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Abstract

We study the Generalized Second Price auctions—a standard method for allocat-

ing online search advertising—experimentally, considering both the static environment

assumed by the prevailing theory and a dynamic game capturing the salient aspects

of real-world search advertising auctions. Subjects of our experiment bid consistently

with the leading equilibrium notions, but exhibit significant overbidding relative to

the Vickrey-Clarke-Groves (VCG) outcome favored as an equilibrium selection in the

literature. The observed bidding behavior is well explained by a model that explicitly

accounts for the strategic uncertainty facing a bidder, which suggests strategic uncer-

tainty as a source of the observed departure from the VCG outcome. Meanwhile, the

observed bidding behavior in the dynamic game resembles the behavior in the static
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game. Our analysis thus lends support to the use of a static game as modeling proxy,

but calls into question the prevailing equilibrium selection.

JEL Classification: C92, D44, M3.

Keywords: online advertising, sponsored search auction, generalized second price

auction, experiment.

1 Introduction

Search engines such as Google, Yahoo! and Microsoft sell online search spaces to advertisers.

In comparison with conventional advertising, online search advertising is highly targetable,

and thus is an effective means for finding buyers. Naturally, the sponsored search auctions

have become a major revenue source for search firms. In 2007, search advertising accounted

for more than $21 billion of revenue for search firms in US.1 The auction format used for

selling ad spaces has evolved, with a few adjustments along the way, to what is now known

as the generalized second price (GSP) auctions.

Under the GSP, advertisers bid per-click prices, and these bids are converted into per-

impression bids—their per-click bids multiplied by the estimated click through rates—to

determine the assignment of ad positions. Specifically, the highest bidder (in per-impression

bid) is assigned the top position, the second-highest bidder is assigned the next best, and so

on. A winner of each ad position then pays the smallest price per click that would have won

that position. If the number of clicks depends only on one’s position, as is often assumed,

per-impression bids essentially coincide with per-click bids, so each winning bidder simply

pays a per-click price that equals the bid submitted by the next-highest bidder.

The prevailing theory considers the GSP in a static model in which advertisers bid si-

multaneously with complete information about others’ preferences (Edelman et al., 2007,

henceforth EOS; and Varian, 2007). EOS and Varian then focus on a class of Nash equilib-

ria, called locally envy-free or symmetric, in which no bidder wishes to exchange his winning

position and the associated price with others’ positions and the prices they are paying for

them. The Symmetric Nash Equilibrium (SNE) concept predicts efficient allocation of ad

positions but admits a plethora of equilibrium prices, including those that would obtain if

the Vickrey-Clarke-Groves (VCG) mechanism were employed. This VCG equilibrium is the

most preferred by bidders among all SNE’s, and is suggested as the most plausible.2

1See http://www.iab.net/media/file/IAB PwC 2007 full year.pdf. This revenue includes over 90% of

Google’s revenue and 50% of Yahoo! and MS’s revenues (more precisely, the revenue of Online Services

Division of MS) according to each firm’s report of annual revenue.
2See Section 2 for several arguments that have been made in the literature in support of selecting the

VCG outcome.
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While the theory provides useful insights on GSP auctions, it raises two issues. First,

unlike the theory, sponsored-search auctions in practice take place continuously in real time—

in principle, whenever a user types in a search query—and also bidders are unlikely to

have complete information about one another’s preferences. This means that advertisers

face complex dynamic interactions which may provide them with opportunities to learn

and adjust their behavior over time. The actual practice is therefore best described by a

dynamic game in which bidders with incomplete information play repeatedly over time. It

is unclear whether the static complete information model can adequately represent this rich

dynamic environment. Second, the theory lacks a sharp prediction due to the multiplicity

of equilibria. Although the literature suggests the VCG outcome as the most salient, there

is no compelling theoretical argument or empirical evidence supporting the selection of this

outcome.

The current paper investigates these issues via a laboratory experiment. At its core,

our experiment induces two environments. The basic control environment is the static

complete-information game (henceforth SC) used in theory, wherein subjects play one-

shot GSP game with complete information about one another’s preferences. The main treat-

ment environment is a dynamic incomplete-information game (henceforth DI) that

captures the salient features of the GSP game in practice, wherein subjects play the GSP

games repeatedly, with possible feedback and learning, but without complete information about

their opponents’ preferences. Since the dynamic game differs from the static game with re-

spect to both timing and information, we also consider a static incomplete-information

game (henceforth SI) in which bidders play one-shot GSP game under incomplete informa-

tion about their opponents’ preferences. This additional game serves as a bridge between the

static complete information game and dynamic incomplete information game.

Specifically, our experiment considers three bidders competing to obtain one of the two

bundles, A and B, each containing cA and cB units of a (fictitious) homogeneous commodity,

respectively. The two bundles represent two advertising positions, and the units of the

commodity in a bundle represent the number of clicks an ad position receives for a given

period.3 Bundle A contains more units of the commodity than does bundle B, i.e., cA >

cB > 0, and the ratio of the units in bundle B and A, cB
cA

, captures “clicks decays” across ad

positions. In fact, the nature of strategic environment depends crucially on the magnitude of

click decays. When the ratio cB
cA

is close to zero (i.e., the unit difference is large), A becomes so

much more attractive than B, so the competition becomes essentially about winning bundle

3We are thus assuming that the number of clicks an ad receives depends only on the position it is

placed in. This assumption may not be realistic, but it serves to simplify the strategic environment for the

experimental subjects, and more importantly, to facilitate the testing of the theory, which makes the same

assumption for the most part. EOS and Athey and Nekipelov (2010) extend the theory to introduce the

advertiser-specific factor in click generation.
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A. The game thus becomes close in nature to standard second-price auctions. By contrast, if

the ratio cB
cA

is close to one (i.e., the unit difference is small), both bundles are almost equally

good, so bidders compete to win either bundle at a cheaper price per unit. The strategic

environment thus resembles that of Bertrand game. The difference in the strategic interaction

provides an opportunity to test whether players respond strategically to the environments,

and this difference provides testable restrictions on the subjects’ strategic responses, which

is exploited in our experimental design.

Our experiment yields several results. First, the GSP auctions turned out reasonably

good efficiency performances in our experiment, attaining 76-93% of the maximum possible

surplus improvement over random assignment of the positions. Second, the GSP in the

lab yields revenue that is within the upper bound of the symmetric Nash equilibrium, but

exceeds consistently the revenue corresponding to the particular selection, namely the VCG

outcome, specifically at the median by 3-4% in the static complete information game, by

30-40% in the static incomplete information game, and by 9-18% in the dynamic incomplete

information game. The findings in efficiency and revenue, while suggestive, may not provide

detailed account of the behavior of the subjects, so our main analysis focuses on the subjects’

bidding behavior.

A closer inspection of the subjects’ bidding behavior shows a broad consistency with Nash

equilibrium and symmetric (locally envy free) Nash equilibrium, but a systematic departure

from its particular selection, the VCG outcome. Specifically, the majority of bidders with

the lowest per-unit values bid close to their true values, as predicted by the theory, while a

significant fraction of subjects also bid above their values. This latter pattern of behavior

is in common with the overbidding patterns documented in the experimental literature of

standard, single-unit, second-price auctions (see Kagel et al., 1987; Kagel and Levin, 1993;

Andreoni et al., 2007; and Cooper and Fang, 2008). On the other hand, the bidders with the

intermediate per-unit values—whose behavior is crucial for testing the theory as will be seen

later—bid significantly higher than the VCG level in all treatments: the median subjects

overbid the VCG prediction by 19-22% in the SC game, by 42-81% in the SI game, and by

22-25% in the DI game. When we compare the cumulative distributions of observed bids

and the VCG prediction, this overbidding holds even in the sense of stochastic dominance

in all treatments. We then check if the overbidding found in our data is due to subjects’

non-strategic behavior or insincere bidding. While observed bids do not conform to the

VCG prediction, a large fraction of bidders played best responses to one another at least in

the static sense. Subjects’ bidding behavior also responded to a change in the unit ratio of

the two bundles in a way qualitatively consistent with the theory, indicating that subjects

understood the strategic environments they operated in.

We next find that the subjects’ behavior in the dynamic game of incomplete information

(DI game) resembles the behavior in the static game of complete information (SC game).
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Subjects in our dynamic treatment are seen to behave adaptively optimally. The resulting

learning and feedback cause them to respond to the values of their opponents in the DI

treatment qualitatively similarly to the way they do in the SC treatment, even though the

subjects do not directly observe their opponents’ values. This last finding suggests that the

use of static complete information game may be a reasonable modeling proxy for the more

realistic dynamic game. This has an important implication for analyzing complex games such

as sponsored search auctions. Such games are often difficult to analyze in a descriptively

accurate form due to complex dynamics and informational incompleteness, forcing analysts

to rely on a very stylized static complete information game as a modeling framework. Our

finding validates such an approach by showing that not much empirical realism would be

lost.

At the same time, the support for theoretical predictions on the bidding behavior is less

clear cut. While the observed behavior cannot reject the predictions based on the symmetric

Nash equilibrium concepts, the set of symmetric Nash equilibria is very large. More impor-

tantly, the particular selection proposed by EOS, namely the VCG, is clearly rejected by the

current experimental data. The current study, along with the lack of compelling theoretical

justification for the VCG outcome, thus calls this equilibrium selection into question.

In light of this finding, the observed bidding behavior calls for a more precise account.

Hence, we consider an alternative model in which the mid-value bidder faces strategic un-

certainty about opponents’ strategies and responds rationally to it. The mid-value bidder’s

behavior, if rational, should be explained by the beliefs he holds on how the lowest-value

and the highest-value bidders will bid. In this regard, we first show in the current setup of

three bidders and two positions that bidding above the VCG benchmark is never optimal

for the mid-value bidder, if he believes that the lowest-value bidder bids no higher than

her own value (regardless of the highest-value bidder’s behavior). We investigate whether

the extent of overbidding relative to the VCG exhibited by the mid-value bidder can be

rationalized by the extent of overbidding by the lowest-value bidder relative to their values.

More specifically, we construct a model in which the mid-value bidder bids optimally given

his beliefs, and his beliefs are in turn consistent with the observed behavior of the other

bidders. When confronted with the experimental data, this model of strategic uncertainty

does a fairly good job of explaining the overbidding outcome in the data. We thus conclude

that strategic uncertainty, combined with the possibility of the lowest-value bidder’s bidding

above her own value, can explain the observed departure from the VCG prediction.

The current paper has several broad contributions. First, to our knowledge, the current

paper constitutes a first systematic experimental treatment of the GSP auctions, providing

a comprehensive account of its revenue and efficiency performance and of bidder behavior,
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as well as the testing of the prevailing theory.4 Considering the significance of the GSP

auctions in the increasingly important internet auctions, the research on the subject matter

has been surprisingly sparse, particularly on the empirical front. Two important exceptions

are Börgers et al. (2013) and Athey and Nekipelov (2010). The former authors fit the

static complete information framework to Yahoo data and bound the set of per-click values

consistent with Nash equilibria via the revealed preferences methodology. The latter authors

estimate a richer model that avoids the multiplicity of equilibria by introducing asymmetric

information on the part of advertisers about quality ratings of their opponents.5 Analyzing

real auction data is obviously very useful, but an experimental study in the lab can serve an

important purpose, not easily fulfilled by field studies. There are often no direct observations

on advertisers’ preferences for ad positions or on their information regarding their opponents’

preference. Theory often closes the data gap, but in the case of GSP auctions, this role of

theory is limited due to the high level of abstraction and non-unique predictions. Lab

experiment, with the ability to control subjects’ preferences and information to a large

degree, can actually test the theory itself.

Second, our study employs distinct experimental treatments to study whether the stylized

static full information model can approximate the dynamic incomplete information environ-

ment of the real GSP auction and whether the bidders behave according to the equilibrium

predictions under the chosen model. Our approach allows us to study whether the selection

of a particular modeling framework is justified separately from whether the equilibrium pre-

diction from the chosen model is empirically valid, and this approach can be useful beyond

the current setting. In market design research, some design option entails a strategic envi-

ronment that is too complicated to tractably analyze, and this forces analysts to settle on

4The only other experimental work we are aware of is Fukuda et al. (2013). Their main purpose is

different from ours; they compare the performances between the GSP and VCG auctions (that is, not just

the VCG outcome). They found that the revenue and efficiency performance is similar between the GSP

and VCG auctions and that NE and SNE are more frequently observed in the VCG auction than in the GSP

auction. Their GSP auction shares some common elements with our dynamic environment but there are

some important differences in the design. Specifically, due to the fact that their primary interest is in the

comparison between VCG and GSP auctions, they do not vary the GSP auctions in terms of information

(complete vs. incomplete information), timing (static vs. dynamic game), and decay parameters (cA = 20

vs. 11). Further, they focus on a single profile of values for all groups and for all rounds of experiment.

These limitations of their design make it difficult to compare their results in the GSP auction with ours.

Nonetheless, they found that subjects largely bid above the lower bound of SNE but below its upper bound.

They also found some evidence of learning over time.
5A related work is Jeziorski and Segal (2009) which estimates a rich demand model that allows for the

interdependence of advertisers’ preferences for ad positions. Their paper focuses on the user’s click behavior,

and thus does not study advertisers’ bidding behavior. Ostrovsky and Schwarz (2009) conducted a large-

scale field experiment using the keywords in Yahoo! search engine and measured the impact of introducing

reserve prices on the GSP auction revenue.
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a much stylized abstraction of the true environment. In particular, full information static

game has been adopted as a tractable modeling shortcut in problems such as combinatorial

auctions and school choice analyses.6 Experimental studies may be performed to study the

original environment, but without separating the two aspects of the theory—its modeling

framework and its equilibrium prediction under the chosen model—one would not be able to

evaluate the adequacy of the theory. We would expect our current methodology to be useful

in such an environment.

