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The Multiple Regression Model

In practice, the key assumption in the simple regression model

E (ui jX ) = 0

is often unrealistic.

We need to explicitly control for many other (observable) factors that
simultaneously a¤ect the dependent variable Y .

The multiple regression model takes the following form:

Yi = β0 + β1Xi1 + β2Xi2 + ...+ βkXik + ui .

The model includes k independent variables and one constant. Thus,
there will be k + 1 parameters to estimate.

The error term ui contains factors other than X1, ...,Xk that a¤ect Y .
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Assumption and Interpretation

Assumption MLR.1 (zero-conditional mean)

E (ui jX1, ...,Xk ) = 0.

It implies that all independent variables are uncorrelated with the
error term.

The assumption leads to a well-de�ned ceteris paribus analysis: each
coe¢ cient, βj , measures the impact of the corresponding variable, Xj ,
on Y , holding all other factors constant.

Mathematically,

βj =
∂Yj
∂Xij

.
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Example 1 - Housing Prices and Air Pollution

Model 1: ln(Hpricei ) = β0 + β1 ln (Noxi ) + εi

Variable Coe¢ cient St. Err.
Constant 11.707 0.132
log Nox -1.043 0.078

Model 2: ln(Hpricei ) = β0 + β1 ln (Noxi ) + β2 ln (Proptaxi ) + εi

Variable Coe¢ cient St. Err.
Constant 13.176 0.224
log Nox -0.523 0.098
log Proptax -0.396 0.050
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Multiple Regression with Dummy Variables

The multiple regression model often contains qualitative factors,
which are not measured in any units, as independent variables:

gender, race or nationality
employment status or home ownership
temperatures before 1900 and after (including) 1900

Such qualitative factors often come in the form of binary information
and are captured by de�ninig a zero-one variable, called dummy
variables.

Di =
�
0
1

if yeari < 1900
if yeari � 1900
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Dummy Variables: Intercept Shift

The dummy variable can be used to build a model with an intercept
that varies across groups coded by the dummy variable.

Yi = β0 + β1Xi + β2Di + ui

The model can be interpreted that the observations for which Di = 1
have, on average, a Yi which is β2 units higher than otherwise.

Example: ln (Tempi ) = β0 + β1 ln (Co2i ) + β2Di + ui , where

Di =
�
0
1

if yeari < 1900
if yeari � 1900

Variable Coe¢ cient St. Err.
Constant 0.837 0.708
log CO2 0.243 0.126
Time Dummy 0.010 0.016
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Dummy Variables: Slope Shift

The dummy variable can be also used to vary a slope of one
(continuous) independent variable across groups.

Yi = β0 + β1Xi + β2DiXi + ui

For observations with Di = 0, a one unit increase in Xi leads to an
increase of β1 units in Yi . For those with Di = 1, Yi increases by
(β1 + β2) units in Yi .

Example: ln (Tempi ) = β0 + β1 ln (Co2i ) + β2Di ln(Co2i ) + ui ,

Variable Coe¢ cient St. Err.
Constant 0.854 0.719
log CO2 0.240 0.127
Dummy*log CO2 0.002 0.003
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Ordinary Least Squares Estimator

Just as in the simple regression model, the OLS estimator in the
multiple regression model is chosen to minimize the sum of squared
residuals:

min
fbβjgkj=0

N

∑
i=1
bu2i = N

∑
i=1

�
Yi � bβ0 � bβ1Xi1 � bβ2Xi2 � ...� bβkXik�2

By taking a (partial) derivative with respect to each coe¢ cient, we
obtain a set of (k + 1) equations constituting the �rst-order
conditions for minimizing the sum of squared residuals. These
equations are often called the normal equations.
Then, we have the OLS or sample regression line:bYi = bβ0 + bβ1Xi1 + bβ2Xi2 + ...+ bβkXik .
Each estimate, bβj , has a partial e¤ect or ceteris paribus
interpretation: the e¤ect of Xj on Y , while holding other factors
constant.
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Algebraic Properties of OLS

Property 1.

N

∑
i=1
bui = N

∑
i=1

�
Yi � bβ0 � bβ1Xi1 � bβ2Xi2 � ...� bβkXik� = 0.

Property 2.
N

∑
i=1
buiXij = 0, 8j = 1, 2, ..., k.

Property 3. From Property 1 and Yi = bYi + bui ,
Y = bY .

