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Abstract

We consider large double auctions with private values. Values need
be neither symmetric nor independent. Multiple units may be owned or
desired. Participation may be stochastic. We introduce a very mild notion
of �a little independence.� We prove that all non-trivial equilibria which
satisfy this notion are asymptotically efficient. For any α > 0, inefficiency
disappears at rate 1/n2−α.

1 Introduction

Many market settings are approximated by a double auction. Standard exam-
ples are the London gold market, and the order books maintained by NYSE
specialists. These auctions typically have many traders on each side of the
market.
More importantly, large double auctions are in some sense the �right� model

for micro-foundations of price formation in competitive markets. Like a com-
petitive market, a large double auction has many traders. However, unlike the
standard competitive model, traders are strategic. Hence, if traders asymptoti-
cally ignore their effect on price this is a result, not an assumption. And, there
is an explicit mechanism translating individual behaviors into prices. So, one of
the thorniest problems of the standard Walrasian model − how does the market
get to equilibrium if everyone is a price taker − is explicitly addressed. Finally,
double auctions are a better setting for thinking about price formation than
one-sided auctions, both because they are often a better match to reality, and
especially because they capture the essential problems of trade better than a
one-sided auction. A large one-sided auction allows one to ask if traded units
end up in the right hands. But, it does not address whether the correct number
of units trade in the Þrst place.

∗We thank, without implicating, George Mailath, Andy McLennan, Rich McLean, John
Nachbar, Phil Reny, and Mark Satterthwaite. We also thank the Boeing Center for Technology,
Information, and Manufacturing for Þnancial support.
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In a seminal paper, Rustichini, Satterthwaite andWilliams (1994, henceforth
RSW) consider a double auction in which n buyers and sellers draw private
values iid. They show that symmetric, increasing, differentiable equilibria in
this setting are in the limit efficient and that convergence is fast, of order 1/n2.
This is especially attractive in light of experimental evidence on efficiency in
double auctions with only a moderate number of players.1

In independent work, Fudenberg, Mobius and Seidel (2003) extend RSW to
a setting in which a one dimensional state is sampled and values are then drawn
iid from a density that depends on the state, but has non-shifting support
and uniform lower bound across states.2 They also show existence of a pure
increasing symmetric equilibrium when the number of players is large.3

These results are useful in thinking about how auctions approximate compet-
itive equilibria. However, there are several dimensions along which they could
be strengthened.

1. The proof technique depends heavily on symmetric distributions of values.

2. Even in the symmetric setting, there is no guarantee of uniqueness. So,
while well behaved symmetric equilibria are asymptotically efficient, there
may be other (possibly asymmetric) equilibria as well. In particular, there
is always the no-trade equilibrium in which all buyers make an offer of zero,
and all sellers make an offer higher than any possible valuation. Results
before this paper do not rule out other intermediate trade equilibria.

3. While one may be willing to rule out the asymmetric equilibria on a priori
grounds in the symmetric case, selecting the �good� equilibria is much
harder if the initial setting is itself asymmetric.

4. Imposing symmetry on values and bids assumes away half the problem.
Objects that trade automatically move from and to the right people, and
so the only question is whether the volume of trade is right. Without
symmetry, it may also occur that, for example, a low valued buyer wins
an object when a higher valued buyer does not.

5. Finally, these papers consider only single unit demands and supplies.

We present a model and results addressing all these points. We consider a
generalized private value double auction setting.4 Players can be highly asym-
metric, and demand or supply multiple units. Beyond the assumption of private

1Satterthwaite and Williams (2002) establish that in the iid setting, this rate is fastest
among all mechanisms. Important precursors to RSW include Chatterjee and Samuelson
(1983), Wilson (1985), Gresik and Satterthwaite (1989), and Satterthwaite and Williams,
(1989).

2Our model will encompass this case. See Example 4 below.
3 Jackson and Swinkels (2001) shows existence of non-trivial equilibria in double auctions.

FMS shows that in the setting they consider, one of these equilibria is pure and increasing.
4A beautiful paper by Perry and Reny (2003) extends the previous work on information ag-

gregation in large one sided common value auctions (Wilson 1977, Milgrom 1979, Pesendorfer
and Swinkels 1997, etc.) to the double auction setting. A symmetric single unit demand and
supply setting is maintained. Using a discrete bid space to get existence, they show that in a
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values, there are only three assumptions with any bite. First, while individual
values need be neither full support or even non-degenerate, we require that
any given interval in the support of values is eventually hit in expectation by
many players. We term this condition no asymptotic gaps (NAG). Analogously,
we will require there to be no asymptotic atoms (NAA): it cannot be the case
that a positive limiting fraction of players are expected to pile up in the same
arbitrarily small interval.
Most critically, we drastically relax independence. We require only that a

�little� independence across players persists as the number of players grows. A
sequence of distributions over player values satisÞes z-independence, z ∈ (0, 1]
if the probability of any given event on player i�s values changes by factor
bounded between z and 1/z when one conditions on the values of the remaining
players, where z holds uniformly in the number of players. 1−independence
is the standard notion of independence, while two perfectly correlated random
variables do not satisfy z-independence for any z > 0.
An interpretation of z-independence is that each player has at least a small

idiosyncratic component to his valuation, one that cannot be precisely predicted
no matter how much one knows about the values of other players. As such, this
is a fairly weak condition, admitting very broad classes of distributions.
Because values can be highly correlated (positively, negatively or otherwise)

under z-independence, even in the limit the allocation and price setting problem
will generally be non-trivial.
There is always a no-trade equilibrium in a double auction setting. Jackson

and Swinkels (2001, henceforth JS) show that there is at least one non-trivial
equilibrium as well. Our major result is simply stated:

As the number of players grows, every non-trivial equilibrium of the
double auction setting converges to the Walrasian outcome. Ineffi-
ciency disappears at rate 1/n2−α for any α > 0.

Asymptotic efficiency implies asymptotic uniqueness and pureness: over rel-
evant ranges, bids must be arbitrarily close to value. Thus, as n grows large,
there are precisely two types of equilibria of private value double auctions:

1. equilibria involving no trade

2. equilibria in which a near efficient level of trade occurs, at a price near the
competitive one.

With single unit demands and supplies, our proof works because in each
outcome of a double auction, there is at most one buyer who is both currently
winning an object and who would have raised the price had he bid more (the
lowest winning buyer). So, while many buyers might have raised price by bid-
ding more, only one would care that he did so. This is symmetric for sellers

one dimensional affiliated setting, the equilibrium price converges to the rational expectations
equilibrium value. So, Perry and Reny generalizes RSW in the direction of non-private values
while retaining most of other restrictions, while we generalize RSW in most other directions,
while, critically, retaining private values.
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considering lowering their bids. So, the expected relevant impact on price from
increased bids by buyers is already order 1/n. And, with lots of bidders, even
if an increase in bid increases price, it should do so by an amount related to
1/n, since this should be the expected distance to the next bid. But then, since
the expected impact on price is order 1/n2, it must be that bidding honestly
almost never wins an extra object, and so those objects that are traded must
be allocated very efficiently.
The focus then turns to showing that the right number of objects trade,

or, equivalently, that the competitive gap deÞning the range of market clearing
prices grows small. This turns out to be much the hardest part of the paper
(especially with a rate). In the symmetric case, one can appeal to the Þrst
order conditions of players near a discontinuity in bids. Here, things are much
more difficult, as without symmetric increasing strategies, (a) the very concept
of a �gap� becomes more complicated (b) it is hard to identify which player
types might bid near a gap, and (c) players can have very different beliefs about
the likelihoods of the events involved. We show that the only way to have a
signiÞcant competitive gap without violating the efficiency already shown for
those objects traded is for the market to essentially become deterministic, with
a given set of buyers and sellers always trading. But then, any member of either
of these groups can favorably inßuence the price without losing the chance to
trade.
The efficiency result generalizes to multiple unit demands as long as NAG

continues to hold for the Þrst unit of demand and supply for each player. If
this holds, we can reformulate the arguments just outlined applied only to the
highest bid by each buyer and lowest bid by each seller to show small price
impacts of honest bidding. From there to (fast) efficiency for all units involves
a careful tracking of incentives, but is otherwise straightforward.
We begin by setting up the basic single unit demand and supply model.

