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Hypothesis Testing

Examples:

Does the increase of Co2 concentration increase the average
temperature?
Is the elasticity of housing prices to nitrogen oxide equal to one?
Are non-whites (or females) discriminated against in hiring?

Devising methods for answering such questions, using a sample of
data, is known as hypothesis testing.

Environmental Econometrics (GR03) HT Fall 2008 2 / 22



Hypothesis I

A hypothesis takes the form of a statement of the true value for a
coe¢ cient or for an expression involving the coe¢ cient.

The hypothesis to be tested is called the null hypothesis, H0.
The hypothesis against which the null is tested is called the alternative
hypothesis, HA.

Example: Consider the following regression model:

lnHpricei = β0 + β1 lnNoxi + β2roomsi + β3stratioi + β4 ln disti + ui

H0 : β1 = 1,

HA : β1 6= 1

Rejecting the null hypothesis does not imply accepting the alternative.
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Hypothesis II

In hypothesis testing, we can make two kinds of mistakes.

A Type I Error is rejecting H0 when it is true. The probability of a
Type I error is called the signi�cance level, usually denoted by α.

Classical hypothesis testing requires that we initially specify a
sign�cance level for a test, usually α = 0.10, 0.05, and 0.01.

A Type II Error is failing to reject H0 when it is false. The power of
a test is just one minus the probability of a Type II error.

Once we have chosen the signi�cance level, we would like to maximize
the power of a test against all relevant alternatives.

In order to test a null hypothesis against an alternative, we need to
choose a test statistic and a critical value.
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Testing hypothesis about a single population parameter

Consider the following multiple regression model:

Yi = β0 + β1Xi1 + � � �+ βkXik + ui .

We wish to test the hypothesis that βj = b where b is some known
value (e.g., zero) against the alternative that βj is not equal to b:

H0 : βj = b

HA : βj 6= b
To test the null hypothesis, we need to know how the OLS estimator
βj is distributed.
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Normality Assumption

Assumption (Normality): ui is independent of X1, ...,Xk and all
other uj ,and is normally distributed with mean zero and variance σ2:

ui � iid N
�
0, σ2

�

Now, note that bβj = βj +
N

∑
i=1

ωiui ,

where

ωi = bRij/ N

∑
s=1

bR2sj .
Then, we can show bβj � N

�
βj ,Var

�bβj�� ,
where

Var
�bβj� = σ2/

N

∑
s=1

bR2sj .
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Test Statistic

Naturally, a test statistic can be constructed in the following way:
under the null hypothesis (H0 : βj = b),

z =
�bβj � b� /

r
Var

�bβj� � N (0, 1)

The di¢ culty in using this result is that we do not know Var
�bβj�

since we do not know σ2, which needs to be estimated.
Using the unbiased estimator of σ2, bσ2, we can constuct the
alternative test statistic:

z� =
�bβj � b� /

r
\
Var

�bβj�.
This test statistic is no longer Normally distributed, but follows the t
distribution with N � (k + 1) degrees of freedom.
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The Student�s t Distribution
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Classical Approach of testing the Hypothesis

First, we choose the size of the test (signi�cance level). The
conventional size is 5%, α = 0.05.

Then, we �nd the two critical values (since it is a two-tailed test),
t α
2 ,N�(k+1) and t1� α

2 ,N�(k+1), using the table of t distribution.

We accept the null hypothesis if the test statistic is between the two
critical values corresponding to our chosen size.
Otherwise we reject the null hypothesis.

The logic of hypothesis testing is that if the null hypothesis is true,
then the statistic will lie within the two critical values with
100� (1� α)% of the time of random samples.
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Critical Values of t Distribution
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p-Value and Con�dence Interval

Since there is no �correct� signi�cance level, it may be more
informative to report the smallest signi�cance level at which the null
would be rejected.
This level is known as the p-value for the test.
We can also construct an interval estimate for the population
parameter βj , called con�dence interval (CI ), such that the chance
that the true βj lies within that interval is 1� α.
That is,

Pr
�
t α
2 ,N�(k+1) < z

� < t1� α
2 ,N�(k+1)

�
= 1� α.

With some manipulation,

Pr
�bβj � s.e.�bβj�� t < βj <

bβj + s.e.�bβj�� t� = 1� α,

where t = t1� α
2 ,N�(k+1).

The term in the bracket is the con�dence interval for βj .
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Example: Housing Prices

The Stata program, by default, reports the p-values, t statistics and
con�dence intervals under the null that each population parameter is
zero.

