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Abstract

The reputation literature, following Fudenberg and Levine (1989)’s seminal pa-
per, often considers a perturbation of a repeated game in which player one may,
with small probability, be a “commitment” type that always plays a “commitment”
strategy. Reputation results, in which player one obtains the same payo¤ as if she
could commit publicly to that strategy, typically assume that player one is in…nitely
more patient than her opponent. Schmidt (1993) obtained a reputation result when
player one is much more (but not in…nitely more) patient for perturbed repeated
games of con‡icting interests, i.e., games in which an opponents’ best reply to the
best commitment strategy of player one yields the opponent the worst, i.e., min-
max, payo¤. We obtain a reputation result with equal discounting for perturbed
repeated games of strictly con‡icting interest, which require, in addition to the con-
‡icting interest assumption, that player one obtain the best possible payo¤ from
the best reply to the commitment strategy.
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1. Introduction

To date, with few exceptions, reputation e¤ects have been shown to exist only in games

where the player desiring a reputation is signi…cantly more patient than her opponent.

We show that full reputation e¤ects exist in a class of games de…ned below (which include,

for instance, the strategic-form representation of the chain-store game) even when the

players are equally patient, so long as we restrict attention to the equilibria of the repeated

game.

Fudenberg and Levine (1989, 1992) consider repeated games where one long-run player

faces a sequence of short-run players who play the game only once. They show that if

there is positive prior probability that the long-run agent is a “commitment type” (who

always plays a particular “ commitment action”) and if the long-run agent is su¢ciently

patient, then her payo¤ at any Nash equilibrium is bounded below by what she could get

by publicly committing to the commitment action. This bound on equilibrium payo¤s

has come to be called the reputation e¤ect. Schmidt (1993) showed that the reputation

e¤ect exists in games of con‡icting interests with no short-run players, provided the

player who may be the commitment type (a.k.a., the reputation, or informed, player)

faces an opponent who is su¢ciently less patient than herself. (A game has con‡icting

interests if the best reply to a commitment action gives the replier his minmax payo¤.)

Following examples of Cripps and Thomas (1997) and Celentani et. al. (1996), Chan

(2000) obtained a folk theorem in perfect-equilibrium strategies for players with equal

discount factors for all games except those where the commitment action is a dominant

action in the stage game or those with strictly con‡icting interests, which are con‡icting-

interest games where the best reply to the commitment action yields the reputation

player’s best feasible and individually rational payo¤ in the game. In this paper we

strengthen Schmidt’s and Chan’s results by obtaining a reputation result for all Nash

equilibria in games of strictly con‡icting interest with equal discount factors.
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We know of only three other reputation results with equal discounting. For the

case where the commitment strategy is dominant Chan obtained a perfect-equilibrium

reputation result with equal discount factors. Cripps and Thomas (1996) derived a

partial reputation result for Nash equilibria and with no discounting.1 Schmidt (1993a)

presents a sequential-equilibrium reputation result for …nitely repeated bargaining games

which holds for a wide range of discount factors (including equal discounting).

Earlier reputation results (with asymmetric discounting) apply to games of two-sided

uncertainty, while ours does not: to obtain a one-sided reputation result with equal

discounting it is necessary that we allow only one-sided uncertainty. That is, we re-

place the asymmetry in discount factors used in earlier reputation results with one-sided

asymmetric information. We conjecture that a model with two-sided uncertainty, equal

discounting and repetition of a game with two-sided strictly con‡icting interests will have

a unique equilibrium—similar to Abreu and Gul (2000)—in which a war-of-attrition is

played prior to one player revealing herself to be normal, and once this has occurred an

equilibrium of the game of one-sided incomplete information, as characterized below, is

played.2

1We say partial because the reputation player does not necessarily obtain the payo¤ he would receive
if committing to a strategy, but there is a lower bound on his payo¤s that is in general greater than the
minmax payo¤ of the folk theorem

2Abreu and Gul consider a bargaining game in which the one-sided asymmetric information game
has a unique solution, and show that the two-sided game has a unique war-of-attrition-like equilibrium.
Abreu and Pearce (2000) derive a similar result for general repeated games where they assume that a
unique equilibrium must be played after all histories in which both players are revealed not to be the
commitment type, which they show implies a unique equilibrium in the one-sided asymmetric information
case. Using this they argue that the only robust equilibrium have a Nash-bargaining-with-endogenous-
threats payo¤. Our result essentially derives uniqueness in the one-sided case, and so suggests that for
games with two-sided strictly con‡icting interest Abreu and Pearce’s assumption of a unique equilibrium
in the repeated symmetric-information game is not needed.
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2. The Model

We will begin by giving the notation that describes the stage game and the unperturbed

repeated game. Then, we will describe our equilibrium concept and de…ne games of

strictly con‡icting interests. There are two players, called “one” (she) and “two” (he).

