Endogeneity

Fall 2008

Definition

- Endogeneity is said to occur in a multiple regression model if

$$
E\left(X_{j} u\right) \neq 0, \text { for some } j=1, \ldots, k
$$

Definition

- Endogeneity is said to occur in a multiple regression model if

$$
E\left(X_{j} u\right) \neq 0, \text { for some } j=1, \ldots, k
$$

- Examples:

Definition

- Endogeneity is said to occur in a multiple regression model if

$$
E\left(X_{j} u\right) \neq 0, \text { for some } j=1, \ldots, k
$$

- Examples:
- Omitted variables

Definition

- Endogeneity is said to occur in a multiple regression model if

$$
E\left(X_{j} u\right) \neq 0, \text { for some } j=1, \ldots, k
$$

- Examples:
- Omitted variables
- Measurement error

Definition

- Endogeneity is said to occur in a multiple regression model if

$$
E\left(X_{j} u\right) \neq 0, \text { for some } j=1, \ldots, k
$$

- Examples:
- Omitted variables
- Measurement error
- Simultaneity in simultaneous equations models

Omitted Variable and Proxy Variable

- Suppose that a regression model excludes a key variable, due to data unavailability.
- For example, consider a wage equation explicitly recognizing that ability affects wage:

$$
\log \left(\text { Wage }_{i}\right)=\beta_{0}+\beta_{1} \text { Educ }_{i}+\beta_{2} \text { Exper }_{i}+\beta_{3} \text { Abil }_{i}+u_{i}
$$

- Our primary interest is to measure the effects of education and job experience on wage, holding the effect of ability constant. But ability is usually not available in the data.
- One remedy is to obtain a proxy variable that is correlated to the omitted variable.
- In the wage equation, we may want to use the intelligence quotient (IQ) as a proxy for ability:

$$
\log \left(\text { Wage }_{i}\right)=\beta_{0}+\beta_{1} E^{E_{2}}+\beta_{2} \text { Exper }_{i}+\beta_{3} I Q_{i}+v_{i}
$$

Example: Wage Equation

- The data contains 935 men in 1980 from the Young Men's Cohort of the National Longitudinal Survey (NLSY), USA.

Example: Wage Equation

- The data contains 935 men in 1980 from the Young Men's Cohort of the National Longitudinal Survey (NLSY), USA.
- The results from the regression with omitting ability variable are

Log(wage)	Coeff.	Std. Err.
Education	0.078	0.007
Experience	0.020	0.003
Constant	5.503	0.112

The estimated return to education is 7.8%.

Example: Wage Equation

- The data contains 935 men in 1980 from the Young Men's Cohort of the National Longitudinal Survey (NLSY), USA.
- The results from the regression with the proxy variable (IQ) for ability are

Log(wage)	Coeff.	Std. Err.	Coeff.	Std. Err.
Education	0.078	0.007	0.057	0.007
Experience	0.020	0.003	0.020	0.003
IQ	-	-	0.006	0.001
Constant	5.503	0.112		5.198

The estimated return to education changes from 7.8% to 5.7%.

Measurement Error

- Data is often measured with error:
- reporting errors.
- coding errors.
- When the measurement error is in the dependent variable, the zero conditional mean assumption is not violated and thus no endogeneity.
- In contrast, when the measure error is in the independent variable, the problem of endogeneity arises.