We then introduce z-independence. Analysis of efficiency for the large double
auction with single unit demands and supplies follows. Then, we generalize
to auctions with multiple unit demands and supplies. We conclude with some
thoughts on extensions. All proofs are relegated to an appendix.

2 The Model

We begin with the structure of a given double auction A. A Þnite set N of
players is divided into subsets NS and NB. Players in NS are potential sellers,
each with one unit to sell. Players in NB are potential buyers, each desiring a
single unit.
Each i ∈ N has valuation vi. For sellers, this might be either a production

cost or a value in use. For i ∈ NB, we assume vi ∈ [0, 1). For i ∈ NS, we assume
vi ∈ (0, 1]. A buyer with value 0 or a seller with value of 1 will never trade.
Because of this, there is no loss of generality in assuming an equal number of
buyers and sellers. Let n ≡ |Ns| = |NB| . Because one can �park� extra buyers
at 0 and extra sellers at 1, the model also allows a stochastic number of buyers
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and sellers. The vector v ≡ {vi}i∈N is drawn according to a probability measure
P on [0, 1)n × (0, 1]n. The marginal of P onto vi is Pi.
Each player i observes his value and then submits a bid bi ∈ [0, 1]. Trade

is determined by crossing the demand and supply curves constructed from the
submitted buy and sell bids.5 Call the (random) range of possible market clear-
ing prices the competitive gap, cg ≡ [cg, cg]. If we let b(i) denote the ith highest
bid, then a little time with the appropriate Þgure shows that cg = [bn+1, bn].

Assumption 1 Trade takes place at price

p = �p(cg, cg)

where �p is differentiable, takes values in [cg, cg], and has derivatives bounded by
0 and 1.6

Imagine that the bidder who submitted cg raises his bid substantially. As
long as his bid continues to deÞne cg, he raises the price at rate at most 1. As
soon as he passes the next bid up, he ceases to affect price. Let ug = bn−1

be this next bid, and deÞne the upper supporting gap as ug ≡ [cg, sg]. Then,
the maximum effect on the price is |ug| . Similarly, let lg ≡ bn+1, and deÞne
the lower supporting gap as lg ≡ [lg, cg]. So, cg determines the amount of
choice there is in setting a market price, while lg and ug determine how closely
�supported� this range is.
Each player i has a vNM utility function ui. No particular structure on risk

preferences is required, but we do require each ui to be increasing and have
slope bounded from 0 and ∞.7

2.1 Equilibrium

A set of distributional strategies {µi}i∈N (Milgrom and Weber, 1982) is an
equilibrium if it is a Bayesian Nash equilibrium in which buyers never bid above
vi, and sellers never bid below vi. The equilibrium is non-trivial if there is a
positive probability of trade.
We show that non-trivial equilibria are asymptotically efficient. This, of

course, is a better result if such equilibria exist! Under slightly stronger condi-
tions than we use here, JS show that this is indeed the case.8

2.2 Sequences of Auctions

Consider a sequence of such auctions {An} , where n tends to inÞnity. We need
three conditions that apply across n. First, while individual values need not

5 If tied buy and sell bids allow more than one level of trade, the largest is chosen.
6This of course includes the standard k double auction.
7 In the proofs, we assume risk neutrality. Dealing with vNM utility functions with slope

bounded from 0 and ∞ involves scaling potential gains down by some factor from the risk
neutral case, and potential loses up. This merely introduces notation.

8The two key assumptions are mutual absolute continuity of P with respect to ΠiPi, and
atomless Pi. Neither assumption plays any further role in the development here.
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have full support (and may, in fact, be atomic), we require that as n grows
large, each subinterval is hit with non-vanishing probability.

Assumption 2 (No Asymptotic Gaps) There is w > 0 such that for all n, and
for all intervals I ⊆ (0, 1) of length 1/n or greater,X

i∈NB

Pi[I] ≥ wn |I|

and X
i∈NS

Pi[I] ≥ wn |I| .

Note that P,NB, NS etc. all vary from one An to another. We suppress this
in our notation as convenient.
Our second assumption is similar:

Assumption 3 (No Asymptotic Atoms) There is W <∞ such that for all n,
and for all intervals I ⊆ (0, 1) of length 1/n or greater,X

i∈NB

Pi[I] ≤Wn |I|

and X
i∈NS

Pi[I] ≤Wn |I| .

That is, not too many values fall in any given interval. These conditions
hold only on (0, 1), allowing a positive mass of buyers with value 0 or sellers
with value 1, consistent with our earlier discussion of �parking� extra players.

Example 1 Let sellers i ∈ {1, . . . , n} have vi ≡ i/n and similarly for buyers.
NAG and NAA are satisÞed for w =W = 1. So, individual values need neither
have full support nor be non-atomic.

Example 2 Each Pi is continuous with density bounded by w and W.

Each of these two assumption has an analog in RSW. NAA is needed for a
rate of convergence result, but not for convergence itself.

3 z-Independence

Our Þnal condition is the most important. We wish to relax independence con-
siderably while still requiring �some persistent independence� as the population
grows.
We require that knowledge about the values of players other than i provides

at most a Þnite likelihood ratio on the values of player i, independent of how
many other players there are.
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DeÞnition 1 The sequence of probability measures {Pn} satisÞes z-independence,
z ∈ (0, 1], if for all n, for all i ∈ N, for any positive probability event F−i in-
volving only v−i and any positive probability event Fi involving only vi,

zPr(Fi) ≤ Pr(Fi|F−i) ≤ 1

z
Pr(Fi). (1)

That is, there is still some idiosyncrasy in each vi even as the market becomes
large.9

For Þxed n, z−independence is slightly stronger than mutual absolute con-
tinuity (consider a uniform and a triangular distribution on [0, 1]) but weaker
than having a continuous Radon-Nikodym derivative bounded from 0 and ∞.
The real content of z-independence is in the uniformity of z across n.

Assumption 4 (z-independence) There exists z > 0 such that {Pn} is z-
independent.

3.1 Examples

Example 3 With probability 1/2, values are drawn iid uniform [0, 1], and with
probability 1/2, x is drawn uniformly from [1/n, 1− 1/n], and values are drawn
iid uniform [x− 1/n, x+ 1/n] . For each n, Pn is absolutely continuous with
respect to

Q
Pi (and, the example is easily modiÞed such that the Radon-Nikodym

derivative is continuous as well). But, as n → ∞, seeing the values of two
randomly selected players within 2/n of each other makes it arbitrarily likely
that all remaining players will also have such a value.

We would like this example to be ruled out by our notion of �some persistent
independence.� A Þrst thought might be to require that no matter what we know
about one subset of the players� values, beliefs about the rest of the players�
values are updated by at most a Þnite ratio. This turns out to be much too
strong.

Example 4 Nature chooses x ∈ {L,H} equiprobably. If L is drawn, values are
drawn iid according to density f(v) = 1/2+ v. If H is drawn, values are drawn
iid according to density f(v) = 3/2− v.
A Þnite likelihood ratio condition fails if both events involve large numbers of

players. For example, let FO be the event that less than 50% of the odd numbered
buyers have value below 1/2, and let FE be the event that less than 50% of the
even numbered buyers have value below 1/2. Then, as n→∞, Pr(FO|FE)→ 1,
while Pr(FO|FCE ) → 0. Since for each n, FE and FCE have the same size, this
also means that the Radon-Nikodym derivative satisÞes no uniform bound across
n.