They move simultaneously. Player i, i 2 f1; 2g, chooses an action ai from the …nite set

Ai. (We will let Ai denote the set of mixed stage-game strategies, ®i, for player i.) Player

i’s payo¤ when the players use the actions (®1; ®2) in the unperturbed stage-game are

denoted gi(®1; ®2). We will use ¡ to denote this stage game. The stage-game minmax

payo¤ for player i is denoted ĝi, that is, ĝi := min®3¡i max®i gi(®1; ®2); we normalize

ĝ2 = 0.

We denote the set of the feasible payo¤s in ¡ by F ; that is, F is the convex hull of

f(g1(a1; a2); g2(a1; a2)) j (a1; a2) 2 A1£A2g. We will use G to denote the set of feasible and

individually rational payo¤s; G := F \ f(g1; g2) j g1 ¸ ĝ1; g2 ¸ ĝ2g. The largest feasible

and individually rational payo¤ for player 1 is denoted ¹g1; ¹g1 := maxf g1 j (g1; g2) 2 G g.

Finally, we will let M be an upper bound on the magnitude of the players’ payo¤s;

M > jgi(a1; a2)j for i = 1; 2 and all a1, a2.

We focus on games with strictly con‡icting interests, wherein player 1 is able to

commit to an action which is the best for her and the worst for her opponent. More

precisely, a game has strictly con‡icting interests if player 1 has an action to which 2’s

best replies yield the payo¤s (¹g1; ĝ2)—the maximum feasible and individually rational

payo¤ to 1 and the minmax to 2. We will denote such an action (which, by de…nition, is

pure) a¤1. Furthermore, we make the genericity assumption (which is implied, for instance,

by assuming the game comes from a generic extensive-form game) that if (¹g1; g2) 2 G
then g2 = ĝ2.3 We will use l to denote the minimum loss player 2 can sustain from

not playing the best response to a¤1. The chain-store game and the repeated-bargaining
3We do not assume that the best response is unique.
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game (Schmidt (1993) pp. 341–343) both have strictly con‡icting interests. Note that in

generic, …nite games with strictly con‡icting interests there is a linear upper bound on

the feasible payo¤s to player 2 that passes through the point (¹g1; ĝ2). That is, there exists

a …nite ½ ¸ 0 such that g2 · ĝ2 + ½(¹g1 ¡ g1), 8(g1; g2) 2 F . Given our normalization,

ĝ2 = 0, this reduces to

g2 · ½(¹g1 ¡ g1): (1)

The stage game above is played in each of the periods t = 0; 1; 2::: . The players

have perfect recall and can observe the past pure actions chosen by their opponents.

Let Ht := (A1 £ A2)t denote the set of all partial histories, ht, that can be observed by

players before the start of period t.4 A behavior strategy for player i in the game is a map

¾i : [1t=0H t ! Ai. A history h1 2 H1 will occasionally be denoted as a partial history

ht and its continuation h¡t, that is, h1 = (ht; h¡t). The players’ continuation payo¤ in

the repeated game given the partial history ht are given by the normalized discounted

sum of the continuation stage-game payo¤s

gi(h1; t) := (1¡ ±)
1X

s=t

±s¡tgi(as1; a
s
2);

where ± < 1 is the players’ common discount factor. We will use ¡(±) to denote the

discounted repeated game of complete information.

Now we will perturb the game ¡(±). We will suppose that player 1 may be one of

many di¤erent types. One of these is the “normal” type with the payo¤s and actions

described above, and a second is a “commitment” type that always plays the stage-game

action a¤1.5 (We denote this strategy in the repeated game by ¾¤1.) We will not be precise
4De…ne H0 to be an arbitrary singleton set.
5For our purposes, it will not matter whether the commitment type is an automaton who is “pro-

grammed” to play a¤
1, or comes with stage-game preferences that give her a payo¤ (independent of player

2’s actions) from a¤
1 strictly greater than her payo¤ from all other actions. The folk-theorem result of

Cripps and Thomas (2003) does not apply here because the existence of feasible and strictly individ-
ually rational payo¤s for such a commitment type is violated. This is true, however, of all types with
con‡icting interests (not just those with strict con‡icting interests).
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about the remaining types—they may have di¤erent stage-game payo¤s or just play given

repeated-game strategies. The type of player 1 is chosen at time t = ¡1 by Nature; with

probability ¹ Nature selects the commitment type, with probability 1 ¡ ¹ ¡ Á Nature

selects the normal type and with probability Á Nature selects another type (possibly

according to a distribution over other types). Player 1 observes the outcome of Nature’s

choice but player 2 does not. We will study the Nash equilibria of this repeated game

of incomplete information. To do this it is convenient to specify player 2’s priors after

certain histories. Let ¹(ht) denote player 2’s prior that player 1 is a commitment type

at the start of period t when the partial history of play is ht 2 Ht. (Given ¹ > 0 and

a repeated-game strategy of the normal type ¾1, ¹(ht) can be determined from Bayes’

theorem for any history where player 1 has always used the action a¤1.)

