Limited Dependent Variable Models III

Fall 2008

 Another kind of limited dependent variable model is a count variable, which can take on nonnegative integer values, Y_i ∈ {0, 1, 2, ...}.

- Another kind of limited dependent variable model is a count variable, which can take on nonnegative integer values, Y_i ∈ {0, 1, 2, ...}.
- Examples:

- Another kind of limited dependent variable model is a count variable, which can take on nonnegative integer values, Y_i ∈ {0, 1, 2, ...}.
- Examples:
 - the number of children ever born to a woman;

- Another kind of limited dependent variable model is a count variable, which can take on nonnegative integer values, Y_i ∈ {0, 1, 2, ...}.
- Examples:
 - the number of children ever born to a woman;
 - the number of times a person is arrested in a year.

• A random variable Y, which only takes on nonnegative integer values, follows the Poisson distribution if, for k = 0, 1, 2, ...

$$\Pr(Y = k) = \frac{\exp(-\lambda)\lambda^k}{k!},$$

where $\lambda > 0$.

 A random variable Y, which only takes on nonnegative integer values, follows the Poisson distribution if, for k = 0, 1, 2, ...

$$\Pr(Y = k) = \frac{\exp(-\lambda)\lambda^k}{k!},$$

where $\lambda > 0$.

• The mean and the variance of Poisson random variable is λ :

$$\mathbb{E}(Y) = Var(Y) = \lambda.$$

Poisson Distribution

• The poisson regression model specifies that

$$\Pr(Y_i = k | X_i) = \frac{\exp(-\lambda_i) \lambda_i^k}{k!}, \ k = 0, 1, 2, ...$$

$$\begin{array}{rcl} \lambda_i & = & \mathbb{E}\left(Y_i|X_i\right) = \exp\left(\beta_0 + \beta_1 X_i\right) \ \text{or} \\ \ln\left(\lambda_i\right) & = & \beta_0 + \beta_1 X_i \end{array}$$

• Interpretation of β_1 : When there is a one-unit increase in X, the percentage change of $\mathbb{E}(Y|X)$ is $100 \times \beta_1$.

- In principle, the Poisson model is simply a nonlinear regression. It is much easier to estimate the parameter with maximum likelihood method.
- The log-likelihood function is

$$\ln L \left(\beta_0, \beta_1; \{Y_i, X_i\}_{i=1}^N \right)$$

$$= \sum_{i=1}^N \ln \Pr(Y_i = y_i | X_i)$$

$$= \sum_{i=1}^N \left[-\exp(\beta_0 + \beta_1 X_i) + Y_i \left(\beta_0 + \beta_1 X_i\right) - \ln(Y_i!) \right]$$

• Note that the Poisson model could be too restrictive since the variance is equal to the mean.

• We apply the Poisson regression model for the number of arrests during 1986 in a group of men in California, USA.

- We apply the Poisson regression model for the number of arrests during 1986 in a group of men in California, USA.
- The dependent variable is the number of times a man is arrested. The frequency of this variable is

	# of times arrested								
	0	1	2	3	4	5	\geq 6	Total	
Freq	1970	559	121	42	12	13	8	2,725	
(%)	(72.3)	(20.5)	(4.4)	(1.5)	(0.4)	(0.5)	(0.3)	(100)	

• The independent variables are various individual characteristics such as proportion of prior convicted arrests (pcnv) and the number of quarters a man employed in 1986 (qemp86).

	pcnv	qemp86	black	constant	log_lik
Coeff.	-0.403	-0.203	0.532	-0.480	-2325.77
Std. Err.	0.08	0.02	0.07	0.06	

• Another important kind of limited dependent variable is that some data above or below a threshold are mis-reported at the threshold.

- Another important kind of limited dependent variable is that some data above or below a threshold are mis-reported at the threshold.
- Then, the data is **censored**. The censoring process may be explicit in data collection or a by-product of economic constraints.

- Another important kind of limited dependent variable is that some data above or below a threshold are mis-reported at the threshold.
- Then, the data is **censored**. The censoring process may be explicit in data collection or a by-product of economic constraints.
- Censored models are typically applied when the data set has a meaningful proportion (say 5% or higher) of data at the boundary of the sample support.

- Another important kind of limited dependent variable is that some data above or below a threshold are mis-reported at the threshold.
- Then, the data is **censored**. The censoring process may be explicit in data collection or a by-product of economic constraints.
- Censored models are typically applied when the data set has a meaningful proportion (say 5% or higher) of data at the boundary of the sample support.
- Examples:

- Another important kind of limited dependent variable is that some data above or below a threshold are mis-reported at the threshold.
- Then, the data is **censored**. The censoring process may be explicit in data collection or a by-product of economic constraints.
- Censored models are typically applied when the data set has a meaningful proportion (say 5% or higher) of data at the boundary of the sample support.
- Examples:
 - (corner solution) consumption of a good (smoking/alcohol);

- Another important kind of limited dependent variable is that some data above or below a threshold are mis-reported at the threshold.
- Then, the data is **censored**. The censoring process may be explicit in data collection or a by-product of economic constraints.
- Censored models are typically applied when the data set has a meaningful proportion (say 5% or higher) of data at the boundary of the sample support.
- Examples:
 - (corner solution) consumption of a good (smoking/alcohol);
 - (data collection censoring) top-coding of income.