9A contemporaneous paper by Peters and Severinov (2002) uses a similar condition (in a
different model) in a Þnite type setting.
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This example exhibits a great deal of independence despite the fact that
likelihood ratios and Radon-Nikodym derivatives diverge. We would like to
admit it.
Note that Example 3 fails z-independence for any z > 0, as vi is, 1/2 of

the time, arbitrarily closely predicted by v−i. However Example 4 satisÞes
.5−independence; all one can extract from v−i is information about whether x
is L or H, which changes the density on vi from 1 to something between 1/2
and 3/2.
Example 4 generalizes to any process in which a state is sampled and then,

conditional on the state, values vi are drawn independently from measures with
non-moving support Vi according to densities uniformly bounded (across states
and n) away from zero and inÞnity. So our setting encompasses Fudenberg
et al. (2003) (and more importantly, non-symmetric analogues to their model).
However, even with symmetry, z-independence admits many distributions which
cannot be generated in this way.

Example 5 There are 2 players. The density on values is 2 on
£
0, 12

¤× £0, 12¤ ,
and 2/3 elsewhere. This satisÞes 2

3 -independence. One can generate this using
states and conditionally-independent values. In state θ1 (which occurs 1 time in
3) values are uniform on

£
0, 12

¤× £0, 12¤ , while in state θ2 they are uniform on
[0, 1]× [0, 1] . But, one cannot do so without shifting supports.

Postlewaite and Schmeidler (1986) deÞne non-exclusivity as a situation where
the information of n − 1 players is enough to predict the relevant state of the
economy. A variety of follow-on papers relax this to hold only asymptotically.10

On Þrst view, z-independence is antithetical to non-exclusivity, since no matter
how much is known about the rest of the players, the value of player i remains
uncertain. However, note that non-exclusivity refers to information about the
underlying state, not to the signals players realize conditional on those states.
In Example 4, v−i is asymptotically fully informative about L vs. H, while of
bounded informativeness about vi. Hence Example 4 can satisfy both condi-
tions.

Example 6 Nature draws v1 uniformly from [0, 1] (this person is a �fashion
leader�), and then draws subsequent players iid according to a density with sup-
port [0, 1] but concentrated around v1.

Since the impact of an early draw on later draws does not vanish, z-independence
does not imply weak mixing. It is also easy to construct sequences satisfying
weak mixing under which successive draws are arbitrarily correlated, violating
z-independence.

Example 7 A parameter x is chosen from [0, 1]. Values are drawn condi-
tionally independently according to f(.|x), where f(.|x) satisÞes MLRP in x.
As long as f(.|0)/f(.|1) is uniformly bounded, z-independence is satisÞed for
10A good entry point is McLean and Postlewaite (2002).
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z = minx f(x|0)/f(x|1). Choose a subset of the players, and replace vi by 1−vi.
This measure continues to satisfy z-independence, but is obviously not affiliated.
So, affiliation has essentially nothing to do with the issues at hand.

We close this subsection with an example illustrating the surprising degree
of correlation z-independence can imply. DeÞne [x] as the largest integer smaller
than x.

Example 8 For m ≤ n, let ζB(m) =
¡
n
m

¢
(.5)n be the probability of m heads

from n ßips of a fair coin.11

Now, for some 0 < a < 1/2, generate ζC from ζB by Þrst deÞning ζ
0
C(m) =

ζB(m)a
|m−[n/2]|, and then deÞning ζC from ζ 0C by normalizing. Informally one

makes each outcome successively further away from [n/2] more unlikely by a
factor of a. Choose m according to ζC , choose each subset of coins of size m
with equal probability, and make the coins in the subset heads, and the remainder
tails. When a is small, drawing exactly [n/2] heads by this process becomes very
probable.12 For a = .1, e.g., there is an 80% chance or exactly [n/2] heads
regardless of n.13

This process satisÞes z-independence! If there are m0 heads among all but
coin i, the probability that i is heads is Pr(m = m0 + 1)/Pr(m = m0 + 1). By
construction, this is either a or 1/a.

Thus, z-independence does not imply limit �noise.� So the techniques in
Mailath and Postlewaite (1990), Al-Najjar and Smorodinsky (1997), and Swinkels
(2001) do not apply.

3.2 A Preliminary Lemma

Our Þrst lemma shows that if values are z-independent then so too are bids. The
intuition for this is that bi is a garbling of vi.14 It also describes the implications
of z-independence for groups of players.
11The example can easily be extended from coins to values in the standard domain.
12Note that

rX
m=0

ζ0C =
rX

m=0

ζB(m)a
|m−r/2| ≤ ζB(r/2)

rX
m=0

a|m−r/2|

≤ ζB(r/2)

Ã
1 + 2

∞X
i=1

ai

!
= ζB(r/2)

µ
1 +

2a

1− a
¶

Thus,

ζC(n/2) ≥
ζB(n/2)

ζB(n/2)
³
1 + 2a

1−a
´ = 1³

1 + 2a
1−a

´ .
As a→ 0, this tends to 1.
13For a = .1, the previous expression is equal to 1³

1+
2(.1)
1−.1

´ = .81.
14A related lemma appears in JS.
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Throughout the paper, for any non-empty K ⊂ N, when we write FK (re-
spectively Fi, F−i, FN\K), we mean an arbitrary positive probability event in-
volving only the values or bids of the players in K ({i},N\i,N\K).
Lemma 1 Fix a non-empty K ⊂ N. Let a = min {|K| , |N\K|} . Then for all
FK, and FN\K ,

z−a Pr(FK) ≥ Pr(FK |FN\K) ≥ za Pr(FK). (2)

Let XK be a random variable that depends only on the values/bids of the
players in K. Then:

z−aE(XK) ≥ E(XK |FN\K) ≥ zaE(XK). (3)

When a is large, these bounds are weak; for arbitrary events involving many
players, likelihood ratios can explode.

3.3 Large Deviations

Given K ⊂ N and events {Fi}i∈K let QK be the number of Fi that are true.
Notice that E(QK) =

P
i∈K Pr(Fi). Let us stochastically bound QK . Note Þrst

that for each i,
Pr(Fi|F−i) ≥ zPr(Fi).

Note also that
Pr(F ci |F−i) ≤

1

z
Pr(F ci ) =

1

z
(1− Pr(Fi))

and so
Pr(Fi|F−i) ≥ 1− 1

z
(1− Pr(Fi)).

Thus,

Pr(Fi|F−i) ≥ pi ≡ max
½
zPr(Fi), 1− 1

z
(1− Pr(Fi))

¾
.

Since this is true for all F−i we show thatQK Þrst order stochastically dominates
|K| independent coins with parameters p

i
.

Similarly, |K| independent coins with parameters

pi ≡ min
½
1

z
Pr(Fi), 1− z(1− Pr(Fi))

¾
stochastically dominate QK .
Sets of independent coins are well understood. We can apply the theory of

large deviations to obtain:

Lemma 2 For all K ⊂ N and FN\K ,

Pr
³
QK <

z

3
E(QK)

¯̄̄
FN\K

´
≤ e−.3zE(QK) (4)

Pr

µ
QK >

3

z
E(QK)

¯̄̄̄
FN\K

¶
≤ e−E(QK) (5)
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This casts light on Example 8. Under z-independence, probabilities that
start in the interior of (0, 1) cannot be moved too far toward or away from
the boundaries. But, probabilities can be moved around essentially arbitrarily
within

³
p
i
, pi

´
.

A useful implication of Lemma 2 is that the probability of at least one success
is not drastically affected by FN\K.

Corollary 1

Pr(QK ≥ 1 | FN\K) ≥
¡
1− e−z¢Pr(QK ≥ 1). (6)

3.4 Normal Realizations

We prove convergence at rate 1/n2−α for any given α > 0. It is convenient to Þx
α now. We will need various fudge factors along the way. Choose α1,α2,α3,α4
so that

α > α1 > α2 > α3 > α4 > 2α/3

Let w0 ≡ z
6w and W

0 ≡ 6
zW.

DeÞnition 2 A realization is normal if every interval I ⊆ (0, 1) of length
1/n1−α/3 or greater has between w0n |I| and W 0n |I| buyers (respectively sell-
ers) with value in that interval.

