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A Proofs

Proof of Proposition 4

The proposition can be proven in a recursive way. Agent 1 only observes his signal and

chooses
aOC
1

100− aOC
1

=
a∗∗∗∗1 (s1)

100− a∗∗∗∗1 (s1)
=

(
q1

1− q1

)2st−1

.

Agent 2 observes aOC
1 and infers the signal realization, since an action greater (lower)

than 50 can only be taken after observing a good (bad) signal. By the assumption of �k-

overcon�dence,� he has subjective expectations on the predecessor's signal precision, and the

likelihood ratio after observing the action is
(

q1
1−q1

)(2s1−1)k

rather than
(

q1
1−q1

)(2s1−1)

. Hence,

aOC
2

100− aOC
2

=
a∗∗∗∗2 (s1, s2)

100− a∗∗∗∗2 (s1, s2)
=

(
q1

1− q1

)(2s1−1)k ( q2
1− q2

)2s2−1

.

Note that this is equivalent to attributing precision

(
q1

1−q1

)k

1+
(

q1
1−q1

)k to the predecessor's signals.

Since k-overcon�dence is common knowledge, agent 3 infers the signal realizations from the

observation of aOC
1 and aOC

2 (since aOC
2 > aOC

1 is only possible after observing a signal s2 = 1,
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and aOC
2 < aOC

1 after observing a signal s2 = 0) and again uses subjective expectations for

the precision of both, thus choosing aOC
3 such that

aOC
3

100− aOC
3

=
a∗∗∗∗3 (s1, s2, s3)

100− a∗∗∗∗3 (s1, s2, s3)
= Π2

i=1

(
qi

1− qi

)(2si−1)k ( q3
1− q3

)2s3−1

.

The same steps apply to any further agent t = 4, 5, ..., T .

Proof of Proposition 5

Let us de�ne l(x) := log x
1−x

. First, observe that, for each t ≥ 2, the β coe�cients are

determined by the following equations:

l(a21) = (2s1 − 1) l(q1),

l(a22) = β2,1 (2s1 − 1) l(q1) + (2s2 − 1) l(q2)

...

l(a2t ) = βt,1 (2s1 − 1) l(q1) + · · ·+ βt,t−1(2st − 1)l(qt−1) + (2st − 1) l(qt).

In matrix notation, 
l(a21)

l(a22)
...

l(a2t )

 = B ·


(2s1 − 1)l(q1)

(2s2 − 1)l(q2)
...

(2st − 1)l(q2)

 , (A.1)

where B is the t× t lower triangular matrix

B =



1 0 · · · · · · 0

β2,1 1 0 · · · 0

β3,1 β3,2 1 0
...

...
. . .

...

βt,1 βt,2 · · · βt,t−1 1


.
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Similarly, the γ coe�cients are de�ned by the following equations:

l(a21) = (2s1 − 1) l(q1),

l(a22) = γ2,1l(a
2
1) + (2s2 − 1) l(q2),

...

l(a2t ) = γt,1l(a
2
1) + · · ·+ γt,t−1(2st − 1)l(a2t−1) + (2st − 1) l(qt).

In matrix notation,

Γ


l(a21)

l(a22)
...

l(a2t )

 =


(2s1 − 1)l(q1)

(2s2 − 1)l(q2)
...

(2st − 1)l(q2)

 ,

where Γ is the t× t lower triangular matrix containing γ coe�cients,

Γ =



1 0 · · · · · · 0

−γ2,1 1 0 · · · 0

−γ3,1 −γ3,2 1 0
...

...
. . .

...

−γt,1 −γt,2 · · · −γt,t−1 1


. (A.2)

By comparing (A.1) with (A.2), one can see that, since B is nonsingular, Γ = B−1 must

hold. Hence, for l < t, −γt,l is given by the [t, l]-element of B−1.

The closed form solutions for γy,i for each theory can also be obtained in a recursive way.

