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Syllabus I

This is an introductory econometrics course which

assumes no prior knowledge on econometrics;
focuses on both theoretical results and practical uses of econometrics in
(environmental) economic problems;
teaches a statistical software, STATA, in tutorial classes.

Lecture and tutorial timetables

Lectures: every Monday (starting from Oct. 6 and ending on Dec. 8) ,
9~11 am, B03 (Drayton House).
Tutorials: every Tuesday (starting from Oct. 7 and ending on Dec. 9),
9~11 am, B17 (computer room).
The tutorial classes will be given by TA, Jelmer Ypma
(j.ypma@ucl.ac.uk).
O¢ ce hour: Monday, 3~4 pm and by appointment.
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Syllabus II

Main Textbook

J. Wooldridge (2008), Introductory Econometrics: A Modern
Approach, 4th Ed., South-Western.

Course materials

Lecture notes and exercises are available in my teaching webpage,
http://www.homepages.ucl.ac.uk/~uctpsc0/Teaching.html.
Sample data for STATA exercises are also available.
The �nal exam and its answer keys from previous years are available.
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Course Outline I

1 Linear regression models - Wooldridge Ch. 2~5 and 7

simple regression to multiple regression, ordinary least squares (OLS)
estimation and goodness of �t.
hypothesis testing and large sample properties of OLS

2 Heteroskedasticity and Autocorrelation - Wooldridge Ch. 8, 10 and 12

consequences of heteroskedasticity and autocorrelation
testing for heteroskedasticity and autocorrelation
generalized least squares (GLS) estimation
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Course Outline II

3 IV estimation and simultaneous equations models - Wooldridge Ch.
15 and 16

endogeneity, instrumental variables (IV) estimation and two-stage least
squares
simultaneity bias, identi�cation and estimation of simultaneous
equations models

4 Limited dependent variable models - Wooldridge Ch 17

problems of using OLS for binary response models
maximum likelihood estimation, logit and probit models
ordered probit model, poisson regression model
censored dependent variables and Tobit models

5 Some simple panel data analysis - Wooldridge Ch 13

6 Time series analysis - Wooldridge Ch. 12 and 18

stationarity and nonstationarity; AR and MA processes; unit root
VAR; Granger causality

Environmental Econometrics (GR03) Fall 2008 5 / 37



What is Econometrics?

Statistical tools applied to economic problems

estimate economic relationships;
test economic theories modeling the causality of social and economic
phenomena;
evaluate the impact and e¤ectiveness of a given policy;
forecast the impact of future policies.

It aims at providing not only a qualitative but also a quantitative
answer.
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Example 1: Global Warming

Measuring the extent of global warming

When did it start? How large is the e¤ect?
Has it increased more in the last 50 years?

What are the causes of global warming?

Does carbon dioxide cause global warming?
Are there any other determinants?

What would be average temerature if carbon dioxide concentration is
reduced by 10%?
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Average Temperature in Central England (1700~1997)
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Atmospheric Concentration of Carbon Dioxide
(1700~1997)
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Example 2: Housing Prices and Air Pollution

Measuring the e¤ect of air pollution on housing prices

Does air pollution matter in determining housing prices?
If so, how much?

Are there other determinants?

physical features of houses (e.g., number of rooms)
distance from workplaces
the quality of education in community
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Median Housing Prices and Nitrogen Oxide (A sample of
506 communites in the Boston Area)
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Median Housing Prices and Room Numbers
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Causality

We often observe that two variables are correlated.

Higher education leads higher income.
Individual smoking is related to peer smoking.

If Y is causally related to X , then chaning X will lead to a change in
Y .

Correlation may not be due to causal relationships.

Some common factor may a¤ect both variables.
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Causality and Ceteris Paribus

The notion of ceteris paribus (holding other variables constant) plays
an important role in causal analysis.

Holding innate ability constant, how much does an increase in
education increase in income?
Holding the individual taste of smoking, how much does an increase in
peer smoking increase in individual smoking?

This course will introduce how to deal with the issue of causality and
ways of doing causal analysis.
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The Simple Regression Model

The simplest form in the regression model is the two variable linear
regression model, called the Simple Linear Regression Model.

