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Abstract. The modern formulation of the instrumental variable meth-
ods initiated the valuable interactions between economics and statistics
literatures of causal inference and fueled new innovations of the idea.
It helped resolving the long-standing confusion that the statisticians
used to have on the method, and encouraged the economists to rethink
how to make use of instrumental variables in policy analysis.
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It is an honor to comment on Professor Imbens’ paper on instrumental variables
methods. The discussed paper reviews both the origin of the instrumental vari-
ables methods in econometrics and their modern formulation and interpretation
based on the concept of potential outcomes originating in statistics. A unique
feature of this review article is its comparative perspective. Imbens convinces us
that ”choice versus chance in treatment assignment” best summarizes the differ-
ence between econometrics and statistics in their traditions of identifying causal
effects.

The seminal papers by Angrist, Imbens, and Rubin (Imbens and Angrist
(1994); Angrist, Imbens, and Rubin (1996)) on the potential outcome-based for-
mulation of the instrumental variables method are some of the few rare works
that generated equally enormous influence on both econometrics and statistics
communities. In the economics side, the major impacts appear in the follow-
ing three aspects. First, the modern way of viewing an instrumental variable in
relation to treatment noncompliance and an encouragement design widened the
scope of applications of the method. Traditionally, the uses of the instrumental
variables method were restricted to observational studies, and economic theo-
ries or researcher’s background knowledge on the problem were playing a unique
role in validating the exogeneity and exclusion restrictions of the employed in-
strument. Nowadays, this new encouragement design viewpoint offers another
strategy for finding an instrument in a given application, and, with a random-
ized initial treatment assignment, researchers can validate easily and credibly the
instrument exogeneity assumption without resorting to an economic theory. Sec-
ond, the concept of the local average treatment effect considerably changed the
way we interpret the estimation results. We are no longer puzzled by obtain-
ing contradicting estimation results across different instruments, and we treat
them as separate and valuable pieces of information about heterogeneous causal
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effects. In addition, acknowledging non-identfiability of the population average
causal effect has promoted the discussion of whether the instrumental variable
method should be used for the actual policy decision making and how. Third,
the discovery of the importance of instrument monotonicity assumption led us
to think more carefully about the subjects’ causal/behavioral responses to the
assigned instrument.

In what follows, I first illustrate by an example the link between the text-
book linear instrumental variable model and the potential outcome framework to
complement the discussion that Imbens gave in Section 6. In the second part,
I review the active but unsettled discussions about usefulness of estimating the
local average treatment effect, and provide briefly my personal opinion on the
issue.

1. CAUSAL INTERPRETATION IN THE TEXTBOOK MODEL

The standard econometrics education introduces the instrumental variables
methods in the form of, what Imbens called, the standard textbook set up,

(1.1) Y obs
i = β0 + β1X

obs
i + β′

2Vi + ϵi,

where Y obs
i is an outcome observation of unit i, Xobs

i is a treatment variable of
which the causal effect on the outcome is of interest, Vi is a vector of observable
covariates (often called control covariates), and ϵi is an unobservable term often
called as an unobserved heterogeneity of unit i. A common way to motivate the
use of instrumental variables is by invalidating the least square method due to
”the correlation between Xobs

i and ϵi”. This quick but somewhat less rigorous
way of motivating the instrumental variables methods often creates confusions.
If equation (1.1) were specifying a regression equation or a linear projection, then
the projection residual ϵi is by construction uncorrelated with Xobs

i , and, accord-
ingly, the concern about endogeneity E(Xobs

i ϵi) ̸= 0 would never arise. In other
words, whenever instrumental variable methods are invoked, it is fundamental to
understand what feature or interpretation of (1.1) distinguishes it from the statis-
tical regression equation, and for what reason we should suspect the dependence
of Xobs

i and ϵi.
Having a simple example would help us answer these questions. Consider a

classical problem of estimation of a production function. Q denotes the quantity
of a homogeneous good produced and L is the measure of labor input used (e.g.,
total hours worked by the employees). We do not consider control covariates for
now. Assume that the production technology of firm i is given by the following
function,

Qi(L) = exp(β0 + αi)L
β1 , 0 < β1 < 1.