3. The Result

This section begins with some intuitions and then presents our result. We show that if

there is positive probability of the commitment type, ¹ > 0, then player 1’s equilibrium

payo¤ is bounded below by a factor (depending on ¹ and Á) which tends to ¹g1 as the

players’ common discount factor tends to unity and Á tends to zero. Thus, as both

players become very patient, at every equilibrium player 1 gets arbitrarily close to what

she could receive if she publicly committed to playing a¤1 forever when there is a small

amount of incomplete information.

Roughly speaking, the result we seek fails in general, so that in general there can exist

equilibria without reputation e¤ects when the players are equally patient, because it can

take the informed player so long to acquire a reputation that the costs of deviating from

the equilibrium and thereby acquiring a reputation are not worth the bene…ts. Acquiring

a reputation is costly in such equilibria because there are many periods in which the

uninformed player does not play a best response to the commitment action. He does
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this because he is patient, believes he is most likely not facing the commitment type,

and believes the non-commitment opponent is playing an equilibrium strategy that will

ultimately reward him for the short-run costs of not playing a best response (or, equiva-

lently, punish him for playing a best response). Provided these rewards (or punishments)

are large enough and occur with a su¢ciently high probability, the uninformed player is

willing to not play a short-run best response for a very long time.

We show that reputations can be built in repeated games with strictly con‡icting

interests. The reason is that the above rewards must be given with a very high proba-

bility in such games. Hence player 2 is never willing to play more than a …nite number

(which only depends on ¹; Á and the stage-game payo¤s) of non-best responses to the

commitment action. As the players become very patient the …nite number of periods

become insigni…cant in player 1’s payo¤s, so her payo¤ from mimicking the commitment

type at any equilibrium approaches her full reputation payo¤.

It might appear counter-intuitive that reputation results obtain when the uninformed

player receives the worst possible payo¤ in the reputation equilibrium. To gain some

intuition for the role of the con‡icting-interest assumption consider the following games;

Cripps and Thomas have shown that there are many (perfect) equilibrium payo¤s in the

common-interest game on the left.

L R
U 1; 1 0; 0
D 0; 0 0; 0

Common Interests
No reputation

O I
F 2; 0 0;¡1
A 2; 0 1; 1

Strictly Con‡icting Interests
Yes reputation

Figure 1

It is easy to see that in any reputation game there are no equilibria in which 1 plays a

pure strategy and does not get the commitment payo¤.6 So, to obtain other payo¤s 1
6As explained in Cripps and Thomas (1997), if in the …rst period where player 1 is not playing U she
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must play a mixed strategy. Each time this mixed strategy is played and the realization

is U , then 2’s conditional probability that 1 is the commitment type increases. Moreover,

at some threshold belief 2 will always play the best reply to U , so it must be that this

increase in probabilities occurs slowly relative to ±. (Otherwise player 1’s discounted

payo¤s would be close to the commitment payo¤ if 1 played U in each period.) Consider

a belief for 2 such that if one more realization of U occurred, then 2 would play L

forever. Assume that in this period 2 plays R (since player 1’s payo¤s are farthest from

the commitment payo¤ of 1 if player 2 plays R in response to the mixed strategy). But

for player 1 to mix and hence to be indi¤erent this implies that the payo¤s to (U;R)

and (D;R) are identical and equal to ±(1; 1). (By assumption 2’s beliefs are such that

after U player 1’s continuation payo¤s are 1, so payo¤s are (1¡ ±) 0 + ±1.) With what

probability does player 1 have to playD to give player 2 an incentive to play R? If (U;L)

is played the continuation payo¤ is also (1; 1), but after (D;L) player 2 can be punished

by receiving the lowest equilibrium payo¤ in the complete information game, namely

(0; 0). Thus there is a di¤erence in player 2’s long-run payo¤s if he deviates from R in

this period. Hence it is enough that player 1 plays D with a small probability, relative to

±, and thus the number of periods in which player 1 can randomize grows quickly relative

to ±, and reputation e¤ects vanish.

Let us contrast this with the game of (strictly) con‡icting interests (the chain-store

game) on the right of Figure 1. Again consider an equilibrium where player 1 is using a

mixed strategy to give player 2 the incentives not to play the best response O(ut) but

I(n) for one last period and a belief for 2 such that one more realization of F would lead

player 2 to play O forever. When player 2 plays I(n) and player 1 randomizes she is

again indi¤erent so her total payo¤s to (F; I) and (A; I) are 2±. The fact that player 1

must receive 2± and the assumption of strictly con‡icting interests forces player 2’s total

payo¤ to (A; I ) to be very close to zero (less than 1
2(1 ¡ ±)). (To see this, note that we

have (1 ¡ ±) (1; 1)+± (x; y) = (2±; z), so x = 2±¡1+±
± = 2¡ 1¡±

± , so z · 1¡ ±+ 1¡±
± = 1¡±2

± .)

would deviate to U then she would be known to be the commitment type guaranteeing the payo¤ of 1.
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The continuation payo¤s player 2 receives from (F;O) and (A;O) are also at least zero

because this is his minmax payo¤. Player 2’s long-term payo¤s cannot, therefore, be used

to provide an incentive for player 2 to play I. The incentive to play I can only result

from the probability with which player 1 plays A and this is independent of ±. We will

show that a similar argument applies to earlier randomizations and that they too are

independent of ±. Hence, the number of periods in which player 1 can randomize remains

…xed, and reputation e¤ects are fully restored.

