Limited Dependent Variable Models I

Fall 2008

• A limited dependent variable, Y, is defined as a dependent variable whose range is substantively restricted.

- A limited dependent variable, Y, is defined as a dependent variable whose range is substantively restricted.
- The common cases are:

- A limited dependent variable, Y, is defined as a dependent variable whose range is substantively restricted.
- The common cases are:
 - binary: $Y \in \{0, 1\}$

- A limited dependent variable, Y, is defined as a dependent variable whose range is substantively restricted.
- The common cases are:
 - binary: $Y \in \{0, 1\}$
 - multinomial: $Y \in \{0, 1, 2, ..., k\}$

- A limited dependent variable, Y, is defined as a dependent variable whose range is substantively restricted.
- The common cases are:
 - binary: $Y \in \{0, 1\}$
 - multinomial: $Y \in \{0, 1, 2, ..., k\}$
 - integer: $Y \in \{0, 1, 2, ...\}$

- A limited dependent variable, Y, is defined as a dependent variable whose range is substantively restricted.
- The common cases are:
 - binary: $Y \in \{0, 1\}$
 - multinomial: $Y \in \{0, 1, 2, ..., k\}$
 - integer: $Y \in \{0, 1, 2, ...\}$
 - censored: $Y \in \{Y^* : Y^* \ge 0\}$

- A dependent variable is of qualitative nature, coded as a dummy variable, Y_i ∈ {0, 1}.
- Examples:
 - driving to work versus public transportation
 - being a single versus getting married
 - employed vesus unemployed
- We wil analyze two different models
 - linear probability model
 - non-linear models (logit and probit)

• What if we still want to use a multiple linear regression model? $Y_i=\beta_0+\beta_1X_{1i}+\beta_2X_{2i}+u_i, \ \ Y_i\in\{0,1\}$

< ∃ > <

• What if we still want to use a multiple linear regression model?

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i, \quad Y_i \in \{0, 1\}$$

 Because Y can take on only two values, β_j cannot be interpreted as the change in Y given one-unit increase of X_j.

• What if we still want to use a multiple linear regression model?

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i, \quad Y_i \in \{0, 1\}$$

- Because Y can take on only two values, β_j cannot be interpreted as the change in Y given one-unit increase of X_j .
- Under the zero conditional mean assumption,

$$E(Y_i|X) = eta_0 + eta_1 X_{1i} + eta_2 X_{2i} = {\sf Pr}\left(Y_i = 1
ight)$$
 ,

which is called the *response probability*.

• What if we still want to use a multiple linear regression model?

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i, \quad Y_i \in \{0, 1\}$$

- Because Y can take on only two values, β_j cannot be interpreted as the change in Y given one-unit increase of X_j.
- Under the zero conditional mean assumption,

$$E(Y_i|X) = eta_0 + eta_1 X_{1i} + eta_2 X_{2i} = {\sf Pr}\left(Y_i = 1
ight)$$
 ,

which is called the *response probability*.

 The multiple linear regression model with a binary dependent variable is called the **linear probability model (LPM)** because the response probability is linear in β₁.

• What if we still want to use a multiple linear regression model?

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i, \quad Y_i \in \{0, 1\}$$

- Because Y can take on only two values, β_j cannot be interpreted as the change in Y given one-unit increase of X_j .
- Under the zero conditional mean assumption,

$$E\left(Y_{i}|X
ight)=eta_{0}+eta_{1}X_{1i}+eta_{2}X_{2i}={\sf Pr}\left(Y_{i}=1
ight)$$
 ,

which is called the *response probability*.

- The multiple linear regression model with a binary dependent variable is called the **linear probability model (LPM)** because the response probability is linear in β₁.
- In the LPM, β_j measures the change in the response probability when X_i increases by one unit:

$$\frac{\partial \Pr\left(Y_i=1\right)}{\partial X_j} = \beta_j.$$

• In the households survey data in Kuala Lumpur, one question is

- "Are you concerned about the environment?" "Yes/No"
- The LPM and the estimation are

 $\textit{EnvCon}_i = \beta_0 + \beta_1 \textit{Age}_i + \beta_2 \textit{Sex}_i + \beta_3 \textit{LogInc}_i + \beta_4 \textit{Smell}_i + u_i.$

	Age	Sex	Log Income	Smell	Constant
Coeff.	0.008	0.015	0.112	0.130	-0.683
Std. Err.	0.002	0.048	0.030	0.052	0.260