Last, our paper contributes to the empirical understanding of Bayesian learning in dy-

namic games. Theory suggests that Bayesian learning achieved by myopic players through

repeated interaction (with little information on their opponents) would lead them to play

a full-information Nash equilibrium of the stage game (see Jordan (1991) for instance).7

Our analysis provides some empirical support for this theory, albeit in a special context.

Further, it provides some empirical understanding on how players would select a particular

Nash equilibrium in case there are multiple, an issue on which theory does not provide much

guide.

The rest of the paper is organized as follows. Section 2 discusses the theoretical framework

about GSP auctions and our research questions. Section 3 describes the experimental design

and the details of the procedures. The experimental results are gathered in Section 4. Section

5 provides an alternative model of strategic uncertainty and presents the goodness of fit for

this model. Section 6 concludes by summarizing the findings.

2 Theoretical framework and research questions

2.1 Leading theory of GSP auctions

EOS and Varian consider a static game of complete information in which bidders submit

simultaneously and independently their per unit bids with complete information about other

bidders’ per-click values. We describe the theoretical predictions of this model using a setup

that we shall utilize in our experimental design.

Suppose there are three bidders, i = 1, 2, 3, and two bundles (or “positions”), A and B,

containing respectively cA and cB units of a commodity (“clicks”), where cA > cB > 0. The

value per unit for bidder i is denoted by vi. If a bidder i with per unit value vi wins a bundle

6Full-information Nash equilibrium analysis has been quite standard in the spectrum auction analyses,

including the analysis of the FCC’s Simultaneous Ascending auctions (Milgrom, 2000) and core-selecting

auctions (Day and Milgrom, 2008). In the school choice literature, the Boston mechanism is often analyzed

in the full information Nash framework (see Ergin and Sönmez, 2006; Pathak and Sönmez, 2008).
7Cox et al. (2001) provides an experimental test of Jordan (1991)’s result, showing that the convergence

tends to occur in a game with unique equilibrium but not in a game with multiple equlilibria.
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of ck units of the good and pays p per unit, his payoff is ck (vi − p). The allocation and the

payment are determined under the GSP auction as follows. The highest bidder wins bundle

A and pays the second-highest bid per unit (so his total payment is that bid multiplied by

cA), the second-highest bidder wins bundle B and pays the lowest bid per unit, and the

lowest bidder wins nothing and pays nothing.8

EOS and Varian assume that bidders make bids simultaneously with full information

about the entire value profile (v1, v2, v3). Consider first Nash equilibria of this game. Without

loss of generality, suppose the bidders bid b1 > b2 > b3. (No assumption has been made on the

relative rankings of v1, v2, v3 so far.) This bid profile forms a Nash equilibrium (henceforth

referred to as NE) if and only if

cA (v1 − b2) ≥ max {cB (v1 − b3) , 0} , (1)

cB (v2 − b3) ≥ max {cA (v2 − b1) , 0} , (2)

b2 ≥ v3. (3)

Condition (1) means that the highest bidder—the winner of position A—has no incentive

to deviate in order to win B instead at the price the current winner of B is paying or to

win nothing. Condition (2) means that the second-highest bidder—the winner of position B

has no incentive to deviate to win position A at a price equal to the highest bid or to win

nothing. Condition (3) similarly requires that the lowest bidder has no incentive to deviate.

Note that the Nash equilibrium allocation need not be efficient (i.e., assortative). In fact,

the only allocations Nash equilibria rule out are the ones in which the lowest-value bidder

wins bundle A and the ones in which the highest-value bidder wins neither bundle.9

EOS and Varian introduce a refinement of the set of Nash equilibrium, called “symmetric”

or “locally envy-free” (henceforth referred to as SNE). Formally, bids b1 > b2 > b3 form a

SNE if and only if

cA (v1 − b2) ≥ cB (v1 − b3) , (4)

cB (v2 − b3) ≥ max {cA (v2 − b2) , 0} , (5)

b3 ≥ v3. (6)

Notice that these inequalities follow from requiring local envy-freeness: a bidder should never

wish to exchange her winning bundle at the per-unit price she pays with another, adjacent,

8Ties are broken randomly.
9If the lowest-value bidder wins bundle A, then he will need to pay the second-highest bid, which by

the last condition must be no less than the lowest value, so he will lose money. Also, if the highest-value

bidder wins no position, then the second-highest bid cannot be smaller than the highest value. This means

that the winner of position A must be paying more than his or her value, which obviously cannot happen in

equilibrium.
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bundle (including possibly a null bundle) at the per-unit price the winner of that bundle

pays.10 It can be readily shown that the SNE requirements, i.e. inequalities (4) to (6), imply

the NE requirements, i.e. inequalities (1) to (3), but not the other way around, while the

allocation in any SNE is efficient, i.e., v1 > v2 > v3. However, the SNE does not pin down the

equilibrium bids, or equivalently the bidders’ payments. In fact, there is a continuum of SNE

bid profiles. Rearranging the above inequalities yields testable bounds on the equilibrium

bids, respectively, for the mid-value bidder and lowest-value bidder:(
1− cB

cA

)
v2 +

(
cB
cA

)
b3 ≤ b2 ≤

(
1− cB

cA

)
v1 +

(
cB
cA

)
b3,

v3 ≤ b3 ≤ v2 and b3 < b2 < b1.

Among the set of SNEs, EOS suggest the one with the lowest bid profile (henceforth, “lowest

equilibrium”) as most plausible.11 Not only is this equilibrium most preferred by all bidders

among all SNEs, but it also implements the Vickrey-Clarke-Grove (VCG) prices. Further,

EOS show that this particular SNE emerges as a unique (perfect Bayesian) equilibrium

outcome in an ascending version of GSP auction. In our setup, the lowest SNE corresponds

to the following bid profile:

b2 =

(
1− cB

cA

)
v2 +

(
cB
cA

)
v3, b3 = v3, and b1 > b2.

Finally, one can invoke a dominance argument to further refine SNE. Note it is weakly

dominated for a bidder to bid above his own value since doing so will either make no payoff

difference or entail a loss relative to bidding one’s own value. Throughout, we focus on SNE

in undominated strategies, labeled SNEU in short, which is characterized as follows:(
1− cB

cA

)
v2 +

(
cB
cA

)
v3 ≤ b2 ≤ min

{(
1− cB

cA

)
v1 +

(
cB
cA

)
v3, v2

}
, (7)

v3 = b3 < b2 < b1 ≤ v1. (8)

Notice the lowest SNEU coincides with the lowest SNE, the VCG bids. (Hence, the

adoption of SNEU leaves intact possible selection of the VCG outcome.)

Next, notice that the nature of competition as well as equilibrium prediction changes as

the ratio cB
cA

varies. Observe from (7) that the lower bound [resp. upper bound] of the SNEU

for the mid-value bidder is expressed as a convex combinations of the lowest-value bidder’s

value v3 and her own value v2 [resp. highest value v1], with cB
cA

serving as the weight for

10To explain the inequalities, note that by (4), bidder 1 who wins A at the per-unit price b1 should not

envy bidder 2 who wins B at the per-unit price b3. By (5), bidder 2 in turn should not envy either bidder 1

or bidder 3 (who wins no position at zero price). By (6), bidder 3 should not envy bidder 2.
11As is typical with assignment games (whose core allocations are identical to the SNE allocations of the

current game), the equilibrium bids form a lattice, with the lowest and the highest equilibria.
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the former. As cB
cA

falls to zero, the SNEU bid b2 converges to v2. In this extreme case, the

competition is essentially about winning bundle A, the only one worth having, so the GSP

resembles a standard second-price auction. On the other hand, as the ratio cB
cA

rises to one,

the equilibrium bid b2 collapses to v3. In this other extreme case, the two bundles become

indistinguishable, so the bidders compete to win either bundle at a cheaper price per unit.

In other words, the GSP auction becomes like a Bertrand competition wherein the mid-value

bidder bids close to the lowest value v3, thereby leaving no room for the highest-value bidder

to undercut him. These comparative statics can be used as an additional testable restriction

on the theory, which we exploit in our experimental design.

More specifically, in the experimental design we consider two different sizes of bundle A

while keeping the size of bundle B constant: (cA, cB) = (20, 10) and (11, 10). We shall call

these two cases as “20-unit” and “11-unit” games, respectively. Substituting these parameter

values into the SNEU condition, the SNEU bounds for mid-value bid b2 in the 20-unit game

(i.e., with cA = 20) are given by

1

2
v2 +

1

2
v3 ≤ b2 ≤ min

{
v2,

1

2
v1 +

1

2
v3

}
. (9)

On the other hand, in the 11-unit game, the equilibrium bounds for mid-value bid b2 are

1

11
v2 +

10

11
v3 ≤ b2 ≤ min

{
v2,

1

11
v1 +

10

11
v3

}
. (10)

These bounds help us confront the theory to the data. More importantly, observing how

human subjects respond to these two different environments helps us learn about the strategic

sophistication of the human subjects; namely, whether they understand the nature of the

game that they are asked to play. For instance, one naive rule of thumb a bidder may

employ is to simply bid his own value. Since the SNEU bounds sometime include value

bidding as an equilibrium strategy, it is in principle difficult to identify whether subjects

simply follow value-bidding heuristics or play strategically. Yet, the extent to which value-

bidding is consistent with SNEU for the mid-value bidder differs across the two scenarios;

value-bidding is more likely to fail the bounds condition when cA = 11 than when cA = 20.12

How often (mid-value) subjects bid close to their values, and whether they do so when value-

bidding is consistent with SNEU condition (8) will thus help us tell whether the subjects

“get” the strategic environment they face.

12When bidders’ values are independently and uniformly drawn from [0, 100] as in the experiment, value

bidding fails to meet the equilibrium restriction with 50% probability when cA = 20, whereas it fails with

about 91% probability when cA = 11.

10



2.2 Research questions

The leading theory of the GSP auctions described above raises two questions. The first is the

apparent gap between the theoretical abstraction and reality: the model assumes one-shot

interaction among bidders who have complete information about opponents’ preferences,

whereas real GSP auctions are dynamic and the bidders are unlikely to have complete in-

formation about their opponents. While the dynamic interaction provides bidders with

opportunities to learn and adjust their behavior, whether that process will lead them to

behave “as if” they play the complete information static game assumed by the theory is far

from clear.13 We thus pose the following question:

Question 1 Does the static complete information game approximate adequately the dy-

namic game of sponsored search auctions?

We seek to address this question via a lab experiment. Specifically, we shall design an

experiment that replicates the static complete information game and an experiment that

captures salient features of the realistic dynamic Bayesian game, and test the hypothesis

that the behavior of the subjects in the former setting would resemble that exhibited by the

subjects in the latter setting through repeated interaction. In other words, we are primarily

concerned with the empirical equivalence between the subject behaviors in the DI and SC

setups.

The next question deals with multiplicity of equilibria. As mentioned earlier, Nash equi-

libria have a very weak predictive power. Symmetric Nash or locally envy-free refinement

pins down the allocation but leaves a plethora of bid profiles consistent with the require-

ment. Among them, the lowest SNE—the VCG bids—is often suggested as most plausible.

EOS show that if bidders play an ascending-auction version of GSP, then the unique perfect

Bayesian equilibrium implements the VCG outcome. Cary et al. (2014) consider a dynamic

game in which bidders play GSP repeatedly over time and show that the VCG outcome can

be attained if bidders behave adaptively optimally—that is, best respond to opponents’ bids

in the previous period—in a particular way, employing so-called “balanced bidding.” The

balanced bidding strategy requires that in any given period, (i) each bidder targets a posi-

tion that would maximize his payoff if the others submitted the same bids as in the previous

period and (ii) each bidder adjusts his bid to such a level that if he were to pay that bid for

moving one position up, then he becomes indifferent to winning the target position.14

13There is a theoretical argument suggesting that Bayesian learning in repeated play would result in

players behaving according to a full-information Nash equilibrium (see Jordan (1991), for instance), but the

theory does not suggest how the players would “select” a Nash equilibrium, in case there are multiple Nash

equilibria.
14 To be formal, k and p denote the target position for bidder i with vale vi and the price he must pay to

obtain that position (given others’ bids from the previous period), respectively. Then, the balanced bid for
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The arguments supporting SNE and further refinements are insightful and have some

appeal.15 Yet, their behavioral foundations are not compelling. For instance, it is unclear

why ascending bid auctions describe the actual GSP auctions (which are non-ascending), and

why bidders would adopt “balanced bidding” strategies. It is even less clear whether human

subjects would behave according to suggested heuristics. The lack of a clear justification for

the equilibrium selection leads to the following question:

Question 2 Are SNEUs, particularly the lowest SNEU, empirically valid?

In order to assess the empirical validity of SNEUs, we start by testing the null hypothesis

of the lower bound of SNEU, that is, the VCG outcome. This will tell us a statistical validity

of the VCG outcome. We then move on to test the null hypothesis of the upper bound

of SNEU. Combining the statistical tests of the lower bound and upper bound of SNEU

together, we assess whether the SNEU bounds are consistent with empirically observed

behavior.