Our main result is that if the uncertainty about all types is su¢ciently small and

there is strictly positive prior probability of the commitment type, then the normal

type’s payo¤ at any equilibrium becomes arbitrarily close to his full reputation payo¤

as both of the players become patient. The rate of convergence here only depends on

the parameters of the stage game. The proof is long and has been divided into several

steps. We consider a pure strategy for player 2 that fails to play a best response to

the commitment action in the most periods among all pure strategies that have positive

probability in the equilibrium mixed strategy. Given the commitment action has been

played until t ¡ 1, player 2 must expect to receive at least 0 (his minmax) from future

play of this strategy. This future payo¤ is made up of continued play of the commitment

action and, with some probability in period s ¸ t, a deviation from the commitment

action. At this point he only faces the normal type or the other types. Against the other

types he can get at most M from period s on, however, in games of strictly con‡icting

interests there is a much tighter bound on what he receives from the normal types from s

on. This is because the normal type must be indi¤erent between playing the commitment

action with, say, n future periods in which player 2 does not play a best response and

deviating from the commitment action. (This is a generalization of the 1¡±2
± bound in

the above example.) Writing the individual rationality condition for each such t gives

a family of linear inequalities in the probabilities of deviations from the commitment

action. In the …rst lemma we show that we only need pay attention to a …nite number of

such inequalities (for a given discount factor). The second lemma is uses duality theory
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to write down a su¢cient condition for the family of inequalities to have no solution.

The …nal lemma shows this su¢cient condition will always apply when there are many

periods in which player 2 does not play a best response to the commitment type.

The reason our result holds only for small amounts of uncertainty about other types is

because it may be that there are types present who will provide an incentive for player 2

to …ght player 1’s attempt to build a reputation. If such types are very likely, they make

the costs to acquiring a reputation signi…cant. For example, consider the case where

player 2 attaches high probability to a type that rewards him greatly for not playing

a best response to the commitment type in the …rst K = ¡ ln 2= ln ± periods. Player

2 would attach high probability to receiving a reward discounted by 1
2 = ±K, and this

would give him a non-vanishing incentive to make player 1 wait at leastK periods to gain

a full reputation. Thus the normal type could expect at most ¹g1 ¡ 1
2c where c was the

payo¤ cost from player 2’s actions in the early periods of play. However, this argument

relies on player 2 being convinced that it is very likely that there are such reward types

present. If the amount of the overall incomplete information is small, i.e., there is a small

perturbation of the incomplete information game, this cannot be the case.

To state our result, given a game of strictly con‡icting interests ¡ let f : ¹ 7!
exp

³
4(l+2M½)
l¹

´
and b : ¹ 7! Mf (¹)

l(1¡¹) . (Recall that M, ½ and l are parameters determined

by ¡; they are de…ned in the second and third paragraphs of Section 2.)

Proposition 1 Let ¡, a game of strictly con‡icting interests, be given. Then the normal

type of player 1’s payo¤ at any Nash equilibrium of the repeated of incomplete information

is bounded below by

¹g1 ¡ 2M
³
1¡ ±f(¹)e¡Á± b(¹)

´
:

Before proving our result (which will take the rest of the paper) we will state a trivial

two-part corollary to the proposition. (1) With only two types, as both players become
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very patient the normal type must get the full-reputation payo¤ at any equilibrium. (2)

Given any prior ¹ on the commitment type the normal type’s payo¤ at any equilibrium

can be made arbitrarily close to her full-reputation payo¤ as the players become patient

and the probability of other types is made small.

Corollary 1 Let ¡, a game of strictly con‡icting interests, ¹ > 0, a probability of the

commitment type, and " > 0, be given: (1) If Á = 0, then the normal type’s payo¤ at any

Nash equilibrium approaches ¹g1 as ± ! 1. (2) There exists ± < 1 and Á > 0 such that

at any Nash equilibrium of the game with ± > ± and Á < Á the normal type’s payo¤ is

bounded below by ¹g1 ¡ ".

Proof Proposition 1: Let ¹ > 0, ± < 1, Á and any equilibrium of the repeated game

be given. The proof of this result will proceed in several steps. (Steps 1–2) Using the

fact that player 2’s payo¤s in all subgames are at least the minmax we …nd a family of

inequalities, (4), that the normal type’s mixed strategy will satisfy in any equilibrium.