Let N be the event that the realization is normal.
Say that a statement is true for n sufficiently large (n SL) to mean that there

exists an n∗ depending only on the parameters such that the statement is true
for all n > n∗. Then, a key implication of Lemma 2 is

Lemma 3 For all n SL, Pr(N ) ≥ 1− 1/n4.
Together with NAG and NAA, Lemma 3 implies that the limiting realized

true demand and supply curves are unlikely to have either vertical or ßat sections
(except at 0 for buyers and 1 for sellers).15

4 Analysis of the Double Auction

4.1 Summing Deviations

Fix an equilibrium µ of An. Consider buyer i�s distributional strategy µi. A
deviation for i is a measurable mapping di from [0, 1]2 to [0, 1]. First i draws
15We show that percentage efficiency losses are asymptotically less than 1/n2−α. As for

all rate of convergence results, this does not say anything about small n. The construction
underlying normality in particular only holds for n pretty large. We use normality to sidestep
a set of statistical issues related to the generality of our set-up, especially non-symmetry.
There seems to be nothing in the underlying incentives being exploited that precludes much
faster convergence, and our expectation would be that actual convergence is indeed very fast.
RSW supplement their rate result (where the constant is again large) with numerically solved
examples. Such solutions are beyond our ability in this setting.

11



vi and bi according to µi, but then she modiÞes her chosen bid according to di.
Consider di for which bi ≤ di(bi, vi) ≤ vi ∀bi, vi. That is, i sometimes raises her
bid, but not beyond her true value (since µi did not involve i bidding more than
her true value, this is coherent).
In any given realization, di may have beneÞt �Bi in that i wins when he

otherwise would not have, or may have cost �Ci that i pays more when he would
have already won. To formalize this, let p be price under µ, and pd the price
when i uses di. Let Wi be the event that i wins with di, but not without. Then

Bi ≡ E( �Bi) = Pr(Wi)E (vi − pd|Wi) .

Let Oi ⊂W c
i be the event that i wins without di. Then

Ci ≡ E( �Ci) = Pr(Oi)E(pd − p|Oi).
Since µi is a best response, Bi ≤ Ci. So, given such a di for each buyer,X

NB

Bi ≤
X
NB

Ci.

Each di is unilateral. But, there is nothing wrong with summing the incentive
constraints implied.
Consider

P
NB
Ci. Ex-post, �Ci > 0 only if (a) trade was occurring and (b)

the original bi was equal to cg, and uniquely so. When bi > cg (or is tied at
cg), increasing bi does not affect p. If bi < cg, increasing bi may increase p, but
as i was not originally winning, she is unhurt. So, there is at most one i with
�Ci > 0.16 And, as discussed above, for this i, �Ci ≤ |ug| . Thus,X

NB

Ci ≤ Pr(T )E ( |ug||T ) .

For sellers, the same analysis applies if bids are lowered, but not below value.
We have thus established:

Lemma 4 For any set {di}i∈NB , for which di(bi, vi) ∈ [bi, vi] for all (bi, vi)X
NB

Bi ≤ Pr(T )E ( |ug||T ) . (7)

For any set {di}i∈NS , for which di(bi, vi) ∈ [vi, bi] for all (bi, vi)X
NS

Bi ≤ Pr(T )E ( |lg||T ) . (8)

While easy to prove, this bound is powerful. Independent of the number
of bidders, the total beneÞt to players of bidding more aggressively in terms of
making new trades must be small in equilibrium.
16 If cg is a seller�s bid, no buyer is hurt by di.

12



4.2 The Probability of Trade is Bounded from Zero

An important Þrst step is to show that non-trivial equilibria are not �almost
trivial� in the sense that trade becomes increasingly rare as n grows. For each n,
choose a non-trivial equilibrium of An. Let V be the number of objects traded
and T be the event that V 6= 0.
Our Þrst lemma is technical.

Lemma 5 Along any subsequence, if E(V |T )n 6→ 0, then Pr(T )→ 1.

Intuitively, if many players trade given T , then many players must occa-
sionally be bidding in a fairly aggressive way. But then, by z -independence, at
least a fraction of them will be doing so almost all the time. The proof is more
complicated because T is linked to all player�s actions, and so z-independence
does not immediately apply.
Using Lemma 5, we can show:

Proposition 1 There is γ > 0 such that for all n SL, and all non-trivial equi-
libria,

Pr(T ) ≥ γ.

For intuition, think about a situation where in aggregate buyers only make a
�serious� offer with some probability δ close to 0, and symmetrically for sellers
(clearly, if there is a non-vanishing probability of a serious offer on either side,
trade will not disappear). Trade occurs at most 2δ of the time, since trade
requires a serious offer from at least one side. Hence, by Lemma 4, the total
costs to buyers (or sellers) of making more generous offers is like (has the same
order as) δ. But, from z-independence, the probability of a serious offer from
one side but not the other is like (1− δ) δ ∼= δ. When there is a serious offer on
one side but not the other, a number of bidders on the other side that grows
like n would have beneÞted by deviating to trade at the serious offer. The gains
are thus like nδ, while costs are like δ. This is a contradiction.

4.3 Small Supporting Gaps

We show next that the upper and lower supporting gaps shrink quickly. This
proceeds in two steps. First, we show that E(|ug|) (respectively E(|lg|)) is like
1/n. The idea is most easily seen if for each n, ug has constant length υ. By
Lemma 3, a number of buyers proportional to nυ will have vi in the top half
of ug. At most one of these buyers is winning an object (they are not bidding
above ug, as bids are below value, and only one bid below ug is Þlled). By
raising bi to v− υ/4 all but this player (acting unilaterally) would win an extra
object and earn at least υ/4. So,

P
Bi ≥ nυ2 (up to some constants). But by

Lemma 4,
P
Ci ≤ υ, since the one person who is hurt raises the price by at

most υ. Thus,
nυ2 ≤

X
NB

Bi ≤
X
NB

Ci ≤ υ,
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from which υ ≤ 1
n . The actual proof has to count for the fact that |ug| is

stochastic, as are the number of bidders in any given interval. Formally:

Lemma 6 For n SL and all x,

E(|ug|) ≤ 1

n1−α4
, E(|lg|) ≤ 1

n1−α4

Fix x, and consider Pr(|ug| ≥ x). Consider again buyers raising bi to v−x/4.
When |ug| ≥ x, then as above, a number of buyers like nx makes gains x/4, and
so
P
Bi = nx

2 (again ignoring constants). And,
P
Ci ≤ E (|ug|) ≤ 1/n from

the Þrst step. So

Pr(|ug| ≥ x)nx2 ≤ 1

n
,

from which Pr(|ug| ≥ x) ≤ 1
n2x2 . Formally

Lemma 7 For n SL and all x,

Pr(|ug| ≥ x) ≤ 1

n2−α3x2
, Pr(|lg| ≥ x) ≤ 1

n2−α3x2
.

For x ≥ 0, let LB(x) be those buyers with values above cg + x that do not
receive an object, and let lB(x) ≡ #LB(x). Similarly let LS(x) be those sellers
with values below cg − x who do not sell, and let lS(x) ≡ #LS(x). Let

SLB(x) ≡
X

i∈LB(x)
vi − cg, SLS(x) ≡

X
i∈LS(x)

cg − vi.

For buyers, this is the loss in consumer surplus compared with being able to
price take at cg, and analogously for sellers. Lemma 6 implies that both the
number of such players and the associated loss is small. The intuition again
comes from considering players bidding closer to their values.

Lemma 8 For n SL and for all x,

E(lB(x)) ≤ 1

xn1−α4
, E(lS(x)) ≤ 1

xn1−α4
.

Further
E(SLB(1/n)) ≤ 1

n1−α3
, E(SLB(1/n)) ≤ 1

n1−α3
.

