MSc in Environmental Economics:
 Answer Keys to Examination in Environmental Econometrics (GR03)

May 2008

Section 1 (Compulsory) [40 points]

Question 1

118.8% more. The value of t statistic is $0.188 / 0.008=23.5>1.96=t_{\alpha / 2}$. Thus, it is statistically significant.

2 Omitted variable bias. Positive correlation will lead to an upward bias.
$3 R^{2}$ measures the part of the variance in the dependent variable explained by the model. Here 45.1%. Remaining part of variance cannot be explained by existing explanatory variables.
417.7% more. 7% more. The values of t statistic are $0.177 / 0.009=19.67$ and $0.070 / 0.019=$ 3.68. Thus, they are statistically significant.
58.7% more.

Question 2

1

$$
\begin{aligned}
\operatorname{Pr}(H) & =\frac{\exp \left(\beta_{H 0}+\beta_{H 1} \text { Age }+\beta_{H 2} \text { Gender }+\beta_{H 3} \log \text { income }\right)}{1+\sum_{k=H, A} \exp \left(\beta_{k 0}+\beta_{k 1} \text { Age }+\beta_{k 2} \text { Gender }+\beta_{k 3} \log \text { income }\right)} \\
\operatorname{Pr}(A) & =\frac{\exp \left(\beta_{A 0}+\beta_{A 1} \text { Age }+\beta_{A 2} \text { Gender }+\beta_{A 3} \log \text { income }\right)}{1+\sum_{k=H, A} \exp \left(\beta_{k 0}+\beta_{k 1} \text { Age }+\beta_{k 2} \text { Gender }+\beta_{k 3} \log \text { income }\right)}
\end{aligned}
$$

2

$$
\log \left(\frac{\operatorname{Pr}(H)}{\operatorname{Pr}(F)}\right)=\beta_{H 0}+\beta_{H 1} \text { Age }+\beta_{H 2} \text { Gender }+\beta_{H 3} \log \text { income }
$$

No, it is an implication of IIA.
3 If there is 1% increase of income, there would be 1.358% increase of the odds-ratio between H and $F . \Delta \log (\operatorname{Pr}(H) / \operatorname{Pr}(F))=1.358 \times 0.5=0.679$.

4 In the ordered probit model, choice variables are ordered, whereas not in the multinomial logit model. So a colleague's suggestion does not make much sense in this example.

Section 2 [60 points]

Question 1 (Autocorrelation)

$1 \operatorname{Cov}\left(u_{t}, u_{t-j}\right) \neq 0$ for some j. Unbiased but not BLUE any longer. need to correct the usual standard error.

2 See lecture notes.
$3 u_{t}=\mu+v_{t}+\lambda v_{t-1}$, where v_{s} iid mean zero and a variance σ^{2}.
$4 \operatorname{Cov}\left(u_{t}, u_{t}\right)=\left(1+\lambda^{2}\right) \sigma^{2} ; \operatorname{Cov}\left(u_{t}, u_{t-1}\right)=\lambda \sigma^{2} ; \operatorname{Cov}\left(u_{t}, u_{t-2}\right)=0$.

Question 2 (Measurement Error)

1 No. $\operatorname{Cov}(X, u+e)=0$.
2 Yes. $\operatorname{Cov}\left(\widetilde{X}, u-\beta_{1} v\right) \neq 0$.
$3 Z$ is an IV such that $\operatorname{Cov}(Z, X) \neq 0$ and $\operatorname{Cov}(Z, u)=0$.

4

$$
\widehat{\beta}_{1}^{I V}=\frac{\sum\left(Z_{i}-\bar{Z}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(Z_{i}-\bar{Z}\right)\left(X_{i}-\bar{X}\right)}
$$

Question 3 (Simultaneous Equations Model)

1 See lecture notes.
2 No. The parameters in the first equation of the second system can be identified.

3 Hauseman's exogeneity test (see lecture notes).

Question 4

1 If there is 1% increase of nitrogen oxide, there would be 0.954% decrease of housing price.

$$
-0.954 / 0.117=8.15>1.96 \text { (yes). }(-0.954+1) / 0.117=0.39<1.96 \text { (No). }
$$

2 If there is one unit increase of room, there would 25.5% increase of housing price. If there is one unit increase of stratio, there is 5.2% decrease of housing price. If there is 1% increase of Dist, there would be 0.134% decrease of housing price.

3

$$
F=\frac{(0.581-0.402) / 3}{(1-0.581) /(352-4-1)}=49.41>2.60=F_{\alpha}(3,347)
$$

Cannot accept the null.
4 Either large sample or small sample with normally distributed errors. Heteroskedasticity.