Measurement Error in an Independent Variable

- Consider a simple regression model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- X_{i} is measured with errors. That is, we observe $\widetilde{X}_{i}=X_{i}+e_{i}$ instead of X_{i}.
- We assume that e_{i} is uncorrelated with $X_{i}, E\left(X_{i} e_{i}\right)=0$.
- Then, the regression equation we use is

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} \widetilde{X}_{i}+u_{i}-\beta_{1} e_{i} \\
& =\beta_{0}+\beta_{1} \widetilde{X}_{i}+v_{i}
\end{aligned}
$$

- It can be seen that the problem of endogeneity occurs:

$$
\begin{aligned}
E\left(\widetilde{X}_{i} v_{i}\right) & =E\left(\left(X_{i}+e_{i}\right)\left(u_{i}-\beta_{1} e_{i}\right)\right) \\
& =-\beta_{1} \operatorname{Var}\left(e_{i}\right) \neq 0
\end{aligned}
$$

Attenuation Bias

- If we perform the regression of Y_{i} on \widetilde{X}_{i}, then the measurement error leads to a biased OLS estimate towards zero. This is called attenuation bias.

Attenuation Bias

- If we perform the regression of Y_{i} on \widetilde{X}_{i}, then the measurement error leads to a biased OLS estimate towards zero. This is called attenuation bias.
- The OLS estimator of β_{1} is

$$
\begin{aligned}
\widehat{\beta}_{1} & =\beta_{1}+\frac{\sum_{i=1}^{N}\left(\widetilde{X}_{i}-\widetilde{\widetilde{X}}\right)\left(u_{i}-\beta_{1} e_{i}\right)}{\sum_{i=1}^{N}\left(\widetilde{X}_{i}-\widetilde{\widetilde{X}}\right)^{2}} \\
& \longrightarrow{ }^{p} \beta_{1}-\beta_{1} \frac{\operatorname{Var}(e)}{\operatorname{Var}(X)+\operatorname{Var}(e)} .
\end{aligned}
$$

Attenuation Bias

- If we perform the regression of Y_{i} on \widetilde{X}_{i}, then the measurement error leads to a biased OLS estimate towards zero. This is called attenuation bias.
- The OLS estimator of β_{1} is

$$
\begin{aligned}
\widehat{\beta}_{1} & =\beta_{1}+\frac{\sum_{i=1}^{N}\left(\widetilde{X}_{i}-\widetilde{\widetilde{X}}\right)\left(u_{i}-\beta_{1} e_{i}\right)}{\sum_{i=1}^{N}\left(\widetilde{X}_{i}-\widetilde{\widetilde{X}}\right)^{2}} \\
& \longrightarrow{ }^{p} \beta_{1}-\beta_{1} \frac{\operatorname{Var}(e)}{\operatorname{Var}(X)+\operatorname{Var}(e)} .
\end{aligned}
$$

- Thus, the OLS estimator is inconsistent

$$
p \lim \left(\widehat{\beta}_{1}\right)=\beta_{1} \frac{\operatorname{Var}(X)}{\operatorname{Var}(X)+\operatorname{Var}(e)} \leq \beta_{1} .
$$

Simultaneity

- Simultaneity arises when one or more of the independent variables, $X_{j} \mathrm{~s}$, is jointly determined with the dependent variable, Y, typically through an equilibrium mechanism.
- This arises in many economic contexts:
- quantity and price by demand and supply
- investment and productivity
- sales and advertizement

Simultaneous Equations Model

- Suppose that the equilibrium relation between X and Y is expressed by the following simultaneous equations:

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+u_{i} \\
X_{i} & =\alpha_{0}+\alpha_{1} Y_{i}+v_{i}
\end{aligned}
$$

- Each one is called a structural equation since it has a ceteris paribus, causal interpretation.
- By solving two equations, we have

$$
\begin{aligned}
Y_{i} & =\frac{\beta_{0}+\beta_{1} \alpha_{0}}{1-\alpha_{1} \beta_{1}}+\frac{\beta_{1} v_{i}+u_{i}}{1-\alpha_{1} \beta_{1}} \\
X_{i} & =\frac{\alpha_{0}+\alpha_{1} \beta_{0}}{1-\alpha_{1} \beta_{1}}+\frac{v_{i}+\alpha_{1} u_{i}}{1-\alpha_{1} \beta_{1}}
\end{aligned}
$$