3 Design and procedures

3.1 Experimental design

We chose our experimental design to answer the two research questions in the previous sec-

tion. For Question 1, we use three distinct game treatments: static complete-information

(SC), static incomplete-information (SI), and dynamic incomplete-information (DI) treat-

ments. The SC treatment is used to replicate the environment assumed by the leading

theory of GSP auctions. The DI treatment is motivated to mimic the environment that cap-

tures the salient features of the actual practice. The SI treatment serves a bridge between

bidder i, denoted as b′, satisfies

ck(vi − p) = ck−1(vi − b′),

where k − 1 denotes the position that is one position above k. (If k is the highest position, then b′ is set at
vi+p
2 .) Since the same indifference condition is used to define the lower bound of SNE, and since the lower

bound coincides with VCG, it is not surprising that the resulting dynamics converge to the VCG outcome.
15Edelman and Schwarz (2010) take a slightly different approach. By invoking revenue equivalence, they

show that the long-term average of the equilibrium revenue can never exceed that obtainable under the

ascending version of GSP with an optimal reserve price (which coincides with the VCG revenue with the

optimal reserve price). In fact, one can extend this argument to show that, without a reserve price, the

revenue can never exceed that of the VCG level. It is not clear, however, that this theory necessarily

supports the VCG prediction or even the SNE prediction. With the dynamic feedback, the game is rife with

signaling and bid manipulation, so the equilibrium allocation is unlikely to be efficient. Given an inefficient

allocation, the long term average of the revenue will be strictly below the VCG revenue, departing from the

predicted range. We present this result in Appendix I.
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the two games and is used to distinguish the differential impacts of information and timing

on subjects’ behavior. Comparing the outcomes among these three games will help answer

the first question.

In order to understand subjects’ bidding behavior and thus to answer Question 2, we

investigate how subjects react to two strategic environments differentiated by the click de-

cay rate. As shown in Section 2.1, the variation of click-decay rate changes the nature of

competition in the GSP auction and the predictions of SNE. We exploit this comparative

static as an instrument for testing theory, consider two treatments based on the 20-unit and

11-unit games.

In sum, we have in total six distinct treatments: two SC games with cA = 11 and 20

(called SC-11 and SC-20, respectively); two SI games with cA = 11 and 20 (called SI-11 and

SI-20); two DI games with cA = 11 and 20 (called DI-11 and DI-20).

Each game in the experiment has three participants competing for bundles A and B,

consisting of cA = 20 or 11 units and cB = 10 units of a hypothetical commodity, respectively.

Obviously, the bundles correspond to ad positions and the units correspond to clicks in the

sponsored search auctions, but the subjects were presented with a neutral context that avoids

a possible framing effect.

In the beginning of each game, each participant is assigned a value per unit, drawn at

random from the set of integers between 1 and 100. In the DI game comprising 15 periods

of GSP auctions, the assigned values per unit remain constant throughout the game. Each

participant is then asked to submit a single bid per unit. A per-unit bid is allowed to be any

integer number between 0 and 999. Submitted bids are ranked from highest to lowest with

ties being broken randomly. A participant who submits the highest per-unit bid wins bundle

A and pays the second-highest bid per unit. A participant who submits the second-highest

per-unit bid wins bundle B and pays the lowest bid per unit. A participant who submits the

lowest bid wins nothing and pays nothing. The random generation of individual per-unit

values enables us to test the theory in a wide range of value profiles.

The information structure about participants’ per-unit values differs across the three

games. In the SC games, a per-unit value assigned to each participant is made publicly

known to all three participants. In the SI games, the per-unit value for each participant is

his or her private information and thus is not observed by any other participants. Finally,

in the DI games, each participant’s per-unit value assigned in the beginning of the game is

his or her private information, as in the SI games, and remains constant throughout all 15

periods.

The dynamics of GSP auctions in the DI treatments proceed as follows. For given realized

per-unit values, the first decision period starts with participants playing the GSP auction

game. At the end of the first period, they are informed about the results of the first period,

which include all participants’ per-unit bids, the allocation of two bundles, and his or her
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own price and earnings in the period.16 Note that per-unit values of other participants in

the group are not revealed. Each period, from the second period on, lasts for 20 seconds.

Within 20 seconds, each participant is asked to revise his or her decision from the previous

one. If the participant does not submit a new bid, his or her per-unit bid in the previous

period is taken as the bid in the current period. If the participant submits a new bid,

that bid replaces the previous bid. After the elapse of 20 seconds, the GSP auction is run

with (possibly) revised bids, and the subjects are informed of the results of that period as

in the first period.17 This process is repeated until all 15 decision periods are completed.

Throughout the 15 periods, the value profile remains fixed and private to the subjects; they

of course may learn about their opponents’ values through feedback. Note that the “opt-in”

feature of our design—i.e., a bidder’s inaction in a specified time (20 seconds) causes his or

her previous bid to stand—accords well with actual practice of sponsored-search auctions.18

Remark 1. Recall that we are taking the theoretical prediction of SC game as the null

hypothesis for the DI and SI games, since our central purpose is to test the validity of using

the SC game as a modeling shortcut abstracting the features present in these games. One can

nevertheless ask about the equilibrium predictions of these games themselves. On DI, Cary et

al (2014) predict the VCG outcome invoking the balancedness assumption discussed earlier.

On the SI game, Gomes and Sweeney (2014) provide a general analysis of Bayesian Nash

equilibrium of this game and show that if unit differences between bundles are sufficiently

small (as in our (cA, cB) = (11, 10) case), there exists no symmetric equilibrium. But we

show in Appendix I that when (cA, cB) = (20, 10), there exists an efficient equilibrium with

the symmetric bidding strategy that is nonlinear and increasing in value. Given our null

hypothesis, however, we will not focus on the empirical validity of that theory, although we

shall address it briefly.

16Informing each participant in the DI treatment about all participants’ bids after each period is meant

to help subjects learn how much to bid and pay in order to win a desirable position. This feature is also

not without realism; the Google’s AdWords has some tools such as bid simulator and traffic estimator that

enable the similar type of learning for the advertisers.
17The 20 seconds limit for bid revision is reflective of the real world practice of the sponsored search

auctions, which are held quite frequently — as often in principle as a user types in a query. Hence, bidders

not having enough time to respond to the latest change is not particularly problematic in terms of capturing

the nature of dynamic interactions advertisers face in sponsored search auctions. On the other hand, there

is no evidence that our subjects found 20 seconds too short. Our data on their response time shows that

those who revised their bids did so relatively early, in median time of 10 (8) seconds and mean time of 10.3

(8.9) seconds in the DI-11 (DI-20) treatment, well within the 20 seconds limit. About 26 percent of bidders

did not revise their bids, but we suspect that many of them chose not to; 75% (87%) of them in the DI-11

(DI-20) treatment were already behaving (adaptively) optimally.
18Sponsored search auctions take place every time a new query is submitted and queries usually arrive

more quickly than advertisers can change their bids.
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3.2 Experimental procedures

The experiment was run at the Experimental Laboratory of the Centre for Economic Learn-

ing and Social Evolution (ELSE) at University College London (UCL) between November

2009 and March 2010. The subjects in this experiment were recruited from an ELSE pool

of UCL undergraduate students across all disciplines. Each subject participated in only one

of the experimental sessions. After subjects read the instructions, the instructions were read

aloud by an experimental administrator. Each experimental session lasted between one and

a half hours and two and a half hours. The experiment was computerized and conducted us-

ing the experimental software z-Tree developed by Fischbacher (2007). Sample instructions

are reported in Appendix II.

We conducted six experimental sessions, one session for each game treatment. There

were 21 subjects in each session. Each subject received £10 as an initial balance in the

beginning of the session, including a £5 show-up fee. Any gains or losses incurred during

the session were added into or subtracted from this balance, and the resulting earnings were

paid in private at the end of the session.19

The static game sessions had 40 rounds, while the dynamic game sessions had 15 rounds.

Each round consisted of a single auction in the SC and SI treatment, and of 15 auctions

held across 15 periods for the DI treatment. The following process was repeated in all 40

rounds in static game treatments and in all 15 rounds in dynamic game treatments. Each

round started with the computer randomly forming three-person groups and selecting per-

unit values for participants. The groups formed in each round depended solely upon chance

and were independent of the groups formed in any of the other rounds. Once each group

played a one-shot GSP auction in the SC and SI treatments or 15 periods of GSP auctions

in the DI treatments, each round ended with subjects observing the results of that round

and their earnings. The results of each round in the static game treatments include per-unit

values, per-unit bids, per-unit prices, allocation of bundles, and earnings in that round. In

the DI treatments, a participant’s earnings in each round were determined by the sum of

his or her earnings in the three decision periods randomly selected out of 15 periods. At the

end of each round, the computer informed each participant of the per-unit values assigned,

choices and earnings made by all participants in the group in each selected decision period.

The total earnings for each participant, which were the sum of earnings in 40 rounds in

the SC and SI treatments and in 15 rounds in the DI treatments, were calculated in terms of

tokens (experimental currency) and then exchanged into British pounds, where 100 tokens

were worth £0.10. A £10 initial balance and subsequent earnings, which averaged about

19We chose the initial balance large enough to make sure that there is little chance of subjects going

bankrupt during the experiment and to avoid the problem of limited liability on losses (Kagel and Levin

(1991), for example). In fact, no subjects in our experiment experienced a bankruptcy during the experiment.
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£19, were paid in private at the end of the session.

We have in total 126 subjects participating in experimental sessions. In order to control

for potential learning effects in early rounds, we used samples after 5 rounds in static game

treatments and those after 3 rounds in dynamic game treatments for data analysis. Since

there were 7 groups in each round of the experimental sessions, this resulted in 245 (= 7×35)

observations in each static game treatment and 84 (= 7× 12) observations in each dynamic

game treatment.

4 Experimental results

In this section we present our experimental results. We first provide an overview of the

experiment data by presenting the efficiency and revenue of the GSP auction under each

treatment, comparing them across treatments, and against the theoretical bounds of SNEU.

We next investigate the subjects’ bidding behavior in order to gain a deeper understanding

of the relation between experimental data and theory. We then draw implications of our

findings for the two main research questions.

4.1 Efficiency and revenue

We first compare the allocative efficiencies across all the treatments. Recall that an efficient

allocation is not implied by Nash equilibrium but that it is implied by SNE and SNEU. Table

1 presents the frequency of efficient allocation, along with an inefficient allocation in which

bundle A is assigned to the mid-value bidder and bundle B to the highest-value bidder. In

the dynamic game treatments, we report the frequencies of efficient allocation based on the

samples of all 15 periods and of the last 5 periods. Across all treatments, the majority of

auctions produced efficient allocations. In more than 80% in the data, the two bundles were

assigned to the two highest values, which is consistent with NE behavior.

In order to evaluate the magnitude of inefficiencies, we also compute the efficiency ratio,

which measures the surplus improvement over random allocation as percentage of the maxi-

mal surplus improvement (attained by full efficiency) over random assignment.20 This ratio

equals one if the bundles are allocated efficiently and less than one if they are allocated inef-

ficiently; in fact, the ratio can be negative if the surplus achieved is less than that associated

20Note that the measure normalizes the realized surplus by taking the two surpluses from efficient and

random assignments as benchmarks. This double-normalization renders the measure more robust against

the rescaling of value support than a more common measure, such as the percentage of the first-best surplus

realized. This latter measure would vary with the rescaling the lower bound of support; for instance, if the

support were [v, v+100], then as v increases, the measure will record a very high percentage approaching 100%

for all allocations, including the random assignment! The robustness of our measure makes its interpretation

consistent.
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with random allocation of the bundles. The last column reports the number of observations

in each treatment.

- Table 1 here -

When the units of bundle A are 11, we observe higher frequencies of efficient allocation in

the SI treatment than in the other treatments. In the case of 20 units of bundle A, efficient

allocation is more frequently observed in the SI and DI treatments than in the SC treatment.

In each game treatment, allocations are more frequently efficient in the 20-unit case than

in the 11-unit case, especially in the SC and DI treatments. Interestingly, the inefficient

allocation that assigns bundle A to a mid-value bidder and bundle B to a highest-value

bidder occurs more frequently in 11-unit treatments than in 20-unit treatments for both SC

and DI treatments. A reasonable interpretation is that the large ratio associated with the

11-unit treatment ( cB
cA

= 10
11
≈ 0.91) caused two high-value bidders to undercut each other

for a better deal even at the risk of not winning A. This is in line with the Bertrand-like

feature of the 11-unit treatment which makes the top two bidders compete essentially for

“either” bundle by undercutting each other to a level close to v3. This effect should never

create any inefficiencies in theory (which assumes that players coordinate perfectly) but in

reality may manifest itself as a greater incidence of inefficiencies of the sort observed in our

experiment with cA = 11 than with cA = 20.

In fact, the differences between 11-unit and 20-unit treatments are less salient in terms

of the efficiency ratio, which indicates that the payoff consequence of losing A was not so

significant in the treatments with 11 units compared to those with 20 units. The efficiency

ratios in our data are relatively high; the GSP auctions achieve 76-93% of the highest possible

efficiency gains over the random allocation in all treatments.

