1

fn,i(`1, `2)− EP( fn,i(`1, `2))

∣∣∣∣∣
]
≤ C1√

nh

√
c+ f̄R

∫ ∞

0
(ϑ2 − ϑ1u)4 K4 (u) du

(E.14)

for all nh ≥ C2(ϑ2+ϑ1)
4K̄4

c+ f̄R
∫ ∞

0 (ϑ2−ϑ1u)4K4(u)du
, where C1 and C2 are positive constraints that do not depend on

P and h. Combining (E.13), (E.14), and Markov’s inequality, we conclude that term (v) is oP (1). �

Exploiting the preceding two lemmas, the next lemma proves the functional central limit theorem

for m̂n,d,? along sequences of the data generating processes in P .

Lemma E.4. Suppose that Assumptions D.1 and D.2 hold, and let {Pn} be a sequence of data

generating processes in P . Then, for any subsequence {kn} of {n} such that for d = 0, 1 and

? = +,−, limn→∞ d(h2,Pkn ,d,?, h∗2,d,?) = 0 for some h∗2,d,? ∈ H2, we have√
knh(m̂d,?(·)−mPkn ,d,?(·))⇒ Φh∗2,d,?

(·), (E.15)

where Φh2 denotes a mean zero Gaussian process with covariance kernel h2. In addition, we have

for d = 0, 1, √
knh(ν̂d(·)− νPkn ,d(·))⇒ Φh∗2,d

(·),

where h∗2,d = h∗2,d,+ + h∗2,d,−.

Proof. To simplify notation, we show this theorem for a sequence {n}. All the arguments go through

with {kn} in place of {n}.

By Lemma E.2, (E.15) follows if we show 1√
nh ∑n

i=1 w+
i E1,i(·)⇒ Φh∗2,d,+

(·). For this purpose, we

apply the functional central limit theorem (FCLT; Theorem 10.6 of Pollard (1990)) to the triangular

array of independent processes, { fn,i(·) : 1 ≤ i ≤ n}, where fn,i(`) = 1√
nh

w+
i E1,i(`), ` ∈ L.

Let their envelope functions be {Fn,i : 1 ≤ i ≤ n} with Fn,i = (nh)−1/2|w+
i |. Define empirical
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processes indexed by ` ∈ L as Φ̂+
n (`) = ∑n

i=1 fn,i(`). First, since { fn,i(`) : ` ∈ L} is a VC-

subgraph class of functions (see, e.g., Lemma A.1 in Kitagawa and Tetenov (2018)), manageability

of { fn,i(`) : ` ∈ L, 1 ≤ i ≤ n} (condition (i) of Theorem 10.6 in Pollard (1990)) is implied by a

polynomial bound for the packing number of the VC-subgraph class of functions (see, e.g., Theorem

4.8.1 in Dudley (1999)). For condition (ii) of Theorem 10.6 in Pollard (1990), note that

EPn [Φ̂
+
n (`1)Φ̂+

n (`2)] =
1
h

EPn

[
(w+

i )
2E1,i(`1)E1,i(`2)

]
= EPn [ĥ2,Pn,1,+(`1, `2)] = h2,Pn,1,+(`1, `2) + o(1)

→ h∗2,1,+(`1, `2),

as n→ ∞, where the o(1) term in the second line follows from the bound shown in (E.12), and the

third line follows by the assumption on {Pn} in the current lemma. Condition (iii) of Theorem 10.6

in Pollard (1990) can be shown by noting

n

∑
i=1

EPn [F
2
n,i] =

1
h

EPn [(w
+
i )

2] ≤
f̄R
∫ ∞

0 (ϑ2 − ϑ1u)2K2(u)du
c+( f+R (r0))2(ϑ2ϑ0 − ϑ2

1)
2

.

Condition (iv) of Theorem 10.6 in Pollard (1990) follows by that, for any ε > 0,

n

∑
i=1

EPn [F
2
n,i · 1{Fn,i > ε}] ≤

n

∑
i=1

EPn

[
F4

n,i

ε2

]
=

1
ε2nh2 EPn [(w

+
i )

4]

≤ (nh)−1 f̄R
∫ ∞

0 (ϑ2 − ϑ1u)4K4(u)du
ε2c3

+[ f+R (r0)(ϑ0ϑ2 − ϑ2
1)]

4
→ 0 as n→ ∞,

where the first inequality holds because 1{Fn,i > ε} ≤ (Fn,i/ε)ς for any ς > 0 and we take ς = 2

here.

To show condition (v) of Theorem 10.6 in Pollard (1990), note that

ρ̂2
1,+(`1, `2) =

n

∑
i=1

EPn( fn,i(`1)− fn,i(`2))
2

=h2,Pn,1,+(`1, `1)− 2h2,Pn,1,+(`1, `2) + h2,Pn,1,+(`2, `2) + o(1)

→h∗2,1,+(`1, `1)− 2h∗2,1,+(`1, `2) + h∗2,1,+(`2, `2) ≡ ρ2
1,+(`1, `2),
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where the second line follows by (E.12). Note that the convergence in the last line holds uniformly

over `1, `2 ∈ L by Lemma E.3, and this uniform convergence ensures condition (v) of Theorem 10.6

in Pollard (1990).

Hence, by the FCLT of Pollard (1990), we obtain
√

nh(m̂1,+(`) − mPn,1,+(`)) ⇒ Φh2,1,+(`).

Similarly, we can show
√

nh(m̂1,−(`)−mPn,1,−(`))⇒ Φh2,1,−(`).

To show the second part, note that

√
nh(ν̂1(`)− νPn,1(`)) =

√
nh(m̂1,−(`)−mPn,1,−(`))−

√
nh(m̂1,+(`)−mPn,1,+(`))

⇒Φh∗2,1,−+h∗2,1,+
(`) = Φh∗2,1

(`),

where the weak convergence holds due to the fact that m̂n,1,+(`) and m̂n,1,−(`) are estimated from

separate samples, so that the two processes are mutually independent. The same arguments apply to

the d = 0 case. This completes the proof. �

Define, for d = 1, 0 and ? = +,−,

Φ̂u
n,d,?(`) =

n

∑
i=1

Ui ·
√

nhw?
n,i(g`(Yi)Dd

i (1− Di)
1−d − m̂n,d,?(`)).

We denote weak convergence conditional on a sample generated from a sample size-dependent

distribution of data Pn by
Pn⇒.4 We denote convergence in probability along the sequence {Pn} by

Pn→.

Lemma E.5. Suppose that Assumptions D.1-D.3 hold, and let {Pn} be a sequence of data gen-

erating processes in P . For a subsequence {kn} of {n} such that for d = 0, 1 and ? = +,−,

limn→∞ d(h2,Pkn ,d,?, h∗2,d,?) = 0 holds for some h∗2,d,? ∈ H2, then Φ̂u
kn,d,?

Pkn⇒ Φh∗2,d,?
. In addition, for

d = 0, 1, Φ̂u
ν1,kn
≡ Φ̂u

n,1,−(`)− Φ̂u
n,1,+(`)

Pkn⇒ Φh∗2,d
and Φ̂u

ν0,kn
≡ Φ̂u

n,0,+(`)− Φ̂u
n,0,−(`)

Pkn⇒ Φh∗2,d

hold with h∗2,d = h∗2,d,+ + h∗2,d,− defined in (D.2).

Proof. To simplify notation, we show this theorem for a sequence {n}, since all the arguments go

through with {kn} in place of {n}. For the first part, it is sufficient to show the case of Φ̂u
n,1,+ since

4Extending the definition of conditional weak convergence given in Section 2.9 of Van Der Vaart and Wellner (1996) to

a sequence of data distributions, Φ̂u
n

Pn⇒ Φ means for any ε > 0, limn→∞ Pn(sup{ f∈BL} |Eu( f (Φ̂u
n))− E( f (Φ))| >

ε) = 0, where f maps random element Φ(·) to R, BL collects f with a bounded Lipschitz constant, and Eu(·) is the
expectation of (Ui : i = 1, . . . , n) conditional on the data.
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the arguments for the other cases are the same. We use the same arguments as the proof in Hsu

(2016). We define φ̂n,i,1,+(`) =
√

nhw+
n,i(g`(Yi)Di − m̂1,+(`)), so Φ̂u

n,1,+ = ∑n
i=1 Ui · φ̂n,i,1,+(`).