- These are called the reduced form of the model. It is easy to see that, if one perform the regression with just one equation, it will lead to a biased OLS estimator, called simultaneity bias.

$$
\begin{aligned}
\operatorname{Cov}\left(X_{i}, u_{i}\right) & =\operatorname{Cov}\left(\frac{v_{i}+\alpha_{1} u_{i}}{1-\alpha_{1} \beta_{1}}, u_{i}\right) \\
& =\frac{\alpha_{1}}{1-\alpha_{1} \beta_{1}} \operatorname{Var}\left(u_{i}\right)
\end{aligned}
$$

Endogenous and Exogenous Variables

- Suppose a more general model:

$$
\left\{\begin{array}{l}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} T_{i}+u_{i} \\
X_{i}=\alpha_{0}+\alpha_{1} Y_{i}+\alpha_{2} Z_{i}+v_{i}
\end{array}\right.
$$

- We have two kinds of variables:
- Endogenous variables $\left(X_{i}\right.$ and $\left.Y_{i}\right)$ are determined within the system.
- Exogenous variables (T_{i} and Z_{i}) are exogenously given outside of the model.
- Example: wage and labor supply for married women

$$
\left\{\begin{array}{c}
\log \left(\text { Hours }_{i}\right)=\beta_{0}+\beta_{1} \log \left(\text { wage }_{i}\right)+\beta_{2} \text { Educ }_{i} \\
+\beta_{3} \text { Age }_{i}+\beta_{4} \text { Kidslt }_{i}+\beta_{5} \text { Nwinc }_{i}+u_{i} \\
\log \left(\text { wage }_{i}\right)=\alpha_{0}+\alpha_{1} \log \left(\text { Hours }_{i}\right)+\alpha_{2} \text { Educ }_{i} \\
+\alpha_{3} \text { Exper }_{i}+\alpha_{4} \text { Exper }_{i}^{2}+v_{i}
\end{array}\right.
$$

Identification I

- The reduced form of the model is

$$
\left\{\begin{array}{c}
Y_{i}=\frac{\beta_{0}+\beta_{1} \alpha_{0}}{1-\alpha_{1} \beta_{1}}+\frac{\beta_{1} \alpha_{2}}{1-\alpha_{1} \beta_{1}} Z_{i}+\frac{\beta_{2}}{1-\alpha_{1} \beta_{1}} T_{i}+\widetilde{u}_{i} \\
=B_{0}+B_{1} Z_{i}+B_{2} T_{i}+\widetilde{u}_{i} \\
X_{i}=\frac{\alpha_{0}+\alpha_{1} \beta_{0}}{1-\alpha_{1} \beta_{1}}+\frac{\alpha_{2}}{1-\alpha_{1} \beta_{1}} Z_{i}+\frac{\alpha_{1} \beta_{2}}{1-\alpha_{1} \beta_{1}} T_{i}+\widetilde{v}_{i} \\
=A_{0}+A_{1} Z_{i}+A_{2} T_{i}+\widetilde{v}_{i}
\end{array}\right.
$$

- We can OLS estimate both equations of the reduced form to get consistent estimates of the recuded form parameters: $B_{0}, B_{1}, B_{2}, A_{0}, A_{1}$, and A_{2}.
- Note that

$$
\begin{aligned}
& \frac{B_{1}}{A_{1}}=\beta_{1}, B_{2}\left(1-\frac{B_{1} A_{2}}{A_{1} B_{2}}\right)=\beta_{2} \\
& \frac{A_{2}}{B_{2}}=\alpha_{1}, A_{1}\left(1-\frac{B_{1} A_{2}}{A_{1} B_{2}}\right)=\alpha_{2}
\end{aligned}
$$

Identification II

- Thus, we can back out the estimates of structural parameters from the reduced form coefficients. In this case it is said that the model is identified.