(Step 3) We then combine this with the linear bound, (1), to obtain bounds based on

player 1’s payo¤s that yield inequalities, (5), that the normal type’s mixed strategy

satisfy in equilibrium. (Step 4) We re…ne these inequalities by arguing in Lemma 1

that when player 1 plays a¤1 repeatedly then on all equilibrium paths there is a …nite last

period after which payo¤s are (¹g1; 0) in every period, and in the period preceding the

maximal such period player 2 does not play a best reply. (Step 5) We then restate the

inequalities in Lemma 2 using Farkas’ lemma to …nd inequalities that must be violated

in any equilibrium. (Step 6) Finally, in Lemma 3 we show that if player 2 fails to play a

best reply to the commitment strategy too often, there is a solution to the inequalities

of Lemma 2, implying that this cannot happen in equilibrium.

Step 1: Player 2’s equilibrium payo¤s are at least the minmax payo¤.

To …nd the main inequalities, (4), we decompose an upper bound on player 2’s payo¤s

from any pure strategy, say ¾2, in the support of his equilibrium strategy and from
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any period t onward, into the per-period payo¤s obtained so long as player 1 plays the

commitment strategy and the continuation payo¤s once 1 departs from the commitment

strategy and plays anything else. These per-period payo¤s against a¤1, which are less than

or equal to the minmax since the game has con‡icting interests, are denoted ge2¿ . The

continuation payo¤s to 2 conditional on facing the normal type and starting from a …rst

departure by 1 from the commitment strategy in period ¿ are denoted c¿ (these include

the payo¤s to 2 in period ¿ ). Player 2’s continuation payo¤ from the other potential

types may depend on the type faced but are bounded by M . The joint probability of

facing the normal type and the normal type playing the commitment action up to but

not including period ¿ along the path generated by ¾2 and 1’s equilibrium strategy is

denoted by ¼¿ . The probability of facing any other type and all such other types playing

the commitment action up to but not including period ¿ along the path generated by

¾2 and 1’s equilibrium strategy is denoted »¿ . The total payo¤ must be greater than 2’s

minmax payo¤ (of zero), which gives us the following inequalities for all t < T , where

T (which at this point may be 1) denotes the …rst period after which the payo¤s to

the normal type are ¹g1 along the path generated by (¾¤1; ¾2).7 Thus after T periods

of observing the commitment action player 2 receives the payo¤ zero if he faces the

commitment type and at most M from the other types.

0 ·
T¡1X

s=t

¼s

"
(1¡ ±)

s¡1X

r=t

±r¡t(ge2r) + ±
s¡tcs

#
+
T¡1X

s=t

»s

"
(1¡ ±)

s¡1X

r=t

±r¡t(ge2r) + ±
s¡tM

#

+

Ã
1¡

T¡1X

s=0

(¼s+ »s)

!
(1¡ ±)

T¡1X

r=t

±r¡t(ge2r) + ±
T¡tM

Ã
Á ¡

T¡1X

s=0

»s

!
(2)

Along this path after time T player 2 can get at most zero against the normal or com-

mitment type, but may be able to get at most M against the other types. The above

assumes player 2 receives the upper bound on payo¤s when any other type is present

after time T .

Step 2: Simplifying (2); some algebra.
7We adopt the convention

Pt¡1
r=t ±r = 0.
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Now we will …nd a necessary condition for there to be a solution to the inequalities

(2). The sum of the coe¢cients of »T¡1 in (2) are all positive (i.e., the RHS increases in

»T¡1) and there is a constraint
PT¡1
s=0 »s · Á. Thus given any solution (¼s and »s) to (2)

there is another solution with
PT¡1
s=0 »s = Á and no fourth term. Moreover the third term

is not positive (ge2r · 0) and
PT¡1
t=0 (¼t + »t) · 1¡ ¹ so, after dividing by (1 ¡ ±) ±¡t, a

necessary condition for the existence of a solution to the above inequalities is for there

to exist a solution to

¡¹
T¡1X

r=t

±r(ge2r) ·
T¡1X

s=t

¼s

"
s¡1X

r=t

±r(ge2r) +
±scs
1¡ ±

#
+
T¡1X

s=t

»s

"
s¡1X

r=t

±r(ge2r) +
±sM
1¡ ±

#
; 8t < T:

(3)

The LHS of (3) decreases in ge2r and the RHS increases in ge2r. Thus replacing ge2r in (3)

with a larger number cannot violate the inequalities (3). Let ¶r be an indicator function,

such that ¶r = 1 i¤ a short-run best reply is not played (ge2r < 0) and ¶r = 0 i¤ a best

response is played (ge2r = 0). Let ¡l < 0 be the upper bound on the non-zero values of

ge2r (as discussed in the paragraph preceding (1) such a bound exists as the stage game

is …nite), so ge2s · ¡¶sl for all s. Finally let wt ´ PT¡1
r=t ±

r¶r so that ¡lwt ¸ PT¡1
r=t ±

rge2r
and ¡l(wt ¡ ws) ¸ Ps¡1

r=t ±
rge2r. Thus, if k ´ M=l, a necessary condition for (3) is

¹wt ·
T¡1X

s=t

¼s
·
ws¡ wt +

±scs
l(1¡ ±)

¸
+
T¡1X

s=t

»s

·
ws¡ wt +

±sk
1¡ ±

¸
; 8t < T: (4)

Step 3: Using (4) and (1) to obtain inequalities on player 1’s payo¤ by considering

paths with the maximal number of periods in which player 2 does not play a best reply to

a¤1.