4.4 Small Competitive Gaps

Let us now turn to the competitive gap. Our key lemma:

Lemma 9 For n SL and for all x,

Pr(|cg| ≥ x) ≤ 1

n2−α2x2
.
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To see the intuition for Lemma 9, consider Þrst a Þxed interval I =
¡
I, Ī
¢
such

that n prespeciÞed bidders always bid above Ī (up) and the rest always bid
below I (down). Then, the competitive gap will always include I. And, since
the probability of trade is bounded away from 0, the set of up bidders must
contain a buyer, and the set of down bidders a seller. But then, by bidding
I + ε, any up buyer can still trade and force the price near the bottom of I,
while by bidding Ī − ε, any down seller can still trade and force the price near
Ī, contradicting equilibrium.
If this situation arises only in the limit then the buyer or seller occasionally

loses a trade by bidding more aggressively, but this becomes unlikely. Finally
(because this is what we will really need), imagine that I shrinks as n grows.
Then, as the gain from affecting the market price shrinks, we must be careful
that the loss from lost trades shrinks as well. To do this, pick a buyer whose
value is not too much above Ī , so that his value of trade was quite small, and
a seller whose value was not too much below I. The efficiency of the allocation
among buyers and sellers (Lemma 8) lets us do this.
We show that if Lemma 9 fails, then the limit is as described. For intuition,

assume there is some interval I of length x such that nobody ever bids in I, and
such that Pr(I ⊆ cg) does not fall quickly. Let pi be the probability that i bids
up, and qi the probability of down. Order the players so that pi is increasing.
Run along them stopping at the player i where one counts n−1 ups. For I ⊆ cg,
we need to hit exactly one more up in the rest of the sequence. If one hits no
more ups, I ⊆ ug, while if one hits 2 more ups, I ⊆ lg, either of which is rare by
Lemma 7. But, we argue, the only way to make 1 more up likely, but neither
0 nor 2 more ups likely is for the next player to have pi+1 nearly 1, and for
the remaining players to in aggregate have almost no chance of even one up.
Essentially, if pi+1 is not near one, then, since pi is decreasing, the probability
on who is the nth up is �spread out�. But then, z-independence makes it likely
that one also over or undershoots by 1. And, given that the next player is
likely to hit, there must rarely be any more hits in the remaining population.
Running through the players in reverse order and counting downs, when one
hits n−1 downs, the next one must almost certainly play down, and then there
must almost never be any more downs. Since both of these are true at once,
in aggregate, the Þrst n bidders almost always bid up and the remaining down.
Hence, Pr(I ⊆ cg)→ 1.
The proof is long: cg can move around, sometimes including one interval

and sometimes another, players might bid not only above or below any given I,
but sometimes within it, and one must be careful not to double count the ways
in which a population �one player away� from creating a long cg might end up
creating a long supporting gap.

4.5 Efficiency

We are now ready for our main theorem:
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Theorem 1 All non-trivial equilibria of the single unit demand/supply double
auction are asymptotically efficient. Uniformly across non-trivial equilibria, ef-
Þciency losses go to zero faster than 1/n1−α for any given α > 0. The fraction
of expected surplus lost compared to a Walrasian market thus shrinks as 1/n2−α.

For intuition, note that in Section 4.3 we showed that the efficiency loss
from failing to trade objects between sellers with value below cg and buyers
with values above cg is small (of order 1/n). So, the only efficiency losses to
worry about are from pairs of buyers and sellers both having value in cg. The
loss from missing such a trade is at most |cg| . And, using NAA, the number
of such buyers and sellers is like |cg|n. So, the deadweight loss triangle from
too little trade has area |cg|2 n. But, from Lemma 9, Pr(|cg| ≥ x) ≤ 1

n2−αx2 ,
and so the expected loss here is like 1/n as well. Finally, from NAG, expected
feasible surplus grows like n, and so proportional losses are like 1/n2. A formal
accounting of efficiency losses is subsumed by the proof of the multiple unit case,
and so omitted in the appendix.

4.6 Asymptotic Uniqueness of Equilibrium

In the space of allocations, all non-trivial equilibria converge to the Walrasian
outcome. Over �relevant� ranges bids must thus converge to true values. So,
if in the limit, the Walrasian price is either p1 or p2 > p1, then, players with
value near p1 or p2 must bid close to value. But it is difficult to show that,
for example, a player with value well above p2 must bid near value. A rate of
convergence result for bids is thus cumbersome. Intuitively, over relevant ranges
convergence should be order 1/n.

5 Multiple-Unit Demands and Supplies

Assume now that each player has demand or supply for at most m units, for
some Þxed m. For buyers, let vih, h ∈ {1, . . . ,m}, be i�s incremental value for
unit h.17 For sellers, let vih be the incremental cost of unit h. We assume
vih is non-increasing in h for buyers and non-decreasing for sellers. Bids are
(non-increasing for buyers, non-decreasing for sellers) m−vectors. JS applies to
show existence of equilibria in this setting, subject to the same strengthenings
as before.
We assume the following version of NAG.

Assumption 5 (No Asymptotic Gaps∗) There is w > 0 such that for all n,
and for all intervals I ⊆ (0, 1) of length 1/n or greater,X

i∈NB

Pi[vi1 ∈ I] ≥ wn |I|
17As before, we include atoms for buyers at 0 and sellers at 1. So, this does not imply that

buyers have positive value for all m units or that sellers are want or are able to sell m units.
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and X
i∈NS

Pi[vi1 ∈ I] ≥ wn |I| .

That is, when n is large, there are many buyers whose highest value might
fall in any given interval, and many sellers whose lowest cost might fall into any
given interval.18

As before, z-independence applies only across players, and does not restrict
the relationship of the different values of any given player. NAA is assumed to
apply to all values, not just the Þrst. So, not too many vih fall in any given
interval.

Theorem 2 With NAG∗, Theorem 1 continues to hold even with multiple-unit
demands and supplies.

Most of the incentive arguments rely only on the highest value unit of de-
mand for buyers and lowest cost unit for sellers. The proof proceeds in two
steps. DeÞne ug as the mth bid up from cg, and ug as (cg, ug) . In the appendix,
we show that Lemma 7 continues to hold for this deÞnition of ug. The modi-
Þcation to the intuition is very small: when ug is long, there are many buyers
with highest value in the top half of ug. But, only m of them can be winning a
Þrst object. Given this, Lemma 9 is easily extended as well. Instead of sorting
players into those who play �up� and �down�, sort them into those who make
0 up bids, 1 up bid, etc. This is notationally intensive but straightforward and
hence omitted.
Finally, we must show that since |ug| , |cg| and |lg| shrink quickly, inefficiency

in the market disappears as 1/n. A proof of this is in the appendix. To see the
issues involved, note that for the single unit case (and for the Þrst unit of demand
in the multiple unit case), a buyer�s impact on the price is small for two reasons.
First, he is unlikely to be pivotal. Second, even if he is pivotal, he doesn�t affect
the price much, since the next bid up is likely to be close. We exploit both of
these forces in showing Lemma 7 and Lemma 9 and their adaptations here.
For units of demand after their Þrst, many buyers can simultaneously be in

the position that in raising bids other than their Þrst, they pay more for units
they were already winning. To get around this, consider the deviation to honest
bidding. In any given realization, let x be ug− cg. This is the maximum impact
of i raising his m bids on price. If vih < cg, then the deviation is irrelevant.
If cg ≤ vih ≤ cg + 2mx, then i may not beneÞt very much from any new

unit won by raising bih, and may hurt himself by raising the price by as much
as x on each of m − 1 units already being won. But, critically, because of
NAA, the number of vih in (cg, cg + 2mx) is only like nx (as always, ignoring
constants). So, the expected cost to bidders from this case is like E(nx2). But,
the modiÞed versions of Lemma 7 and Lemma 9 give that E(nx2) is like 1/n.
18There are less restrictive ways in which one might generalize NAG. For example, if each

buyer�s Þrst value is uniform [3, 4], and their second value is uniform [0, vi1] then there are
many buyer values in each range. An example in Section 5.1 of Swinkels (2001), suggests that
this is not strong enough to gaurantee efficiency.
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And, the expected efficiency loss from such players not winning also falls like
1/n.
Consider objects with vih above cg+2mx where i is already winning an hth

object. As before, only one of the associated bids can be cg. So, the sum of
costs in terms of raising these bids is at most x. And, E(x) ≤ 1/n as well.
The remaining objects have vih above cg + 2mx but are not winning. But,

then the deviation to v wins an extra object at price at most cg+ x, and raises
the price by at most x on m − 1 units, for a net proÞt of vih − cg −mx. The
efficiency loss from i not winning object h is at most vih− cg, which, given that
vih − cg > 2mx, is at most twice vih − cg − x. So, on these objects, bidder�s
proÞts from the deviation are at least half of the efficiency loss on these units.
Since costs from raising bids on other units are insigniÞcant, it follows that the
efficiency loss on these units is small since otherwise bidders will in aggregate
have a proÞtable deviation. As the efficiency loss on other units is also small,
we are done.