• The predicted probability of concerning about the environment is

 $EnvCon_i = -0.683 + 0.008Age_i + 0.015Sex_i + 0.112LogInc_i + 0.13Smell$

Limitations of the LPM

- The predicted probability, $\hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{2i}$, can be outside [0, 1].
- (Heteroskedasticity) Conditional on X_js, the residuals take only two values:

$$\begin{array}{rcl} u_i &=& 1 - (\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}) & & \text{if} & Y_i = 1 \\ u_i &=& - (\beta_0 + \beta_1 X_i + \beta_2 X_{2i}) & & \text{if} & Y_i = 0 \end{array}$$

Then the variance of the error term is

$$\begin{aligned} \forall ar (u_i | X) &= E (u_i^2 | X) \\ &= [1 - \Pr(Y_i = 1)]^2 \Pr(Y_i = 1) \\ &+ \Pr(Y_i = 1)^2 [1 - \Pr(Y_i = 1)] \\ &= \Pr(Y_i = 1) [1 - \Pr(Y_i = 1)] \end{aligned}$$

• (Constant marginal effects) Given the linearity of the model,

$$rac{\partial \Pr\left(Y_i=1
ight)}{\partial X_{ji}}=eta_j.$$

• The limitations of the LPM can be overcomed by using more sophisticated response models:

$$\Pr(Y_i = 1) = G(\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i})$$
,

where $G(\cdot)$ is a function taking on values between zero and one: 0 < G(z) < 1 for any real z.

• The limitations of the LPM can be overcomed by using more sophisticated response models:

$$\Pr(Y_i = 1) = G(\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i})$$
,

where $G(\cdot)$ is a function taking on values between zero and one: 0 < G(z) < 1 for any real z.

• The two commonest functional forms are:

• The limitations of the LPM can be overcomed by using more sophisticated response models:

$$\Pr(Y_i = 1) = G(\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i})$$
,

where $G\left(\cdot\right)$ is a function taking on values between zero and one: $0 < G\left(z\right) < 1$ for any real z.

- The two commonest functional forms are:
 - (logit model) G is the logistic function

$$\Pr(Y_{i} = 1) = \frac{\exp(\beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i})}{1 + \exp(\beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i})}$$

• The limitations of the LPM can be overcomed by using more sophisticated response models:

$$\Pr(Y_i = 1) = G(\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i})$$
,

where $G\left(\cdot\right)$ is a function taking on values between zero and one: $0 < G\left(z\right) < 1$ for any real z.

- The two commonest functional forms are:
 - (logit model) G is the logistic function

$$\Pr\left(Y_{i}=1\right)=\frac{\exp\left(\beta_{0}+\beta_{1}X_{1i}+\beta_{2}X_{2i}\right)}{1+\exp\left(\beta_{0}+\beta_{1}X_{1i}+\beta_{2}X_{2i}\right)}$$

• (probit model) G is the standard normal cdf

$$\Pr\left(Y_{i}=1\right)=\Phi\left(\beta_{0}+\beta_{1}X_{1i}+\beta_{2}X_{2i}\right)$$

• The limitations of the LPM can be overcomed by using more sophisticated response models:

$$\Pr(Y_i = 1) = G(\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i})$$
,

where $G\left(\cdot\right)$ is a function taking on values between zero and one: $0 < G\left(z\right) < 1$ for any real z.

- The two commonest functional forms are:
 - (logit model) G is the logistic function

$$\Pr\left(Y_{i}=1\right)=\frac{\exp\left(\beta_{0}+\beta_{1}X_{1i}+\beta_{2}X_{2i}\right)}{1+\exp\left(\beta_{0}+\beta_{1}X_{1i}+\beta_{2}X_{2i}\right)}$$

• (probit model) G is the standard normal cdf

$$\Pr\left(Y_{i}=1\right)=\Phi\left(\beta_{0}+\beta_{1}X_{1i}+\beta_{2}X_{2i}\right)$$

• As both models are non-linear, β_j is **not** the marginal effect of X_j on Y, for j = 1, 2.