Property 4. The point
�
Y ,X 1,X 2, ...,X k

�
is always on the OLS

regression line:

Y = bβ0 + bβ1X 1 + bβ2X 2 + ...+ bβkX k .
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A Case for Two Independent Variables

Consider the case with k = 2 independent variables:bYi = bβ0 + bβ1Xi1 + bβ2Xi2.
The solution for bβ1 is

bβ1 = ∑N
i=1

bRi1Yi
∑N
i=1

bR2i1 ,
where the bRi1 are the OLS residuals from a simple regression of X1 on
X2.
Note that the residuals bRi1 have a zero sample average and thus bβ1 is
the usual slope estimate from the simple regression of Yi on bRi1.
The residuals bRi1 is Xi1 after the e¤ects of Xi2 have been partialled
out or netted out. Thus, bβ1 measures the sample relationship
between Y and X1 after X2 has been partialled out.
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Goodness of Fit

As with simple regression, we can de�ne the R-squared:

R2 = 1� ∑N
i=1 bu2i

∑N
i=1

�
Yi � Y

�2 .
An important fact in R2 is that it never decreases in the number of
independent variables.

This algebraic fact follows because the sum of squared residuals never
increases when additional regressors are added to the model. Thus,
just looking at R2 does not tell us whether an additional independent
variable improves the �t.
One convention is the idea of imposing a penalty for adding
additional independent variables to a model, adjusted R2,

R
2
= 1� ∑N

i=1 bu2i / (N � k � 1)
∑N
i=1

�
Yi � Y

�2 / (N � 1)
= 1�

�
1� R2

� N � 1
N � k � 1 .
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An Example: Housing Price

To investigate the deteminants of log housing prices, we include as
independent variables: log Nitrogen oxide, log dist, rooms, stratio,
and log property tax.

Variable Coe¢ cient Std. Err.
Constant 11.798 0.340
log nox -0.718 0.123
log dist -0.143 0.042
rooms 0.252 0.018
stratio -0.041 0.006
log proptax -0.217 0.042
R2 0.605
adjusted R2 0.601
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Statistical Properties of OLS

We now turn to the statistical properties of OLS in the multiple
regression model for estimating the parameters in an underlying
population model.

As with simple regression, we can obtain the unbiasedness and the
e¢ ciency of the OLS estimators with direct extensions of the simple
regression model assumptions.

When an important variable is omitted from the regression, OLS
produces the bias, called Omitted Variable Bias.

When an irrelevant variable is included, the regression does not a¤ect
the unbiasedness of the OLS estimators but increase their variances.
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Assumptions I

Assumption MLR1 (zero conditional mean):

E (ui jX1, ...,Xk ) = 0.

Failure of MLR1

omitting a variable
measurement error
endogeneity bias

Assumption MLR 2 (Homoskedasticity):

Var (ui jX1, ...,Xk ) = σ2.
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Assumptions II

Assumption MLR 3 (no perfect collinearity): There are no exact
linear relationships among the independent variables.

Examples of failure of MLR2

same independent variable measured in di¤erent units
one variable is a constant multiple of another: ln(X ) and ln(X 2)
regression with a constant term, Di (dummy variable) and 1�Di .
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Unbiasedness and E¢ ciency of OLS

(Unbiasedness of OLS) Under Assumptions MLR1 and MLR3,

E
�bβk jX� = βk , for j = 0, 1, ..., k.

(Gauss-Markov Theorem) Under Assumptions MLR 1 through MLR3,bβ0, bβ1, ..., bβk are the best linear unbiased estimators (BLUE) for the
true parameters, β0, β1, ..., βk .
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Omitted Variable Bias I

Suppose that the true regression relationship has the following form:

Yi = β0 + β1Xi1 + β2Xi2 + ui .

Instead we decide to estimate

Yi = β0 + β1Xi1 + νi .

From the OLS of the second regression equation, we will obtain

eβ1 = β1 +
∑N
i=1

�
Xi1 � X 1

�
νi

∑N
i=1

�
Xi1 � X 1

�2
What is the expected value of the last expression on the right hand
side?
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Omitted Variable Bias II

First note that νi = β2Xi2 + ui .

Substituting this into the expression for OLS estimator, we obtain

eβ1 = β1 +
β2 ∑N

i=1

�
Xi1 � X 1

�
Xi2 +∑N

i=1

�
Xi1 � X 1

�
ui

∑N
i=1

�
Xi1 � X 1

�2 .

Taking the expectation, we have

E
�eβ1jX� = β1

+
β2 ∑N

i=1

�
Xi1 � X 1

�
Xi2 +∑N

i=1

�
Xi1 � X 1

�
E (ui jX )

∑N
i=1

�
Xi1 � X 1

�2
= β1 + β2

∑N
i=1

�
Xi1 � X 1

�
Xi2

∑N
i=1

�
Xi1 � X 1

�2
= β1 + β2

\Cov(X1,X2)/ \Var (X1).
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Omitted Variable Bias III

Thus, the size of the omitted variable bias is

Bias
�eβ1� = E �eβ1jX�� β1 = β2

\Cov(X1,X2)
\Var (X1)

.

There are two cases in which the bias is zero:

β2 = 0.
\Cov(X1,X2) = 0.

Thus, in general, omitting variables, which have an impact on Y , wil
bias the OLS estimator of the coe¢ cients of the included variables
unless the omitted variables are uncorrelated with the included ones.

The direction and size of the bias (negative or positive bias) depend

on the signs and sizes of β2 and
\Cov(X1,X2).