For the PBE, note that agent t chooses action aPBE
t such that

a∗t (s1, s2, .., st)

100− a∗t (s1, s2, .., st)
= Πt

i=1

(
qi

1− qi

)2si−1

=

Πt−1
i=1

(
qi

1− qi

)2si−1( qt
1− qt

)2st−1

=

a∗t−1(s1, s2, .., st−1)

100− a∗t−1(s1, s2, .., st−1)

(
qt

1− qt

)2st−1

.
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1. For BRTNI, observe that, by assumption, agent t chooses action aBRTNI
t such that

aBRTNI
t

100− aBRTNI
t

=
∏t−1

i=1

aBRTNI
t−i

100− aBRTNI
t−i

(
qt

1− qt

)2st−1

.

(Indeed, Eyster and Rabin (2009) derive the β coe�cients from this formula).

In the OC model, agent 2 chooses action aOC
2 such that

aOC
2

100− aOC
2

=

(
q1

1− q1

)(2s1−1)k ( q2
1− q2

)2s2−1

=(
aOC
1

100− aOC
1

)k (
q2

1− q2

)2s2−1

.

Agent 3 chooses action aOC
3 such that

aOC
3

100− aOC
3

= Π2
i=1

(
qi

1− qi

)(2si−1)k ( q3
1− q3

)2s3−1

=(
aOC
1

100− aOC
1

)k (
q2

1− q2

)(2s2−1)k ( q3
1− q3

)2s3−1

=(
aOC
1

100− aOC
1

)k (
aOC
2

100− aOC
2

)k (
aOC
1

100− aOC
1

)−k2 (
q3

1− q3

)2s3−1

=(
aOC
1

100− aOC
1

)k(1−k)(
aOC
2

100− aOC
2

)k (
q3

1− q3

)2s3−1

.

The same steps apply to any further agent t = 4, 5, ..., T .

Finally, let us consider the ABEE. First of all, recall that in the ABEE βt,i = t− i, that
is, βt,t−k = k for all t = 2, 3, . . . , and k = 1, 2, . . . , (t− 1).

Consider now the system of equations ΓB = I. For t = 2, 3, 4 . . . , the product of the t-th

row vector of Γ and the (t− 1)-th column vector of B gives

−γt,t−1 + βt,t−1 = 0,

from which we obtain that γt,t−1 = 1. For t = 3, 4, 5, . . . , the product of the t-th row vector

of Γ and the (t− 2)-th column vector of B gives
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−γt,t−2 − γt,t−1βt−1,t−2 + βt,t−2 = 0,

from which we obtain that γt,t−2 = 1. For t = 4, 5, 6, ..., the product of the t-th row vector

of Γ and the (t− 3)-th column vector of B gives

−γt,t−3 − γt,t−2βt−2,t−3 − γt,t−1βt−1,t−3 + βt,t−3 = 0,

from which we obtain that γt,t−3 = 0.

Now, let us consider all t = 5, 6, 7, . . . , and k = 4, 5, 6, . . . , (t − 1). The product of the

t-th row vector of Γ and the (t− k)-th column vector of B gives

γt,t−k = −
k−1∑
j=1

γt,t−k+jβt,t−j + βt,t−k

= −
k−1∑
j=1

γt,t−k+jj + k.

On the basis of this equation, observe that the di�erence of γt,t−k−1 and γt,t−k gives

γt,t−k−1 − γt,t−k = −γt,t−k − γt,t−k+1 − γt,t−k+2 − · · · − γt,t−1 + 1.

Similarly, the di�erence between (γt,t−k−2 − γt,t−k−1) and (γt,t−k−1 − γt,t−k) gives

γt,t−k−2 = γt,t−k−1 − γt,t−k.

Moreover, the sum of γt,t−k−2 and γt,t−k−3 gives

γt,t−k−3 = −γt,t−k.