First, we note that the triangular array { f̂n,i(`) = Ui · φ̂n,i,1,+(`) : ` ∈ L, 1 ≤ i ≤ n} is

manageable with respect to envelope functions {F̂n,i = 2
√

nh|Ui| · |w+
n,i| : 1 ≤ i ≤ n}. Define

ĥ2,1,+(`1, `2) = ∑n
i=1 φ̂n,i,1,+(`1)φ̂n,i,1,+(`2). If we have

sup
{`1,`2∈L}

|ĥ2,1,+(`1, `2)− h∗2,1,+(`1, `2)|
Pn→ 0, (E.16)

and

nh
n

∑
i=1
|w+

n,i|
2 Pn→ M1, (E.17)

n3h3
n

∑
i=1
|w+

n,i|
4 Pn→ M2, (E.18)

for M1, M2 < ∞, adopting the proof of Theorem 2.1 of Hsu (2016) yields Φ̂u
n,1,+(`)

Pn⇒ Φh∗2,1,+
(`),

and similarly for Φ̂u
n,1,−(`)

Pn⇒ Φh∗2,1,−
(`). For the second part, note that Φ̂u

ν1,n(`) = Φ̂u
n,1,−(`)−

Φ̂u
n,1,+(`) and by the independence of the two simulated processes, we have Φ̂u

ν1,n(`)
Pn⇒ Φh∗2,1

(`).

Hence, the rest of the proof focuses on verifying (E.16) - (E.18). For positive integer j < ∞ and

nonnegative integer k < ∞, a straightforward extension of Lemma 2 in Fan and Gijbels (1992) gives

(nh)(j−1)
n

∑
i=1
|w+

n,i|
j
(

Ri − r0

h+

)k

=

∫ ∞
0 K j(u)(ϑ2 − ϑ1u)jukdu

cj−1
+ [ϑ0ϑ2 − ϑ2

1]
j

+ oP (1), (E.19)

where the first term on the right-hand side is finite, and the assumption that P shares a fixed

distribution for R leads to this convergence being uniform over P . Hence, (E.17) and (E.18) hold, as

{Pn} ∈ P .

To show (E.16), it suffices to show

sup
{`1,`2∈L}

|ĥ2,1,+(`1, `2)− h2,P,1,+(`1, `2)|

≤ sup
{`1,`2∈L}

|ĥ2,1,+(`1, `2)−EP[ĥ2,P,1,+(`1, `2)]|+ sup
{`1,`2∈L}

|EP[ĥ2,P,1,+(`1, `2)]− h2,P,1,+(`1, `2)|

(E.20)

=oP (1).
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The proof of Lemma E.3 shows that the second term in (E.20) converges to zero uniformly in P . We

hence focus on showing that the first term in (E.20) is oP (1).

Rewrite φ̂n,i,1,+(`) as follows by applying the mean value expansion:

φ̂n,i,1,+(`) =
√

nhw+
n,i [mP,1(`, Ri)− m̂1,+(`) + E1,i(`)]

= w+
n,i â1(`) + â2,i(`) + â3,i(`),

where

â1(`) ≡ −
√

nh[m̂1,+(`)−mP,1,+(`)]

â2,i(`) ≡
√

nhw+
n,i

[
h+m(1)

P,+(`, Ri)

(
Ri − r0

h+

)
+

h2
+

2
m(2)

P,1(`, R̃i)

(
Ri − r0

h+

)2
]

,

â3,i(`) ≡
√

nhw+
n,iE1,i(`).

Then, we have

ĥ2,1,+(`1, `2) = â1(`1)â1(`2)
n

∑
i=1

(w+
n,i)

2

︸ ︷︷ ︸
(i)

+
n

∑
i=1

â2,i(`1)â2,i(`2)︸ ︷︷ ︸
(ii)

+
n

∑
i=1

â3,i(`1)â3,i(`2)︸ ︷︷ ︸
(iii)

+
n

∑
i=1

w+
n,i [â1(`1)(â2,i(`2) + â3,i(`2)) + â1(`2)(â2,i(`1) + â3,i(`1))]︸ ︷︷ ︸

(iv)

+
n

∑
i=1

[â2,i(`1)â3,i(`2) + â2,i(`2)â3,i(`2)]︸ ︷︷ ︸
(v)

.

By Lemma E.4 and (E.19), term (i) is oP (1) uniformly over `1, `2 ∈ L. By Assumption D.1 (v), the

absolute value of term (ii) can be bounded by
{

2M(nh)∑n
i=1(w

+
n,i)

2
[(

Ri−r0
h+

)
+
(

Ri−r0
h+

)2
]}
·

(h+ ∨ h2
+) uniformly over `1, `2 ∈ L, which is oP (1) by (E.19) and h+ → 0. To examine term (iv),
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note that

sup
{`1,`2∈L}

∣∣∣∣∣ n

∑
i=1

w+
n,i â1(`1)â2,i(`2)

∣∣∣∣∣
≤(nh)−1/2 sup

{`∈L}
|â1(`)| · 2M(nh) ∑

i=1
(w+

n,i)
2

∣∣∣∣∣
(

Ri − r0

h+

)
+

(
Ri − r0

h+

)2
∣∣∣∣∣ · (h+ ∨ h2

+)

=oP (1),

where the final line follows by Lemma E.4, equation (E.19), nh→ ∞, and h+ → 0. Note also that

sup
{`1,`2∈L}

∣∣∣∣∣ n

∑
i=1

w+
n,i â1(`1)â3,i(`2)

∣∣∣∣∣ ≤ (nh)−1 sup
{`∈L}

|â1(`)| · sup
{`∈L}

∣∣∣∣∣(nh)3/2
n

∑
i=1

(w+
n,i)

2E1,i(`)

∣∣∣∣∣ .

The proof of (E.11) in Lemma E.2 can be extended to claim the following Bahadur representation:

sup
{`∈L}

∣∣∣∣∣(nh)3/2
n

∑
i=1

(w+
n,i)

2E1,i(`)−
1√
nh

n

∑
i=1

(w+
i )

2E1,i(`)

∣∣∣∣∣ = oP (1).

As in the proof of Lemma E.4, FCLT applied to 1√
nh ∑n

i=1(w
+
i )

2E1,i(`) shows sup{`∈L}
∣∣∣(nh)3/2 ∑n

i=1(w
+
n,i)

2E1,i(`)
∣∣∣

is stochastically bounded uniformly in P . Combining this with Lemma E.4 and nh→ ∞, we obtain

sup{`1,`2∈L}

∣∣∣∑n
i=1 w+

n,i â1(`1)â3,i(`2)
∣∣∣ = oP (1). This implies term (iv) is oP (1). Regarding term

(v), we have

sup
{`1,`2∈L}

∣∣∣∣∣ n

∑
i=1

â2,i(`1)â3,i(`2)

∣∣∣∣∣
≤M(nh)−1/2(h+ ∨ h2

+)×
{

sup
{`∈L}

∣∣∣∣∣(nh)3/2 ∑
i=1

(w+
n,i)

2
(

Ri − r0

h+

)
E1,i(`)

∣∣∣∣∣
+ sup
{`∈L}

∣∣∣∣∣(nh)3/2 ∑
i=1

(w+
n,i)

2
(

Ri − r0

h+

)2

E1,i(`)

∣∣∣∣∣
}

. (E.21)

Similar to the proof of (E.11) in Lemma E.2, the two terms in the curly brackets of (E.21) admit the

following Bahadur representation: for positive integer j < ∞,

sup
{`∈L}

∣∣∣∣∣(nh)3/2
n

∑
i=1

(w+
n,i)

2
(

Ri − r0

h+

)j

E1,i(`)−
1√
nh

n

∑
i=1

(w+
i )

2
(

Ri − r0

h+

)j

E1,i(`)

∣∣∣∣∣ = oP (1).
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Similar to the proof of Lemma E.4, the FCLT applied to 1√
nh ∑n

i=1(w
+
i )

2
(

Ri−r0
h+

)j
E1,i(`) shows

that it is stochastically bounded uniformly in P . Accordingly, since nh→ ∞ and h+ → 0, the upper

bound in (E.21) is oP (1).