6 Extensions

6.1 One-sided Uniform-price Auctions

Swinkels (2001) considers large one-sided auctions with independent values and
a little bit of �noise.� An example is if there is a small independent probability
that each player sleeps through the auction. In the uniform price case, it is
shown that with the noise, the impact that any given player has on the price
grows small in expectation. But then, since �honest� bidding has a small effect
on the price paid, it must also have little beneÞt in winning extra objects. This
implies asymptotic efficiency (without a rate of convergence).
An easy extension to the arguments here shows that a one sided uniform price

auction with z−independent values converges to efficiency at rate 1/n2−α, even
without noise. This paper thus signiÞcantly generalizes Swinkels (2001) for the
uniform price case. The key is that here we think of �cost� as the impact on price
in circumstances where the player affecting the price cares. This is a simpler
object to bound, allowing both the greater generality, and fast convergence.19

6.2 Weaker Information Assumptions

We can weaken the information assumptions considerably. There is no problem
if most players have considerably more knowledge about each other�s values than
z−independence allows. What counts (for convergence, rates are more delicate)
is that from the point of view of a non-vanishing fraction of players, there are
�lots� of players who he cannot predict precisely, and that NAG applies to this
set of players.
19The stronger notion of vanishing impact is needed to prove results for discriminatory

auctions, which are also analyzed in that paper.
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6.3 Non-private Values

We can also weaken the assumption of private values somewhat. Assume that
an ε fraction of the players have private values, and the remainder some sort
of common. The arguments above show that over relevant ranges, the players
with private values bid close to value. NAG implies that their bids are then
closely packed almost surely. Thus, the impact of bids on price disappears
for all players. But then, common value types should bid nearly �honestly�
(their bid should nearly equal the expected value of object conditional on being
pivotal). Working out such a model is left to future work.
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7 Appendix

7.1 Proofs for Section 3.2

Proof of Lemma 1 Wlog, let K = {1, 2, ..., |K|}. Let PK and PN\K be the
marginals of P on K and N \K respectively, and let PK×N\K be the associated
product measure. Fix a rectangular event FK = F1 ∩ F2 ∩ ... ∩ F|K|, where Fi
only involves vi.

Pr(FK |FN\K) =

|K|Y
i=1

Pr(Fi|Fi+1 ∩ ... ∩ F|K| ∩ FN\K)

≤ z−|K|
|K|Y
i=1

Pr(Fi|Fi+1 ∩ ... ∩ F|K|) (using z − independence)

= z−|K| Pr(FK) = z−|K|PK(FK).

Analogously,
Pr(FK |FN\K) ≥ z|K|PK(FK).

These inequalities extend to any FK in the product σ-algebra, as such a set is
the limit of a countable union of rectangles. Thus

z−|K| Pr(FK) Pr(FN\K) ≥ Pr(FK ∩ FN\K) ≥ z|K| Pr(FK) Pr(FN\K) (9)
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or equivalently

z−|K|PK×N\K ≥ P ≥ z|K|PK×N\K . (10)

Let FK and FN\K be events about values and bids. Then

Pr(FK ∩ FN\K) =

Z
[0,1]|N|

Pr(FK |vK)Pr(FN\K |vN\K)dP

≤ z−|K|
Z
[0,1]|N|

Pr(FK |vK)Pr(FN\K |vN\K)dPK×N\K

= z−|K|
Z
[0,1]|K|

Pr(FK |vK)dPK
Z
[0,1]|N|−|K|

Pr(FN\K |vN\K)dPN\K

= z−|K|Pr(FK)Pr(FN\K).

The Þrst integral is deÞned by the players� distributional strategies. The second
line uses (10). The third line applies Fubini�s Theorem. The Þnal line integrates.
Similarly Pr(FK ∩ FN\K) ≥ z|K|Pr(FK)Pr(FN\K) so (9) holds for all events.
Similarly, for rectangular events FN\K ,

z−|N\K|Pr(FK)Pr(FN\K) ≥ Pr(FK ∩ FN\K) ≥ z|N\K| Pr(FK)Pr(FN\K).
(11)

Combining,

z−a Pr(FK)Pr(FN\K) ≥ Pr(FK ∩ FN\K) ≥ za Pr(FK) Pr(FN\K) (12)

Dividing through by Pr(FN\K) gives (2).
Let XK be a step function with values xα on a Þnite partition {Fα}α∈A

where each Fα is an event on bids and values in K. By the deÞnition of condi-
tional expectation E(XK |FN\K) =

P
α∈A x

α Pr(Fα|FN\K). Thus by (2)

E(XK |FN\K) ≤ z−a
X
α∈A

xα Pr(Fα) = z−aE(XK).

Analogously, E(XK |FK\N) ≥ zaE(XK). As an arbitrary XK is the limit of such
step functions, (3) follows. ¥

7.2 Proofs for Section 3.3

Proof of Lemma 2 Wlog, let K = {1, 2, ...,κ}. DeÞne the Bernoulli process
with κ independent trials with success probability pi in trial i. Let xi ∈ {0, 1}
be the outcome of trial i and let Xk =

Pk
i=1 xi. We claim that XK ≡ Xκ FOSD

QK given FN\K . The proof is inductive. Let Qk be the number of F1, ..., Fk−1
that occur. Trivially, X0 FOSD Q0, since both are identically 0. Suppose Xk−1
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FOSD Qk−1 given FN\K . Then, for r ∈ {0, . . . , k},

Pr(Qk ≤ r | FN\K) = Pr(Qk−1 < r | FN\K)
+Pr(F ck |{Qk−1 = r} ∩ FN\K)Pr(Qk−1 = r | FN\K)

≥ Pr(Xk−1 < r | FN\K) + (1− pk)Pr(Xk−1 = r | FN\K)
= Pr(XK ≤ r).

The inequality uses z-independence and the inductive hypothesis.
Similarly, if YK is the number of successes in a Bernoulli process with success

probabilities p
i
then given FN\K , QK FOSD YK .

We want a large-deviations inequality for the bounding Bernoulli processes.
As XK is a sum of non-identical independent Bernoulli trials, a slight alteration
to the usual proof of Cramér�s Theorem (e.g., Shirayev (1996) p.68) is necessary.
Let π = 1

κ

P
i pi. Then, for any λ > 0,

Pr

µ
XK
κπ

> φ

¶
= Pr

³
eλXK/κπ ≥ eλφ

´
≤ E

¡
eλXK/κπ

¢
eλφ

by Markov�s inequality. Note also that Pr
¡
XK

κπ > φ
¢
= 0 trivially when πφ ≥ 1.

Now, as XK is a sum of independent random variables

EeλXK/κπ =
Y
i∈K

³
1− pi + pieλ/κπ

´
(13)

= exp

Ã
log

Y
i∈K

³
1− pi + pieλ/κπ

´!

= exp

ÃX
i∈K

log
³
1− pi + pieλ/κπ

´!
≤ exp

³
κ log

³
1− π + πeλ/κπ

´´
since log

¡
1− x+ xeλ/κπ¢ is concave in x.