Hence, starting from the three initial values, γt,t−1 = γt,t−2 = 1 and γt,t−3 = 0, this

equation iteratively pins down the whole sequence of
(
γt,t−1, γt,t−2, . . . , γt,1

)
. Speci�cally,(

γt,t−4, γt,t−5, γt,t−6

)
= (−1,−1, 0) ,

(
γt,t−7, γt,t−8, γt,t−9

)
= (1, 1, 0) ,

(
γt,t−10, γt,t−11, γt,t−12

)
=

(−1,−1, 0), and so on. For instance, for subject 10, the weights are
(
γ10,1, γ10,2, γ10,3, . . . , γ10,9

)
=

(0, 1, 1, 0,−1,−1, 0, 1, 1).
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Finally note that, given its cyclical feature, the sequence of weights can be expressed as

γt,t−k = sign
(
sin(k

3
π)
)
, or γt,i = sign

(
sin( t−i

3
π)
)
.

B Testing Di�erences across Treatments

Table B.1: Di�erences across Treatments:
Median Rank-sum Test for Action 1 (p-value)

SL1 vs. SL2 SL1 vs. SL3 SL2 vs. SL3

Period 1 0.999 0.999 0.999
Period 2 0.136 0.520 0.738
Period 3 0.317 0.881 0.317
Period 4 0.738 0.597 0.829
Period 5 0.881
Period 6 0.911
Period 7 0.316
Period 8 0.289
Period 9 0.435
Period 10 0.420

For each period, the test is performed using session-speci�c medians.

Table B.2: Di�erences across Treatments:
Median Rank-sum Test for Action 2 (p-value)

SL1 vs. SL2 SL1 vs. SL3 SL2 vs. SL3

Period 1 0.459 0.834 0.751
Period 2 0.220 0.999 0.243
Period 3 0.218 0.345 0.914
Period 4 0.281 0.244 0.117
Period 5 0.911
Period 6 0.599
Period 7 0.023
Period 8 0.590
Period 9 0.529
Period 10 0.805

For each period, the test is performed using session-speci�c medians.
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C Factoring Out Uninformative Actions

In this section we o�er a robustness check, by factoring out actions that are, presumably,

uninformative. In particular, as a �rst step, we de�ne an action at time i as uninformative

according to the criterion:

(a2i=1 = 50) or (a2i = a2i−1) for i = 2, · · · , t− 1.

To factor out these actions, we eliminate them and renumber the entire sequence (e.g.,

if action 3 is uninformative, then action 3 is eliminated, period 4 becomes period 3, period

5 becomes period 4 and so on).

Figure C.1: Quantile Regressions of Action 1 on Predecessors' Signals

Eliminating Uninformative Periods (Estimated Weights)
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The �gure shows the estimated coe�cients from a median regression of �rst action loglike-
lihood ratios on predecessors' signal loglikelihood ratios after eliminating uninformative
periods. For each period t = 1, . . . , 10, predecessors' signals, si, i = 1, . . . , t − 1, are on
the x-axis; corresponding point estimates and 95% con�dence intervals are on the y-axis,
represented by black dots and dashed capped lines, respectively. Con�dence intervals are
computed by bootstrap (500 replications), clustering at the session level.
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Table C.1: Hypothesis Testing: Weights on Predecessors' Signals (p-values)
Dependent Variable: Action 1 (loglikelihood ratio)

Eliminating Uninformative Periods

HPBE
0 : HBRTNI

0 :
βt,1 = · · · = βt,t−1 = 1 βt,i = 2t−i−1 ∀i = 1, . . . , t− 1

Period 2 0.159 0.159
Period 3 0.000 0.000
Period 4 0.025 0.000
Period 5 0.000 0.000
Period 6 0.000 0.000
Period 7 0.000 0.000
Period 8 0.000 0.000
Period 9 0.000 0.000

HABEE
0 : HOC

0 :
βt,i = t− i ∀i = 1, . . . , t− 1 βt,1 = · · · = βt,t−1

Period 2 0.159 ·
Period 3 0.000 0.999
Period 4 0.000 0.079
Period 5 0.000 0.993
Period 6 0.000 0.582
Period 7 0.000 0.291
Period 8 0.000 0.996
Period 9 0.000 0.986

The table reports tests based on bootstrap standard errors (500 replications), clustering
at the session level.

It is worth noting that this procedure implies a loss of observations for later periods.

In particular, the available observations for t = 10 are 47. Coe�cients for this period are

not reliably estimated. We report them without con�dence intervals and only for the sake

of completeness. For the same reason, we do not report hypothesis testing p-values and

estimates of k for this period.