Next, we examine the revenue performances of the GSP auctions in our experiment. As

discussed in Section 2, the equilibrium prediction of the leading theory provides bounds

on the attainable revenue. We compare the bounds of SNEU with observed revenues by

computing the percentage differences of observed revenues from the theoretical bounds.21,22

We also compute the percentage deviations of observed payments for each bundle, A and B,

from the respective prediction from the lower and upper bounds of SNEU. Table 2 reports

the summary statistics of the percentage deviations of observed revenues/payments from the

lower and upper bounds of SNEU. The standard error for mean and the bootstrap standard

error for median are reported. We also report the significance results of the one-sided t-test

21The percentage difference of observed outcome from theoretical outcome is defined by

(observed outcome− theoretical prediction)/theoretical prediction.
22We have also considered two alternative measures: observed revenue−VCG revenue

highest SNE revenue−VCG revenue
or

observed revenue−VCG revenue
first-best surplus−VCG revenue

. The results based on these measures are similar to those with the cur-

rent measure.
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of median and mean, respectively, against the alternative hypothesis that the median or

mean percentage deviation is strictly above zero.

- Table 2 here -

There are several notable patterns in the results of revenue (bundles A&B) and payments

(bundle A and bundle B, respectively). First, in each treatment the revenues observed in

the data are significantly higher than those predicted by the lower bound of SNEU (and

of SNE). The median percentage deviation from the lowest SNEU is 5% and 3% in the

SC-11 and SC-20 treatments, 43% and 34% in the SI-11 and SI-20 treatments, and 9%

and 18% in the DI-11 and DI-20 treatments, respectively. In all treatments except for

the SC-20 treatment, in which the significance result holds at the 10% level, the median

percentage deviations are strictly above zero at the 1% significance level. When we use the

average percentage deviations, the discrepancy becomes larger in all treatments: 16-28% in

the SC treatments, 46-106% in the SI treatments, and 39-70% in the DI treatments, all of

which are statistically significant with usual significance levels. This implies the empirical

distributions of percentage deviations are positively skewed. Second, holding the size of A

fixed, the deviation from the lower bound of SNEU is smallest in the SC and highest in the

SI, and in between in the DI treatment. Third, the observed median payments for bundle A

are significantly higher than those predicted by the lower bound of SNEU, whereas the same

does not hold for bundle B with the exception of the DI-20 treatment. This suggests that

the upward deviation of observed revenues is mainly driven by the second-highest bidders’

overbidding, which causes the highest bidders to overpay (relative to the VCG level). In light

of the high frequencies of efficient allocation in our data, we may conclude that the mid-value

bidders tend to overbid compared to the lower bound of SNEU, which we will investigate

in more details later. Last, the median revenue observed in the data does not exceed the

upper bound of SNEU in most treatments, although the average percentage deviations are

significantly above zero significantly in all but SC-20 treatments. The observed median

revenue of the SI game still consistently and significantly exceeds the upper bound of SNEU,

but this pattern is not observed in other treatments, except for the DI-20 treatment in which

the median percentage deviation is 4%. We summarize the findings so far as follows:

Result 1 (Efficiency and revenue) ( i) The GSP auction achieves high efficiency both

in frequencies and magnitude; they attain 76-93% of the highest possible surplus im-

provement over what can be achieved from random allocation of the bundles. ( ii) The

observed median revenues are significantly higher than those predicted by the lower

bound of SNEU in all treatments. With regard to the upper bounds of SNEU, the

observed median revenues do not differ significantly, except for the SI treatments.
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4.2 Bidding behavior

We now investigate subjects’ bidding behavior. The upward deviation of observed revenue

implies that at least some, if not all, bidders overbid compared to the lower bound of SNEU

bids. It is useful to understand which bidders (in terms of the per-click values) overbid, by

how much, and under what treatments. We also investigate if there exists any pattern of bid

convergence over time in the DI treatments and, if so, whether the dynamic behavior tends

to converge to the outcome of the SC treatments.

4.2.1 Overview

We begin by running simple regressions of bids on values. We median-regressed the bid of a

subject with a given value ranking (i.e., highest-value, mid-value, and lowest-value) against

the values of all subjects in the group.23

Table 3 reports the results of the median regression. In each regression, the independent

variables are highest value (v1), mid value (v2), and lowest value (v3). For the DI treatments,

we report the regression results in the first period and in the last 5 periods. (The last five

periods of DI games are relevant for examining the long-term evolution of the subjects’

behavior; and, as will be seen, the first period game of DI is relevant for studying whether

subjects act differently from the way they do in a static game, which can be learned from

the SI treatment.) Recall our null hypothesis that subjects would behave under DI or SI

according to the equilibrium prediction of SC. Regression of their behavior on variables that

the CS equilibrium prediction refers to (i.e., his value as well as those of his opponents)

thus allows us to examine that hypothesis. We control for the heterogeneity of bidders by

including individual subject dummies in each regression. The standard errors reported are

also clustered by individual subject.

- Table 3 here -

The simple regression results reveal marked differences in the bidding behavior across

treatments. In the SC treatments, the highest-value and mid-value bidders respond to their

opponents’ values as well as their own, as measured by the relevant coefficients, in a way

consistent with the SNEU bounds. In particular, the manner in which the dependence varies

with the size of A is in line with the theory. The Bertrand game feature implicit in the 11-

unit game implies that the mid-value bidder will shade his/her bid more towards the lowest

value in that treatment than in the 20-unit game treatment, and this is what we find. The

coefficient on v3 is 0.846 in the former treatment, while it is 0.096 in the latter treatment.

23We employ the median-regression method instead of the least squares method since the former is more

robust to outliers, which are observed in our bidding data.
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The differential dependence of the median mid-value bid on v3 between the two treatments

suggests that the subjects behaved strategically and responded to the varying size of A in

a manner qualitatively consistent with the SNE predictions based on (7). Compared to the

lowest SNEU, the weight on v3 is somewhat close to that in the lower bound (0.91, which can

be seen in the left side of (10)) in the 11-unit treatment, whereas it is significantly smaller

than that in the lower bound (0.50, which can be seen in the left side of (9)) in the 20-unit

treatment. The null hypothesis of mid-value bidders following the lower bound of SNEU is,

based on the Wald test, rejected at the usual significance levels in the 20-unit treatment,

whereas it is rejected only at the 10% significance level in the 11-unit treatment. For lowest-

value bidders, the regression results suggest that they tend to bid their own values, which is

the prediction of SNEU. The null hypothesis that the lowest-value bidders follow the SNEU

cannot be rejected at the usual significance levels.

For the SI treatments, subjects’ bidding behavior depends solely on their own values

but not on other bidders’ values. This stands in stark contrast to the behavior in the SC

treatments and highlights the impacts of information structure on bidding behavior. In

particular, the coefficients on the own values are close to one, regardless of the size of cA,

which suggest that bids in the SI-20 treatment track the values of the bidders closely in

one-to-one fashion.24

The first-period behavior of subjects in the DI treatments is similar to that in the SI

treatments. This result is reassuring since subjects have not yet had an opportunity to learn

their opponents’ values; they are informed solely of their own values just as in the SI, and

are thus expected to behave similarly.25 When we turn to the last five periods, the bidding

behavior of the subjects depends on not only their own values but also their opponents’

unobserved values. These two pieces of evidence thus suggest the presence of learning and

feedback in DI, a point that will be investigated in a greater detail later. For the mid-value

bidders in the last 5 periods, the behavior in the 20-unit treatment appears similar to that

in the SC treatment, while no such similarity is apparent in the 11-unit treatment. For the

lowest-value bidders, their bids appear to depend primarily on their own values but to a

lesser degree also on the mid-values, especially in the 20-unit treatment. This is somewhat

different from the behavior observed in both SC and SI treatments.

To further inspect subjects’ behavior, we draw scatter plots between bidders’ values and

their own bids for mid-value and lowest-value bidders in the SC and DI treatments and for

all bidders in the SI treatments. They are presented in Figure 1.

24Note that mid-value and lowest-value bidders tend to bid above their values, as indicated by (signifi-

cantly) positive constant terms in the regression results in Table 3.
25This finding also implies that the subjects do not display any extraordinary form of experimentation—

deviation from a myopically optimal behavior in an attempt to increase the amount of learning in the

subsequent periods.
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- Figure 1 here -

The scatter plots reveal several new insights on the subjects’ bidding behavior. First, in

the SC treatments (Figure 1-1 and 1-4) the majority of lowest-value bidders tend to bid their

own values in both 11-unit and 20-unit treatments (72% in the SC-11 treatment and 53%

in the SC-20 treatment). This is in line with the SNE prediction for lowest-value bidders.

On the other hand, there is a sizable minority of these bidders who employ different types

of bidding strategies: bidding close to zero (14% in the SC-11 treatment and 27% in the

SC-20 treatment) and bidding above own values (13% in the SC-11 treatment and 18% in

the SC-20 treatment).26 When the opponents bid more than his value v3, bidding zero and

bidding one’s value (as well as any amount in between) constitute best responses for the

lowest-value bidder, so these patterns of bidding are optimal for him.27 Nonetheless, the

differences matter for the mid-value bidder’s payoff and the revenue obtained by the seller.

In the DI treatments (Figure 1-3 and 1-6) with last 5 periods, we observe somewhat

similar patterns for the lowest-value bidders: the majority of subjects tend to bid their

own values (58% in the DI-11 treatment and 44% in the DI-20 treatment), while bidding

above own values is observed frequently (32% in the DI-11 treatment and 48% in the DI-20

treatment). However, unlike the SC treatment, bidding close to zero is rarely observed (3%

in the DI-11 treatment and 4% in the DI-20 treatment). The paucity of near-zero bids seems

attributable to both incomplete information and the opt-in feature of the dynamic auctions:

Bidders initially do not know if their values are the lowest, and the opt-in feature keeps them

bidding sincerely even after they realize their values are the lowest. Second, even though

some mid-value bidders bid close to their values, many of them also bid below their own

values in both SC and DI treatments especially in the 11-unit game. The simple inspection

of scatter plots suggests the stark difference in the behavior of mid-value bidders between

the 11-unit and 20-unit cases of both SC and DI treatments. This difference conforms to the

predicted differences in the responses by mid-value bidders to different click-decay factors; it

also supports the view that the subjects are sophisticated enough to recognize the strategic

implications of the click-decay factors. Finally, as the regression results (Table 4) indicate,

the bidding behavior in the SI treatments differs significantly from those under the SC and DI

26When we count frequencies of the subjects bidding zero and their values, we apply a 2 token margin

of error. For instance, we count a bidder’s bid as value bidding if it is within a range of his own value

plus/minus 2 tokens. We count bidding above own values if a bid is above by more than 2 tokens from own

value.
27To understand better on the motive by lowest values subjects for bidding close to zero, we ran simple

probit regressions on the difference between mid value and lowest value. We omit the details in the interest

of space, but we find some evidence that lowest-value bidders tend to bid close to zero when this difference

is large, particularly in the 20-unit treatment. This reinforces the intuition that when there is little chance

of winning in terms of realized values, lowest-value bidders become pessimistic and check out of auction (by

bidding close to zero).
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treatments: the subjects bid close to their values.28 We do not find this result unreasonable,

however, since, absent the information about other bidders’ values, value-bidding becomes a

compelling rule of thumb.29

4.2.2 Above-VCG bidding

We now compare observed bids with the theoretical predictions of SNEU for mid-value

bidders. Table 4 presents the percentage differences of observed bids from the bound of

SNEU (condition (10)), as well as from value bidding.30 We use the data of last 5 periods

for the DI treatments. The robust standard error for mean and the bootstrap standard error

for median are reported, both of which are clustered by individual subject. The significance

results are also reported for the one-sided t-test of median and mean, respectively, against

the alternative hypothesis that the median or mean percentage deviation is strictly above

zero.

- Table 4 here -

Overall, the results confirm that the mid-value bidders overbid compared to the lower

bound of SNEU. First of all, the subjects bid within the upper bound of SNEU, but exhibit

significant overbidding relative to its lower bound, VCG, in all treatments. The median

percentage differences are 19-22% in the SC treatments, 42-81% in the SI treatments, and 22-

25% in the DI treatments. The mean percentage differences are even larger as the distribution

of percentage differences is positively skewed.31

28More precisely, bidders slightly overbid above their values, as
29Even though value-bidding is not an equilibrium of SI, the second-price feature of GSP makes it difficult

for subjects to figure out an optimal deviation from value bidding (when others are bidding their values), and

the gains from deviation tend to be modest. It is therefore not surprising that the Bayesian Nash equilibrium

of the SI does not explain the bidders’ behavior: The subjects’ behavior in the SI-20 treatment (Figure 1-5)—

the only case in which the Bayesian Nash equilibrium exists—exhibits a substantial overbidding compared

to the Bayesian Nash equilibrium strategy (drawn in the solid line). More specifically, the Bayesian Nash

equilibrium is given by b (v) = 100 ln (100 + v)− 100 ln (100) (see more details in Appendix I). The median

regression using all the sample yields the estimated bidding function as b̂ (v) = 143.44
(2.11)

× ln (100 + v)−664.37
(10.01)

,

where the bootstrap clustered standard errors are reported in parentheses. The hypothesis that subjects

play the Bayesian Nash equilibrium is rejected at the usual significance levels (p-value = 0.000).
30We replicated Table 4 with the subsample of the data in which efficient allocation was achieved. The

results remain similar, which we do not report in the interest of brevity.
31It is possible that the overbidding behavior mid-value bidders exhibited in our experiment may have

been influenced by the fact the he/she is competing against a bidder who would not win any position, which

is a necessity when only two positions are on sale. While it is difficult to predict the behavior in an auction

with more than two positions, the pressure from the low value bidders (who would not win any positions)

may still cascade into a similar overbidding behavior for winning bidders.
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Second, when we take the upper bound of SNEU as the benchmark, overbidding becomes

much less pronounced. The median differences from the SNEU upper bound are virtually

none for SC-20 and DI-20, whereas the median differences are 7% and 11% for SC-11 and

DI-11, respectively. The fact that we only observe the significant patterns of overbidding

relative to the upper bound of SNEU for SC-11 may reflect the subjects’ reluctance to carry

out the aggressive shading the SNEU strategies call for in this case—not an unreasonable

response in light of the strategic uncertainty actual subjects face.