Thus,

Pr

µ
XK
κπ

> φ

¶
≤ exp

h
−λφ+ κ log

³
1− π + πeλ/κπ

´i
(14)

= exp

·
−κ
½
λ

κπ
φπ − κ log

³
1− π + πeλ/κπ

´¾¸
= exp [−κ {sφπ − log(1− π + πes)}] ,

where s ≡ λ
κπ . Given that λ > 0 was arbitrary, this holds for all s > 0, and so
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in particular for s = log
³
(1−π)φ
1−πφ

´
(this is positive, because πφ < 1), yielding

Pr

µ
XK
κπ

> φ

¶
≤ exp

·
−κ
½
log

µ
(1− π)φ
1− πφ

¶
φπ − log

³
1− π + πelog( (1−π)φ

1−πφ )
´¾¸

= exp

·
−κ
½
φπ logφ+ (1− φπ) log

µ
1− φπ
1− π

¶¾¸
As logx ≥ (x−1)/x the second term in the braces is at least π(1−φ). Thus,

Pr

µ
XK
κπ

> φ

¶
≤ exp [−κπ(φ logφ+ 1− φ)] . (15)

Choosing φ = 3,

Pr (XK > 3κπ) ≤ e−κπ(log 27−2) ≤ e−κπ. (16)

Note that 1zE(QK) ≥
P
i∈K pi = κπ, and hence Pr (XK > 3κπ) ≥ Pr

¡
XK >

3
zE(QK)

¢
.

And,
P
i∈K pi ≥ E(QK), and so e−κπ ≤ e−E(QK). Finally, XK stochastically

dominates QK . Taken together with (16), this implies

Pr

µ
QK >

3

z
E(QK)

¯̄̄̄
F

¶
≤ e−E(QK)

giving (5).
The proof for YK is similar: DeÞne π =

P
i∈K pi. Then, for any λ < 0, and

0 < φ < 1

Pr

µ
YK
κπ

< φ

¶
= Pr

³
eλXK/κπ ≥ eλφ

´
≤ E

¡
eλXK/κπ

¢
eλφ

.

The derivation of (13) and (14) is then as before, replacing pi by pi and
Pr
¡
XK

κπ > φ
¢
by Pr

¡
YK
κπ < φ

¢
. Note in particular that since λ < 0, s ≡ λ

κπ can

once again take on any positive value. Setting s = log
³
(1−π)φ
1−πφ

´
is once again

valid, as φ < 1, hence we arrive at the analog to (15):

Pr

µ
YK
κπ

< φ

¶
≤ exp [−κπ(φ logφ+ 1− φ)] . (17)

Note that
P
i∈K pi ≥ zE(QK), so that Pr (YK < φzE(QK)) ≤ Pr (YK < φκπ)

and exp [−κπ(φ logφ+ 1− φ)] ≤ exp [−zE(QK)(φ logφ+ 1− φ)] . So,
Pr (QK < φzE(QK)) ≤ e−zE(QK)(φ logφ+1−φ). (18)

Since 1
3 log

1
3 + 1− 1

3 > 0.3, (4) follows ¥

Proof of Corollary 1 Note that Pr(QK = 0|FN\K) ≤ Pr(QK ≤ φE(QK)) for
any φ > 0. Equation 18 then gives

Pr(QK = 0|FN\K) ≤ Pr(QK ≤ z

3
E(QK))

≤ e−zE(QK)(φ logφ+1−φ)

≤ e−zPr(QK≥1)(φ log φ+1−φ)
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since E(QK) ≥ Pr(QK ≥ 1). As this holds for φ arbitrarily close to 0,

Pr
¡
QK ≥ 1|FN\K

¢ ≥ 1− e−zPr(QK≥1)

=
1− e−zPr(QK≥1)

Pr (QK ≥ 1) Pr (QK ≥ 1)

For x ∈ (0, 1], (1− e−zx)/x is minimized at x = 1. ¥

7.3 Proofs for Section 3.4

Proof of Lemma 3 Partition [0, 1] into k ≡ £n1−α/4¤ intervals {Iκ} of equal
length (between n1−α/4 and 2n1−α/4). Let QB(Iκ) be the number of buyers
with values in Iκ. Note that

Wn/k =Wn |Iκ| ≥ E(QB(Iκ)) ≥ wn |Iκ| = wn/k.

Let E1κ ≡ {3zWn/k ≥ QB(Iκ) ≥ z
3wn/k}. By Lemma 2,

Pr(E1κ) ≥ 1− 2e−.3zn/k ≥ 1− 1

n5

for n SL, since n/k → nα/4. Similarly, let QS(Iκ) be the number of sellers with
values in Iκ, and deÞne E2κ =

©
3
zWn/k ≥ QS(I) ≥ z

3wn/k
ª
. Then, Pr(E2κ) ≥

1− 1
n5 for n SL.
Then, N ≡ ∩κ (E1κ ∩E2κ). As this involves 2k ≤ 2n1−α/4 events,

Pr(N ) ≥ 1− 2n
1−α/4

n5
(19)

≥ 1− 1/n4

for n SL.
Finally, note that for n SL, any interval I of length at least 1

n1−α/3 contains
at least k |I| /n− 2 ≥ k |I| /2n elements of {Iκ}. So, in a normal realization,

QB(I) ≥ k |I|
2n

z

3
wn/k =

zw

6
|I| .

Similarly, I intersects with at most 2k |I| /n elements of {Iκ} and so QB(I) ≤
6
zW |I| . The argument for QS(I) is analogous. ¥

Proofs for Section 4.2

Proof of Lemma 5 If E(V |T )n 6→ 0, then along a subsequence, Pr(V > γn|T ) >
γ for some γ. Given {V > γn} , if one selects γn

2 of the buyers at random, the

probability that none trades is at most (1− γ) γn2 ≤ 1/8 for n SL, and so there is
a 7/8 probability of at least one trader. Since this is true in expectation, it must
be true for some particular set GB of γn2 buyers. Similarly, there is a set GS
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of γn/2 sellers such that conditional on {V > γn} at least one is a trader with
probability 7/8. Let G ≡ GS ∪ GB, and let TG be the event that at least one
buyer and one seller in G trades. Then, Pr(TG| {V > γn}) ≥ 1− 2(1/8) = 3/4.
So, Pr(TG ∩ {V > γn}) ≥ 3/4Pr (V > γn) . As TG ⊆ T ,

Pr({V > γn} |TG) =
Pr(TG ∩ {V > γn})

Pr(TG)

≥ 3/4Pr(V > γn)

Pr(T )

≥ 3γ/4.

Since G has only γn
2 buyers or sellers, TG ∩ {V > γn} implies that there

are at least γn
2 buyers and sellers trading in N\G. Let X be this event. So,

Pr(X|TG) ≥ 3γ/4.
Let p∗ be such that Pr(p ≥ p∗|X ∩TG) ≥ 1

2 and Pr(p ≤ p∗|X ∩TG) ≥ 1
2 . Let

QS be the number of sellers in N\G with bi ≤ p∗ and QB the number of buyers
in N\G with bi ≥ p∗. Then,

E(QS|TG) ≥ Pr(X ∩ {p ≤ p∗} |TG)γn
2
≥ 1

2
Pr(X|TG)γn

2
≥ 3γ2n/16,

and so

E(QS) =
X

i∈NS\G
Pr(bi ≤ p∗) ≥ z

X
i∈NS\G

Pr(bi ≤ p∗|TG) = zE(QS|TG) = 3zγ2n/16.

Thus by Lemma 2 Pr(QS = 0) → 0. Similarly Pr(QB = 0) → 0. But then,
Pr(T )→ 1. ¥

Proof of Proposition 1 Fix An and a non-trivial equilibrium. Let φB ≡
maxNB

bi be the highest buy bid submitted and let φS ≡ minNS
bi be the

lowest sell bid. Note that Pr(φB ≥ x) is decreasing and continuous from the
left. Similarly, Pr(φS ≤ x) is increasing and continuous from the right. Let
v∗ ∈ [0, 1] have the property that for all x ∈ [0, v∗), Pr(φB ≥ x) ≥ Pr(φS ≥ x),
while for all x ∈ (v∗, 1], Pr(φB ≥ x) ≤ Pr(φS ≥ x). Let

δ ≡ min {Pr(φB ≥ v∗),Pr(φS ≤ v∗)} .