Yi = α+ βXi + ui ,

Yi : dependent variable (explained variable; regressand)
Xi : independent variable (explanatory variable; regressor)
ui : error term
i = 1, ...,N: the number of observation

The error term or disturbance, u, represents all other factors a¤ecting
Y other than X .
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Examples

Tempi = α+ βYeari + ui ,

Hpricei = α+ βNoxi + ui .

X has a linear e¤ect on Y if all other factors are held constant.

∆Y = β∆X if ∆u = 0.

The linearity implies that a one-unit change in X has the same e¤ect
on Y , regardless of the intial value of X .

The slope parameter in the relationship between Y and X is meant to
capture the e¤ect of X on Y .

In order to interpret so, we need to make an assumption regarding
how u and X are UNrelated.
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Assumption 1

Assumption (Zero Conditional Mean)

E (ujX ) = 0.

It says that for any given value of X , the average of the error term u
is equal to 0.

Thus, observing a high or a low value of X does not imply a high or a
low value of u. That is, X and u are uncorrelated.

Example - wage equation

Assume that u only re�ects innate ability.

E (ujyears of education) = 0

The zero-conditional-mean assumption requires that the average level
of ability is the same regardless of years of education. Is it reasonable?
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An Implication of Zero Conditional Mean Assumption

The zero conditional mean assumption implies that the population
regression function, E (Y jX ), is a linear function of X .

E (Y jX ) = α+ βX

For any given value of X , the distribution of Y is centered around
E (Y jX ). (�gure)
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Regression Problem - Least Squares

Consider a set of data f(Xi ,Yi )gNi=1 and we want to obtain estimates
of the intercept and slope.

The most popular method in econometrics is the least squares
estimation.

choose bα and bβ to minimize the sum of squared residuals

N

∑
i=1

bu2i = N

∑
i=1

�
Yi � bα� bβXi�2 .

The estimates given from this minimization problem is called the
ordinary least squares (OLS).

Using the OLS estimation, we have the estimated regression line for
the unknown population regression function (�gure).
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An Example: Global Warming

The OLS estimated regression line is given by

Tempi = 6.45+ 0.0015� Yeari .
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Model Speci�cation

Linear model
Yi = α+ βXi + ui

When X goes up by 1 unit, Y goes by β units.

Log-log model (constant elasticity model)

lnYi = α+ β lnXi + ui

When X goes up by 1%, Y goes up by β%.

Log-linear model
lnYi = α+ βXi + ui

When X goes up by 1 unit, Y goes up by 100β%.
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Example 1: Housing Prices and Air Pollution

The estimated regression line is given

lnHpricei = 11.71� 1.04� lnNoxi .
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Example 2: Wage Equation

The estimated regression line is given

lnWagei = 0.58+ 0.0083� Educi .
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The Structure of Data

Times Series Data

Data on variables observed time. Examples include stock prices,
consumer price index, annual homicide rates, GDP, and temperature
changes cross time.

Cross Section Data

Data at a given point in time on individuals, households or �rms.
Examples are data on expenditures, income and employment (say, in
1999).

Panel or Longitudinal Data

Data on a time series for each cross-sectional member.
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Type of Variables

Continuous

temperature; wage; housing prices.

Categorical/Qualitative

ordered

years of schoolding; survey answers such that small/medium/large.

unordered

decisions such as Yes/No; gender(male/female).

The course will explain later how to deal with qualitative dependent
variables.
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Properties of OLS
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First-order Conditions

The least squares problem, as a reminder, is

minbα,bβ
N

∑
i=1
bu2i = N

∑
i=1

�
Yi � bα� bβXi�2 ,

The �rst-order conditions (FOC) are given by

∂ ∑N
i=1 bu2i
∂bα = �2

N

∑
i=1

�
Yi � bα� bβXi� = 0,

∂ ∑N
i=1 bu2i
∂bβ = �2

N

∑
i=1

�
Yi � bα� bβXi�Xi = 0.
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The OLS Estimator

Solving the two FOC equations, we have the OLS estimators for the
intercept and the slope parameters:

bα = Y � bβX ,
bβ = ∑N

i=1

�
Xi � X

� �
Yi � Y

�
∑N
i=1

�
Xi � X

�2 ,

where Z = ∑N
i=1 Zi/N. We need a condition that

∑N
i=1

�
Xi � X

�2
> 0.