Third, the median differences of the observed mid-value bids from their values are negative

for SC-11 and DI-11, suggesting that mid-value bidders tend to bid below their values in these

treatments. These median differences equal zero for the SC-20, DI-20 and SI-11, suggesting

that the mid-value bidders bid close to their values. Recall that, for the 20-unit case, value

bidding is often consistent with SNEU strategies. Meanwhile, mid-value bidders’ bids tend

to be higher than the values in the SI-20 treatments. For the SC and DI treatments, the

median percentage differences are significantly lower in the 11-unit treatment than in the

20-unit treatment.

In order to examine further the overbidding pattern in the data, we plot in Figure 2 the

cumulative distributions of observed bids (the black solid line), lower and upper bounds of

SNEU (the blue and red dotted lines, respectively) and value bidding (the purple dotted

line) for mid-value bidders in each treatment. The distributions of SNEU bounds and value

bidding are computed based on the value profiles in the experiment data. Each panel also

contains a stochastic dominance test based on the Kolmogorov-Smirnov (K-S) test, under

the null hypothesis that the distribution of observed bids first-order stochastically dominates

that of the lower bound of SNEU.

- Figure 2 here -

The inspection of Figure 2 reveals that the cumulative distribution of observed bids

appears to first-order stochastically dominate that of the lower bound of SNEU in all treat-

ments. This observation is statistically confirmed by the stochastic dominance test: we

cannot reject the null hypothesis in each treatment. This is in line with the results about

the lower bound of SNEU in Table 4 and even suggests that the overbidding tendency of

mid-value bidders in the data affects not only median and mean but also the entire distribu-

tion of bids. In the 11-unit treatments, the distribution of the upper bound of SNEU is not

much different from that of the SNEU lower bound, suggesting that the bounds of SNEU for

mid-value bidders are very tight. It is interesting to observe that the empirical distributions

of bids lie somewhere between those of the lower bound of SNEU and value bidding in the

SC-11, SC-20, and DI-11 treatments. This seems to suggest that overbidding is not driven

by the simple heuristic of value bidding. Overall, Figure 2 reinforces the evidence of overbid-
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ding relative to the lower bound of SNEU found in Table 4, even in the sense of stochastic

dominance.

While the findings of overbidding relative to the lower bound of SNEU are overwhelming,

they should not be regarded as a rejection of these solution concepts, but rather a rejection

of the particular equilibrium selection. Since that selection lacks a compelling justification,

our findings should not be regarded as an anomaly or even a failure of theory. Nevertheless,

it would be useful for providing a plausible explanation of the observed bidding behavior.

We shall do this in Section 5. For now, we refute two obvious hypotheses as explanations of

the observed behavior.

One may wonder if the observed bidding behavior is simply the result of subjects not act-

ing rationally or acting suboptimally against their opponents. The regression results in Table

3 partly discredit the hypothesis of irrational behavior, showing that subjects responded to

the changes in strategic environments in a manner qualitatively consistent with the theoret-

ical predictions. Table 5 provides a more direct evidence against irrational behavior. The

table counts the frequency with which each subject plays a best response to his opponents’

observed bids, and the frequency with which a subject bids within the SNEU range.

- Table 5 here -

The frequency of subjects playing their best responses against their opponents is quite

high for mid-value and lowest-value bidders in all treatments: 60% and 88% in the SC-11;

80% and 91% in the SC-20; 70% and 86% in the DI-11; and 81% and 95% in the DI-20

treatment. By comparison, the frequency of subjects playing SNEU strategies are much

lower: 49% and 72% in the SC-11; 40% and 53% in the SC-20; 40% and 58% in the DI-11;

52% and 44% in the DI-20 treatments. The difference in frequency between best response

and SNEU for mid-value bidders ranges from 11% (in the SC-11) to 40% (in the SC-20).

When we consider the SI treatments, the difference grows even larger. Overall, the results

seem to suggest that subjects behaved optimally in the sense of Nash equilibrium, even

though their bids exceeded the lower bounds of SNEU.

Another possible hypothesis explaining the above-VCG bidding is that subjects adopt

value bidding as a rule of thumb. In order to investigate this possibility, we partition the

samples for mid-value bidders between when value bidding is in the set of SNEU and when

it is not. If some subjects were to simply employ the value-bidding heuristics, the frequency

of value bidding should not differ based on whether it satisfies the requirements of SNEU.

Table 6 reports the frequency of value bidding (with 2 token margin) in each of SC and

DI treatments conditional on whether mid-value lies in the bounds of SNEU. In identifying

whether value belongs to the set of SNEU, we round up the upper bound and down the lower

bound of SNEU. The p-values of Chi-square test for the equivalence of two distributions are

reported in parentheses below each table.
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- Table 6 here -

In the SC treatments, the frequency of value bidding when it lies in the bounds of SNEU

is significantly higher than when it does not: 0.94 vs. 0.24 in the SC-11; and 0.55 vs. 0.42

in the SC-20 treatment. The Chi-square test rejects the null hypothesis in both cases at the

5% significance level. The frequency results in the DI treatments are quite similar to those

in the SC treatments: 0.71 vs. 0.24 in the DI-11; and 0.59 vs. 0.39 in the DI-20 treatments.

Thus, we conclude that the adoption of value bidding heuristics is not the main source of

overbidding in the SC and DI treatments.

Result 2 (Bidder behavior) ( i) In all treatments, mid-value bidders tend to overbid sig-

nificantly relative to the lower bound of SNEU in the sense of stochastic dominance.

When compared to the upper bound of SNEU, the median bids are significantly higher

in the SC-11 and DI-11 treatments, whereas they are not in the SC-20 and DI-20 treat-

ments. ( ii) The majority of lowest-value bidders in the SC treatments bid close to their

own values, consistent with the SNEU prediction. Nevertheless, they also tend to bid

above their own values with around 25% frequency.

4.2.3 Does the behavior of SC game approximate that of DI game?

One important question of this paper is whether the SC game is a good approximation of

the DI game. The hypothesis is that, even though the bidders in the DI game do not observe

directly their opponents’ values, dynamic interaction among bidders leads them to end up

behaving “as if” they observe each other’s values like in the SC game. We test this hypothesis

here by comparing the behavior of SC treatments with that of DI treatments in each period.

Table 7 reports the temporal evolution of percentage differences of observed bids from

the lower bound of SNEU in the DI treatments, along with the corresponding outcomes in

the SC and SI treatments. Our interest is in examining how closely the DI game behavior

matches that of the SC game. The normalization via the lower bound of SNEU is meant to

control for the differences in the realized value profiles between the two games. We report

the p-value of equality tests of medians between the SC and DI in each period, using the

t-test with bootstrap clustered standard errors, and the p-value of the Kolmogorov-Smirnov

test of equality of two distributions of bids between the SC and the DI in each period.

- Table 7 here -

In the 11-unit treatments, there is a clear pattern that the median percentage deviation in

the DI game converges toward that in the SC game: the median percentage differences start

around 50% in the first 3 periods, go down around 30-37% in the next 4 periods, and fluctuate

between 15% and 28% in the remaining periods. When we conduct the test of equality of
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medians between the SC-11 and the DI-11 in each of 15 periods, we cannot reject the null

hypothesis from period 4 on at the usual significance levels. Since the median comparison

may not fully capture the similarities/differences in the behavior of the two games, we also

inspect the probability (or empirical frequency) that the percentage deviation is above zero.

These probabilities in the DI-11 treatment begin low with 0.74 in the first period and reach

close to that of SC-11 treatment (0.86) in later periods. We use the K-S test for the equality

of two distributions between SC and DI in each period. We cannot reject the null hypothesis

in most periods after period 7 at the usual significance levels. Based on these two results,

we conclude that the behavior in the DI-11 treatment tends to converge toward that in the

SC-11 treatment.

On the other hand, in the 20-unit treatments, the median percentage deviation of the

bids of DI game (from the lower bound of SNEU) stays close to that of the SC game from

the beginning to the end: the median deviations lie between 16% and 26% in the first

5 periods; between 14% and 26% in the next 5 periods; and 16% and 29% in the last 5

periods. Using the median tests, we cannot reject the null hypothesis in any periods at the

usual significance levels. This finding remains the same if we use the K-S test for the equality

of two distributions. Combining the findings in the 11- and 20-unit treatments, we conclude

that the behavior of the SC games approximates that of the DI games relatively well.32

Recall that the 11-unit case requires a relatively more demanding coordination and a

narrower bandwidth of equilibrium plays than the 20-unit counterpart. This may explain

why it takes some time for the subjects to converge on the outcome that the SC game exhibits.

By contrast, the coordination in the 20-unit case is much easier and the equilibrium (Nash

and SNE) conditions are much more permissive, which is consistent with the convergence to

the SC outcome even from the beginning.

We next investigate a possible mechanism by which this “approximation” is achieved. A

reasonable process by which the bidders in the DI game act as if they play the SC game is

via an adaptive process; if the bidders respond optimally to their opponents’ plays in the

previous periods, they may end up responding to opponents’ true values in a way resembling

the behavior in the SC game. Formally, adaptive optimality in period t (> 1) is defined as

individual bidders playing best response against their opponents’ bids in the previous period

t− 1. The regression results of Table 3 already suggest that such a “learning” process is in

operation for the DI game. Here, we look for a more direct evidence of the adaptively optimal

behavior. The first four columns of Table 8 report the frequencies of adaptive optimality for

all bidders and according to the value ranking.

- Table 8 here -

32By contrast, there is no such resemblance between SI and SC. Table 7 shows that the median percentage

deviation in the SI games differs significantly from that in the DI games in both 11- and 20-unit treatments.
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Notice that bidders in both the DI-11 and DI-20 treatments tend to behave more adap-

tively optimally in the later periods than in the earlier periods, while the level of compliance

to adaptive optimality starts relatively low in the DI-11 treatment and high in the DI-20

treatment. The frequencies of adaptive optimality begin from 0.68 (periods 2-5) to 0.74

(periods 11-15) in the DI-11 treatment and from 0.80 (periods 2-5) to 0.87 (periods 11-15)

in the DI-20 treatment. When we examine this more finely according to the value ranking,

the highest-value bidders exhibit the lowest level of adaptive optimality and the lowest-value

bidders show the highest level of adaptive optimality in each period. For instance, those

frequencies in the first four periods are 0.50 (0.67) for the highest-value, 0.71 (0.81) for the

mid-value, and 0.83 (0.93) for the lowest-value bidders in the DI-11 (DI-20) treatment. In

summary, subjects behave more adaptively optimally over time.

Of course, the adaptively optimal behavior does not imply a convergence to a particular

SNE such as the VCG outcome. All it means is that the process converges to some Nash

equilibrium outcome. This latter fact is consistent with the high frequency of (contempora-

neous) best response play, shown in Table 5. To investigate the dynamic behavior further,

we look for the evidence that bidders followed the so-called balanced-bidding strategies. Re-

call that the balanced-bidding strategy is a particular type of adaptively optimal behavior

which Cary et al. (2014) show would lead to the VCG outcome. Whether subjects use the

balanced-bidding strategy in the experiment and, if not, how the behavior differs from it will

provide an opportunity to enhance further our understanding of the dynamic behavior.

The second part of Table 8 reports the summary statistics of percentage differences

of observed bids from the balanced-bidding strategy in each period. Since the balanced-

bidding strategy is well defined only for bidders whose adaptively optimal bundle is B, we

restrict our attention to this case. As evident from the table, the observed bids display a

systematic deviation from the balanced-bidding strategy. The median bids for those whose

adaptively optimal bundle is B are significantly higher than the “balanced bids”: they are

6-73% higher in the DI-11 treatment and 6-24% higher in the DI-20 treatment. This finding

parallels the above-VCG bidding pattern found in the previous analysis. Interestingly, there

is a pattern in the DI-11 treatment that the percentage difference decreases over time but

remains significantly above zero even in later periods: it starts from 34% (16%) in periods

2-5 to 17% (9%) in periods 6-10 and to 8% (8%) in periods 11-15 in the DI-11 (DI-20)

treatment. Combining these results with the evidence supporting adaptive optimality, we

conclude that the subjects in our data tend to bid adaptively optimally but at levels higher

than predicted by the balanced bidding strategy. This is another way of showing why the

behavior of DI game approximates that of SC game, which exhibits overbidding relative to

the lower bound of SNEU, but not the VCG outcome.

Finally, we investigate the factors that affect the adaptive process. One would expect

the amount of loss caused by a suboptimal behavior in the past to be a factor in causing
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bid revision. The larger the loss is in the previous period, the more likely the bidders will

adjust their bids to be adaptively optimal. We define the loss in period t−1 as the difference

between optimal earnings and actual earnings at t− 1. The loss at t− 1 is zero if the bidder

behaved optimally at t − 1 and positive if the bidder behaved suboptimally at t − 1. We

next pool the data across periods and run probit regressions of adaptively optimal behavior

on the loss and other variables by controlling for individual subject and period fixed effects.