The above applies to any pure strategy in the support of player 2’s equilibrium strat-

egy. Now we …nd a lower bound on player 1’s payo¤s in any period in which ¼s > 0. To

do this we choose a pure strategy ¾02 of player 2 in the support of 2’s equilibrium strategy

that has the most periods in which 2 does not play a best reply to 1’s commitment action.

Let n (t) denote the number of times player 2 does not play a best response to a¤1 until
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period t (when 2 plays ¾02 and 1 plays a¤1 in each period). If the history generated by

these two strategies occurred until period s, then player 1 expects there to be at most

n(T ) ¡ n(s) periods in the future in which player 2 does not play a best response to

a¤1. (If it were possible for player 2 to not play a best response more than n(T ) ¡ n(s)
periods, then there must exist a strategy ¾ 002 played in equilibrium that agrees with ¾ 02
until s and has more periods of not playing a best response to the commitment type,

contradicting the de…nition of ¾ 02.) By continuing to play a¤1 forever after player 1 can

expect to get a payo¤ of at least (1¡ ±n(T)¡n(s))(¡M ) + ±n(T)¡n(s)¹g1. (This assumes the

n(T )¡n(s) periods of not playing a best response occur immediately (the worst possible

case) and that the loss from this is maximized.) This lower bound is weakly greater than

¹g1 ¡ [1 ¡ ±n(T)¡n(s)]2M . When ¼s > 0, this is also a lower bound on what player 1 can

expect to get from her equilibrium action of not playing a¤1 after the s period history

generated by (¾02; ¾¤1).

The pro…le of normal-type and player 2 payo¤s when the normal type of player 1

does not play a¤1 must lie in the feasible set F . Equation (1) and the lower bound on

the normal type’s payo¤s from not playing a¤1 therefore imply an upper bound on player

2’s payo¤ cs whenever ¼s > 0: cs · 2M½
h
1¡ ±n(T)¡n(s)

i
. (Recall the normalization

ĝ2 = 0.) If these upper bounds are included in the inequalities (4), we get the following

necessary condition (2) for all t < T :

¹wt ·
T¡1X

s=t

¼s

"
ws ¡ wt + h±s

Ã
1¡ ±n(T)¡n(s)

1¡ ±

!#
+
T¡1X

s=t

»s

·
ws ¡wt +

k±s

1 ¡ ±

¸
; 8t < T:

(5)

Here h ´ 2M½=l and we can include the upper bound on cs even for periods when ¼s = 0

because (4) is independent of cs in such periods.

Step 4: In our …rst lemma we will show that for ¾ 02 and any given ± that T is …nite,8

8This says that eventually play will involve the commitment action forever; this feature is stronger
than, say, the Fudenberg and Levine (1989) reputation result because of the special structure of our
game.
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and that ¾ 02 does not play a best response to the commitment action in period T ¡ 1.

Lemma 1 For a given ± < 1 and ¾02, (i) T is …nite, and

(ii) ¶T¡1 = 1.

Proof of (i): Intuitively, if T = 1, then 1 is eventually mixing with such small

probability that along the path where a¤1 is played 2 becomes so convinced that 1 is the

commitment type rationality that 2 must play a best reply. More completely, suppose

not, and T is in…nite or (5) holds for all t ¸ 0. As t ! 1 the sums
PT¡1
s=t ¼s,

PT¡1
s=t »s

converge to zero, because
PT¡1
s=0 »s;

PT¡1
s=0 ¼s · 1. Further, the …rst term in braces on the

RHS of (5) is bounded above by ±th=(1¡ ±) and the second by ±tk=(1¡ ±), so as t! 1
the RHS of (5) is strictly less than ¹±t. The LHS bounded below by ¹¶t±t. If T is in…nite

there are in…nitely many t’s such that ¶t = 1, and there continue to be values t for which

the LHS of (4) is greater than ¹±t, which yields a contradiction.