The estimate of the slope coe¢ cient is simply the sample covariance
between X and Y divided by the smaple variance of X .

(Diagression) An estimator is a random variable and an estimate is a
realization of an estimator.
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Algebraic Properties

Property 1: The sum of OLS residuals in zero.

N

∑
i=1
bui = N

∑
i=1

�
Yi � bα� bβXi� = 0.

Property 2: The sample covariance between the independent variable
X and the OLS residual bu is zero.

N

∑
i=1
Xibui = N

∑
i=1
Xi
�
Yi � bα� bβXi� = 0.

Property 3: The OLS estimates decompose each Yi into a �tted valuebYi and a residual bui .
Yi = bYi + bui =) Y = bY .
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Goodness of Fit I

We want to measure how well the model �ts the data.

The R-squared of the regression is de�ned as the ratio of the
explained sum of squares to the total sum of squares.

Total sum of squares (TSS): TSS = ∑Ni=1
�
Yi � Y

�2
.

Explained sum of squares (ESS)

ESS =
N

∑
i=1

�bYi � Y �2 = N

∑
i=1

hbβ �Xi � X �i2 .
Residual sum of squares (RSS): RSS = ∑Ni=1 bu2i .
The R-squared of the regression is

R2 =
ESS
TSS

= 1� RSS
TSS

.
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Goodness of Fit II

The R-squared is a measure of how much of the variance of Y is
explained by th regressor X .

The value of R-squared is always between 0 and 1. If R-squared is
equal to 1, then OLS provides a perfect �t to the data.

A low R-squared is not necessarily an indication that the model is
wrong. It is simply that the regressor has low explanatory power.
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An Example: Housing Prices and Air Pollution

Variable Coe¢ cient

lnNox -1.043
constant 11.71
Model sum of squares 22.29
Residual sum of squares 62.29
Total sum of Squares 84.58
R-squared 0.26
Number of observation 506
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Statistical Properties of OLS

Given a speci�c sample of data f(Xi ,Yi )gNi=1, bα and bβ are realized
values of the OLS estimator in the simple linear regression model.

It means that if we have a di¤erent sample from the same population,
then we may have di¤erent values of the slope and intercept
estimates.

We want the estimators to have desirable properties:

Unbiasedness
E¢ ciency
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Assumptions on the Simple Linear Regression Model

Assumption 1: Zero Conditional Mean

E (ui jX ) = 0.

Assumption 2: Homoskedasticity

Var (ui jX ) = E [ui � E (ui jX ) jX ]2 = σ2.

Assumption 3: No correlation among error terms

Cov (ui , uj jX ) = 0, 8i 6= j .

Assumption 4: Su¢ cient variation in X

Var (X ) > 0.
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Unbiasedness

De�nition: Estimators bα and bβ are unbiased if
E (bα) = α and E

�bβ� = β.

Unbiasedness does NOT mean that the estimate we get with a
particular sample is equal to the true value.

If we could inde�nitely draw random samples of the same size N from
the population, compute an estimate each time, and then average
these estimates over all random samples, we would obtain the true
value.
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An Example

• Suppose the true model is

Yi = 1 + 2Xi + ui, ui ∼ iid N (0, 1) .

• We generate a set of random samples, each of which con-

tains 14 observations.

bα bβ
Random Sample 1 1.2185099 1.5841877

Random Sample 2 0.8250200 2.5563998

Random Sample 3 1.3752522 1.3256603

Random Sample 4 0.9216356 2.1068873

Random Sample 5 1.0566855 2.1198698

Random Sample 6 1.0482750 1.8185249

Random Sample 7 0.9140797 1.6573014

Random Sample 8 0.7885023 2.9571939

Random Sample 9 0.6581880 2.2935987

Random Sample 10 1.0852489 2.3455551

Average across 10 random samples 0.9891397 2.0765179

Average across 500 random samples 0.9899374 2.0049863



Unbiasedness of OLS Estimator

• Recall that the OLS estimators of the intercept
and the slope are

bα = Y − bβX
and

bβ = PN
i=1

³
Xi −X

´ ³
Yi − Y

´
PN
i=1

³
Xi −X

´2 .

• First note that within a sample
Y = α+ βX + u.

Hence, for any i = 1, ..., N ,

Yi − Y = β
³
Xi −X

´
+ ui − u.