Rules for Identification I

- $M(K)$ is the number of endogenous (exogenous) variables in the model. $m(k)$ is the number of endogenous (exogenous) variables in a given equation.
- Order Condition (necessary but not sufficient): In order to have identification in a given model, we must have

$$
K-k \geq m-1
$$

- Example1: $M=2, K=0$

$$
\left\{\begin{array}{lll}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i} & m=2, k=0 & \text { not identified } \\
X_{i}=\alpha_{0}+\alpha_{1} Y_{i}+v_{i} & m=2, k=0 & \text { not identified }
\end{array}\right.
$$

- Example2: $M=2, K=1$

$$
\left\{\begin{array}{lrr}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} T_{i}+u_{i} & m=2, k=1 & \text { not identified } \\
X_{i}=\alpha_{0}+\alpha_{1} Y_{i}+v_{i} & m=2, k=0 & \text { identified }
\end{array}\right.
$$

Estimation of an Identified Equation I

- Consider the following system of equations.

$$
\left\{\begin{array}{l}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i} \\
X_{i}=\alpha_{0}+\alpha_{1} Y_{i}+\alpha_{2} Z_{i}+v_{i}
\end{array}\right.
$$

- Note that the first equation is identified. Thus, we are interested in estimating β_{1}.
- The reduced form is

$$
\left\{\begin{array}{l}
Y_{i}=B_{0}+B_{1} Z_{i}+\widetilde{u}_{i} \\
X_{i}=A_{0}+A_{1} Z_{i}+\widetilde{v}_{i}
\end{array}\right.
$$

where $B_{1} / A_{1}=\beta_{1}$.

Estimation of an Identified Equation II

- The OLS from the reduced form model gives us

$$
\widehat{B}_{1}=\frac{\sum_{i=1}^{N}\left(Z_{i}-\bar{Z}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{N}\left(Z_{i}-\bar{Z}\right)^{2}}, \widehat{A}_{1}=\frac{\sum_{i=1}^{N}\left(Z_{i}-\bar{Z}\right)\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{N}\left(Z_{i}-\bar{Z}\right)^{2}}
$$

- Hence, the estimator of β_{1} is

$$
\widehat{\beta}_{1, I V}=\frac{\sum_{i=1}^{N}\left(Z_{i}-\bar{Z}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{N}\left(Z_{i}-\bar{Z}\right)\left(X_{i}-\bar{X}\right)}=\frac{\operatorname{Cov}(Z, Y)}{\widehat{\operatorname{Cov}(Z, X)}}
$$

In fact, this is the instrumental variable (IV) estimator, which can be obtained in just one step.

Instrumental Variables (IVs)

- Definition: An instrument for the model, $Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}$, is a variable Z_{i} such that

$$
\operatorname{Cov}(Z, X) \neq 0 \text { and } \operatorname{Cov}(Z, u)=0
$$

- The IV estimation can be seen as a two step estimator within a simultaneous equations model as seen just before.
- Another way of deriving an IV estimator is from its definition:

$$
\begin{aligned}
0 & =\operatorname{Cov}(Z, u)=\operatorname{Cov}\left(Z, Y-\beta_{0}-\beta_{1} X_{i}\right) \\
& =\operatorname{Cov}(Z, Y)-\beta_{1} \operatorname{Cov}(Z, X)
\end{aligned}
$$

And so

$$
\widehat{\beta}_{1, I V}=\frac{\widehat{\operatorname{Cov}(Z, Y)}}{\widehat{\operatorname{Cov}(Z, X)}} .
$$

Properties of IV Estimator

- Under the maintained assumptions, the IV estimator is consistent:

$$
\widehat{\beta}_{1, I V}=\beta_{1}+\frac{\sum_{i=1}^{N}\left(Z_{i}-\bar{Z}\right) u_{i}}{\sum_{i=1}^{N}\left(Z_{i}-\bar{Z}\right)\left(X_{i}-\bar{X}\right)}
$$