We have repeated the analysis using a more stringent criterion according to which an

action i is classi�ed as uninformative if and only if

(a2i=1 = 50) or (a2i = a2i−1) or (a2i−1 = 0 or a2i−1 = 100) for i = 2, · · · , t− 1.
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Table C.2: Quantile Regressions of Action 1 on Predecessors' Signals:
Estimation of k under HOC

0 : βt,1 = · · · = βt,t−1

Eliminating Uninformative Periods

95% Con�dence Interval

k̂ lower limit upper limit

Period 2 0.752 0.462 0.992
Period 3 0.650 0.518 0.818
Period 4 0.559 0.438 0.997
Period 5 0.508 0.332 0.647
Period 6 0.422 0.250 0.545
Period 7 0.327 0.183 0.528
Period 8 0.332 0.200 0.508
Period 9 0.272 0.098 0.437

All 0.463 0.317 0.626

The table reports 95% con�dence intervals obtained with bootstrap (500 replications),
clustering at the session level.

The results are similar to those presented here and available upon request.

We have also used a di�erent methodology, by attributing the value si = 0.5 (uninfor-

mative signal) to any uninformative action. The results are again broadly similar to those

presented here and available upon request.

D Distance between a1
t and a2

t−1

As we mention in footnote 27, the theoretical models have strikingly di�erent predictions

about the di�erence between the �rst action chosen by a subject at time t and the second

action (i.e., the observable action) chosen by his immediate predecessor at time t − 1. By

combining expressions (1) and (2) one obtains the following di�erence in loglikelihood ratios:
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∆llr
a1,a2 ≡ ln

(
a1t

100− a1t

)
− ln

(
a2t−1

100− a2t−1

)
=

= (βt,1 − βt−1,1) ln

(
q1

1− q1

)2s1−1

+ (βt,2 − βt−1,2) ln

(
q2

1− q2

)2s2−1

+ . . .

. . .+ (βt,t−1 − βt−1,t−1) ln

(
qt−1

1− qt−1

)2st−1−1

+ ε1t − ε2t−1. (D.1)

According to the PBE, all di�erences in the β coe�cients on the right-hand-side are

equal to 0. This gives the well known result that, in the PBE, the agent simply imitates the

immediate predecessor's action, as this is a su�cient statistics for all the private information

up to that period. In the OC equilibrium, the di�erences in the β coe�cients are all equal to

0, except for the last one, (βt,t−1 − βt−1,t−1), which is negative and constant over time. This

is because βt−1,t−1 = 1 and βt,t−1 < 0 (e.g., 0.488 in our estimation).1 In the BRTNI and

ABEE models, the distance between the loglikelihood ratios is increasing over time, since the

terms of the sum on the right hand side are strictly greater from zero (except the last one).

For instance, in the ABEE the di�erences in the β coe�cients are all equal to 1, except for

the last one which is 0. Hence, if the value of the good is 100 (0), the di�erence in equation

(D.1) becomes, in expectation, larger and positive (negative) over time.

In the �gure below, we report the median of the di�erence

∆ =

∆llr
a1,a2, if st−1 = 1

−∆llr
a1,a2, if st−1 = 0

as observed in the data across periods. Under the assumption that (ε1t − ε2t ) has median 0

conditional on the history of signals, we would expect the median of this di�erence to be

about 0 if the data generating model were the PBE, negative and roughly constant in the

case of the OC, and to exhibit a tendency to increase, in the case of BRTNI and ABEE.

As one can seen, the median di�erence ∆ is negative and roughly constant, in agreement

1One may be tempted to think that an alternative model (or heuristic) with the same implication is a
simple model in which the agent neglects the entire sequence, only looks at the immediate predecessor's action
and �discounts it�. Note, however, that to �discount� an action one would need to know the predecessor's
signal realization, which with this heuristic would not be available.

10



Figure D.1: Median Di�erence of Loglikelihood Ratios of Action 1 and 2 across Periods
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with the OC model.

E Instructions

Welcome to our experiment! We hope you will enjoy it.

