Univariate Time Series

Fall 2008
A time series Y_t is a process (or data) observed in sequence over time, $t = 1, \ldots, T$.

- Macroeconomic series: e.g., inflation rate, GDP, unemployment, etc.
- Temperature over time in global warming
- Monthly or annual returns of financial assets

The key issue in time series is temporal dependence. In order to have a meaningful regression analysis, we need some restrictions on temporal dependence.
A time series Y_t is a process (or data) observed in sequence over time, $t = 1, \ldots, T$.

- Macroeconomic series: e.g., inflation rate, GDP, unemployment,....
A time series Y_t is a process (or data) observed in sequence over time, $t = 1, \ldots, T$.

- macroeconomic series: e.g., inflation rate, GDP, unemployment,
- temperature over time in global warming
A time series Y_t is a process (or data) observed in sequence over time, $t = 1, \ldots, T$.

- macroeconomic series: e.g., inflation rate, GDP, unemployment,
- temperature over time in global warming
- monthly or annual returns of financial assets
A time series Y_t is a process (or data) observed in sequence over time, $t = 1, \ldots, T$.

- macroeconomic series: e.g., inflation rate, GDP, unemployment,....
- temperature over time in global warming
- monthly or annual returns of financial assets

The key issue in time series is **temporal dependence**.
A time series Y_t is a process (or data) observed in sequence over time, $t = 1, \ldots, T$.

- macroeconomic series: e.g., inflation rate, GDP, unemployment,....
- temperature over time in global warming
- monthly or annual returns of financial assets

The key issue in time series is **temporal dependence**.

In order to have a meaningful regression analysis, we need some restrictions on temporal dependence.
Example: Disposal income and consumption in USA
Example: Average temperature in Central London
Example: Return on three-month T-bills in USA
The two main economic problems from time series are **dynamic causal effects** and **economic forecasting**.
The two main economic problems from time series are **dynamic causal effects** and **economic forecasting**.

(Dynamic causal effect) What is the effect of X on Y over time?

(Economic forecasting) What are predicted future values of Y, given available information?
The two main economic problems from time series are **dynamic causal effects** and **economic forecasting**.

(Dynamic causal effect) What is the effect of X on Y over time?

- the short-run/long-run effect of a change in an interest rate (by central bank) on inflation

(Economic forecasting) What are predicted future values of Y, given available information?

- average temperature in 2050? The forecasting is not necessarily based on the causality relationship.
The two main economic problems from time series are **dynamic causal effects** and **economic forecasting**.

(Dynamic causal effect) What is the effect of X on Y over time?
- the short-run/long-run effect of a change in an interest rate (by central bank) on inflation
- the effect of a decrease of carbon dioxide (by regulation) on global warming in 1/10/100 years later

(Economic forecasting) What are predicted future values of Y, given available information?
The two main economic problems from time series are **dynamic causal effects** and **economic forecasting**.

(Dynamic causal effect) What is the effect of X on Y over time?

- the short-run/long-run effect of a change in an interest rate (by central bank) on inflation
- the effect of a decrease of carbon dioxide (by regulation) on global warming in 1/10/100 years later

(Economic forecasting) What are predicted future values of Y, given available information?
The two main economic problems from time series are **dynamic causal effects** and **economic forecasting**.

(Dynamic causal effect) What is the effect of X on Y over time?
- the short-run/long-run effect of a change in an interest rate (by central bank) on inflation
- the effect of a decrease of carbon dioxide (by regulation) on global warming in 1/10/100 years later

(Economic forecasting) What are predicted future values of Y, given available information?
- average temperature in 2050?
The two main economic problems from time series are **dynamic causal effects** and **economic forecasting**.

(Dynamic causal effect) What is the effect of X on Y over time?

- the short-run/long-run effect of a change in an interest rate (by central bank) on inflation
- the effect of a decrease of carbon dioxide (by regulation) on global warming in 1/10/100 years later

(Economic forecasting) What are predicted future values of Y, given available information?