The regression results are collected in Table 9. In each DI treatment, column (1) reports the

results of probit regression with all samples, while controlling for the earnings the players

had at t − 1 and for whether they played the best response in period t − 1. Column (2)

reports the results of probit regression with the subsample of the data in which bidders

behaved non-optimally at t− 1. The robust standard errors clustered by individual subject

are reported in parentheses.

- Table 9 here -

In both DI treatments with all samples, it is more likely that bidders behave adaptively

optimally at t if their bids are optimal at t − 1. The higher the actual earnings are in the

previous period, the less likely the behavior of bidders is adaptively optimal. The effect of

actual earnings at t− 1 is similar even in the regressions with the subsample of non-optimal

behavior at t − 1. More important, the likelihood of adaptive optimality is positively and

significantly related to the loss incurred in the previous period. The larger the period t− 1

loss is, the more likely it is for the mid-value bidders to behave adaptively optimally. This

tendency is similar for highest-value bidders in both treatments and for lowest-value bidders

in the 20-unit treatment. Overall, the regression results confirm that subjects respond to

the loss incurred in the previous period and tend to play adaptively optimally when the loss

incurred in the previous period gets larger.

Result 3 (Dynamic behavior) ( i) The behavior of the SC treatment approximates well

the late-period behavior of the DI treatment. ( ii) There is evidence suggesting that

subjects tend to bid adaptively optimally, particularly in response to the loss incurred in

the previous period, but at levels higher than predicted by the balanced-bidding strategy.

5 Explaining the observed behavior

In this section, we explore more deeply into the cause(s) of overbidding relative to the VCG

benchmark observed in the data. We do so by focusing on the strategic uncertainty facing

the subjects as a basis for explaining the behavior. Motivated by the evidence of bidding

rationality (Table 5), we seek to explain subjects’ behavior as a rational response to the

strategic uncertainty they face. More precisely, we shall investigate whether the observed
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bidding behavior can be explained by the beliefs the subjects form based on their opponents’

behavior. For clarity of interpretation, we shall focus on the SC experiment, in which subjects

bid once with full information about their opponents’ values. DI and SI treatments involve

many other elements that make it difficult to understand the role of strategic uncertainty.

5.1 A model of strategic uncertainty

Our main interests lie in the behavior of the mid-value bidders since their bidding above VCG

is largely responsible for higher than expected revenue performance. In order to operational-

ize the strategic uncertainty facing the mid-value bidders, we assume that the mid-value

bidder forms non-degenerate beliefs about the behavior of the highest-value bidder (i = 1)

and the lowest-value bidder (i = 3) conditional on a profile of values v = (v1, v2, v3), rep-

resented by cumulative distribution functions Fi (·|v) for i = 1 or 3. Given the beliefs, the

mid-value bidder maximizes his expected payoff.33

Specifically, the mid-value bidder (i = 2) believes bidder i = 1, 3 employs a bid distribu-

tion Fi (·|v) : [0,∞) → [0, 1]. We shall later relate how such beliefs can be estimated from

the actual bids made by these bidders.

Given the beliefs, the payoff for the mid-value bidder from bidding b ∈ {0, 1, 2, ..., 500}
can be expressed as:

π2 (b, v) = cA

{
b−1∑
s=0

(v2 − s) [F3(s|v)f1(s|v) + F1(s|v)f3(s|v)]

}
(11)

+ cB

{
b−1∑
s=0

(v2 − s) [(1− F3(b|v)) f1(s|v) + (1− F1(b|v)) f3(s|v)]

}
(12)

+ (cA + cB)
(v2 − b)

2
{F3(b− 1|v)f1(b|v) + F1(b− 1|v)f3(b|v)} (13)

+ cB
(v2 − b)

2
{(1− F3(b|v)) f1(b|v) + (1− F1(b|v)) f3(b|v)} (14)

+ (cA + cB)
(v2 − b)

3
f3(b|v)f1(b|v), (15)

where fi (s|v) := Fi(s|v)−Fi(s−1|v), i.e. the probability that bidder i bids s. Note that (11)

and (12) are the bidder 2’s payoffs when his bid is tied with no others while (13) and (14) are

his payoffs when his bid is tied with one other bidder at the top and bottom, respectively.

Lastly, (15) is the bidder 2’s payoff when his bid is tied with two other bidders. The optimal

bidding strategy b∗ (v) simply specifies the bid that maximizes the expected payoff:

b∗ (v) ∈ arg max
b
π2 (b, v) .

33We do not attempt to develop an equilibrium model of strategic uncertainty in which the behavior and

beliefs of all three bidders are consistently determined. Bidders’ beliefs in our setup are high-dimensional.

Thus, such an equilibrium model of strategic uncertainty is unnecessarily complex for our purpose.
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Before proceeding with estimation, it is instructive to understand how the strategic un-

certainty affects the mid-value bidder’s incentive. In particular, it is useful to make the

following observation. Let us fix a value profile v, and let supp Fi denote the support of cdf

Fi (·|v) and b∗2 =
(

cB
cA

)
v3 +

(
1− cB

cA

)
v2 denote the VCG bid for bidder 2.

Proposition 1. If supp F3 ⊂ [0, v3], then any bid b > b∗2 is (weakly) suboptimal for bidder

2, regardless of bidder 1’s strategy.

Proof. Let b̄3 =
∫ v3
0
sdF3(s|v). We choose any b > b∗2 and compare the (ex-post) payoff from

such b to that from b∗2 against all possible bidder 1’s bid b1 ∈ supp F1. If b1 > b or b1 < b∗2,

then bidder 2 is clearly indifferent between bidding b and b∗2. Consider thus b1 ∈ (b∗2, b).
34

By bidding b, bidder 2 obtains cA(v2 − b1) while, by bidding b∗2, he obtains cB(v2 − b̄3). The

latter payoff is greater than the former since

cB(v2 − b̄3)− cA(v2 − b1) = cA

[
b1 −

(
1− cB

cA

)
v2 −

(
cB
cA

)
b̄3

]
≥ cA

[
b1 −

(
1− cB

cA

)
v2 −

(
cB
cA

)
v3

]
= cA [b1 − b∗2] > 0,

where the weak inequality holds since b̄3 ≤ v3. The above argument shows that bidder 2 is

always weakly (strictly) better off with b∗2 than with b > b∗2 (if b1 ∈ (b∗2, b)), which gives us

the desired result.

The proposition means that bidding above the VCG level cannot be optimal for the

mid-value bidder if he believes the lowest-value bidder will never bid above her value. For

strategic uncertainty to explain the higher-than-VCG bidding, therefore, his belief must put

a positive probability on the event that the lowest-value bidder bids above her own value

with positive probability. Even though this latter strategy (bidding above one’s value) is in

turn weakly dominated for the lowest-value bidder,35 its possibility could loom “real” in the

mind of the mid-value bidder and thus could lead him to bid above the VCG benchmark.

In fact, the possibility of overbidding by the low-value bidders is borne out by the data;

they bid above their values about 25% of the time. This latter phenomenon can be related

to a commonly observed behavior in auction experiments. The lowest-value bidder in the

GSP auction with two items and three bidders faces incentives similar to those faced by

the second-highest-value bidder in the single-item second-price sealed-bid auctions. It is

documented that the subjects in second-price auction experiments often bid above their

values (see Kagel et al., 1987; Kagel and Levin, 1993 for instance) while it is more likely

34A similar argument, which is omitted, applies in the case b1 = b or b∗2 so there is a tie if bidder 2 bids b

or b∗2, respectively.
35It therefore follows that bidding above the VCG benchmark for the mid-value bidder can be ruled out

by iteratively deleting the weakly dominated strategies.
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for bidders who are more certain that their values are the second-highest (see Andreoni et

al., 2007; Cooper and Fang, 2008).36 One can deduce the forces that cause bidders in the

second-price auction experiments to bid above their values may cause lowest-value bidders

to do the same in our experiment. Our hypothesis is therefore that this overbidding of the

lowest-value bidders pushes the mid-value bidders to bid above the VCG benchmark, as will

be seen next.

5.2 Estimation

In order to estimate the model, the beliefs must be linked in a meaningful way to the

observed data. In this regard, we invoke the natural requirement of consistent beliefs, namely

that the mid-value bidder correctly infers the actual distributions of the highest and lowest

value bidders. Further, since the mid-value bidder’s beliefs about each opponent, Fi (·|v) for

i = 1, 3, are high dimensional, we make a simplifying assumption that the profile of observed

values v affects the mid-value bidder’s belief only through the shifting of a distribution

function: for any v 6= v′, there exists a location parameter µv,v′

i such that Fi(b − µv,v′

i |v) =

Fi (b|v′) for any b ∈ R+. We use a linear regression framework to model a location parameter

µv
i and the distribution Fi (bi|v) for a given value profile v = (v1, v2, v3) such that, for i = 1, 3,

bi = αi1 + βi1v1 + βi2v2 + βi3v3 + εi,

where the error term εi follows the distribution F ε
i for i = 1, 3. The distribution Fi (·|v),

conditional on a value profile v, is then a shift of F ε
i such that Fi (bi|v) = F ε

i (bi − µv
i ) where

µv
i = αi1 + βi1v1 + βi2v2 + βi3v3.

The empirical analysis proceeds in the following two stages. We first estimate the dis-

tribution of ε by taking the (empirical) distribution of residuals from regressing bidder i’s

bids on the value profile v. This gives us the estimated distribution F̂i(·|v) for each profile

v. Next, we use the estimated distribution, F̂i (·|v), to construct the mid-value bidder’s

expected payoff as given above.

We take two different approaches to fit the data with the model of strategic uncertainty.

The first approach is to compute the mid-value bidder’s optimal bid under strategic uncer-

tainty. This approach amounts to assuming that the (mid-value) bidder makes no decision

errors or faces no bid-specific idiosyncratic preferences. The second approach is to place

strategic uncertainty in the random utility model (RUM). Specifically, the mid-value bidder

36Kagel (1995) and Kagel and Levin (2008) provide excellent surveys on the experimental literature

of auctions and present the robust patterns of overbidding in the single-unit auctions. There are several

competing explanations about overbidding in the single-unit second price auctions such as mistakes, “joy of

winning,” and “spite motive.”
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is assumed to face a preference shock

π̃2 (b, v, εb) = π2 (b, v) + εb,

where εb follows the Type I extreme distribution. Then the probability of choosing a bid b

∈ {0, 1, 2, ..., 500} is described by the familiar logistic distribution

Pr (b = k|v) =
exp (λπ2 (k, v))∑500
s=0 exp (λπ2 (s, v))

,

where λ ≥ 0 is a payoff-sensitivity parameter. If λ goes to the infinity, the probability of

choosing an optimal bid approaches one. If λ goes to zero, a bid choice becomes purely

random. This second approach can be viewed as the optimal bid choice subject to decision

errors or idiosyncratic preference shocks for b. We use the maximum likelihood method to

estimate λ from the random utility model, given the estimated distributions of the highest

and lowest value bidders from the first stage.

Table 10 collects the summary information about optimal bids under strategic uncertainty

and the results of estimation of the random utility model. We report both sample median

and mean percentage deviations of optimal bids and RUM-estimated bids from corresponding

VCG bids, respectively.37

- Table 10 here -

Interestingly, the model of strategic uncertainty with no decision error seems to do a

good job of matching the observed mean and median percentage deviations in the SC-11

treatment, while this model predicts less degree of overbidding in the SC-20 treatment than

the data. Meanwhile, the RUM of strategic uncertainty appears to fit the data well in

the SC-20 treatment, while over-fitting the data in the SC-11 treatment. In order to have

a statistical judgement, we conduct the Wilcoxon-Mann-Whitney nonparametric tests of

the equivalence of two distributions between observed bids and optimal bids (and RUM-

estimated bids, respectively), whose p-values are reported in parentheses. The test results

confirm that the model of strategic uncertainty without decision error fits the data very well

in the SC-11 treatment, whereas the RUM of strategic uncertainty accounts well for the data

in the SC-20 treatment. Finally, for the graphical presentation of the goodness of fit, we draw

the kernel density estimates of percentage deviation of optimal bids (and RUM-estimated

bids, respectively) from VCG bids, along with observed percentage deviations from the data.

This is presented in Figure 3.

37When there are multiple optimal bids under strategic uncertainty, we select the lowest of them. On

the other hand, for each sample observation (i.e., a given value profile), the estimated random utility model

predicts the choice probability distribution over the integer set, from 0 to 500. We chose a median bid in

this distribution as an RUM-estimated bid.
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- Figure 3 here -

The model of strategic uncertainty without error has a remarkable fit of matching the

empirical distribution of percentage deviations from VCG bids in the SC-11 treatment. In

this treatment, the distribution of percentage deviation of RUM-estimated bids appears

positively more skewed than that of the observed bids. On the other hand, the RUM model

appears to have a better match to the data than the model of optimal bids with no error in

the SC-20 treatment. This again confirms the Wilcoxon-Mann-Whitney tests in Table 10.

In sum, our model based on strategic uncertainty about opponents’ behavior does a

remarkably good job of fitting the pattern of mid-value bidder’s bidding behavior. Thus, we

conclude that the mid-value bidder’s strategic uncertainty, combined with his beliefs about

the lowest-value bidder’s bidding above her own value, is an important ingredient explaining

the empirical departures from the VCG predictions in the data.

6 Conclusion

The current paper has explored the behavior of bidders participating in the generalized

second price auctions—the leading format of allocating sponsored search advertising. We

have employed an experimental method to address the outstanding issues with the theory

of GSP auctions: (i) the use of a stylized static game of complete information and (ii) the

multiplicity of equilibria.