You are about to take part in a study on decision making with 9 other participants.

Everyone in the experiment has the same instructions. If something in the instructions is

not clear and you have questions, please, do not hesitate to ask for clari�cation. We will be

happy to answer your questions privately.

Depending on your choices, the other participants' choices and some luck you will earn

some money. You will receive the money immediately after the experiment.

E.1 The Experiment

The experiment consists of 15 rounds of decision making. In each round you will make two

consecutive decisions. All of you will participate in each round.
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What you have to do

In each round, you have simply to choose a number between 0 and 100. You will make

this choice twice, before and after receiving some information. The reason for these choices

is the following. There is a good whose value can be either 0 or 100 units of a �ctitious

currency called �lira.� You will not be told whether the good is worth 0 or 100 liras, but

will receive some information about which value is more likely to have been chosen by a

computer. We will ask you to predict the value of the good, that is, to indicate the chance

that the value is 100 liras.

The value of the good

Whether the good will be worth 0 or 100 liras will be determined randomly at the begin-

ning of each round: there will be a probability of 50% that the value is 0 and a probability

of 50% that it is 100 liras, like in the toss of a coin. The computer chooses the value of the

good in each round afresh. The value of the good in one round never depends on the value

of the good in one of the previous rounds.

What you will know about the value

Although you will not be told the value of the good, you will, however, receive some

information about which value is more likely to have been chosen. For each of you, the

computer will use two �virtual urns� both containing green and red balls. The proportion

of the two types of balls in each urn, however, is di�erent. One urn contains more red than

green balls, whereas the other urn contains more green than red balls. If the value of the

good is 0, you will observe a ball drawn from an urn containing more red balls. If the value

is 100, instead, you will observe a ball drawn from an urn containing more green balls. To

recap:

• If the value is 100, then there are more GREEN balls in the urn.

• If the value is 0, then there are more RED balls in the urn.

Therefore, the ball color will give you some information about the value of the good.

Below we will tell you more about how many balls there are in the urns. First, though, let

us see more precisely what will happen in each round.
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E.2 Procedures for each round

In each of the 15 rounds you will make decisions in sequence, one after the other. There

will be 10 periods. Each of you will make her/his two choices only in one period, randomly

chosen. Since there are 10 participants, this means that all of you will participate in each

round.

The precise sequence of events is the following:

First: the computer program will decide randomly if the good for that round is worth 0

or 100 liras. You will not be told this value. On your screen you will read �Round 1 of 15.

The computer is deciding the value of the good by �ipping a coin.�

Second: the computer program will randomly select who is the �rst person who has to

make a choice. Each of you has the same (1/10th) chance of being selected.

Third: the computer will draw a ball from the �virtual urn� and inform the �rst person

(only the �rst person) of the drawn ball color. The �rst person will see this information on

the screen. No one else will see it. The other participants will be waiting.

Fourth: after the person sees this information, (s)he has to choose a number between 0

and 100. This can be done by moving a slider on the screen (to select a precise number, please,

use the arrows on your keyboard). The decision made will be visible to all participants.

Fifth: the computer will now randomly choose another person. Again, all the remaining

9 people have the same (1/9th) chance of being chosen.

Sixth: this second person, having observed the �rst person's prediction, will be asked to

make her/his prediction, choosing a number between 0 and 100. This decision will not be

visible to other participants.

Seventh: after the decision, the computer will draw a ball from the �virtual urn� and

inform (only) the second person of its color.

Eighth: the second person, after observing the ball color, will now make a new prediction,

choosing again a number between 0 and 100. This choice is visible to all participants.

Ninth: the computer will choose a third person. This person will have to make two

predictions, before and after receiving information, exactly as the second person. The �rst

decision is after having observed the �rst two persons' predictions. The second prediction is

after having observed the ball color too. The decision made after seeing the ball color will

be visible to everyone. Then the computer will choose the fourth person and so on, until all
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ten people have had the opportunity to participate.

Tenth: the computer will reveal the value of the good for the round and the payo� you

earned in the round.