- average temperature in 2050?
- the forecasting is not necessarily based on the causality relationship.
The two main economic problems from time series are dynamic causal effects and economic forecasting.

(Dynamic causal effect) What is the effect of X on Y over time?

- the short-run/long-run effect of a change in an interest rate (by central bank) on inflation
- the effect of a decrease of carbon dioxide (by regulation) on global warming in 1/10/100 years later

(Economic forecasting) What are predicted future values of Y, given available information?

- average temperature in 2050?
- the forecasting is not necessarily based on the causality relationship.

We can separate time series into two categories: univariate (Y_t is scalar) and multivariate (Y_t is vector-valued).
Stationarity: future will be like past

A time series \(\{Y_t\} \) is **covariance stationary** if its mean and (co-)variances are constant across time periods:

\[
E(Y_t) = \mu, \quad Var(Y_t) = \sigma^2 \quad \text{for all } t
\]

\[
Cov(Y_t, Y_{t+k}) = \gamma(k) \quad \text{for all } t \text{ and } k
\]

\(\gamma(k) \) is called the **autocovariance** function and \(\rho(k) = \gamma(k) / \gamma(0) \) is the **autocorrelation** function.
A time series \(\{ Y_t \} \) is *covariance stationary* if its mean and (co-)variances are constant across time periods:

\[
E(Y_t) = \mu, \quad \text{Var}(Y_t) = \sigma^2 \quad \text{for all } t
\]

\[
\text{Cov}(Y_t, Y_{t+k}) = \gamma(k) \quad \text{for all } t \text{ and } k
\]

\(\gamma(k) \) is called the *autocovariance* function and \(\rho(k) = \gamma(k) / \gamma(0) \) is the *autocorrelation* function.

\(\{ Y_t \} \) is said to be *strictly stationary* if the joint distribution of \((Y_t,\ldots,Y_{t+k}) \) is independent of all \(t \) and \(k \).
Stationarity: future will be like past

- A time series \(\{ Y_t \} \) is covariance stationary if its mean and (co-)variances are constant across time periods:

\[
E(Y_t) = \mu, \quad \text{Var}(Y_t) = \sigma^2 \quad \text{for all } t
\]

\[
\text{Cov}(Y_t, Y_{t+k}) = \gamma(k) \quad \text{for all } t \text{ and } k
\]

\(\gamma(k) \) is called the autocovariance function and \(\rho(k) = \gamma(k) / \gamma(0) \) is the autocorrelation function.

- \(\{ Y_t \} \) is said to be strictly stationary if the joint distribution of \((Y_t, \ldots, Y_{t+k}) \) is independent of all \(t \) and \(k \).

- Thus, a stationary time series is one whose probability distributions are stable over time.
A time series process that is not stationary is called a *nonstationary* process.
Nonstationarity

- A time series process that is not stationary is called a nonstationary process.
 - changing mean:
 \[Y_t = \beta_0 + \beta_1 t + u_t \]
 - changing variance:
 \[Y_t = Y_{t-1} + u_t \]
 This process is called the random walk.
 - changing mean and variance:
 \[Y_t = \beta_0 + Y_{t-1} + u_t \]
 This process is called the random walk with drift.

It is easier to spot certain nonstationary series rather than stationary ones.
A time series process that is not stationary is called a nonstationary process.

