Exercise - Week 3

Part 1: Housing Prices and Air Pollution

1 Load Hprice2.dta.

2 Construct the log of the following variables: price, nox and dist.

$$
\begin{aligned}
& \text { gen lprice }=\ln (\text { price }) \\
& \text { gen } \operatorname{lnox}=\ln (\text { nox }) \\
& \text { gen ldist }=\ln (\text { dist })
\end{aligned}
$$

3 Perform the following regression:

$$
\ln \text { price }_{i}=\beta_{0}+\beta_{1} \ln \text { nox }_{i}+\beta_{2} \ln \text { dist }_{i}+\beta_{3} \text { rooms }+\beta_{4} \text { stratio }+u_{i}
$$

What is the elasticity of housing prices with respect to the change of the amount of nitrogen oxide?

4 We want to test for the following null hypothesis:

$$
\begin{array}{ll}
H_{0} & : \quad \beta_{1}=1 \\
H_{A} & : \quad \beta_{1} \neq 1
\end{array}
$$

- Construct the t-statistic.
- Compute the 95% confidence interval $\left(t_{0.025}=1.96\right)$.
- Compute the 99% confidence interval $\left(t_{0.005}=2.57\right)$.
- What conclusion can you reach for the above null hypothesis.

Part 2: Global Warming

1 Load the global.dta data set.

2 Construct the log of the following variables: temperature, Co2 concentration:

```
gen lntemp = ln(temp)
gen lnco2 = ln(co2)
```

3 Construct dummies for each half centuries. To this end, type:

```
gen dperiod = year
recode dperiod min /1800=1 1800/1850=2 1850/1900=3 1900/1950=4 1950/max =
```

5
tab dperiod, gen(dperiod)

4 Discuss what kind of problem you would face in the following regression:

$$
\ln \text { temp }_{t}=\beta_{0}+\beta_{1} \text { dperiod }_{t 1}+\beta_{2} \text { dperiod }_{t 2}+\beta_{3} \text { dperiod }_{t 3}+\beta_{4} \text { dperiod }_{t 4}+\beta_{5} \text { dperiod }_{t 5}+\varepsilon_{t}
$$

5 Perform the following regression:

$$
\ln \text { temp }_{t}=\beta_{0}+\beta_{2} \text { dperiod }_{t 2}+\beta_{3} \text { dperiod }_{t 3}+\beta_{4} \text { dperiod }_{t 4}+\beta_{5} \text { dperiod }_{t 5}+\varepsilon_{t}
$$

Is the temperature higher in the 20th century compared to the period $1700-1800 ?$

6 Perform the following regression:

$$
\ln \text { temp }_{t}=\beta_{0}+\beta_{1} \ln \text { co } 2_{t}+\beta_{2} \text { dperiod }_{t 2}+\beta_{3} \text { dperiod }_{t 3}+\beta_{4} \text { dperiod }_{t 4}+\beta_{5} \text { dperiod }_{t 5}+\varepsilon_{t}
$$

Interpret the coefficients on the time periods. Are there any changes in the estimates with and without including lnco2? If so, why?

7 Test for the following null hypothesis:

$$
H_{0}: \beta_{2}=\beta_{3}=\beta_{4}=\beta_{5}=0 .
$$

To this end, compute first the R^{2} of the unrestricted model and then the R^{2} of the restricted one. Compute the F ratio. (The critical value is equal to 2.37).

8 Test for the following null and alternative hypotheses:

$$
\begin{array}{ll}
H_{0}: & \beta_{2}=\beta_{3}, \beta_{4}=\beta_{5} \\
H_{A} & : \\
\beta_{2} \neq \beta_{3}, \beta_{4} \neq \beta_{5}
\end{array}
$$

(The critical value is equal to 3.00).