We now show term (iii) is the leading term such that sup{`1,`2}

∣∣∣∑n
i=1 â3,i(`1)â3,i(`2)−EP[ĥ2,P,1,+(`1, `2)]

∣∣∣ =
oP (1) holds. Modifying the proof of (E.11) by replacing f j

n,i(`) with fn,i(`1, `2) defined in the proof

of Lemma E.3, we obtain the Bahadur-type uniform approximation,

sup
{`1,`2∈L}

∣∣∣∣∣ n

∑
i=1

â3,i(`1)â3,i(`2)− (nh)−1
n

∑
i=1

(w+
i )

2E1,i(`1)E1,i(`2)

∣∣∣∣∣ = oP (1).

We hence aim to verify
∣∣∣(nh)−1 ∑n

i=1(w
+
i )

2E1,i(`1)E1,i(`2)−EP[ĥ2,P,1,+(`1, `2)]
∣∣∣ = oP (1). Note

that

EP

[∣∣∣∣∣(nh)−1
n

∑
i=1

(w+
i )

2E1,i(`1)E1,i(`2)−EP[ĥ2,P,1,+(`1, `2)]

∣∣∣∣∣
]

≤ 1
[c+ f+R (r0)(ϑ0ϑ2 − ϑ2

1)]
2

EP

[
sup

{`1,`2∈L}

∣∣∣∣∣ 1n n

∑
i=1

fn,i(`1, `2)−EP( fn,i(`1, `2))

∣∣∣∣∣
]

,

(E.22)

where fn,i(`1, `2) is as defined in the proof of Lemma E.3. Note that this upper bound coincides with

(E.13). Hence, the proof of Lemma E.3 yields
∣∣∣(nh)−1 ∑n

i=1(w
+
i )

2E1,i(`1)E1,i(`2)−EP[ĥ2,P,1,+(`1, `2)]
∣∣∣ =

oP (1). �

Lemma E.6. Suppose that Assumptions D.1 and D.2 hold. Let {Pn} be a sequence of data gen-

erating processes in P . For any subsequence {kn} of {n} such that for d = 0, 1 and ? = +,−,

limn→∞ d(h2,Pkn ,d,?, h∗2,d,?) = 0 for some h∗2,d,? ∈ H2, then for d = 0, 1, sup{`∈L} |σ̂
−1
d,ξ (`) −

σ−1
d,Pkn ,ξ(`)|

Pkn→ 0, where σd,Pkn ,ξ(`) ≡ max{h2,Pkn ,d(`, `), ξ}.

Proof. Using the notation defined in the proof of Lemma E.5, we note, for d = 0, 1,

σ̂d,ξ(`) = max{ξ,
√

ĥ2
2,d,+(`, `) + ĥ2

2,d,−(`, `)}.
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The uniform convergence of (E.20) shown in the proof of Lemma E.5 implies

sup
{`∈L}

∣∣∣∣√ĥ2
2,d,+(`, `) + ĥ2

2,d,−(`, `)− h2,Pkn ,d(`, `)
∣∣∣∣ Pkn→ 0.

Due to the fact that the maximum operator is a continuous functional and the fact that σd,kn,ξ is

bounded away from zero, sup{`∈L} |σ̂
−1
d,ξ (`)− σ−1

d,Pkn ,ξ(`)|
Pkn→ 0 follows by the continuous mapping

theorem. �

Remark: Note that the results in Lemmas E.4 and E.5 hold jointly for d = 0 and d = 1. We omit

the results and proofs for brevity.

Proof of Theorem D.1: Having shown Lemmas E.4 to E.6, we prove the current theorem adapt-

ing the proof of Theorem 2 in Andrews and Shi (2013). Let H1 denote the set of measurable

functions mapping L to [−∞, 0]. Let h = (h1, h2), where h1 = (h1,0, h1,1) ∈ H1 × H1 and

h2 = (h2,0, h2,1) ∈ H2 ×H2. Define

T(h) = sup
{d∈{0,1},`∈L}

Φh2,d(`)

σd,Pkn ,ξ(`)
+ h1,d(`).

Define c0(h1, h2, α) as the (1-α)-th quantile of T(h). Similar to Lemma A2 of Andrews and Shi

(2013), we can show that for any ζ > 0,

lim supn→∞ sup
{P∈P0: d∈{0,1},h2,P,d,+,h2,P,d,−∈H2,cpt}

P
(

Ŝn > c0(hP
1,n, h2,P, α) + ζ

)
≤ α, (E.23)

where hP
1,n = (hP

1,0,n, hP
1,1,n) such that for d = 0, 1, hP

1,d,n =
√

nhνP,d which belongs to H1 under

P ∈ P0. Also, similar to Lemma A3 of Andrews and Shi (2013), we can show that for all α < 1/2

lim supn→∞ sup
{P∈P0: d∈{0,1},h2,P,d,+,h2,P,d,−∈H2,cpt}

P
(

c0(ψn, h2,P, α) < c0(hP
1,n, h2,P, α)

)
= 0, (E.24)

where ψn(`) = (ψn,0(`), ψn,1(`)), ` ∈ L, as defined in Algorithm 1 in the main text. To complete

the proof, it suffices to show that for all 0 < ζ < η,

lim supn→∞ sup
{P∈P0 : d∈{0,1},h2,P,d,+,h2,P,d,−∈H2,cpt}

P
(

ĉη(α) < c0(ψn, h2,P, 1− α) + ζ
)
= 0. (E.25)
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Let {Pn ∈ P0 : n ≥ 1} be a sequence for which the probability in equation (E.25) evaluated at Pn

differs from its supremum over P ∈ P0 by δn > 0 or less and limn→∞ δn = 0. By the definition of

lim sup, such a sequence always exists. Therefore, it is equivalent to show that for 0 < ζ < η,

limn→∞Pn

(
ĉn,η(α) < c0(ψn, h2,Pn , α) + ζ

)
= 0, (E.26)

where ĉn,η(α) is ĉη(α) with its dependence on the sample size along the sequence of sampling distri-

butions {Pn} notated explicitly. The limit on the left-hand side of (E.26) exists by the construction of

{Pn}, and we want to show it is equal to 0. Given that we restrict h2,P,d,+ and h2,P,d,− to a compact

set H2,cpt, there exists a subsequence {kn} of {n} such that for d = 0, 1, h2,Pkn ,d,+ and h2,Pkn ,d,−

converge to h∗2,d,+ and h∗2,d,−, respectively, for some h∗2,d,+, h∗2,d,− ∈ H2,cpt, d = 0, 1.

By Lemmas E.4, E.5, and E.6,√
knh(ν̂d(·)− νPkn ,d(·))⇒ Φh∗2,d

(·),

Φ̂u
νd,kn

(·)
Pkn⇒ Φ′h∗2,d

(·),

sup
{`∈L}

|σ̂−1
d,ξ (`)− σ−1

d,Pkn ,ξ(`)|
Pkn→ 0

for d = 0, 1, where Φ′h∗2,d
(`) is an independent copy of Φh∗2,d

(`). By the almost sure representation

theorem (e.g., Theorem 9.4 of Pollard (1990)), there exists a probability space and random objects

(ν̃d(·), Φ̃u
νd,kn

(·), σ̃d,ξ(·)) and (Φ̃h∗2,d
(·), Φ̃′h∗2,d

(·)), d = 0, 1, defined on it, such that they have the

same probability distribution as (ν̂d(·), Φ̂u
νd,kn

(·), σ̂d,ξ(·)) and (Φh∗2,d
(·), Φ′h∗2,d

(·)), d = 0, 1, and

satisfy

sup
d∈{0,1},`∈L

∥∥∥∥∥∥∥∥∥


√

knh(ν̃d(·)− νPkn ,d(·))

Φ̃u
νd,kn

(`)

σ̃d,ξ(`)

−


Φ̃h∗2,d
(`)

Φ̃′h∗2,d
(`)

σd,Pkn ,ξ(`)


∥∥∥∥∥∥∥∥∥→ 0, (E.27)

as n→ ∞, a.s. We also define an analogue of ψn,d as

ψ̃kn,d(·) = −Bkn · 1
{√

knh · ν̃d(·)
σ̃d,ξ(`)

< −akn

}
,

and let c̃kn,η(α) be the (1 − α + η)-th quantile of supd∈{0,1},`∈L

{
Φ̃u

νd ,kn (`)

σ̃d,ξ (`)
+ ψ̃kn,d(`)

}
plus η,

which by construction shares the probability law with ĉkn,η(α).
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Let Ω1 be the subset of the sample space such that the convergence of (E.27) holds. Following the

proof of Theorem 1 of Andrews and Shi (2013), we can show an inequality analogous to (12.28) in