- Changing mean:
 \[Y_t = \beta_0 + \beta_1 t + u_t \]

- Changing variance:
 \[Y_t = Y_{t-1} + u_t \]

This process is called the random walk.
Nonstationarity

- A time series process that is not stationary is called a *nonstationary* process.
 - changing mean:
 \[Y_t = \beta_0 + \beta_1 t + u_t \]
 - changing variance:
 \[Y_t = Y_{t-1} + u_t \]

 This process is called the *random walk*.
 - changing mean and variance:
 \[Y_t = \beta_0 + Y_{t-1} + u_t \]

 This process is called the *random walk with drift*.
Nonstationarity

- A time series process that is not stationary is called a nonstationary process.
 - changing mean:
 \[Y_t = \beta_0 + \beta_1 t + u_t \]
 - changing variance:
 \[Y_t = Y_{t-1} + u_t \]
 This process is called the random walk.
 - changing mean and variance:
 \[Y_t = \beta_0 + Y_{t-1} + u_t \]
 This process is called the random walk with drift.
- It is easier to spot certain nonstationary series rather than stationary ones.
Example 1: Changing mean

\[Y_t = \beta_0 + \beta_1 t + u_t, \text{ where } \beta_0 = 0, \beta_1 = 1 \text{ and } u_t \sim iid N(0,1) \]
Example 2: Random walk

- $Y_t = Y_{t-1} + u_t$, where $Y_0 = 0$ and $u_t \sim iid N(0,1)$
Example 3: Random walk with drift

\[Y_t = \beta_0 + Y_{t-1} + u_t, \text{ where } \beta_0 = 1, Y_0 = 0 \text{ and } u_t \sim iid \ N(0, 1) \]
In most of stationary time series analysis, we will still use the OLS estimation method.
Ergodicity

- In most of *stationary* time series analysis, we will still use the OLS estimation method.
- In order to have properties of consistency and asymptotic normality of estimators, we need another property of stationary time series.
Ergodicity

- In most of *stationary* time series analysis, we will still use the OLS estimation method.
- In order to have properties of consistency and asymptotic normality of estimators, we need another property of stationary time series.
- A stationary time series is (loosely) said to be **ergodic** if $\gamma(k) \to 0$ as $k \to \infty$. Sometime a similar property is called *weakly dependent*.
In most of *stationary* time series analysis, we will still use the OLS estimation method.

In order to have properties of consistency and asymptotic normality of estimators, we need another property of stationary time series. A stationary time series is (loosely) said to be **ergodic** if $\gamma(k) \to 0$ as $k \to \infty$. Sometime a similar property is called **weakly dependent**.

(Ergodic Theorem) If Y_t is strictly stationary and ergodic and $E|Y_t| < \infty$, then as $T \to \infty$,

$$
\frac{1}{T} \sum_{t=1}^{T} Y_t \to_p E(Y_t)
$$
In most of *stationary* time series analysis, we will still use the OLS estimation method.

In order to have properties of consistency and asymptotic normality of estimators, we need another property of stationary time series.

A stationary time series is (loosely) said to be **ergodic** if \(\gamma(k) \to 0 \) as \(k \to \infty \). Sometime a similar property is called *weakly dependent*.

(Ergodic Theorem) If \(Y_t \) is strictly stationary and ergodic and \(E|Y_t| < \infty \), then as \(T \to \infty \),

\[
\frac{1}{T} \sum_{t=1}^{T} Y_t \to_p E(Y_t)
\]

Using the Ergodic theorem, we can establish the consistency and asymptotic normality of OLS estimators in the regression with stationary and ergodic time series.
We first focus on the case with univariate time series, \{Y_t\}^T_{t=1}. Let \(I_{t-1} = \{Y_{t-1}, Y_{t-2}, \ldots\}\) denote the past history of the series.
We first focus on the case with univariate time series, \(\{Y_t\}_{t=1}^T \). Let
\(I_{t-1} = \{Y_{t-1}, Y_{t-2}, \ldots\} \) denote the past history of the series.

The primary example in the univariate time series is a model of autoregression specifying that only a finite number of past lags matter:

\[
E(Y_t|I_{t-1}) = E(Y_t|Y_{t-1}, \ldots, Y_{t-k}).
\]
We first focus on the case with univariate time series, \(\{ Y_t \}^T_{t=1} \). Let \(I_{t-1} = \{ Y_{t-1}, Y_{t-2}, \ldots \} \) denote the past history of the series.