Var Coe¤. s.e. t value p-value Conf. Int.

lnox -0.95 0.12 -8.17 0.000 -1.18 -0.72
ldist -0.13 0.04 -3.12 0.002 -0.22 -0.05
rooms 0.25 0.02 13.74 0.000 0.22 0.29
stratio -0.05 0.01 -8.89 0.000 -0.06 -0.04
const 11.08 0.32 34.84 0.000 10.46 11.71
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Example: Housing Prices

We want to test the following hypothesis: the elasticity of housing
prices to the amount of nitrogen oxide is equal to 1:

H0 : β1 = �1, HA : β1 6= �1.

We have 506 observations and so 501 degrees of freedom. At 95%
con�dence interval, t0.025,501 = 1.96. Then,

Pr (�0.95� 0.12� 1.96 < β1 < �0.95+ 0.12� 1.96)
= Pr (�1.1852 < β1 < �0.7148) = 0.95.

The true value β1 has 95% chance of being in [�1.1852,�0.7148].
Alternatively,

z� =
�0.95� (�1)

0.12
= 0.417.

Since the critical value is 1.96 at the 5% signi�cance level. Thus, we
cannot reject the null hypothesis.
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More on Testing

Do we need the assumption of normality of the error term to carry
out inference (hypothesis testing)?

Under normality our test is exact in a sense that the test statistic
exactly follows the t distribution.

Without the normality, we can still carry out hypothesis testing,
relying on asymptotic approximations when we have large enough
samples.

To do this, we need to use the Central Limit Theorem: under regular
conditions,

z� =

�bβj � b�r
\
Var

�bβj�
�a N (0, 1) as N ! ∞
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Testing Multiple Restrictions

Now suppose we wish to test multiple hypotheses about the
underlying parameters.

A test of multiple restrictions on the parameters is called a joint
hypotheses test.

In this case we will use the so called �F-test�.

Examples:

(Exclusion restrictions) H0 : β1 = 0, β2 = 0 and β3 = 0; HA : H0 is
not ture.
H0 : β1 = 0, β2 = β3; HA : H0 is not ture.
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The Unrestricted and Restricted Regression Models

The Unrestricted Model is the model without any of the restrictions
imposed from the null hypothesis.

The Restricted Model is the model on which the restrictions have
been imposed.

Example 1: H0 : β1 = 0, β2 = 0 and β3 = 0�
Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + ui

Yi = β0 + β4Xi4 + ui
Unrestricted
Restricted

Example 2: H0 : β1 = 0, β2 = β3�
Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + ui

Yi = β0 + β2 (Xi2 + Xi3) + β4Xi4 + ui
Unrestricted
Restricted
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Heuristic Illustration of the Test

Inference will be based on comparing the �t of the restricted and
unrestricted regression.

Note that the unrestricted regression will always �t at least as as well
as the restricted one (why?).

So the question will be how much improvement in the �t we get by
relaxing the restrictions relative to the loss of precision that follows.

The distribution of the test statistic will give us a measure of this so
that we can construct a statistical decision rule.
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De�nitions

De�ne the Unrestricted Sum of Squared Residual (USSR) as the
residual sum of squares obtained from estimating the unrestricted
model.

De�ne the Restricted Sum of Squared Residual (RSSR) as the residual
sum of squares obtained from estimating the restricted model.

Note that RRSS � URSS (why?).
Denote q as the number of restrictions mposed.
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The F-Statistic

The statistic for testing multiple restrictions we discussed is

F =
(RSSR � USSR) /q
USSR/ (N � k � 1)

=

�
R2UR � R2R

�
/q

(1� R2UR ) / (N � k � 1) � F (q,N � k � 1)

Under the normality assumption of errors, the F statistic exactly
follows the F distribution with degrees of freedom (q,N � k � 1).
The test statistic is always non-negative. If the null is true, we would
expect this to be �small�.
The smaller the F-statistic is, the less the loss of �t due to the
restrictions is.
Without the normality assumption, we can show, using the Central
Limit Theorem, that

qF �a X 2
q as N ! ∞
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The F Distribution
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Example: Housing Prices

Consider the following regression model:

lnHpricei = β0 + β1 lnNoxi + β2roomsi + β3stratioi + β4 ln disti + ui

H0 : β1 = �1, β3 = β4 = 0;HA : H0 is not true.

The restricted regression model is

lnHpricei + lnNoxi = β0 + β2roomsi + ui

The F-statistic is

F =

�
R2UR � R2R

�
/q

(1� R2UR ) / (N � k � 1) =
(0.584� 0.316) /3
(1� 0.584) /501

= 107.59

Given the degrees of freedom (3, 501) and 5% signi�cance level, the
critical value is 2.60. Thus, we reject the null hypothesis.
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Summary

We use the OLS estimators in the simple and multiple linear
regression models.

Key assumptions:

The error term is uncorrelated with independent variables.
The variance of error term is constant (homoskedsticity).
The covariance of error term is zero (no autocorrelation).

Departures from this simple framework:

Heteroskedasticity;
Autocorrelation;
Simultaneity and Endogeneity;
Non linear models.
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