Andrews and Shi (2013); for any sequence {ãkn} ∈ R that may depend on h1 and P, and for any

ζ1 > 0,

lim sup
n→∞

sup
{h1,0,h1,1∈H1}

P

(
sup

{d∈{0,1},`∈L}

Φ̃u
νd,kn

(`)

σ̃d,ξ(`)
+ h1,d(`) ≤ ãkn

)

−P

(
sup

{d∈{0,1},`∈L}

Φ̃h∗2,d
(`)

σd,Pkn ,ξ(`)
+ h1,d(`) ≤ ãkn + ζ1

)
≤ 0, (E.28)

where P denotes the measure of the probability space that (ν̃d,kn , Φ̃u
νd,kn

(·), σ̃d,ξ(·) : n = 1, 2, . . . , )

are defined on. By (E.28) and a similar argument to Lemma A5 of Andrews and Shi (2013), we have

that for all 0 < ζ < ζ1 < η and ω ∈ Ω1,

lim infn→∞ c̃kn,η(α)(ω) ≥ c0(ψ̃kn , h2,Pkn
, α) + ζ1. (E.29)

Given that P(Ω1) = 1, this implies

limn→∞P(c̃kn,η(α) < c0(ψ̃kn , h2,Pkn
, α) + ζ) = 0. (E.30)

Since (c̃kn,η(α), ψ̃kn) share the probability law with (ĉkn,η(α), ψkn), we also have

limn→∞Pkn(ĉkn,η(α) < c0(ψkn , h2,Pkn
, α) + ζ) = 0. (E.31)

For any convergent sequence {bn}, if there exists a subsequence {bkn} converging to b, then {bn}

converges to b as well. Therefore, (E.31) is sufficient for (E.26). Theorem D.1(a) is shown by

combining (E.23), (E.24) and (E.25).

We next show Theorem D.1(b). Under Assumption D.5, consider pointwise asymptotics under

Pc ∈ P0. Similarly to the proof of Proposition 1 of Barrett and Donald (2003) and Lemma 1 of

Donald and Hsu (2016), we can show Ŝn
d→ sup{(d,`): `∈Lo

Pc ,d}
Φh2,Pc ,d(`)/σd,Pc,ξ(`) whose CDF

is denoted by H(a). By Tsirel’son (1975), if either Φh2,Pc ,0 restricted to Lo
Pc,0 × Lo

Pc,0 or Φh2,Pc ,1

restricted to Lo
Pc,1 ×Lo

Pc,1 is not a zero function, then H(a) is continuous and strictly increasing for

a ∈ (0, ∞) and H(0) > 1/2.
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Following the proof of Theorem 2(b) of Andrews and Shi (2013), we can show that ĉη(α)
Pc→

qc(1− α+ η)+ η where qc(1− α+ η) denotes the (1− α+ η)-th quantile of sup(d,`): `∈Lo
Pc ,d

Φh2,Pc ,d(`)/σd,Pc,ξ(`).

Because H(a) is continuous at qc(1− α), we have limη→0 qc(1− α + η) + η = qc(1− α). This

suffices to show that limn→∞ Pc(Ŝn > ĉη(α)) = α. Combined with the claim of (a) in the current

theorem, Theorem D.1(b) holds. �

Proof of Theorem D.2: Under any fixed alternative PA, the exists (d, `∗) such that νd(`
∗) > 0, so

Ŝn/
√

nh ≥ νd(`
∗)/σd,PA,ξ(`

∗) in probability that implies that Ŝn will diverge to positive infinity in

probability. Also, the ĉη(α) is bounded in probability, so limn→∞ P(Ŝn > ĉη(α)) = 1. �

Proof of Theorem D.3: Define L++
d = {` ∈ Lo

Pc,d : δd(`) > 0}. For d = 1, 0, let σ∗d,ξ(`) ≡

max{ξ,
√
(h∗2,d,+(`, `))2 + (h∗2,d,−(`, `))2} be the limiting trimmed variance along the sequence

of local alternatives {Pn}. It can be shown that Ŝn
Pn⇒ sup{(d,`):`∈Lo

Pc ,d}
(Φh∗2,d

(`) + δd(`))/σ∗d,ξ(`)

and ĉη(α)
Pn→ cη + η where cη is the (1− α + η)-th quantile of sup{(d,`):`∈Lo

Pc ,d}
Φh∗2,d

(`)/σ∗d,ξ(`).

Then, the limit of the local power is

P( sup
{(d,`):`∈Lo

Pc ,d}
(Φh∗2,d

(`) + δd(`))/σ∗d,ξ(`) ≥ cη + η).

We need to consider the following two cases: (a) both h∗2,0 restricted to Lo
Pc,0 × Lo

Pc,0 and h∗2,1

restricted to Lo
Pc,1 ×Lo

Pc,1 are zero functions and (b) at least one of h∗2,0 restricted to Lo
Pc,0 ×Lo

Pc,0 or

h∗2,1 restricted to Lo
Pc,1 ×Lo

Pc,1 is not a zero function.

For case (a), because h∗2,0 restricted to Lo
Pc,0 ×Lo

Pc,0 and h∗2,1 restricted to Lo
Pc,1 ×Lo

Pc,1 are zero

functions, then sup{(d,`):`∈Lo
Pc ,d}
|Φh∗2,d

(`)| Pn→ 0 and Ŝn
Pn→ sup{(d,`):`∈Lo

Pc ,d}
δd(`)/σ∗d,ξ(`) > 0.

Also, it is true that cη + η = η and when η → 0, we have P(Ŝn > η) = 1 when η is small enough.

For case (b), when at least one of h∗2,0 restricted to Lo
Pc,0 ×Lo

Pc,0 or h∗2,1 restricted to Lo
Pc,1 ×Lo

Pc,1

is not a zero function, then by the continuity of the distribution of sup{(d,`):`∈Lo
Pc ,d}

(Φh∗2,d
(`) +

δd(`))/σ∗d,ξ(`) and sup{(d,`):`∈Lo
Pc ,d}

Φh∗2,d
(`)/σ∗d,ξ(`),

lim
η→0

P( sup
{(d,`):`∈Lo

Pc ,d}
(Φh∗2,d

(`) + δd(`))/σ∗d,ξ(`) ≥ cη + η) = P( sup
{(d,`):`∈Lo

Pc ,d}
(Φh∗2,d

(`) + δd(`))/σ∗d,ξ(`) ≥ c),
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where c is the (1− α)-th quantile of sup{(d,`):`∈Lo
Pc ,d}

Φh∗2,d
(`)/σ∗d,ξ(`). By assumption, δd(`) is

nonnegative if ` ∈ Lo
Pc,d, so sup{(d,`):`∈Lo

Pc ,d}
(Φh∗2,d

(`) + δd(`))/σ∗d,ξ(`) first order stochastically

dominates sup{(d,`):`∈Lo
Pc ,d}

Φh∗2,d
(`)/σ∗d,ξ(`) and it follows that

P( sup
{(d,`):`∈Lo

Pc ,d}
(Φh∗2,d

(`) + δd(`))/σ∗d,ξ(`) ≥ c) ≥ α.

This completes the proof for Theorem D.3. �

APPENDIX F. ADDITIONAL SIMULATION RESULTS FOR SECTION 4

In this section, we report additional simulation results. Tables F.1 to F.3 report detailed results

for the size properties of our test using data-driven choices of MSE-optimal bandwidths (AI, IK,

and CCT). We consider undersmoothing, an MSE-optimal plus RBC implementation, and a CER-

optimal plus RBC implementation, respectively. For the CER implementation, we also implement

the data-driven plug-in bandwidth (reported in the DPI column of the relevant tables) as suggested

by (see Calonico, Cattaneo, and Farrell, 2020, Section 4.2). Tables F.4 to F.6 show the simulated

power properties for the four specifications violating the null.