where β0 is an unknown constant, αi is a mean zero unobserved productivity of
firm i, and β1 is the parameter of interest assumed to be constant across firms.
The specified production function leads to a log-linear equation,

(1.2) Yi(x) = β0 + β1x+ αi,

where x = logL and Yi(x) = logQi(L). This equation can be indeed interpreted
as the causal relationship between output and input in the production process
of firm i. As in equation (3.3) of the Imbens’ article, Yi(x) can be interpreted
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as i’s potential outcomes at each possible input level x ∈ X . In econometrics
terminology, equation (1.2) is interpreted as a structural equation in the sense
that it can generate any counterfactual outcomes of unit i with respect to any
manipulations in x. Note that the structural equation (1.2) relies only on the
assumption or knowledge about the underlying causal mechanism (production
function) and, so far, no considerations on how the data are generated have
entered our discussion yet.

Suppose that available data of pairs of log-output and log-input of n producers,(
Y obs
i , Xobs

i

)
, i = 1, . . . , n, are observational, meaning that the observed input

level Xobs
i can be seen as a ”choice” made by a firm i. Following Marschak and

Andrews (1944), let us model each firm’s choice of X based on the following three
assumptions, (1) firms are rational, meaning that each firm chooses its input to
maximize own profit, (2) the market is under perfect competition, implying that
every firm treat prices of the good and input (wage) as given, and (3) firms have
complete knowledge of their production technologies β0, β1, and αi when they
choose their input levels. Under these somewhat unrealistic assumptions, firm
i’s input choice solves the following profit maximization problem,

Xobs
i = logLobs

i ,

where Lobs
i = argmax

L
{pQi (L)− wiLi} .

where p is the (common) price of the good, and wi is the hourly wage given to
firm i, which can vary over i, i.e., the wage is determined at a localized labor
market. The resulting choice Xobs

i is

(1.3) Xobs
i =

1

1− β1

[
β0 + log

(
pβ1
wi

)
+ αi

]
.

If we replace x with Xobs
i in (1.2) and notate Y obs

i = Yi
(
Xobs

i

)
, we obtain

(1.4) Y obs
i = β0 + β1X

obs
i + αi .

This equation coincides with an equation of the form (1.1) without covariates.
Equation (1.3) says that a more productive (higher αi) firm chooses a larger

labor input, implying that the endogeneity problem E
(
Xobs

i αi

)
̸= 0 is present.

Accordingly, (1.4) must differ from the linear projection equation of Y obs
i onto

Xobs
i , and the least squares regression of Y obs

i onto Xobs
i fails to consistently

estimate β1. Here, the keypoints are (1) there is a specific causal model (1.2)
underlying (1.4), and (2) the subject’s optimal ”choice” based on the unobservable
(to data analysts) causes correlation E(Xobs

i αi) ̸= 0.
What can be a reasonable instrumental variable in the current example? A

search for an instrumental variable can also be model-based. For instance, if
wi is available in data, Equation (1.3) says that Xobs

i should be dependent on
wi, while structural equation (1.2) says wi does not directly affect the output;
accordingly, wi satisfies the instrument relevance and the instrument exclusion
restriction. The validity of random assignment E(wiαi) = 0, on the other hand,
would be questionable. For instance, firms located in an urban area can be more
productive (higher αi) than those located in a rural area, and the wage level in
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urban area can be higher than the wage level in rural, possibly due to a higher
living cost and availability of more skilled labor force. The motivation for using
control covariates Vi (e.g. a demeaned indicator of whether firm i is located in
an urban area or in a rural area) is to cope with potential confounders of wi and
αi. Following the way in which Imbens treats covariates (Section 6), we assume
conditional random assignment wi ⊥ αi|Vi, and specify the dependence of αi and
Vi as

(1.5) αi = β2Vi + ϵi with ϵi ⊥ Vi.

Here, ϵi is firm i’s unobserved productivity measured relative to conditional mean
E(αi|Vi). Note that coefficient parameter β2 summarizes the dependence of αi

and Vi, and we are not attaching a causal interpretation to β2. Plugging αi into
(1.4) yields the textbook setup of the linear instrumental variable model (1.1),
for which the two stage least squares procedure yields a consistent estimator
for (β0, β1, β2). As is clear through this simple example, the textbook equation
(1.1) can be seen as a composite of the causal (structural) equation (1.4) and the
statistical dependence relationship (1.5).