Proof of (ii): Suppose that ¶T¡1 = 0. If ¾ 02 and the commitment action has been

played until T ¡ 1, then in period T ¡ 1 player 2’s equilibrium behavior strategy after

this partial history is a best reply. (If he didn’t best reply with probability one, there

would exist a pure strategy for player 2 that plays more non-best responses than ¾02 —

play ¾02 and do not play a best response in period T ¡1.) If player 2 plays a best response

with probability one, then the normal type’s continuation payo¤ at the start of period

T¡1 (after this partial history) is also ¹g1. (By playing a¤1 after the partial history player 1

gets ¹g1 in the stage game (because ¶T¡1 = 0 and all best replies give her the commitment

payo¤) and as a continuation payo¤ (by de…nition of T). Any equilibrium action, a01 6= a¤1,
played with positive probability after the partial history will also give her the payo¤ ¹g1
(by indi¤erence among actions played with positive probability in equilibrium). This

is a contradiction because T is de…ned as the …rst time when the normal type has the

continuation payo¤ ¹g1.
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Step 5: Using the …niteness of T we use Farkas Lemma to determine when the system

( 5) of linear inequalities in the variables ¼ ´ (¼0; :::; ¼T¡1)0 and » 0 ´ (»0; :::; »T¡1)0 has

no solution.9

Lemma 2 The inequalities (5) do not have a solution ¼ 2 <T+, » 2 <T+ satisfying
PT¡1
s=0 ¼s · 1 ¡ ¹¡ Á and

PT¡1
s=0 »s = Á, if there exists (x0; :::; xT¡1) 2 <T+ such that:

¹
2±t

£
A(n(T) ¡ n(t)) + Ák

1¡±
¤ >

tX

s=0

xs
ws
; t = 0; :::; T ¡ 1; (6)

where
PT1
t=0 xt = 1 and A = (1¡ ¹¡ Á)(1 + h) + Á.

Proof: See the appendix for the algebra.

Step 6: The …nal step is a technical argument which shows that (13) must have a

solution if n(T ) is su¢ciently large.

Lemma 3 The inequalities (6) have a non-negative solution satisfying
PT¡1
t=0 xt = 1 if

±n(T) · ±f(¹)e¡Á± b(¹): (7)

Proof: See appendix for the algebra.

Step 7: Combining the arguments.

To complete the proof of Proposition 1 notice that if (7) holds then by Lemmas 2

and 3 there can be no solution to (5). Thus there cannot exist an equilibrium where (7)

holds. This implies a lower bound on ±n(T) at every equilibrium. As the normal type can

ensure a payo¤ of at least (1¡±n(T))(¡M )+±n(T)¹g1 at every equilibrium this implies the

normal type’s payo¤ at every equilibrium is bounded below by

¹g1 ¡ 2M
³
1¡ ±f(¹)e¡Á± b(¹)

´
:

9We use primes to denote transposes.
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1 Appendix

Proof of Lemma 2: Equation (5) can be written as the matrix inequality b · X¼+Y »
where X is an upper-triangular matrix with h

1¡±±
s
³
1¡ ±n(T)¡n(s)

´
+ ws ¡ wt in the

(t+ 1; s+1)th entry, Y is an upper-triangular matrix with k
1¡±±

s + ws ¡ wt in the

(t+ 1; s+1)th entry, and b =
¡
¹wT¡1t=0

¢
. (Notice that the indices s and t run from

zero while as usual the rows and columns of matrices run from one.) If (5)has a non-

negative solution, then the equations b =X¼+ Y »¡! have a solution (¼0; »0;!0) 2 <3T
+ .

The constraints e0T¼ · 1 ¡ ¹ ¡ Á and e0T » = Á, where e0T = (1; 1; :::; 1) 2 <T , can be

written as e0T¼+z = 1¡¹¡Á and e0T » = Á for some z ¸ 0. Therefore, (5) has a solution

satisfying the conditions in Lemma 2 if and only if (8) below has a solution.

0
@

b
1 ¡ ¹¡ Á
Á

1
A =

2
4
X Y ¡IT 0
e0T 00 00 1
00 e0T 00 0

3
5

0
BB@

¼
»
w
z

1
CCA ;

0
BB@

¼
»
w
z

1
CCA 2 <3T+1

+ : (8)

(Here IT denotes the T dimensional identity matrix, and 0 a column vector of zeroes.)

T is …nite so, by Farkas’ Lemma, there is no solution to (8) if and only if there exists

y0 := (y0; y1; :::; yT+1) 2 <T+2 such that

y0

0
@

b
1¡ ¹¡ Á
Á

1
A > 0; y0

2
4
X Y ¡IT 0
e0T 00 00 1
00 e0T 00 0

3
5 · 0: (9)

The …rst inequality in (9) gives (10) below and the second decomposes into (11), (12)
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and (y0; :::; yT¡1) ¸ 0 and yT · 0.

¹
T¡1X

s=0

ysws > ¡(1¡ ¹¡ Á)yT ¡ ÁyT+1 (10)

¡yT ¸
tX

s=0

ys

"
h±t

Ã
1¡ ±n(T)¡n(t)

1¡ ±

!
+ wt ¡ ws

#
; t = 0; :::; T ¡ 1 (11)

¡yT+1 ¸
tX

s=0

ys
·
k±t

1 ¡ ± + wt ¡ ws
¸
; t = 0; :::; T ¡ 1 (12)

Let ŷ¤ ´ (y¤0; :::; y¤T¡1)0 2 <T+ denote a solution to (13) for t = 0; :::; T ¡ 1.