TABLE F.1. Size Properties (with undersmoothing)

AI IK CCT
DGP n 1% 5% 10% 1% 5% 10% 1% 5% 10%

1000 0.013 0.060 0.112 0.005 0.02 0.061 0.004 0.019 0.054
Size1 2000 0.025 0.071 0.126 0.003 0.025 0.064 0.005 0.034 0.065

4000 0.018 0.078 0.140 0.003 0.038 0.084 0.006 0.035 0.074
8000 0.021 0.065 0.120 0.012 0.045 0.095 0.01 0.033 0.085
1000 0.018 0.063 0.115 0.003 0.014 0.046 0.003 0.012 0.040

Size2 2000 0.014 0.064 0.116 0.008 0.035 0.074 0.006 0.031 0.062
4000 0.02 0.064 0.119 0.006 0.041 0.074 0.007 0.038 0.080
8000 0.013 0.06 0.101 0.005 0.039 0.072 0.006 0.036 0.077
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TABLE F.2. Size Properties (MSE-optimal + RBC)

AI IK CCT
DGP n 1% 5% 10% 1% 5% 10% 1% 5% 10%

1000 0.006 0.037 0.079 0.004 0.016 0.041 0.003 0.017 0.036
Size1 2000 0.016 0.058 0.108 0.002 0.018 0.043 0.006 0.022 0.051

4000 0.020 0.067 0.119 0.008 0.049 0.097 0.002 0.022 0.065
8000 0.020 0.066 0.125 0.007 0.051 0.085 0.008 0.037 0.077
1000 0.013 0.039 0.083 0.002 0.008 0.034 0.002 0.015 0.029

Size2 2000 0.012 0.051 0.122 0.004 0.033 0.061 0.002 0.021 0.044
4000 0.013 0.077 0.130 0.010 0.040 0.078 0.007 0.037 0.077
8000 0.016 0.065 0.125 0.006 0.042 0.090 0.003 0.040 0.085

TABLE F.3. Size Properties (CER-optimal + RBC)

AI+adjustment IK+adjustment CCT+adjustment DPI
DGP n 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

1000 0.016 0.055 0.11 0.004 0.025 0.056 0.004 0.024 0.049 0.011 0.042 0.071
Size1 2000 0.026 0.076 0.134 0.005 0.022 0.054 0.005 0.024 0.059 0.016 0.044 0.084

4000 0.018 0.086 0.140 0.004 0.043 0.101 0.006 0.035 0.068 0.016 0.054 0.110
8000 0.023 0.057 0.113 0.008 0.045 0.09 0.01 0.036 0.073 0.015 0.064 0.121
1000 0.018 0.067 0.109 0.002 0.015 0.043 0.003 0.014 0.037 0.005 0.034 0.073

Size2 2000 0.013 0.06 0.117 0.009 0.032 0.078 0.005 0.024 0.055 0.016 0.059 0.121
4000 0.017 0.06 0.118 0.011 0.042 0.083 0.008 0.039 0.078 0.017 0.062 0.115
8000 0.013 0.057 0.101 0.008 0.044 0.079 0.007 0.035 0.085 0.017 0.057 0.105
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TABLE F.4. Power Properties (undersmoothing)

AI IK CCT
DGP n 1% 5% 10% 1% 5% 10% 1% 5% 10%

1000 0.096 0.215 0.303 0.074 0.174 0.244 0.047 0.111 0.183
Power1 2000 0.235 0.439 0.557 0.218 0.403 0.504 0.113 0.256 0.359

4000 0.561 0.753 0.816 0.541 0.744 0.824 0.373 0.604 0.693
8000 0.908 0.962 0.977 0.926 0.975 0.987 0.785 0.907 0.94
1000 0.051 0.122 0.221 0.014 0.061 0.122 0.011 0.052 0.101

Power2 2000 0.1 0.271 0.383 0.065 0.194 0.296 0.03 0.14 0.214
4000 0.323 0.554 0.678 0.293 0.511 0.647 0.15 0.342 0.438
8000 0.741 0.885 0.928 0.752 0.888 0.934 0.503 0.732 0.818
1000 0.052 0.164 0.28 0.037 0.123 0.197 0.023 0.078 0.134

Power3 2000 0.128 0.299 0.432 0.114 0.257 0.393 0.062 0.17 0.261
4000 0.359 0.573 0.693 0.283 0.51 0.638 0.187 0.383 0.494
8000 0.758 0.883 0.938 0.724 0.87 0.922 0.526 0.734 0.831
1000 0.032 0.099 0.175 0.005 0.05 0.089 0.001 0.024 0.053

Power4 2000 0.058 0.172 0.252 0.031 0.123 0.209 0.017 0.06 0.134
4000 0.119 0.264 0.399 0.106 0.268 0.383 0.043 0.144 0.24
8000 0.331 0.55 0.673 0.322 0.54 0.656 0.144 0.326 0.458

TABLE F.5. Power Properties (MSE optimal + RBC)

AI IK CCT
DGP n 1% 5% 10% 1% 5% 10% 1% 5% 10%

1000 0.031 0.103 0.18 0.022 0.081 0.153 0.014 0.05 0.089
Power1 2000 0.088 0.221 0.334 0.084 0.207 0.299 0.033 0.115 0.18

4000 0.277 0.476 0.577 0.267 0.459 0.549 0.154 0.305 0.414
8000 0.627 0.812 0.87 0.664 0.82 0.877 0.433 0.654 0.754
1000 0.024 0.086 0.149 0.005 0.023 0.056 0.002 0.022 0.05

Power2 2000 0.04 0.135 0.233 0.029 0.099 0.173 0.009 0.052 0.095
4000 0.13 0.293 0.406 0.1 0.246 0.363 0.043 0.142 0.226
8000 0.396 0.624 0.725 0.4 0.622 0.724 0.186 0.391 0.528
1000 0.035 0.106 0.176 0.012 0.063 0.12 0.006 0.027 0.071

Power3 2000 0.05 0.174 0.289 0.052 0.154 0.247 0.025 0.079 0.147
4000 0.182 0.361 0.484 0.118 0.289 0.416 0.07 0.183 0.296
8000 0.492 0.694 0.781 0.419 0.64 0.744 0.261 0.466 0.582
1000 0.011 0.057 0.114 0.001 0.024 0.053 0.001 0.017 0.038

Power4 2000 0.03 0.118 0.204 0.017 0.06 0.134 0.01 0.042 0.104
4000 0.066 0.181 0.288 0.043 0.144 0.24 0.016 0.079 0.168
8000 0.149 0.341 0.478 0.144 0.326 0.458 0.067 0.201 0.311
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TABLE F.6. Power Property (CER optimal + RBC)

AI+adjustment IK+adjustment CCT+adjustment DPI
DGP n 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

1000 0.088 0.225 0.312 0.048 0.143 0.222 0.031 0.09 0.15 0.038 0.102 0.162
Power1 2000 0.228 0.439 0.551 0.171 0.316 0.423 0.081 0.205 0.292 0.071 0.174 0.263

4000 0.562 0.749 0.816 0.425 0.629 0.719 0.281 0.486 0.609 0.174 0.354 0.487
8000 0.918 0.964 0.977 0.83 0.935 0.957 0.666 0.831 0.877 0.485 0.658 0.743
1000 0.045 0.133 0.214 0.008 0.046 0.096 0.006 0.045 0.087 0.015 0.054 0.094

Power2 2000 0.108 0.266 0.384 0.052 0.156 0.244 0.023 0.097 0.178 0.037 0.097 0.179
4000 0.316 0.56 0.672 0.19 0.399 0.519 0.099 0.248 0.376 0.083 0.215 0.316
8000 0.744 0.889 0.927 0.587 0.793 0.857 0.368 0.598 0.707 0.225 0.427 0.550
1000 0.065 0.159 0.273 0.026 0.107 0.171 0.014 0.061 0.118 0.022 0.091 0.142

Power3 2000 0.129 0.306 0.439 0.091 0.209 0.319 0.048 0.128 0.221 0.051 0.151 0.242
4000 0.368 0.581 0.693 0.205 0.421 0.548 0.143 0.321 0.426 0.122 0.277 0.383
8000 0.751 0.888 0.933 0.597 0.781 0.859 0.432 0.64 0.734 0.264 0.490 0.606
1000 0.025 0.101 0.171 0.005 0.036 0.078 0.004 0.027 0.059 0.014 0.055 0.095

Power4 2000 0.055 0.175 0.263 0.027 0.092 0.188 0.016 0.074 0.143 0.034 0.080 0.148
4000 0.113 0.265 0.403 0.073 0.201 0.324 0.03 0.138 0.23 0.036 0.131 0.216
8000 0.324 0.545 0.681 0.233 0.438 0.569 0.121 0.283 0.425 0.084 0.245 0.349
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APPENDIX G. ADDITIONAL EMPIRICAL RESULTS FOR SECTION 5

TABLE G.1. Jump Size of the Propensity Score (different choice of h)