Environmental Econometrics (GR03) Multiple Regression Model Fall 2008 19 / 22



Omitted Variable Bias III

Thus, the size of the omitted variable bias is

Bias
�eβ1� = E �eβ1jX�� β1 = β2

\Cov(X1,X2)
\Var (X1)

.

There are two cases in which the bias is zero:

β2 = 0.
\Cov(X1,X2) = 0.

Thus, in general, omitting variables, which have an impact on Y , wil
bias the OLS estimator of the coe¢ cients of the included variables
unless the omitted variables are uncorrelated with the included ones.

The direction and size of the bias (negative or positive bias) depend

on the signs and sizes of β2 and
\Cov(X1,X2).

Environmental Econometrics (GR03) Multiple Regression Model Fall 2008 19 / 22



Omitted Variable Bias III

Thus, the size of the omitted variable bias is

Bias
�eβ1� = E �eβ1jX�� β1 = β2

\Cov(X1,X2)
\Var (X1)

.

There are two cases in which the bias is zero:

β2 = 0.

\Cov(X1,X2) = 0.

Thus, in general, omitting variables, which have an impact on Y , wil
bias the OLS estimator of the coe¢ cients of the included variables
unless the omitted variables are uncorrelated with the included ones.

The direction and size of the bias (negative or positive bias) depend

on the signs and sizes of β2 and
\Cov(X1,X2).

Environmental Econometrics (GR03) Multiple Regression Model Fall 2008 19 / 22



Omitted Variable Bias III

Thus, the size of the omitted variable bias is

Bias
�eβ1� = E �eβ1jX�� β1 = β2

\Cov(X1,X2)
\Var (X1)

.

There are two cases in which the bias is zero:

β2 = 0.
\Cov(X1,X2) = 0.

Thus, in general, omitting variables, which have an impact on Y , wil
bias the OLS estimator of the coe¢ cients of the included variables
unless the omitted variables are uncorrelated with the included ones.

The direction and size of the bias (negative or positive bias) depend

on the signs and sizes of β2 and
\Cov(X1,X2).

Environmental Econometrics (GR03) Multiple Regression Model Fall 2008 19 / 22



Omitted Variable Bias III

Thus, the size of the omitted variable bias is

Bias
�eβ1� = E �eβ1jX�� β1 = β2

\Cov(X1,X2)
\Var (X1)

.

There are two cases in which the bias is zero:

β2 = 0.
\Cov(X1,X2) = 0.

Thus, in general, omitting variables, which have an impact on Y , wil
bias the OLS estimator of the coe¢ cients of the included variables
unless the omitted variables are uncorrelated with the included ones.

The direction and size of the bias (negative or positive bias) depend

on the signs and sizes of β2 and
\Cov(X1,X2).

Environmental Econometrics (GR03) Multiple Regression Model Fall 2008 19 / 22



Omitted Variable Bias III

Thus, the size of the omitted variable bias is

Bias
�eβ1� = E �eβ1jX�� β1 = β2

\Cov(X1,X2)
\Var (X1)

.

There are two cases in which the bias is zero:

β2 = 0.
\Cov(X1,X2) = 0.

Thus, in general, omitting variables, which have an impact on Y , wil
bias the OLS estimator of the coe¢ cients of the included variables
unless the omitted variables are uncorrelated with the included ones.

The direction and size of the bias (negative or positive bias) depend

on the signs and sizes of β2 and
\Cov(X1,X2).

Environmental Econometrics (GR03) Multiple Regression Model Fall 2008 19 / 22



An Example: Housing Prices

Suppose the true model is

ln (Hpricei ) = β0 + β1 ln (Noxi ) + β2 ln (proptaxi ) + ui .

BUT, one omits the proptax variable in the regression:

ln (Hpricei ) = β0 + β1 ln (Noxi ) + νi .

Var. Coe¤. St. Err. Var. Coe¤. St. Err.
Constant 11.707 0.132 Constant 13.176 0.224
log Nox -1.043 0.078 log Nox -0.523 0.098

log Proptax -0.396 0.050

The sample correlation between log Nox and log Proptax is 0.667.
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Including an Irrelevant Variable I

Suppose the true model is

Yi = β0 + β1Xi1 + ui .

But, we include an irrelevant variable, Xi2, in a regression and have
an estimate eβ1. Let bβ1 be the OLS estimator from the correct
speci�cation.

It can be shown that E
�eβ1jX� = β1.
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Including an Irrelevant Variable II

For the variances, we have the following relationship:

Var
�bβ1jX� =

σ2

∑N
i=1

�
Xi1 � X 1

�2
� σ2

(1� R21 )∑N
i=1

�
Xi1 � X 1

�2 = Var �eβ1jX� ,
where R21 is the R-squared from the regression of X1 on X2.

Unless X1 and X2 are uncorrelated in the sample, including X2
increases the variance for the estimator of β1.
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