¹
2

T¡1X

s=0

ysws > (1¡¹¡Á)
tX

s=0

ys

"
h±t

Ã
1¡ ±n(T)¡n(t)

1 ¡ ±

!
+ wt

#
+Á

tX

s=0

ys
·
k±t

1 ¡ ± + wt
¸

(13)

We aim to show that y¤ =
¡
ŷ¤; y¤T; y¤T+1

¢
for suitably chosen y¤T , y¤T+1 is a solution to (9),

so that (8) or (5) have no solution. Choose ¡y¤T+1to equal the maximum (over t) of the

expressions on the RHS of (12) evaluated at y¤. As ŷ¤satis…es (13) the maximum (over

t) of the RHS of (13) (evaluated at ŷ¤) is less than 1
2¹

PT¡1
s=0 y¤sws. Hence, Á times the

maximum of the RHS of (12) is also less than 1
2¹

PT¡1
s=0 y¤sws, that is, 1

2¹
PT¡1
s=0 y¤sws >

Á(¡y¤T ). Similarly, choosing ¡y¤T to equal zero or the maximum (over t) of the expressions

on the RHS of (11) evaluated at ŷ¤implies that 1
2¹

PT¡1
s=0 y¤sws > (1 ¡ ¹ ¡ Á)(¡y¤T+1).

Combining these two gives ¹
PT¡1
s=0 y

¤
sws > ¡Áy¤T ¡ (1¡ ¹¡ Á)y¤T+1. Thus, if (13) has a

solution ŷ¤ ¸ 0there is also a solution to (9).

As (y¤0; :::; y¤T¡1) 6= 0 at any solution to (13) and wt > 0 (as ¶T¡1 = 1 from Lemma

1) we can de…ne xt ´ y¤twt=
³PT¡1

s=0 y
¤
sws

´
which has the property that

PT¡1
t=0 xt = 1.

Dividing (13) now gives

¹
2
> (1¡ ¹¡ Á)

tX

s=0

xs
ws

"
h±t

Ã
1¡ ±n(T)¡n(t)

1¡ ±

!
+wt

#
+ Á

tX

s=0

xs
ws

·
k±t

1 ¡ ± + wt
¸
; t < T:

(14)

As xs ¸ 0 and wt =
PT¡1
r=t ±

r¶r · ±t(1¡ ±n(T)¡n(t))=(1¡ ±) · ±t(n(T ) ¡ n(t)) (this puts

the n(T ) ¡ n(t)times when ¶r = 1 as early as possible), we can substitute these upper

bounds and derive a su¢cient condition for (14). This is (6).
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Proof of Lemma 3: De…ne (z0; z1; :::; zT¡1) ¸ 0 to be the solution to the equations

¹
4±t

£
A(n(T) ¡n(t)) + Ák

1¡±
¤ =

tX

s=0

zs; t = 0; :::; T ¡ 1: (15)

This solution is non-negative because the ratio on the LHS of (15) is increasing in t and

for t = 0 the LHS of (15) is positive. Notice that x¤s ´ zsws (for s = 0; :::; T ¡ 1) is a

solution to the inequalities (6). However,

T¡1X

t=0

x¤t =
T¡1X

t=0

zs
T¡1X

r=s

±r¶r =
T¡1X

t=0

±t¶t
tX

s=0

zs;

where the last equality holds by reversing the order of the summations. A substitution

from (15) into the above implies

T¡1X

t=0

x¤t =
T¡1X

t=0

¹¶t
4A[n(T) ¡n(t)] + 4Ák

1¡±
;

=
n(T)X

n=1

¹
4An+ 4Ák

1¡±
;

¸ ¹
4A

ln

Ã
1 +

An(T)
A + Ák

(1¡±)

!
:

The second line above follows from deleting elements when ¶t = 0. The third line uses

the fact that lnm =
Rm
1 dx=x · Pm¡1

x=1 1=x. A su¢cient condition for
PT¡1
t=0 x

¤
t ¸ 1

is, therefore, An(T) ¸ [A + Ák=(1 ¡ ±)] exp(4A=¹). However 1 ¡ ± ¸ ¡± ln ±, so it is

su¢cient for n(T ) ln ± · [ln ± ¡ (Ák= (A±))] exp(4A=¹). Notice that 1¡ ¹ · A · 1 + h,

this implies a su¢cient condition for (14) to have a solution that satis…es
PT¡1
t=0 xt ¸ 1

is (7). However, the existence of a solution to (14) with
PT¡1
t=0 xt ¸ 1 obviously implies

the existence of a solution with
PT¡1
t=0 xt = 1.
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