3 5 AL IK CCT
Grade 4
Cut-off 40 0.60 0.65 0.80 0.60 0.77
Cut-off 80 0.47 0.48 0.64 0.51 0.56
Cut-off 120 0.30 0.44 0.56 0.37 0.55

Grade 5
Cut-off 40 0.53 0.47 0.66 0.47 0.47
Cut-off 80 0.42 0.42 0.55 0.42 0.49
Cut-off 120 0.31 0.29 0.44 0.31 0.42

TABLE G.2. Testing Results for Israeli School Data: p-values, ξ = 0.0316

3 5 AL IK CCT MSE-RBC CER-RBC
g4math
Cut-off 40 0.986 0.934 0.764 0.978 0.968 0.975 0.974
Cut-off 80 0.909 0.865 0.715 0.944 0.888 0.776 0.973
Cut-off 120 0.443 0.702 0.665 0.604 0.568 0.610 0.646

g4verb
Cut-off 40 0.928 0.627 0.465 0.641 0.529 0.574 0.455
Cut-off 80 0.911 0.883 0.185 0.906 0.720 0.300 0.855
Cut-off 120 0.935 0.683 0.474 0.730 0.186 0.222 0.131

g5math
Cut-off 40 0.876 0.282 0.482 0.631 0.609 0.903 0.241
Cut-off 80 0.516 0.446 0.930 0.482 0.765 0.814 0.708
Cut-off 120 0.939 0.827 0.626 0.883 0.838 0.832 0.731

g5verb
Cut-off 40 0.594 0.893 0.953 0.900 0.938 0.960 0.957
Cut-off 80 0.510 0.692 0.504 0.519 0.929 0.956 0.979
Cut-off 120 0.696 0.811 0.601 0.699 0.774 0.729 0.762
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TABLE G.3. Testing Results for Israeli School Data: p-values, ξ = 0.1706

3 5 AL IK CCT MSE-RBC CER-RBC
g4math
Cut-off 40 0.986 0.934 0.945 0.978 0.959 0.961 0.965
Cut-off 80 0.909 0.865 0.713 0.944 0.878 0.763 0.953
Cut-off 120 0.443 0.702 0.660 0.565 0.540 0.599 0.646

g4verb
Cut-off 40 0.924 0.627 0.451 0.637 0.517 0.571 0.469
Cut-off 80 0.911 0.883 0.185 0.906 0.688 0.281 0.836
Cut-off 120 0.935 0.683 0.471 0.730 0.183 0.249 0.125

g5math
Cut-off 40 0.861 0.275 0.481 0.623 0.600 0.887 0.236
Cut-off 80 0.516 0.429 0.916 0.479 0.762 0.797 0.714
Cut-off 120 0.939 0.827 0.624 0.883 0.836 0.808 0.746

g5verb
Cut-off 40 0.594 0.893 0.953 0.934 0.938 0.944 0.946
Cut-off 80 0.510 0.671 0.496 0.513 0.946 0.946 0.974
Cut-off 120 0.696 0.811 0.594 0.699 0.757 0.740 0.852

TABLE G.4. Testing Results for Israeli School Data: p-values, ξ = 0.5

3 5 AL IK CCT MSE-RBC CER-RBC
g4math
Cut-off 40 0.984 0.934 0.940 0.978 0.950 0.957 0.956
Cut-off 80 0.907 0.853 0.832 0.936 0.893 0.774 0.956
Cut-off 120 0.443 0.683 0.633 0.557 0.519 0.592 0.580

g4verb
Cut-off 40 0.907 0.599 0.450 0.637 0.499 0.503 0.422
Cut-off 80 0.907 0.880 0.165 0.906 0.760 0.266 0.939
Cut-off 120 0.935 0.668 0.449 0.719 0.164 0.194 0.130

g5math
Cut-off 40 0.854 0.678 0.461 0.788 0.829 0.917 0.832
Cut-off 80 0.499 0.419 0.913 0.466 0.749 0.785 0.691
Cut-off 120 0.931 0.812 0.591 0.873 0.818 0.763 .732

g5verb
Cut-off 40 0.955 0.875 0.946 0.926 0.936 0.945 0.945
Cut-off 80 0.499 0.664 0.930 0.504 0.938 0.946 0.974
Cut-off 120 0.665 0.795 0.708 0.688 0.750 0.673 0.825
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TABLE G.5. Testing Results for Colombia’s SR Data: p-values (ξ = 0.00999, full table)

MPV Bandwidths Other Bandwidth Choices
Outcome variables 2 3 4 AI IK CCT MSE CER

RBC RBC
Risk protection, consumption smoothing
and portfolio choice
Individual inpatient medical spending 0.53 0.79 0.85 0.56 0.95 0.96 0.63 0.86
Individual outpatient medical spending 0.95 0.87 0.85 0.01 0.61 0.89 0.92 0.87
Variability of individual inpatient medical spending 0.50 0.79 0.87 0.66 0.94 0.96 0.67 0.86
Variability of individual outpatient medical spending 0.91 0.95 0.99 0.83 0.68 0.97 0.98 0.94
Individual education spending 0.15 0.19 0.17 0.02 0.90 0.09 0.21 0.14
Household education spending 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Total spending on food 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Total monthly expenditure 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Has car 0.97 0.76 0.87 0.99 0.72 0.99 0.87 0.94
Has radio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Medical care use
Preventive physician visit 0.62 0.99 1.00 1.00 0.37 0.98 0.50 0.75
Number of growth development checks last year 0.73 0.93 0.96 0.92 0.65 0.99 0.85 0.96
Curative care use 0.98 0.96 0.96 0.98 0.97 0.95 0.99 0.94
Primary care 0.92 0.92 0.94 0.99 0.96 0.95 0.96 0.88
Medical visit-specialist 0.98 0.93 0.73 0.93 0.89 0.63 0.83 0.81
Hospitalization 0.99 1.00 1.00 1.00 0.98 1.00 1.00 1.00
Medical visit for chronic disease 0.15 0.49 0.72 0.53 0.09 0.64 0.64 0.73
Curative care use among children 0.95 0.98 0.98 1.00 0.95 0.99 0.99 0.99

Health status
Child days lost to illness 0.60 0.67 0.80 0.76 0.66 0.86 0.76 0.83
Cough, fever, diarrhea 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00
Any health problem 0.99 1.00 0.98 0.99 0.99 0.99 0.99 0.99
Birthweight (KG) 0.90 100 1.00 0.99 0.90 1.00 1.00 1.00

Behavioral distortions
Drank alcohol during pregnancy 0.42 0.74 0.87 0.93 0.19 0.93 0.91 0.94
Number of drinks per week during pregnancy 0.78 0.88 0.91 0.85 0.75 0.84 0.85 0.87
Months child breastfed 0.94 0.95 0.92 0.86 0.94 0.87 0.95 0.90
Folic acid during pregnancy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Number months folic acid during pregnancy 0.92 0.95 0.92 0.96 0.94 0.75 0.85 0.80
Contributory regime enrollment (ECV) 0.55 0.54 0.37 0.00 0.74 0.32 0.49 0.61
Contributory regime enrollment (DHS) 0.97 0.99 0.99 1.00 0.63 1.00 1.00 1.00
Other insurance (ECV) 0.89 0.93 0.92 0.87 0.81 0.90 0.94 0.92
Other insurance (DHS) 0.91 0.96 0.97 0.95 0.88 0.96 0.96 0.97
Uninsured (ECV) 0.67 0.68 0.45 0.07 0.75 0.68 0.69 0.68
Uninsured (DHS) 0.99 1.00 1.00 1.00 0.79 0.97 0.83 0.91
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TABLE G.6. Testing Results for Colombia’s SR Data: p-values (ξ = 0.0316, full table)