• Substitute this in the expression for bβ:
bβ =

PN
i=1

·
β
³
Xi −X

´2
+
³
Xi −X

´
(ui − u)

¸
PN
i=1

³
Xi −X

´2
= β +

PN
i=1

³
Xi −X

´
(ui − u)PN

i=1

³
Xi −X

´2 .

The second part of the right-hand side is called

the sampling error. If the estimator is unbiased,

then this error will have expected value zero.

•

E
³bβ|X´ = β +E

PN
i=1

³
Xi −X

´
(ui − u)PN

i=1

³
Xi −X

´2 |X


= β +

PN
i=1

³
Xi −X

´
E [(ui − u) |X]PN

i=1

³
Xi −X

´2
= β, using which assumption?



• Now,
bα = Y − bβX
= α+

³
β − bβ´X + u.

Then,

E (bα|X) = α+E
h³
β − bβ´ |XiX + E (u|X)

= α.



Variances of the OLS Estimators

• We have shown that the OLS estimator is unbi-
ased under the assumptions.

• But how sensitive are the results to random changes
to our sample? The variance of the estimators is

a measure for this question.

• The definition of the variance is
V ar

³bβ|X´ = E ·³bβ − E ³bβ´´2 |X¸ .
• Recall that

E
³bβ´ = β

and

bβ − β =

PN
i=1

³
Xi −X

´
(ui − u)PN

i=1

³
Xi −X

´2 .



• Thus,

V ar
³bβ|X´ = E


PN

i=1

³
Xi −X

´
(ui − u)PN

i=1

³
Xi −X

´2

2

|X


=

1·PN
i=1

³
Xi −X

´2¸2
×
 PN

j=1
PN
i=1

³
Xi −X

´ ³
Xj −X

´
×E

h
(ui − u)

³
uj − u

´
|X
i 

• From Assumption 2 (homoskedasticity) and Ass-

sumption 3 (no autocorrelation),

E
h
(ui − u)2 |X

i
= σ2

and

E
h³
(ui − u)

³
uj − u

´´
|X
i
= 0, ∀i 6= j.



• Then,

V ar
³bβ|X´ =

σ2PN
i=1

³
Xi −X

´2
=

1

N

σ2dV ar (X)
.

• Properties of the variance of bβ
- The variance increases with the variance of the

error term, σ2.

- The variance decreases with the variance of X,dV ar (X).

- The variance decreases with the sample size, N .

- The standard error is the square root of the

variance:

SE
³bβ|X´ = r

V ar
³bβ|X´.



• In practice, we do not know the variance of the er-
ror term, σ2, which needs to be estimated. Using

the residuals, bui, we have an unbiased estimator
of σ2:

bσ2 = PN
i=1 bu2i
N − 2 =

RSS

N − 2.



An Example: Housing Prices and Air Pollution

Variable Coe¢ cient Std. Err.

logNox �1.043 0.078
constant 11.71 0.132
R-squared 0.26
Number of observation
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Efficiency

• An estimator is efficient if given the assumptions
we make, its variance is the smallest possible in
the class of estimators we consider.

• We consider the class of linear unbiased estima-
tors. An estimator is linear if and only if it can
be expressed as a linear function of the data on
the dependent variable.

• Note that the OLS estimator is a linear estimator:

bβ = PN
i=1

³
Xi −X

´
PN
i=1

³
Xi −X

´2Yi −
PN
i=1

³
Xi −X

´
YPN

i=1

³
Xi −X

´2
• Consider another linear estimator of the slope.
Define Zi = X2

i and a slope estimator as

eβ = PN
i=1

³
Zi − Z

´ ³
Yi − Y

´
PN
i=1

³
Zi − Z

´ ³
Xi −X

´.



Then,

E
heβ|Xi = β. (why?)

• It can be also shown that
V ar

³bβ|X´ ≤ V ar
³eβ|X´ .

• In fact, the OLS estimator has the smallest vari-
ance among the class of linear unbiased estima-

tors, under the assumptions we made.



The Gauss Markov Theorem

Given the assumptions we made, the OLS estimator is a Best Linear
Unbiased Estimator (BLUE).
The means that the OLS estimator is the most e¢ cient (least
variance) estimator in the class of linear unbiased estimator.
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