Observation 1: All 10 participants have to make the same type of decision, predicting

the value of the good. However, the �rst person in the sequence is asked to make only one

prediction, while the others will make two. The reason is simple. Since the �rst person knows

nothing, the only sensible prediction is 50, given that there is a 50−50 chance that the value

is 0 or 100 liras. Therefore, if you are the �rst, we do not ask you to make the prediction

before seeing the ball color. Instead, if you are a subsequent person, we will ask you to

make a prediction even before seeing the ball color, just after observing the predecessors'

predictions. Always recall that the predecessors' predictions that you will observe

are the second predictions that they made, that is, the predictions they made

after receiving information about the ball color.

Observation 2: As we said, when it is your turn, the computer will draw a ball from one

of two virtual urns: the urn containing more red than green balls if the value is zero; and

the urn containing more green than red balls if the value is 100. But, exactly how many red

and green balls are there in the urns? If the value is 0, then there are 70 red balls and 30

green balls. If the value is 100, then there are 70 green balls and 30 red balls.

E.3 Your per-round payo�

Your earnings depend on how well you predict the value of the good. If you are the �rst

person in the sequence, your payo� will depend on the only prediction that you are asked

to make. If you are a subsequent decision maker, your payo� will depend on the �rst or the

second prediction you make, with the same chance (like in the toss of a coin).

If you predict the value exactly, you will earn 100 liras. If your prediction di�ers from

the true value by an amount x, you will earn 100 − 0.01x2. This means that the further your

prediction is from the true value, the less you will earn. Moreover, if your mistake is small,

you will be penalized only a small amount; if your mistake is big, you will be penalized more

than proportionally.

To make this rule clear, let us see some examples.
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Example 1: Suppose the true value is 100. Suppose you predict 80. In this case you

made a mistake of 20. We will give you 100 − 0.01 ∗ 202 = 96.0 liras.

Example 2: Suppose the true value is 0. Suppose you predict 10. In this case you made

a mistake of 10. We will give you 100 − 0.01 ∗ 102 = 99 liras.

Example 3: Suppose the true value is 100. Suppose you predict 25. In this case you

made a mistake of 75. We will give you 100− 0.01 ∗ 752 = 43.75 liras.

Example 4: Suppose the true value is 0. Suppose you predict 50. In this case you made

a mistake of 50. We will give you 100− 0.01 ∗ 502 = 75 liras.

Note that the worst you can do under this payo� scheme is to state that you believe that

there is a 100% chance that the value is 100 when in fact it is 0, or you believe that there is

a 100% chance that the value is 0 when in fact it is 100. Here your payo� from prediction

would be 0. Similarly, the best you can do is to guess correctly and assign 100% to the value

which turns out to be the actual value of the good. Here your payo� will be 100 liras.

Note that with this payo� scheme, the best thing you can do to maximize

the expected size of your payo� is simply to state your true belief about what

you think the true value of the good is. Any other prediction will decrease the

amount you can expect to earn. For instance, suppose you think there is a 90% chance

that the value of the good is 100 and, hence, a 10% chance that value is 0. If this is your

belief about the likely value of the good, to maximize your expected payo�, choose 90 as

your prediction. Similarly, if you think the value is 100 with chance 33% and 0 with chance

67%, then select 33.

E.4 The other rounds

We will repeat the procedures described in the �rst round for 14 more rounds. As we said,

at the beginning of each new round, the value of the good is again randomly chosen by the

computer. Therefore, the value of the good in round 2 is independent of the value in round

1 and so on.

15



E.5 The �nal payment

To compute your payment, we will randomly choose (with equal chance) one round among

the �rst �ve, one among the rounds 6 − 10 and one among the last �ve rounds. For each

of these round we will then choose either prediction 1 or prediction 2 (with equal chance),

unless you turn was 1, in which case there is nothing to choose since you only made one

prediction. We will sum the payo�s that you have obtained for those predictions and rounds.

We will then convert your payo� into pounds at the exchange rate of 100 liras = £7. That is,

for every 100 liras you earn, you will get 7 pounds. Moreover, you will receive a participation

fee of £5 just for showing up on time. You will be paid in cash, in private, at the end of the

experiment.
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