The Structure of the Model

 We define a latent variable, Y^{*}_i, which is unobservable but determined in the following way:

$$Y_i^* = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i.$$

We observe the variable Y_i which is linked to Y_i^* as

$$Y_i = \begin{cases} 0 & \text{if } Y_i^* \leq 0\\ 1 & \text{if } Y_i^* > 0 \end{cases}$$

The Structure of the Model

 We define a latent variable, Y^{*}_i, which is unobservable but determined in the following way:

$$Y_i^* = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i.$$

We observe the variable Y_i which is linked to Y_i^* as

$$Y_i = \begin{cases} 0 & \text{if } Y_i^* \leq 0 \\ 1 & \text{if } Y_i^* > 0 \end{cases}$$

• The probability of observing $Y_i = 1$ is

$$\begin{aligned} \Pr(Y_{i} = 1) &= \Pr(Y_{i}^{*} > 0) \\ &= \Pr(u_{i} > -\beta_{0} - \beta_{1}X_{1i} - \beta_{2}X_{2i}) \\ &= 1 - G_{u}(-\beta_{0} - \beta_{1}X_{1i} - \beta_{2}X_{2i}) \\ &= G_{u}(\beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i}) \end{aligned}$$

Shape of Logit and Probit Models

Environmental Econometrics (GR03)

Fall 2008 9 / 20

 In most of applications, the primary goal is to explain the effects of X_j on the response probability Pr (Y = 1).

- In most of applications, the primary goal is to explain the effects of X_j on the response probability Pr (Y = 1).
- Logit Model: for j = 1, 2,

$$\frac{\partial \operatorname{Pr} \left(Y_{i} = 1 \right)}{\partial X_{j}} = \frac{\beta_{j} \exp \left(\beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i}\right)}{\left(1 + \exp \left(\beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i}\right)\right)^{2}} \\ = \beta_{j} \operatorname{Pr} \left(Y_{i} = 1\right) \left(1 - \operatorname{Pr} \left(Y_{i} = 1\right)\right)$$

Thus, one unit increase in X_j leads to an increase of $\beta_j \Pr(Y_i = 1) (1 - \Pr(Y_i = 1))$ in the response probability.

イロト イヨト イヨト

• Probit Model:

$$\frac{\partial \Pr\left(Y_{i}=1\right)}{\partial X_{j}}=\beta_{j}\phi\left(\beta_{0}+\beta_{1}X_{1i}+\beta_{2}X_{2i}\right)$$

э

Probit Model:

$$\frac{\partial \Pr\left(Y_{i}=1\right)}{\partial X_{j}}=\beta_{j}\phi\left(\beta_{0}+\beta_{1}X_{1i}+\beta_{2}X_{2i}\right)$$

• In the both models, the relative effects of any two continuous independent variables, X_1 and X_2 , are

$$\frac{\frac{\partial \Pr(Y_i=1)}{\partial X_1}}{\frac{\partial \Pr(Y_i=1)}{\partial X_2}} = \frac{\beta_1}{\beta_2}.$$

- The odds-ratio in a binary response model is defined as $\Pr(Y_i = 1) / [1 \Pr(Y_i = 1)].$
- If this ratio is equal to 1, then both outcomes have equal probability. If this ratio is equal to 2, then the outcome $Y_i = 1$ is twice more likely than the outcome $Y_i = 0$.
- In the logit model, the log odds-ratio is linear in the parameters:

$$\ln\left(\frac{\Pr\left(Y_{i}=1\right)}{1-\Pr\left(Y_{i}=1\right)}\right)=\beta_{0}++\beta_{1}X_{1i}+\beta_{2}X_{2i}$$

 Thus, in the logit model, β₁ measures the marginal effect of X on the log odds-ratio. That is, a unit increase in X leads to an increase of 100β₁% in the odds-ratio.

- Both logit and probit models are non-linear models. We introduce a new estimation method, called the Maximum Likelihood Estimation.
- Let {(Y_i, X_{1i}, ..., X_{ki})}^N_{i=1} denote a random sample from the population distribution of Y conditional on X₁, ..., X_k, f (Y|X₁, ..., X_k; θ).
- The likelihood estimation requires the parametric assumption of functional forms on $f(Y|X_1, ..., X_k; \theta)$ and we need to know the joint distribution.

- Because of the random sampling assumption, the joint distribution of $\{(Y_i, X_{1i}, ..., X_{ki})\}_{i=1}^N$ is the product of the distributions:
 - (continuous variable) $\prod_{i=1}^{n} f(Y_i | X_{1i}, ..., X_{ki}; \theta)$
 - (discrete variable) $\prod_{i=1}^{n} \Pr(Y_i | X_{1i}, ..., X_{ki}; \theta)$
- Then, the likelihood function is defined as

$$L\left(\theta; \{(Y_i, X_{1i}, ..., X_{ki})\}_{i=1}^N\right) = \prod_{i=1}^n f(Y_i | X_{1i}, ..., X_{ki}; \theta)$$

• The maximum likelihood (ML) estimator of θ is the value of θ that maximizes the likelihood function.