Since $\sum_{i=1}^{N}\left(Z_{i}-\bar{Z}\right) u_{i} / N \longrightarrow{ }^{p} 0$ as $N \longrightarrow \infty$,

$$
p \lim \left(\widehat{\beta}_{1, I V}\right)=\beta_{1}
$$

- The IV estimator can have a substantial bias in small samples and thus large samples are preferred.
- The asymptotic variance of the IV estimator is

$$
\operatorname{Var}\left(\widehat{\beta}_{1, I V}\right) \approx^{p} \sigma_{u}^{2} \frac{\operatorname{Var}(Z)}{N \cdot \operatorname{Cov}(Z, X)^{2}}
$$

Another Example: Lagged dependent variable

- Consider the following time-series model:

$$
Y_{t}=\beta_{0}+\beta_{1} Y_{t-1}+\beta_{2} X_{t}+u_{t}
$$

where $u_{t}=v_{t}+\lambda v_{t-1}$ and v_{t} is a iid noise and $E\left(u_{t} \mid X\right)=0$.

- It can be easily seen that

$$
\operatorname{Cov}\left(Y_{t-1}, u_{t}\right)=\lambda \operatorname{Var}\left(v_{t-1}\right) \neq 0
$$

- A valid instrument is X_{t-1} since it is correlated with Y_{t-1} but not with u_{t}.
- Therefore, the IV estimator is

$$
\widehat{\beta}_{1, I V}=\frac{\sum_{t=2}^{T}\left(X_{t-1}-\bar{X}\right)\left(Y_{t}-\bar{Y}\right)}{\sum_{t=2}^{T}\left(X_{t-1}-\bar{X}\right)\left(X_{t}-\bar{X}\right)}
$$

More Than One Instrument

- So far we showed how to use one variable as an instrument. Sometimes, we can think more than one variable as an instrument.
- Suppose that Z_{1} and Z_{2} are two possible instruments for a variable X.

$$
\begin{aligned}
\operatorname{Cov}\left(Z_{1}, u\right) & =0=\operatorname{Cov}\left(Z_{2}, u\right) \\
\operatorname{Cov}\left(Z_{1}, X\right) & \neq 0 \text { and } \operatorname{Cov}\left(Z_{2}, X\right) \neq 0
\end{aligned}
$$

- Rather than using just one instrument, it will be more efficient to use two instruments at the same time. How?

Two-stage Least Squares (2SLS)

- We can use a linear combination of both instruments:

$$
Z_{i}=\alpha_{1} Z_{1 i}+\alpha_{2} Z_{2 i}
$$

which is still a valid instrument since $\operatorname{Cov}(Z, u)=0$.

- In order to choose α_{1} and α_{2} so that the correlation between Z_{i} and X_{i} is maximal, we perform the OLS from the regression equation:

$$
Z_{i}=\alpha_{0}+\alpha_{1} Z_{1 i}+\alpha_{2} Z_{2 i}+w_{i}
$$

- Once we have obtained the fitted value, $\widehat{Z}_{i}=\widehat{\alpha}_{0}+\widehat{\alpha}_{1} Z_{1 i}+\widehat{\alpha}_{2} Z_{2 i}$, we are back to the case with a single IV:

$$
\widehat{\beta}_{1,2 S L S}=\frac{\sum_{i=1}^{N}\left(\widehat{Z}_{i}-\overline{\widehat{Z}}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{N}\left(\widehat{Z}_{i}-\overline{\widehat{Z}}\right)\left(X_{i}-\bar{X}\right)}
$$

- This entire procedure is called two-stage least squares (2SLS) estimation.