On the first issue, we have found that the static game of complete information does

reasonably well in approximating the outcomes and behavior in a more realistic dynamic

environment with incomplete information and feedback. This finding is important since it

lends support to the prevailing theoretical approach of focusing on the full-information static

game as a modeling short-cut. We believe our methodology for testing the adequacy of the

stylized model to be useful beyond the current setting, for full-information Nash equilibrium

is often adopted as a solution concept in many complex strategic environments.

On the second issue, the bidding data from our experiment displays significant overbid-

ding relative to the leading prediction of the theory, although it is consistent with the weaker

predictions of symmetric (or envy-free) Nash equilibria. The departure of the observed bid-

ding from the particular equilibrium selection, namely the VCG outcome, is striking, but

this finding should not be regarded as an experimental anomaly or a result of subjects’ lack

of sophistication. On the contrary, there is an extensive evidence suggesting that subjects’

behavior is consistent with rational Nash behavior and reflects sound awareness of the under-

lying strategic environment. In particular, the mid-value bidder’s behavior—a key element

of the higher-than-the-VCG revenue—can be explained fairly well as an optimal response
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to the strategic uncertainty facing that bidder, suggesting it as an important source of the

failure of the prevailing equilibrium selection.
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(A, highest-value) (A, mid-value)
Game #(A) Period (B, mid-value) (B, highest-value) Ratio # of obs.

11 1 0.56 0.33 0.83 245
20 1 0.65 0.18 0.83 245
11 1 0.76 0.15 0.91 245
20 1 0.77 0.15 0.93 245

All 0.53 0.27 0.76 1260
11 ~ 15 0.55 0.27 0.77 420
All 0.72 0.17 0.87 1260

11 ~ 15 0.76 0.17 0.91 420

Note: The efficiency ratio is defined as (realized surplus minus random surplus) divided by (first-best
surplus minus random surplus).

Table 1. Frequencies and ratios of efficient allocation

11

20
DI

Allocation

SC

SI



Game #(A) Period Bundle Median Std. Err. Mean Std. Err. # of obs.
A 0.13*** 0.03 0.44*** 0.06 245
B 0.00 0.01 0.09 0.08 245

A & B 0.05*** 0.02 0.28*** 0.06 245
A 0.12*** 0.03 0.25*** 0.05 245
B 0.00 0.01 0.16 0.22 245

A & B 0.03* 0.02 0.16*** 0.04 245
11 1 A & B 0.43*** 0.08 1.06*** 0.09 245
20 1 A & B 0.34*** 0.02 0.46*** 0.03 245

A 0.15*** 0.04 0.76*** 0.07 420
B 0.00 0.01 0.75*** 0.14 420

A & B 0.09*** 0.03 0.70*** 0.08 420
A 0.21*** 0.02 0.37*** 0.04 420
B 0.09*** 0.03 2.03*** 0.44 420

A & B 0.18*** 0.01 0.39*** 0.04 420

Game #(A) Period Bundle Median Std. Err. Mean Std. Err. # of obs.
A 0.02* 0.02 0.22*** 0.04 245
B 0.00 0.01 0.09 0.08 245

A & B 0.01 0.01 0.15*** 0.04 245
A 0.00 0.00 0.02 0.04 245
B 0.00 0.01 0.16 0.22 245

A & B -0.03 0.03 -0.02 0.03 245
11 1 A & B 0.37*** 0.06 0.84*** 0.07 245
20 1 A & B 0.14*** 0.02 0.25*** 0.02 245

A 0.04 0.03 0.51*** 0.06 420
B 0.00 0.01 0.75*** 0.14 420

A & B 0.02 0.03 0.54*** 0.07 420
A 0.00 0.00 0.11** 0.03 420
B 0.09*** 0.03 2.03*** 0.44 420

A & B 0.04*** 0.01 0.15*** 0.03 420

1

11 ~ 15

11

SC

SI

DI

11

20

SC

SI

Notes: The bootstrap standard error is reported for median. *, **, and *** represents 10%,
5%, and 1% significance level for the one-sided t -test of median (mean) against the
alternative hypothesis that the median (mean) is strictly above 0.

Table 2. Percentage differences of observed revenues (payments) from theoretical bounds

11 ~ 15

11 ~ 15

Upper bound of SNEU

DI

11

20

Lower bound of SNEU

11

20

1

1

11 ~ 15

1

20



Variables highest-
value mid-value lowest-

value
highest-
value mid-value lowest-

value
highest-
value mid-value lowest-

value
highest-
value mid-value lowest-

value
.232* .058*** -.000 .881*** -.009 .007 .905*** .048 -.017 .250 -.062 .010
(.118) (.023) (.000) (.071) (.019) (.008) (.119) (.133) (.051) (.300) (.101) (.051)
-.028 .124** .000 -.038 .966*** .001 .019 .870*** .010 .643** .685*** .086
(.119) (.054) (.000) (.042) (.039) (.011) (.132) (.127) (.042) (.275) (.146) (.071)
.868*** .846*** 1.000*** -.016 .015 .979*** -.051 -.075 .900*** .021 .271** .872***
(.068) (.056) (.000) (.042) (.024) (.035) (.088) (.096) (.090) (.242) (.119) (.121)
-5.043 5.313 -.000 9.019 2.078 -.231 27.162 9.760 1.162 -14.032 22.237* -2.953
(7.431) (3.837) (.000) (9.024) (2.862) (2.133) (26.124) (19.347) (7.549) ( 13.752) (12.085) (5.098)

Wald test 0.064 1.000 0.000 0.799 0.000 0.728 0.000 0.647
# of obs. 245 245 245 245 245 245 84 84 84 420 420 420
Pseudo R2 0.467 0.610 0.742 0.368 0.532 0.621 0.470 0.567 0.642 0.269 0.345 0.675

Variables highest-
value mid-value lowest-

value
highest-
value mid-value lowest-

value
highest-
value mid-value lowest-

value
highest-
value mid-value lowest-

value
0.908*** .037 .000 1.000*** -.000 .000 .933*** -.030 .014 .449*** .051* .031
(.081) (.052) (.016) ( .016) (.002) (.003) (.113) (.046) (.035) (.266) (.029) (.039)
-.269 .869*** -.000 -.000 1.000*** -.000 -.066 .886*** -.024 .261 .795*** .184*
(.192) (.131) (.040) (.008) (.001) (.004) (.057) (.118) (.042) (.193) (.071) (.110)
.318* .096 1.000*** -.000 -.000 1.000*** -.072 .027 .920*** .225** .195*** .727***
(.192) (.084) (.200) (.010) (.002) (.006) (.072) (.079) (.071) (.099) (.075) (.133)
-14.672 -9.223** -11.000 2.000 8.000** 9.000** 10.201 15.240 49.698** -.684 -5.273 56.483*
(11.912) (3.761) (7.889) (7.379) (3.618) (4.343) (13.217) (8.767) (19.574) (17.824) (5.560) (29.619)

Wald test 0.000 1.000 0.000 1.000 0.000 0.349 0.000 0.235
# of obs. 245 245 245 245 245 245 84 84 84 420 420 420
Pseudo R2 0.467 0.588 0.551 0.631 0.772 0.784 0.460 0.702 0.759 0.254 0.559 0.565

Constant

Notes: Each regression in the table controls heterogeneity of individual subjects by including dummies for individual subjects. The bootstrap
standard errors are reported in parentheses. *, **, and *** represents 10%, 5%, and 1% significance level, respectively. The Wald test reports the p-
value of testing the null hypothesis that the bids follow the lower bound of SNEU.

SI DI (first period) DI (last 5 periods)

v 1

v 2

v 3

SC

v 1

v 2

v 3

Constant

#(A) = 20

Table 3. Median regression results of bids on values

#(A) = 11
SC SI DI (first period) DI (last 5 periods)



Game #(A) Period Median Std. Err. Mean Std. Err. # of obs.
11 1 0.19*** 0.04 0.58*** 0.09 245
20 1 0.22*** 0.06 0.32*** 0.09 245
11 1 0.81*** 0.10 1.77*** 0.24 245
20 1 0.42*** 0.04 0.52*** 0.05 245
11 11 ~ 15 0.25*** 0.08 1.74** 0.77 420
20 11 ~ 15 0.22*** 0.05 0.46*** 0.16 420

Game #(A) Period Median Std. Err. Mean Std. Err. # of obs.
11 1 0.07** 0.04 0.34*** 0.07 245
20 1 0.00 0.02 0.09* 0.07 245
11 1 0.67*** 0.07 1.39*** 0.22 245
20 1 0.16*** 0.05 0.27*** 0.04 245
11 11 ~ 15 0.11* 0.08 1.34** 0.64 420
20 11 ~ 15 0.01 0.01 0.17* 0.10 420

Game #(A) Period Median Std. Err. Mean Std. Err. # of obs.
11 1 -0.19 0.05 -0.25 0.02 245
20 1 0.00 0.01 -0.02 0.07 245
11 1 0.00 0.00 0.11 0.08 245
20 1 0.03* 0.02 0.11*** 0.03 245
11 11 ~ 15 -0.10 0.05 0.21 0.34 420
20 11 ~ 15 0.00 0.01 0.05 0.09 420

DI

SC

SI

Notes: The robust standard error for mean and the bootstrap standard error for median are reported, both of 
which are clustered by individual subject. *, **, and *** represents 10%, 5%, and 1% significance level for 
the one-sided t-test of median or mean against the alternative hypothesis that the median or mean is strictly 
above 0.

DI

Value bidding

SC

SI

Table 4. Percentage differences of observed bid from theoretical bids for mid-value bidders

DI

SC

SI

Lower bound of SNEU

Upper bound of SNEU



Game #(A) Period highest-value mid-value lowest-value highest-value mid-value lowest-value

11 1 0.49 0.60 0.88 0.56 0.49 0.72

20 1 0.70 0.80 0.91 0.58 0.40 0.53

11 1 0.23 0.80 0.93 0.54 0.13 0.58

20 1 0.60 0.80 0.94 0.33 0.30 0.60

11 11 ~ 15 0.58 0.70 0.86 0.56 0.40 0.58

20 11 ~ 15 0.75 0.81 0.95 0.71 0.52 0.44

Table 5. Frequencies of best response and SNEU

SC

SI

Notes: In checking the consistency of samples with SNEU strategies for mid-value and lowest-value, we relax the conditions 
with two tokens. 

DI

Best response SNEU



SC treatment value SNEU value SNEU DI treatment (last 5
periods) value SNEU value SNEU

bid т value 0.76 0.06 bid т value 0.76 0.29
bid = value 0.24 0.94 bid = value 0.24 0.71
# of obs. 210 35 # of obs. 355 65

SC treatment value SNEU value SNEU DI treatment (last 5
periods) value SNEU value SNEU

bid т value 0.58 0.45 bid т value 0.62 0.41
bid = value 0.42 0.55 bid = value 0.39 0.59
# of obs. 113 132 # of obs. 200 220

Note: When we count frequencies of value bidding, we relax the condition with 2 tokens. In identifying whether value belongs to the
set of SNEU, we round up the upper bound of SNEU and down the lower bound of SNEU.

6-1: #(A) = 11

Table 6. Bidding behavior conditional on value (not) being in SNEU
(Chi-square test in parentheses)

6-2: #(A) = 20

(p-value = 0.043) (p-value = 0.000)

(p-value = 0.000) (p-value = 0.000)



Game Period Median Std. Err. Pr(>0)
Median test 

(p-value)
K-S test 
(p-value)

Median Std. Err. Pr(>0)
Median test 

(p-value)
K-S test 
(p-value)

1 0.53 0.19 0.74 0.08 0.00 0.26 0.09 0.81 0.72 0.41
2 0.51 0.15 0.77 0.04 0.00 0.26 0.08 0.77 0.65 0.76
3 0.55 0.17 0.77 0.04 0.00 0.21 0.05 0.76 0.94 0.86
4 0.36 0.13 0.83 0.20 0.01 0.16 0.07 0.70 0.51 0.90
5 0.30 0.10 0.80 0.32 0.05 0.25 0.05 0.81 0.72 0.36
6 0.34 0.13 0.82 0.26 0.02 0.21 0.06 0.80 0.90 0.69
7 0.37 0.13 0.82 0.19 0.05 0.26 0.06 0.85 0.65 0.31
8 0.25 0.11 0.75 0.58 0.11 0.19 0.05 0.79 0.65 0.69
9 0.28 0.11 0.77 0.44 0.11 0.14 0.05 0.76 0.31 0.59

10 0.26 0.09 0.77 0.45 0.16 0.23 0.05 0.82 0.85 0.29
11 0.26 0.09 0.85 0.49 0.26 0.28 0.07 0.85 0.51 0.28
12 0.15 0.15 0.76 0.81 0.09 0.22 0.04 0.85 0.97 0.15
13 0.25 0.10 0.85 0.55 0.28 0.16 0.04 0.81 0.43 0.63
14 0.32 0.14 0.81 0.35 0.10 0.22 0.05 0.85 0.97 0.10
15 0.24 0.10 0.79 0.60 0.13 0.29 0.06 0.88 0.41 0.08

SC 1 0.19 0.04 0.86 -- -- 0.22 0.06 0.73 -- --
SI 1 0.81 0.09 0.96 -- -- 0.41 0.04 0.97 -- --

Notes. The bootstrap standard errors for median, clustered by individual subject, are reported in the second column of each of #(A) = 11 and 20. 
The median test reports the p-value of equality test of medians, using the t-test, between SC and DI in each period. The K-S test reports the p-
value of equality of distributions between SC and DI in each period. 