MPV Bandwidths Other Bandwidth Choices
Outcome variables 2 3 4 AI IK CCT MSE CER

RBC RBC
Risk protection, consumption smoothing
and portfolio choice
Individual inpatient medical spending 0.53 0.78 0.85 0.56 0.94 0.95 0.60 0.87
Individual outpatient medical spending 0.93 0.85 0.82 0.01 0.56 0.84 0.87 0.87
Variability of individual inpatient medical spending 0.49 0.77 0.86 0.64 0.93 0.95 0.64 0.85
Variability of individual outpatient medical spending 0.87 0.93 0.97 0.95 0.62 0.95 0.92 0.91
Individual education spending 0.15 0.18 0.17 0.02 0.89 0.09 0.18 0.14
Household education spending 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Total spending on food 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Total monthly expenditure 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Has car 0.97 0.76 0.86 0.99 0.72 0.99 0.88 0.95
Has radio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Medical care use
Preventive physician visit 0.62 0.99 1.00 1.00 0.37 0.98 0.52 0.73
Number of growth development checks last year 0.72 0.93 0.96 0.92 0.64 0.99 0.88 0.96
Curative care use 0.98 0.96 0.96 0.98 0.97 0.95 0.97 0.95
Primary care 0.92 0.92 0.94 0.99 0.96 0.95 0.94 0.88
Medical visit-specialist 0.98 0.93 0.73 0.93 0.89 0.63 0.79 0.80
Hospitalization 0.99 1.00 1.00 1.00 0.98 1.00 1.00 1.00
Medical visit for chronic disease 0.15 0.49 0.72 0.53 0.09 0.64 0.63 0.72
Curative care use among children 0.96 0.98 0.97 1.00 0.95 1.00 0.99 0.98

Health status
Child days lost to illness 0.60 0.67 0.80 0.76 0.66 0.86 0.77 0.82
Cough, fever, diarrhea 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00
Any health problem 0.99 1.00 0.98 0.99 0.99 0.99 0.99 0.99
Birthweight (KG) 0.90 100 1.00 0.99 0.90 1.00 1.00 1.00

Behavioral distortions
Drank alcohol during pregnancy 0.42 0.74 0.87 0.93 0.19 0.93 0.89 0.94
Number of drinks per week during pregnancy 0.78 0.88 0.90 0.85 0.72 0.84 0.81 0.86
Months child breastfed 0.94 0.95 0.92 0.86 0.94 0.87 0.95 0.90
Folic acid during pregnancy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Number months folic acid during pregnancy 0.92 0.95 0.92 0.96 0.94 0.75 0.87 0.79
Contributory regime enrollment (ECV) 0.55 0.54 0.37 0.00 0.74 0.32 0.50 0.65
Contributory regime enrollment (DHS) 0.97 0.99 0.99 1.00 0.63 1.00 1.00 1.00
Other insurance (ECV) 0.89 0.93 0.92 0.87 0.81 0.90 0.94 0.93
Other insurance (DHS) 0.91 0.96 0.97 0.95 0.88 0.96 0.95 0.98
Uninsured (ECV) 0.67 0.68 0.45 0.07 0.75 0.68 0.68 0.69
Uninsured (DHS) 0.99 1.00 1.00 1.00 0.79 0.97 0.83 0.91
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TABLE G.7. Testing Results for Colombia’s SR Data: p-values (ξ = 0.1706, full table)

MPV Bandwidths Other Bandwidth Choices
Outcome variables 2 3 4 AI IK CCT MSE CER

RBC RBC
Risk protection, consumption smoothing
and portfolio choice
Individual inpatient medical spending 0.43 0.68 0.76 0.99 0.88 0.90 0.5 0.82
Individual outpatient medical spending 0.85 0.84 0.78 0.64 0.41 0.80 0.84 0.83
Variability of individual inpatient medical spending 0.37 0.64 0.79 0.97 0.83 0.91 0.61 0.85
Variability of individual outpatient medical spending 0.77 0.89 0.95 0.93 0.35 0.91 0.90 0.90
Individual education spending 0.14 0.16 0.16 0.08 0.87 0.26 0.17 0.14
Household education spending 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Total spending on food 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Total monthly expenditure 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Has car 0.97 0.76 0.86 0.99 0.72 0.99 0.87 0.95
Has radio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Medical care use
Preventive physician visit 0.62 0.99 1.00 1.00 0.37 0.98 0.50 0.75
Number of growth development checks last year 0.77 0.89 0.95 0.99 0.82 0.98 0.90 .95
Curative care use 0.98 0.96 0.96 0.98 0.97 0.95 0.99 0.95
Primary care 0.92 0.92 0.94 0.99 0.96 0.95 0.95 0.88
Medical visit-specialist 0.98 0.93 0.73 0.93 0.89 0.63 0.79 0.78
Hospitalization 0.99 1.00 1.00 1.00 0.98 1.00 1.00 1.00
Medical visit for chronic disease 0.15 0.49 0.72 0.53 0.09 0.64 0.65 0.73
Curative care use among children 0.95 0.98 0.98 1.00 0.95 0.99 0.99 0.99

Health status
Child days lost to illness 0.60 0.67 0.80 0.76 0.66 0.86 0.73 0.83
Cough, fever, diarrhea 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00
Any health problem 0.99 1.00 0.98 0.99 0.99 0.99 0.99 0.99
Birthweight (KG) 0.90 100 1.00 0.99 0.90 1.00 1.00 1.00

Behavioral distortions
Drank alcohol during pregnancy 0.42 0.74 0.87 0.93 0.19 0.93 0.88 0.92
Number of drinks per week during pregnancy 0.73 0.85 0.88 0.83 0.69 0.80 0.76 0.80
Months child breastfed 0.94 0.95 0.92 0.86 0.94 0.87 0.96 0.90
Folic acid during pregnancy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Number months folic acid during pregnancy 0.92 0.95 0.92 0.96 0.94 0.75 0.86 0.80
Contributory regime enrollment (ECV) 0.55 0.54 0.37 0.00 0.74 0.32 0.51 0.57
Contributory regime enrollment (DHS) 0.97 0.99 0.99 1.00 0.63 1.00 1.00 1.00
Other insurance (ECV) 0.89 0.93 0.92 0.87 0.81 0.90 0.93 0.93
Other insurance (DHS) 0.91 0.96 0.97 0.95 0.88 0.96 0.96 0.98
Uninsured (ECV) 0.67 0.68 0.45 0.07 0.75 0.68 0.69 0.68
Uninsured (DHS) 0.99 1.00 1.00 1.00 0.79 0.97 0.84 0.92
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TABLE G.8. Testing Results for Colombia’s SR Data: p-values (ξ = 0.5, full table)

MPV Bandwidths Other Bandwidth Choices
Outcome variables 2 3 4 AI IK CCT MSE CER

RBC RBC
Risk protection, consumption smoothing
and portfolio choice
Individual inpatient medical spending 0.52 0.68 0.71 0.89 0.76 0.71 0.58 0.76
Individual outpatient medical spending 0.72 0.84 0.93 0.22 0.23 0.90 0.71 0.90
Variability of individual inpatient medical spending 0.37 0.61 0.69 0.89 0.63 0.76 0.60 0.76
Variability of individual outpatient medical spending 0.40 0.75 0.76 0.54 0.18 0.78 0.66 0.74
Individual education spending 0.10 0.11 0.11 0.29 0.78 0.19 0.13 0.10
Household education spending 0.00 0.00 0.00 0.03 0.02 0.00 0.00 0.00
Total spending on food 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Total monthly expenditure 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Has car 0.97 0.76 0.86 0.99 0.72 0.99 0.86 0.95
Has radio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Medical care use
Preventive physician visit 0.62 0.99 1.00 1.00 0.37 0.98 0.51 0.76
Number of growth development checks last year 0.81 0.89 0.97 0.98 0.88 0.99 0.90 0.96
Curative care use 0.98 0.96 0.96 0.98 0.97 0.95 0.98 0.94
Primary care 0.92 0.92 0.94 0.99 0.96 0.95 0.96 0.90
Medical visit-specialist 0.96 0.92 0.72 0.91 0.87 0.63 0.80 0.79
Hospitalization 0.99 1.00 1.00 1.00 0.98 1.00 1.00 1.00
Medical visit for chronic disease 0.15 0.49 0.72 0.53 0.09 0.64 0.63 0.74
Curative care use among children 0.96 0.99 0.98 1.00 0.94 0.99 0.99 0.99

Health status
Child days lost to illness 0.60 0.67 0.80 0.76 0.66 0.86 0.75 0.82
Cough, fever, diarrhea 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00
Any health problem 0.99 1.00 0.98 0.99 0.99 0.99 0.99 0.99
Birthweight (KG) 0.90 100 1.00 0.99 0.90 1.00 0.91 0.94