2. POINT ESTIMATE VERSUS BOUNDS: A TREATMENT CHOICE
PERSPECTIVE

The discussed paper also reviews the current debate about the meaningfulness
of the complier’s causal effect (Section 4.6). Imbens advocates the importance
and practical values of reporting the complier’s causal effect for the reason that
it is the only causal estimand point-identified under the maintained assumptions.
Imbens, at the same time, acknowledges that the population average causal effect
is a parameter of primary interest in many contexts of causal inference, and he
recommends to report also the bounds of the population average causal effect. In
my opinion, Imbens’ proposal is quite sensible if the main task of the data analyst
is to make ”scientific reporting” about the causal effects. The point-identified
causal parameter for compliers and the set-identified causal parameter for the
entire population reflect (partially) distinct aspects of the data distribution, and,
importantly, the best we can learn from data under the maintained assumptions
are only those.

The objectives of causal studies are not only for ”scientific reporting”, but also
for assisting ”decision making” of a policy maker. If the latter is a main task of the
data analyst, then my personal view is that neither of the complier’s causal effect
estimate nor the bounds of the average causal effect should be the final output
that the decision maker would find most useful. To make my argument more
concrete, suppose that the decision maker’s objective is to maximize the social
welfare defined by the sum of individual outcomes over the target population.
As in Chamberlain (2011), we suppose that he/she solves the treatment choice
problem based on a posterior belief for the social welfare, i.e., the decision maker
is Bayesian. Since a comparison of the social welfare between the cases with and
without implementation of the treatment depends only on the population average
causal effect, the posterior distribution of the average causal effect obtained from
her/his carefully specified prior input leads to the decision maker’s optimal choice
(see Chickering and Pearl (1997) and Imbens and Rubin (1997) for Bayesian
estimation of the average causal effect). On the other hand, point estimates
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and inferential statements for the complier’s causal effect and the bounds for the
population causal effect do not directly guide formal decision-making.

The argument I just gave crucially relies on the Bayesian premise that the
decision maker can fully specify a prior for the potential outcomes distributions.
This may not always be the case depending on a context. Given the absence of
a universal consensus on a ”non-informative” prior, inability to specify a credible
prior becomes a serious concern especially when the causal effect of interest is
not identified, since the lack of identification makes the posterior sensitive to a
choice of prior no matter how large the sample size is. One way to overcome this
practical difficulty would be to follow Manski’s (2000, 2005) frequentist approach
based on the minimax and minimax regret decision principle, which relies only
on the knowledge of the bounds of the population average causal effect.

The Bayesian approach and Manski’s data-alone approach are each grounded
in the two extreme schools of statistics. This means that there should certainly
be a room for blending the aspects of these two approaches to complement their
advantages and disadvantages. One compromising approach would be to perform
a minimax or minimax-regret decision analysis with multiple priors/posteriors,
namely, the Γ-minimax or Γ-minimax regret decision analysis (see, e.g., Berger
(1985), Chapter 4). For instance, in the current context, we can consider con-
structing a set of posteriors of average causal effects by combining a single pos-
terior for the identifiable parameters (causal effects for compliers, the mean of
treatment outcome for always-takers, the mean of control outcome for never-
takers) with a collection of priors of the non-identified parameters (the mean of
control outcome for always-takers and the mean of treatment outcome for never-
takers). The collection of priors for the non-identified parameters may represent
the decision maker’s partial or vague prior knowledge, or represent the degree
of robustness that the decision maker wants to maintain in making the decision.
Here, a single prior for the identified parameters would make sense in a scenario
that the decision maker feels less anxious about a prior misspecification for the
identifiable parameters since he/she knows data will well update it. If the class
of priors for the non-identified parameters is not as large as the one that allows
for arbitrary ones, the resulting posterior Γ-minimax treatment choice rule will
not be as conservative as the Manski’s data-alone minimax treatment choice rule
based solely on the bounds. At the same time, unlike the standard Bayesian
analysis with a single prior distribution, it can lead to a decision-making with
taking into account the posterior sensitivity concern with respect to a choice of
a prior for the non-identified parameters.
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