The primary example in the univariate time series is a model of autoregression specifying that only a finite number of past lags matter:

\[
E (Y_t | I_{t-1}) = E (Y_t | Y_{t-1}, \ldots, Y_{t-k}).
\]

An autoregressive process of order \(k \), called \(AR(k) \), is

\[
Y_t = \mu + \rho_1 Y_{t-1} + \ldots + \rho_k Y_{t-k} + u_t,
\]

where

\[
E (u_t | I_{t-1}) = 0.
\]
AR(1) Model

- AR(1) Model:

\[Y_t = \mu + \rho Y_{t-1} + u_t \]

- if \(|\rho| < 1\), then

\[E(Y_t) = \frac{\mu}{1 - \rho} \]
\[\text{Var}(Y_t) = \frac{\sigma^2}{1 - \rho^2} \]
\[\text{Cov}(Y_t, Y_{t-k}) = \sigma^2 \frac{\rho^k}{1 - \rho^2} \]

- If \(|\rho| < 1\), the process \(\{Y_t\}\) is stationary and ergodic.

- (Estimation) In order to estimate \(\mu\) and \(\rho\), we just need to run the OLS regression of \(Y_{t-1}\) on \(Y_t\).
We model the consumption growth series in USA as AR(1):

$$gc_t = \mu + \rho gc_{t-1} + u_t$$

<table>
<thead>
<tr>
<th></th>
<th>Coeff.</th>
<th>Std. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>gc_1</td>
<td>0.45</td>
<td>0.156</td>
</tr>
<tr>
<td>constant</td>
<td>0.01</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Another example is a model of moving average process of order q, $\{Y_t\}$, that is a weighted sum of lagged i.i.d. shocks:

$$Y_t = \mu + u_t + \lambda_1 u_{t-1} + \ldots + \lambda_q u_{t-q}$$
Another example is a model of moving average process of order q, $\{Y_t\}$, that is a weighted sum of lagged i.i.d. shocks:

$$Y_t = \mu + u_t + \lambda_1 u_{t-1} + \ldots + \lambda_q u_{t-q}$$

The simplest case is a moving average process of order 1, called $MA(1)$:

$$Y_t = \mu + u_t + \lambda u_{t-1}$$
Another example is a model of moving average process of order q, \{Y_t\}, that is a weighted sum of lagged i.i.d. shocks:

$$Y_t = \mu + u_t + \lambda_1 u_{t-1} + ... + \lambda_q u_{t-q}$$

The simplest case is a moving average process of order 1, called $MA(1)$:

$$Y_t = \mu + u_t + \lambda u_{t-1}$$

$$E(Y_t) = \mu, \ Var(Y_t) = \left(1 + \lambda^2\right)\sigma^2$$

$$\text{Cov}(Y_t, Y_{t-1}) = \gamma(1) = \lambda\sigma^2$$

$$\text{Cov}(Y_t, Y_{t-k}) = \gamma(k) = 0 \text{ for } k \geq 2$$
Another example is a model of moving average process of order q, $\{Y_t\}$, that is a weighted sum of lagged i.i.d. shocks:

$$Y_t = \mu + u_t + \lambda_1 u_{t-1} + \ldots + \lambda_q u_{t-q}$$

The simplest case is a moving average process of order 1, called $MA(1)$:

$$Y_t = \mu + u_t + \lambda u_{t-1}$$

Thus, an $MA(1)$ process is stationary and ergodic.

$$E(Y_t) = \mu, \ Var(Y_t) = \left(1 + \lambda^2\right)\sigma^2$$
$$Cov(Y_t, Y_{t-1}) = \gamma(1) = \lambda \sigma^2$$
$$Cov(Y_t, Y_{t-k}) = \gamma(k) = 0 \text{ for } k \geq 2$$