#(A) = 20

Table 7. Dynamics of percentage differences of observed bid from lower bound of SNEU for mid-value bidders

DI

#(A) = 11



#(A) Period all
highest-

value
mid-
value

lowest-
value

Median Std. Err. Mean Std. Err.
# of 
obs.

2 0.66 0.43 0.73 0.82 0.73*** 0.29 1.49*** 0.20 103
3 0.67 0.51 0.65 0.86 0.38*** 0.07 1.07*** 0.16 101
4 0.65 0.48 0.69 0.77 0.29*** 0.05 0.94*** 0.10 95
5 0.74 0.58 0.77 0.86 0.18*** 0.04 0.84*** 0.17 107
6 0.73 0.56 0.79 0.85 0.18*** 0.07 0.96*** 0.33 104
7 0.67 0.50 0.73 0.79 0.22*** 0.04 1.23** 0.63 91
8 0.75 0.63 0.79 0.83 0.23*** 0.05 0.68*** 0.12 98
9 0.73 0.64 0.75 0.81 0.14*** 0.04 0.56*** 0.13 102
10 0.70 0.62 0.69 0.80 0.13*** 0.04 0.47*** 0.10 94
11 0.69 0.58 0.70 0.80 0.10** 0.06 0.49*** 0.11 85
12 0.72 0.57 0.69 0.90 0.07*** 0.02 0.46*** 0.11 93
13 0.73 0.57 0.73 0.89 0.12*** 0.04 0.49*** 0.11 95
14 0.77 0.60 0.81 0.90 0.10** 0.05 0.68*** 0.20 101
15 0.79 0.67 0.80 0.90 0.06** 0.04 0.56*** 0.16 98

2 0.80 0.67 0.86 0.87 0.24*** 0.08 0.41*** 0.07 87
3 0.80 0.63 0.82 0.95 0.15*** 0.05 0.30*** 0.07 81
4 0.80 0.68 0.77 0.94 0.10** 0.05 0.35*** 0.09 74
5 0.82 0.71 0.79 0.95 0.12*** 0.05 0.32*** 0.08 80
6 0.84 0.77 0.83 0.90 0.08** 0.04 0.23*** 0.03 81
7 0.84 0.77 0.79 0.96 0.08* 0.05 0.26*** 0.06 77
8 0.82 0.76 0.75 0.95 0.09*** 0.04 0.26*** 0.07 73
9 0.87 0.85 0.81 0.94 0.08*** 0.03 0.18*** 0.07 85
10 0.85 0.81 0.85 0.89 0.11*** 0.03 0.18*** 0.05 89
11 0.86 0.81 0.83 0.93 0.08*** 0.03 0.26*** 0.08 80
12 0.87 0.81 0.85 0.96 0.07*** 0.03 0.21*** 0.04 79
13 0.85 0.73 0.82 0.99 0.06* 0.04 0.30*** 0.08 75
14 0.88 0.80 0.88 0.95 0.13*** 0.05 0.94* 0.55 82
15 0.87 0.83 0.81 0.98 0.14*** 0.05 0.40*** 0.11 80

Table 8. Adaptive optimality and percentage differences of observed bids from

Adaptive optimality
BB strategy                                                                   

when targeting bundle B is adaptively optimal

Notes:  The robust standard error for mean and the bootstrap standard error for median are reported, both of 
which are clustered by individual subject. *, **, and *** represents 10%, 5%, and 1% significance level for 
the one-sided t-test of median (mean) against the alternative hypothesis that the median (mean) is strictly 
above 0.

11

20

balanced bidding (BB) strategy



(1) (2) (1) (2)

Loss(t-1) .0021*** .0021*** .0023*** .0014**

(.0004) (.0004) (.0005) (.0006)

Loss(t-1) × 1{higest-value bidder} -.0013*** -.0014** -.0017** -.0010

         (.0004) (.0004) (.0005) (.0005)

Loss(t-1) × 1{lowest-value bidder} -.0016*** -.0024*** -.0004 -.0014**

(.0006) (.0007) (.0007) (.0007)

Earnings(t-1) -.0007*** -.0012*** -.0002** -.0014***

(.0001) (.0002) (.0001) (.0003)

Optimality(t-1) 1.8126*** 1.7882***

(.0653) (.0817)

Constant .1425 .2496 -.3808** .2651

(.1762) (.2463) (.1820) (.2999)

Pseudo R2 0.331 0.144 0.247 0.173

# of obs. 3528 1220 3528 655

Table 9. Probit regression results of adaptive optimality

#(A) = 11 #(A) = 20

Notes: We report probit regression results controlling for individual subject and period fixed effects. The variables, Loss(t-1), 
is defined as optimal minus actual earnings at t-1, which is non-negative. The regression equation (1) involves all samples 
and equation (2) uses a subsample of data where bidders behaved non-optimally at t-1. *, **, and *** represents 10%, 5%, 
and 1% significance level, respectively. The robust standard errors are reported in parentheses. 



7UHDWPHQW 0HDQ 0HGLDQ 0HDQ 0HGLDQ 0HDQ 0HGLDQ Ȝ /RJOLN

SC - 11 0.58 0.19 0.38 0.23 0.83 0.43 3.081 -1018.8

(0.135)

SC - 20 0.33 0.22 0.09 0.06 0.33 0.18 2.038 -1042.2

(0.134)

Note. The number in parentheses in columns of Model is the p -value of the Wilcoxon-Mann-Whitney nonparametric test of the
equivalence of two distributions between observed bids and corresponding bids. Standard errors of ʄ estimates are also reported
in parentheses.

Table 10. Estimated model of strategic uncertainty: percentage deviations from the VCG

Model

Observed bids Optimal bids RUM-estimated bids

(0.999) (0.000)

(0.000) (0.489)



1-1. Static complete-information game with #(A) = 11

1.2. Static incomplete-information game with #(A) = 11 (all bidders) 1.3. Dynamic incomplete-information game with #(A) = 11: last five periods

Figure 1. Scatter plots of values and bids
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Figure 1 continued

1-4. Static complete-information game with #(A) = 20

1.5. Static incomplete-information game with #(A) = 20 (all bidders) 1.6. Dynamic incomplete-information game with #(A) = 20: last five periods

Note: For graphical illustration, we screen out bids above 120. This results in excluding 9 and 12 observations in SI with #(A) = 11 and 20 (Figure 1-2 and 1-5), respectively, 7 observations for mid-value
bidders in DI with #(A) = 11 (Figure 1-3), and 1 observation for each of mid-value and lowest-value bidders in DI with #(A) = 20 (Figure 1-6).
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Figure 2. Cumulative distribution functions of observed and theoretical bids for mid-value bidders

2-1. Static complete-information game with #(A) = 11

2-2. Static incomplete-information game with #(A) = 11 2-3. Dynamic incomplete-information game with #(A) = 11: last five periods
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2-5. Static incomplete-information game with #(A) = 20 2-6. Dynamic incomplete-information game with #(A) = 20: last five periods

Figure 2 continued
2-4. Static complete-information game with #(A) = 20
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A. Static complete-information game with #(A) = 11

B. Static complete-information game with #(A) = 20

Figure 3. Goodness of fit of the model of strategic uncertainty
(Kernel density estimates of percentage deviation from VCG bids)
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Supplementary Material:
An Experimental Study of Sponsored-Search Auctions

(Not for Publication)

Appendix I-A: Long Run Average Perspective

Edelman and Schwarz (2010) use a general specification of a dynamic model with incomplete

information, and use the revenue implication of such a model to bound the revenue. While

their bound is the equilibrium revenue of the ascending bid auction of EOS with optimal

reserve price, this bound can be further tightened to be VCG level in the setup where there

is no reserve price, and all positions are sold always. Suppose there are n bidders, each of

which draws a per-click value of v ∈ [0, 1], according to distribution F , which admits density

f and satisfies the regularity condition: J(v) := v − 1−F (v)
f(v)

is strictly increasing in v. There

are 1 ≤ k < n positions with position a generating ca units of clicks. There are no reserve

prices. There are T ≥ 2 periods with possible discount factor δ ∈ [0, 1). Let H t
i be the set

of possible histories (or states) that player i has observed until time t (prior to his bidding).

A Bayesian strategy for player i is a mapping βi from his type vi to a sequence of functions,

one for each period, such that the t period function maps from H t
i to a non-negative real

number, his bid at period t. We assume that each bidder always bids at least zero.

Proposition 2. In any Bayesian Nash equilibrium, the per-period average revenue for the

seller cannot exceed her VCG payoff:

E

[
k∑

a=1

caJ(v(a))

]
,

where v(j) is the j-th highest order statistic. The upper bound for the expected revenue is

attained if the positions are assigned efficiently, namely position j is assigned to the j-th

highest value bidder, but the expected revenue falls strictly below the upper bound if the

allocation is inefficient with positive probability in any period t = 1, ..., T .

Proof. Let β := (β1, ..., βn) be a Bayesian Nash equilibrium strategy profile of this dynamic

game. Let xait(β1(v1), ..., βn(vn)) be the probability of bidder i winning position a = 1, ..., k at

period t in that equilibrium, evaluated given period 1 information. Let pi(β1(v1), ..., βn(vn))

be bidder i’s expected discounted intertemporal payment at time 1.

Define

Xa
it(vi) := Ev−i

[xait(β1(v1), ..., βn(vn))]

and

Pi(vi) := Ev−i
[pi(β1(v1), ..., βn(vn))].



Let i’s interim payoff be

Ui(v
′|v) :=

T∑
t=1

k∑
a=1

δt−1[vcaXa
it(v

′)]− Pi(v
′),

when he adopts β(v′) even though his true type is vi, and all others adopt their equilibrium

strategies. Since β is Bayesian Nash equilibrium,

Ui(v|v) ≥ Ui(v
′|v), ∀v, v′.

By the Envelope theorem,

Ui(v|v) = Ui(0|0) +

∫ v

0

[
T∑
t=1

k∑
a=1

δt−1caXa
it(s)]ds =

∫ v

0

[
T∑
t=1

k∑
a=1

δt−1caXa
it(s)]ds.

By the usual method, the seller’s total expected revenue is

E[
n∑

i=1

Pi(vi)] = E

[
n∑

i=1

(
J(vi)

T∑
t=1

k∑
a=1

δt−1caXa
it(vi)

)]

= E

[
n∑

i=1

k∑
a=1

ca

(
J(vi)

T∑
t=1

δt−1Xa
it(vi)

)]

= E

[
n∑

i=1

k∑
a=1

caJ(vi)Y
a
i (vi)

]
(16)

where J(v) := v − 1−F (v)
f(v)

and Y a
i (vi) :=

∑T
t=1 δ

t−1Xa
it(vi).

Note that Xa
it(vi) ≥ 0 for all i, a, vi, t, and

∑k
a=1X

a
it(vi) ≤ 1, which implies that

Y a
i (vi) ≥ 0,∀a, and

k∑
a=1

Y a
i (vi) ≤

1− δT

1− δ
, ∀i. (17)

Since all positions are assigned in each period,
∑n

i=1X
a
it(vi) = 1, for each t and a, which in

turn implies that
n∑

i=1

Y a
i (vi) =

1− δT

1− δ
,∀a. (18)

For the vector of random variables {v1, ..., vn}, let v(j) be the j-th highest order statistic.

If J(·) is nondecreasing, the maximum of (16) subject to (17) and (18) is achieved point-wise

by assortative matching (the bidder with the j-th highest value is assigned to position j)

and equals

E

[
k∑

a=1

caJ(v(a))

(
1− δT

1− δ

)]
.

It is straightforward to show that this revenue is precisely what the seller will get from the

VCG auction.



If J(·) is strictly increasing (as is assumed), then the maximum is uniquely attained by

the assortative matching. In other words, the VCG revenue is never attained if the matching

fails to be assortative in any period with positive probability.

Appendix I-B: Equilibria of Static Incomplete Informa-

tion Model

Suppose that three bidders independently draw their per-unit values from the interval [0, 100]

following the uniform distribution. Consider the GSP auction in which two positions, A and

B, with cA and cB < cA clicks are offered. Assuming that there exists a symmetric, strictly

increasing equilibrium bidding strategy b : [0, 100]→ R+, we must have for all v ∈ [0, 100]

v = arg max
v′∈[0,100]

π(v′; v) := v
[
cAF (v′)2 + cB2(1− F (v′))F (v′)

]
−
∫ v′

0

cAb(s)dF (s)2 − 2(1− F (v′))

∫ v′

0

cBb(s)dF (s),

which yields the first-order condition

(cAF (v) + cB(1− F (v)))(v − b(v))−
∫ v

0

cB(v − b(s))dF (s) = 0.

Differentiating both sides with v and substituting F (v) = v/100 result in the following

differential equation

(cA − 2cB)(v − b(v)) + (cAv + cB(100− v))(1− b′(v))− cBv = 0 (19)

along with the boundary condition b(0) = 0.

With cA = 20 and cB = 10, the differential equation (19) yields a strictly increasing

solution,

b(v) = 100 ln[100 + v]− 100 ln[100].

So b(·) constitutes a Bayesian Nash equilibrium.38 With cA = 11 and cB = 10, however, (19)

does not yield any strictly increasing solution, which implies there is no efficient equilibrium.

According to the Proposition 6 of Gomes and Sweeney (2014), no symmetric equilibrium

exists.

38One can verify that the function π(v′; v) is supermodular in v′ and v so the second-order condition is

also satisfied.