- The ML principle says that, out of all the possible values for θ, the value that makes the likelihood of the observed data largest should be chosen.
- Usually, it is more convenient to work with the *log-likelihood* function:

$$\log L\left(\theta; \{(Y_i, X_{1i}, ..., X_{ki})\}_{i=1}^N\right) = \sum_{i=1}^n \log f(Y_i | X_{1i}, ..., X_{ki}; \theta).$$

- Because of the non-linear nature of the maximization problem, we usually cannot obtain an explict formula for ML estimators. Thus, one requires a numerical optimization.
- Under very general conditions, the MLE is consistent, asymptotically efficient, and asymptotically normal.

Estimation of Logit and Probit Models

- Suppose that we observed N_1 number of Y = 1 and N_0 number of Y = 0, where $N_0 + N_1 = N$.
- The log-likelihood function from this data is

$$\log L\left(\beta_0,\beta_1\right) = \sum_{i=1}^{N_1} \log \Pr\left(Y_i=1\right) + \sum_{i=1}^{N_0} \log \Pr\left(Y_i=0\right),$$

where $Pr(Y_i = 1)$ is either a normal cdf or logisitic cdf.

• The MLE of β_0 and β_1 are found by maximizing the log-likelihood with respect to β_0 and β_1 :

$$\frac{\partial \log L\left(\beta_{0},\beta_{1}\right)}{\partial \beta_{0}}=0 \text{ and } \frac{\partial \log L\left(\beta_{0},\beta_{1}\right)}{\partial \beta_{1}}=0.$$

Example: Environmental Concern

The model is

 $\textit{EnvCon}_i = \beta_0 + \beta_1 \textit{Age}_i + \beta_2 \textit{Sex}_i + \beta_3 \textit{LogInc}_i + \beta_4 \textit{Smell}_i + u_i.$

	LPM		Logit		Probit		
Variable	Coeff.	Std. Err.	Coeff.	Std. Err.	Coeff.	Std. Err	
Age	0.008	0.002	0.032	0.009	0.020	0.005	
Sex	0.015	0.048	0.065	0.204	0.040	0.126	
Log Income	0.112	0.030	0.480	0.132	0.299	0.081	
Smell	0.130	0.052	0.556	0.224	0.349	0.138	
Constant	-0.683	0.260	-5.073	1.160	-3.157	0.708	
	Some Marginal Effects						
Age	0.008		0.008		0.008		
Log Income	0.112		0.111		0.119		

Environmental Econometrics (GR03)

Fall 2008

- We want to do hypothesis testing in logit and probit models. There are several common ways to construct test statistics. We will use the *likelihood ratio* (LR) test.
- The LR test is based on the difference in the log-likelihood functions for the unrestricted and restricted models, just as the F test compared the goodness of fit in MLR models.

• Let \mathcal{L}_{ur} (\mathcal{L}_r) denote the maximized log-likelihood value for the unrestricted (restricted) model. Then the **likelihood ratio statistic** is

$$LR=2\left(\mathcal{L}_{ur}-\mathcal{L}_{r}
ight)\sim^{a}\mathcal{X}_{q}^{2}$$
 ,

where q is the number of restrictions in a hypothesis.

- Note that because $\mathcal{L}_{ur} \geq \mathcal{L}_r$, LR is nonnegative.
- Interpretation: The larger the fall of the log-likelihood is after imposing restrictions, the more likely we want to reject the null hypothesis.

Example: Environmental Concern

• We want to test a hypothesis saying there is no difference in environmental concern according to age and sex.

$$H_0: \beta_1 = 0 = \beta_2$$
 vs. $H_1:$ not H_0

• The likelihood ratio statistics in logit and probit models are

	Lo	git	Probit		
	Unrestr.	Restr.	Unrestr.	Restr.	
Log Likelihood	-278.84	-286.85	-278.78	-286.84	
LR statistics	16.03		16.11		

• The critical value of the chi-squrare distribution with 2 degrees of freedom is 5.99. Hence, we can not accept the null.