• An underlying latent variable has the following relationship:

$$\begin{split} Y_i^* &= \beta_0 + \beta_1 X_i + u_i, \ u_i | X \sim N \left(0, \sigma^2 \right. \\ Y_i &= \left\{ \begin{array}{ll} Y_i^* & \text{if } Y_i^* > 0 \\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

• The model is called **Tobit**. Then, the probability of censoring is given

$$\begin{aligned} \Pr(Y = 0|X) &= \Pr(Y^* \le 0|X) \\ &= 1 - \Phi\left(\frac{\beta_0 + \beta_1 X}{\sigma}\right) \end{aligned}$$

Example:

$$eta_0=-1$$
, $eta_1=2$, and $\sigma=1$

Environmental Econometrics (GR03)

▲ ■ ● ■ • ○ Q ○
Fall 2008 11 / 14

- 4 🗇 🕨 🔺 🖹 🕨 🤘

Marginal Effects

• The marginal effect of X_i and $\mathbb{E}\left(Y_i^*|X\right)$ is

$$\frac{\partial \mathbb{E}\left(Y_{i}^{*}|X\right)}{\partial X_{i}} = \beta_{1}$$

Marginal Effects

• The marginal effect of X_i and $\mathbb{E}\left(Y_i^*|X\right)$ is

$$\frac{\partial \mathbb{E}\left(Y_{i}^{*}|X\right)}{\partial X_{i}} = \beta_{1}$$

First, note that

$$\mathbb{E}(Y_i|X) = \Pr(Y_i > 0|X) \mathbb{E}(Y_i|Y_i > 0, X)$$

Then, the marginal effect of X_i and $\mathbb{E}(Y_i|X)$ is

$$\begin{aligned} \frac{\partial \mathbb{E}(Y_i|X)}{\partial X_i} &= \frac{\partial \Pr(Y_i > 0|X)}{\partial X_i} \mathbb{E}(Y_i|Y_i > 0, X) \\ &+ \Pr(Y_i > 0|X) \frac{\partial \mathbb{E}(Y_i|Y_i > 0, X)}{\partial X_i} \\ &= \beta_1 \Phi\left(\frac{\beta_0 + \beta_1 X_i}{\sigma}\right) = \beta_1 \Pr(Y_i > 0|X) \end{aligned}$$

Marginal Effects

• The marginal effect of X_i and $\mathbb{E}\left(Y_i^*|X\right)$ is

$$rac{\partial \mathbb{E}\left(Y_{i}^{*}|X
ight)}{\partial X_{i}}=eta_{1}$$

First, note that

$$\mathbb{E}(Y_i|X) = \Pr(Y_i > 0|X) \mathbb{E}(Y_i|Y_i > 0, X)$$

Then, the marginal effect of X_i and $\mathbb{E}(Y_i|X)$ is

$$\frac{\partial \mathbb{E}(Y_i|X)}{\partial X_i} = \frac{\partial \Pr(Y_i > 0|X)}{\partial X_i} \mathbb{E}(Y_i|Y_i > 0, X) + \Pr(Y_i > 0|X) \frac{\partial \mathbb{E}(Y_i|Y_i > 0, X)}{\partial X_i} = \beta_1 \Phi\left(\frac{\beta_0 + \beta_1 X_i}{\sigma}\right) = \beta_1 \Pr(Y_i > 0|X)$$

• Therefore, due to censoring, $\partial \mathbb{E}(Y_i|X) / \partial X_i < \partial \mathbb{E}(Y_i^*|X) / \partial X_i$.

• We use the maximum likelihood method to estimate the parameters in the Tobit model.

- We use the maximum likelihood method to estimate the parameters in the Tobit model.
- The log-likelihood function is a mixture of the probit and the normal density:

$$\ln L\left(\beta_{0},\beta_{1},\sigma;\left\{Y_{i},X_{i}\right\}_{i=1}^{N}\right)$$

$$=\sum_{Y_{i}=0}\ln\left[1-\Phi\left(\frac{\beta_{0}+\beta_{1}X_{i}}{\sigma}\right)\right]+\sum_{Y_{i}>0}\ln\left[\frac{1}{\sigma}\phi\left(\frac{Y_{i}-(\beta_{0}+\beta_{1}X_{i})}{\sigma}\right)\right]$$

- We use the maximum likelihood method to estimate the parameters in the Tobit model.
- The log-likelihood function is a mixture of the probit and the normal density:

$$\ln L\left(\beta_{0},\beta_{1},\sigma;\left\{Y_{i},X_{i}\right\}_{i=1}^{N}\right)$$

$$=\sum_{Y_{i}=0}\ln\left[1-\Phi\left(\frac{\beta_{0}+\beta_{1}X_{i}}{\sigma}\right)\right]+\sum_{Y_{i}>0}\ln\left[\frac{1}{\sigma}\phi\left(\frac{Y_{i}-(\beta_{0}+\beta_{1}X_{i})}{\sigma}\right)\right]$$

• The ML estimators maximize the log-likelihood function with respect to the parameters.

Example: Willingness to Pay

• The willingness to pay is censored at zero. We can compare the two regressions:

$$OLS: WTP_i = eta_0 + eta_1 \ln y_i + eta_2 age_i + eta_3 sex_i + eta_4 smell_i + u_i,$$

Tobit :
$$WTP_i^* = \beta_0 + \beta_1 \ln y_i + \beta_2 age_i + \beta_3 sex_i + \beta_4 smell_i + u_i,$$

: $WTP_i = \max(WTP_i^*, 0).$

-					
	0	LS	-	Tobit	
	Coeff.	t-stat.	Coeff.	t-stat.	Mar. Eff.
In(y)	2.52	2.74	2.70	2.5	1.93
age	-0.12	-2.0	-0.21	-3.0	-0.15
sex	0.41	0.28	0.14	0.0	0.10
smell	-1.43	-0.90	-1.80	-0.9	-1.29
const	-4.01	-0.50	-3.68	-0.4	

▲ロト ▲課 ト ▲ 語 ト ▲ 語 ト → 語 → ののの