Behavioral distortions
Drank alcohol during pregnancy 0.42 0.74 0.87 0.93 0.19 0.93 0.89 0.94
Number of drinks per week during pregnancy 0.66 0.80 0.85 0.73 0.65 0.75 0.72 0.78
Months child breastfed 0.94 0.95 0.91 0.86 0.94 0.87 0.95 0.92
Folic acid during pregnancy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Number months folic acid during pregnancy 0.92 0.95 0.92 0.96 0.94 0.75 0.88 0.80
Contributory regime enrollment (ECV) 0.55 0.54 0.37 0.00 0.74 0.32 0.50 0.63
Contributory regime enrollment (DHS) 0.97 0.99 0.99 1.00 0.63 1.00 1.00 1.00
Other insurance (ECV) 0.86 0.91 0.91 0.86 0.80 0.89 0.94 0.92
Other insurance (DHS) 0.90 0.96 0.97 0.95 0.87 0.96 0.96 0.97
Uninsured (ECV) 0.67 0.68 0.45 0.07 0.75 0.68 0.69 0.70
Uninsured (DHS) 0.99 1.00 1.00 1.00 0.79 0.97 0.83 0.90
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TABLE G.9. Testing Results for Colombia’s SR Data by Regions (ξ = 0.00999)

MPV bandwidths Other bandwidth choice
2 3 4 AI IK CCT

Atlantica
Household education spending 0.001 0.001 0.001 0.000 0.000 0.001
Total spending on food 0.009 0.008 0.026 0.000 0.015 0.020
Total monthly expenditure 0.000 0.001 0.000 0.000 0.000 0.000

Oriental
Household education spending 0.000 0.000 0.000 0.000 0.000 0.002
Total spending on food 0.000 0.001 0.000 0.000 0.001 0.002
Total monthly expenditure n.a.∗ n.a. n.a. n.a. n.a. n.a.

Central
Household education spending 0.000 0.098 0.058 0.000 0.000 0.000
Total spending on food 0.000 0.002 0.001 0.001 0.000 0.021
Total monthly expenditure 0.000 0.007 0.008 0.000 0.000 0.001

Pacifica
Household education spending 0.001 0.147 0.073 0.000 0.043 0.003
Total spending on food 0.150 0.237 0.236 0.013 0.107 0.385
Total monthly expenditure 0.091 0.347 0.231 0.002 0.071 0.125

Bogota
Household education spending 0.000 0.000 0.000 0.000 0.014 0.000
Total spending on food 0.000 0.000 0.001 0.003 0.002 0.000
Total monthly expenditure 0.000 0.000 0.000 0.000 0.000 0.000

Territorios Nacionales
Household education spending 0.085 0.247 0.063 0.000 0.037 0.090
Total spending on food 0.029 0.310 0.032 0.000 0.057 0.281
Total monthly expenditure 0.227 0.271 0.349 0.001 0.364 0.752

∗: not available due to small sample size.
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TABLE G.10. Subsample Sizes by Regions

Household Edu. Spending Total Spending on Food Total Monthly Exp.
Atlantica 3969 3969 1480

Oriental 1496 1496 452

Central 5341 5318 2728

Pacifica 6370 6370 3203

Bogota 43656 41108 14634

Territorios Nacionales 1137 1137 643
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TABLE G.11. Sample Sizes and Bandwidths for the Israeli School Data

3 5 AI IK CCT
g4math
Cut-off 40 (n = 984) (n−, n+) 17 67 26 93 102 302 23 84 89 227

(h−, h+) 3 3 5 5 11.1 15.0 3.8 3.9 10.6 10.4

Cut-off 80 (n = 1376) (n−, n+) 29 45 76 71 292 142 29 45 206 107
(h−, h+) 3 3 5 5 15.0 9.3 2.8 2.8 10.5 10.6

Cut-off 120 (n = 976) (n−, n+) 27 20 66 34 189 66 47 34 117 60
(h−, h+) 3 3 5 5 15.0 10.4 4.0 4.2 8.7 9.0

g4verb

Cut-off 40 (n = 984) (n−, n+) 17 67 26 93 57 302 23 84 89 227
(h−, h+) 3 3 5 5 7.7 15.0 4.0 4.0 11.0 10.8

Cut-off 80 (n = 1376) (n−, n+) 29 45 76 71 270 142 55 54 206 107
(h−, h+) 3 3 5 5 13.7 9.7 3.2 3.2 10.2 10.4

Cut-off 120 (n = 976) (n−, n+) 27 20 66 34 189 93 66 34 138 66
(h−, h+) 3 3 5 5 15.0 13.3 4.3 4.4 10.3 10.7

g5math

Cut-off 40 (n = 983) (n−, n+) 19 77 38 112 143 328 29 94 47 130
(h−, h+) 3 3 5 5 15.0 15.0 4.0 4.0 5.6 5.5

Cut-off 80 (n = 1359) (n−, n+) 59 44 80 86 285 223 72 65 201 150
(h−, h+) 3 3 5 5 15.0 15.0 3.9 4.0 10.4 10.6

Cut-off 120 (n = 905) (n−, n+) 36 22 61 31 166 56 49 25 109 56
(h−, h+) 3 3 5 5 15.0 8.1 3.7 3.9 8.1 8.4

g5verb

Cut-off 40 (n = 983) (n−, n+) 19 77 38 112 58 268 38 112 70 184
(h−, h+) 3 3 5 5 6.4 11.5 4.2 4.1 7.2 7.0

Cut-off 80 (n = 1359) (n−, n+) 59 44 80 86 285 223 72 65 201 154
(h−, h+) 3 3 5 5 15.0 15.0 3.7 3.8 10.5 10.7

Cut-off 120 (n = 905) (n−, n+) 36 22 61 31 166 45 49 25 79 45
(h−, h+) 3 3 5 5 15.0 6.8 3.2 3.3 6.7 7.0

Note: h− and h+ denote the specified bandwidths to the left and right of the cut-off, respectively. The data driven
bandwidths presented in this table (AI, IK, and CCT) are undersmoothed by multiplying (∑n

i=1 1{Ri < r0})1/5−1/4.5

and (∑n
i=1 1{Ri ≥ r0})1/5−1/4.5, respectively. We set the upper-bound of the data driven bandwidths at 15. n− and n+

denote the number of observations with values of the running variable in (r0 − h−, r0) and [r0, r0 + h+), respectively.
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TABLE G.12. Sample Sizes and Bandwidths for Colombia’s SR Data

Outcomes 2 3 4 AI IK CCT
HES (n−, n+) 1701 2521 2474 3783 3034 5204 3484 18798 1082 1423 3586 6611

(h−, h+) 2 2 3 3 4 4 54.99 11.8 1.11 1.05 5.23 4.96

TSF (n−, n+) 1664 2432 2420 3655 2979 5034 3410 18247 1050 1384 3512 6385
(h−, h+) 2 2 3 3 4 4 3.78 23.5 1.36 1.29 3.70 3.51

TME (n−, n+) 402 564 567 828 643 1136 732 4867 285 314 754 1398
(h−, h+) 2 2 3 3 4 4 6.08 8.32 0.99 0.92 2.12 1.98

HES: Household Education Spending; TSF: Total Spending on Food; TME: Total Monthly Expenditure.
Note: h− and h+ denote the specified bandwidths to the left and right of the cut-off, respectively. The data driven
bandwidths presented in this table (AI, IK, and CCT) are undersmoothed by multiplying (∑n

i=1 1{Ri ≤ r0})1/5−1/4.5

and (∑n
i=1 1{Ri > r0})1/5−1/4.5, respectively. We set the upper-bound of the data driven bandwidths at 15. n− and n+

denote the number of observations with values of the running variable in (r0 − h−, r0) and [r0, r0 + h+), respectively.
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FIGURE G.1. Estimated compliers’ outcome density: Household education spending
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TABLE G.13. Observations in the maximizing interval (h+ = h− = 2): Household
edu. spending

Household education spending # of observations

Subsample of All ∩{0.5604 ≤ Y ≤ 0.6693} Ratio

{0 ≤ R < h+} ∩ {D = 0} ⇔ N ∪ C 1563 43 2.75%
{h− < R < 0} ∩ {D = 0} ⇔ N 690 25 3.62%
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FIGURE G.2. Estimated compliers’ outcome density: Total monthly spending
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TABLE G.14. Observations in the maximizing interval (h+ = h− = 2):Total
monthly expenditure

Total monthly expenditure # of observations

Subsample of All ∩{0.3042 ≤ Y ≤ 0.3737} Ratio

{0 ≤ R < h+} ∩ {D = 1} ⇔ A 228 61 26.7%
{h− < R < 0} ∩ {D = 1} ⇔ A ∪ C 259 6 2.32%
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