Example: Wage and Labor Supply of Married Woman

- Suppose that the wage and labor supply are determined by

$$
\left\{\begin{array}{c}
\log \left(\text { Hours }_{i}\right)=\beta_{0}+\beta_{1} \log \left(\text { wage }_{i}\right)+\beta_{2} \text { Educ }_{i} \\
+\beta_{3} \text { Age }_{i}+\beta_{4} \text { Kidslt }_{i}+\beta_{5} \text { Nwinc }_{i}+u_{i} \\
\log \left(\text { wage }_{i}\right)=\alpha_{0}+\alpha_{1} \log \left(\text { Hours }_{i}\right)+\alpha_{2} \text { Educ }_{i} \\
+\alpha_{3} \text { Exper }_{i}+\alpha_{4} \text { Exper }_{i}^{2}+v_{i}
\end{array}\right.
$$

- Is each equation in the model identified?

Example: Wage and Labor Supply of Married Woman

- Using the 2SLS estimation, we have the following results:

Log(hours)	Coeff.	Std. Err.		Log(wage)	Coeff.	Std. Err.
Log(wage)	1.994	0.564		Log(hours)	0.060	0.146
Educ	-0.235	0.071		Educ	0.110	0.016
Age	-0.014	0.011		Exper	0.036	0.018
Kidslt6	-0.465	0.219		(Exper)^2	-0.0007	0.0005
Nwinc	-0.014	0.008		Constant	-0.929	1.003
Constant	8.370	0.689				

Example: Wage and Labor Supply of Married Woman I

- For comparison, we perform the OLS regression for the model:

Log(hours)	Coeff.	Std. Err.		Log(wage)	Coeff.	Std. Err.
Log(wage)	0.043	0.067		Log(hours)	-0.019	0.035
Educ	-0.025	0.022		Educ	0.107	0.014
Age	-0.004	0.006		Exper	0.043	0.014
Kidslt6	-0.621	0.124		(Exper)^2	-0.0008	0.0004
Nwinc	-0.009	0.004		Constant	-0.394	0.310
Constant	7.536	0.373				

- The coefficient on \log (wage) is statistically insignificant in OLS, while significant in 2SLS.

Exogeneity Test

- When the independent variables are exogenous, the 2SLS is less efficient than OLS since the 2SLS estimates can have very large standard errors.
- Hauseman's exogeneity test is as follows

$$
H_{0}: \operatorname{Cov}(X, u)=0, \quad H_{1}: \operatorname{Cov}(X, u) \neq 0
$$

- An idea is to compare both the OLS estimator, $\widehat{\beta}_{1, O L S}$, and the 2SLS estimator, $\widehat{\beta}_{1,2 S L S}$. To test whether the differences are statistically significant, it is easier to use the following regression test:
- First, regress X_{i} on Z_{i} and get the residual \widehat{v}_{i} :

$$
X_{i}=\alpha_{0}+\alpha_{1} Z_{i}+v_{i}
$$

- Regress

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\gamma \widehat{v}_{i}+u_{i}
$$

- Test for $\gamma=0$. If γ is statistically different from zero, then we conclude that X_{i} is endogeneous.

Example: Wage and Labor Supply of Married Women

- In the first equation (labor supply), we want to test whether \log (wage) is endogenous.
- First, we regress the following equation to get the residual \widehat{v}_{i} :

$$
\log \left(\text { wage }_{i}\right)=\alpha_{0}+\alpha_{1} \text { Exper }_{i}+\alpha_{1} \text { Exper }_{i}^{2}+v_{i}
$$

- Then add \widehat{v}_{i} in the first equation and do OLS:

$$
\begin{gathered}
\log \left(\text { Hours }_{i}\right)=\beta_{0}+\beta_{1} \log \left(\text { wage }_{i}\right)+\beta_{2} E d u c_{i}+\beta_{3} \text { Age }_{i} \\
\\
+\beta_{4} \text { Kidslt }_{i}+\beta_{5} \text { Nwinc }_{i}+\gamma \widehat{v}_{i}+u_{i}
\end{gathered}
$$

- The estimation and t-statistic on \widehat{v}_{i} are as follows:

	Coeff.	Std. Err.	t-statistic
\widehat{v}_{i}	-1.995	0.322	-6.20