Note that Pr(φB > v∗) ≤ δ. This is trivial if Pr(φB ≥ v∗) = δ. If Pr(φB ≥
v∗) > δ, then Pr(φS ≥ v∗) = δ. But then since Pr(φS ≤ x) is continuous from
the right,

Pr (φB > v
∗) = lim

v↓v∗
Pr(φB ≥ v)

≤ lim
v↓v∗

Pr(φS ≥ v)
= Pr(φS ≥ v) = δ.
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Analogously, Pr(φS < v
∗) ≤ δ.

Assume that Pr(φS ≤ v∗) = δ. Then, Pr (T ∩ {p ≤ v∗}) ≤ Pr(φS ≤ v∗) = δ,
while Pr (T ∩ {p > v∗}) ≤ Pr(φB > v∗) ≤ δ. Similarly, if Pr(φB ≥ v∗) = δ,
then, Pr (T ∩ {p < v∗}) ≤ Pr(φS < v∗) ≤ δ, while Pr (T ∩ {p ≥ v∗}) ≤ Pr(φB ≥
v∗) = δ. So Pr(T ) ≤ 2δ.
Now, {φS ≤ v∗} = ∪i∈NS

{bi ≤ v∗}. Hence, by Corrolary 1,

Pr (φS ≤ v∗ | FNB) ≥ (1− e−z)Pr(φS ≤ v∗) (20)

≥ (1− e−z)δ

for any FNB
. So,

Pr(T ) ≥ Pr({φB ≥ v∗} ∩ {φS ≤ v∗}) (21)

≥ Pr(φS ≤ v∗ | φB ≥ v∗)Pr(φB ≥ v∗)
≥ (1− e−z)δ2.

Assume that v∗ ≤ 1/2. (If not, the proof below applies, mutatis mutandis,
to the sellers). Fix an arbitrary buyer i. Let φiB ≡ maxNB\{i} bi. Now,

Pr
¡
φiB < 2/3

¢
= 1− Pr ¡φiB ≥ 2/3¢
≥ 1− Pr (φB > v∗)
≥ 1− δ.

Let J ≡ [5/6, 1]. By Lemma 1,

Pr(φiB < 2/3 | vi ∈ J) ≥ z (1− δ) . (22)

By (20),
Pr(φS ≤ v∗ | vi ∈ J,φiB < v∗) ≥ (1− e−z)δ. (23)

Let di be the deviation for i that whenever vi ∈ J and the original strategy
speciÞed a bid below v∗, he bids 2/3 instead. Under this strategy, he wins an
object with probability at least Pr(φiB < 2/3,φS ≤ v∗, vi ∈ J), which by (22)
and (23) is at least

Pr(vi ∈ J)z (1− δ)
¡
1− e−z¢ δ,

and earns at least 16 when he does so. So,

Bi ≥ Pr(vi ∈ J)z (1− δ)
¡
1− e−z¢ δ 1

6
− πi,

where πi is i�s expected equilibrium proÞt.
Summing across buyers, and applying Lemma 4,

z (1− δ) ¡1− e−z¢ δ 1
6

X
NB

Pr(vi ∈ J)−
X
NB

πi ≤ Pr(T ). (24)
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By A2
P
NB
Pr(vi ∈ J) ≥ 1

6wn for n ≥ 6. As the gains to a buyer from any
given trade are at most 1, and V buyers trade,X

NB

πi ≤ Pr(T )E(V | T ).

Substituting into (24) gives

z(1− δ)(1− e−z)δ
µ
1

6

¶2
wn− 2δPr(T )E(V | T ) ≤ Pr(T ).

Using Pr(T ) ≤ 2δ, and dividing through by 2δ > 0 gives
1

72
wz(1− δ)(1− e−z)n−E(V | T ) ≤ 1.

For this to hold for large n, either (1 − δ) must be close to 0, in which case,
Pr(T ) ≥ (1− e−z)δ2 6→ 0 (by (21)) or, E(V | T ) must grow like n. But then, by
Lemma 5, Pr(T )→ 1. ¥

7.4 Proofs for Section 4.3

We will prove stronger results that will be useful when we turn to the multiple
unit case. Fix an integerm ≥ 1. RedeÞne ug as the mth bid above cg. As before,
let ug ≡ (cg, ug) . When m = 1, we have the original case.

Proof of Lemma 6 Let υ ≡ E(|ug|), and let us show that for n SL, υ ≤ 1
n1−α4

.
Assume this is false along a subsequence. Then

υ = Pr(N )E(|ug| |N ) + (1− Pr(N ))E(|ug| |N c)

≤ Pr
³
N ∩

n
|ug| > υ

2

o´
E
³
|ug|

¯̄̄
N ∩

n
|ug| > υ

2

o´
+Pr

³
N ∩

n
|ug| ≤ υ

2

o´
E
³
|ug| |N ∩

n
|ug| ≤ υ

2

o´
+
1

n4
(for n SL)

= Pr
³
N ∩

n
|ug| > υ

2

o´
E
³
|ug|

¯̄̄
N ∩

n
|ug| > υ

2

o´
+
υ

2
+
1

n4
.

So, for n SL

Pr
³
N ∩

n
|ug| > υ

2

o´
E
³
|ug|

¯̄̄
N ∩

n
|ug| > υ

2

o´
>
υ

3
. (25)

Consider di(bi, vi) = max{bi, vi− υ
2}. Consider N ∩

©|ug| > υ
2

ª
. Since |ug| > υ

2 ,
any buyer in the top half of |ug| is a winner after di, and at mostm were winners
before (since buyers bid at most vi, and by deÞnition, there are only m bids in
[cg, ug)). By Lemma 3 (which applies since |ug| /2 > υ/2 > 1

2n1−α4
> 1

n1−α/3
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for n SL), the number of new winners is at least w0 12n |ug|−m ≥ w0
4 n |ug| for n

SL. Each new winner earns at least υ2 . So, using (25)X
Bi ≥ υ

2

w0

4
nE

³
|ug|

¯̄̄
N ∩

n
|ug| > υ

2

o´
Pr
³
N ∩

n
|ug| > υ

2

o´
≥ υ

2

w0

4
n
υ

3
.

But, by Lemma 4,
P
Bi ≤ υ, and so

υ

2

w0

4
n
υ

3
≤ υ

or
nυ ≤ 24

w0
.

For n SL, this contradicts υ ≥ 1
n1−α4

. The argument for sellers is analogous. ¥

Proof of Lemma 7 Assume Pr(|ug| > x) > 1
x2n2−α3

along a subsequence where
x > 1

n1−α3/2 (for smaller x, 1
x2n2−α3

≥ 1, and the claim is vacuous). Then, for n
SL

Pr (N ∩ {|ug| > x}) > Pr ({|ug| > x})− 1

n4
> Pr ({|ug| > x}) /2.

Consider di(bi, vi) = max{bi, vi − x
2}. As before, given N ∩ {|ug| > x} , Lemma

3 implies that there are w0nx − m > w0nx/2 new winners, each earning x/2
(note that x > 1

n1−α3/2 >
1

n1−a/3 , so Lemma 3 does apply). So,X
NS

Bi ≥ Pr(|ug| > x)w
0nx2

4
.

But, using Lemma 4 and Lemma 6,
P
Bi ≤ 1

n1−α4
. So,

Pr(|ug| > x)w
0nx2

4
≤ 1

n1−α4
,

Rearranging

Pr (|ug| > x) ≤ 4

w0n2−α4
.

For n SL, this contradicts Pr(|ug| > x) > 1
x2n2−α3

. ¥

Proof of Lemma 8 For buyer i, consider di(bi, vi) ≡ max{bi, vi − x}. If
i ∈ LB(x), then i wins an extra object and earns at least x. By Lemma 4 and
Lemma 6,

xE(lB(x)) ≤
X

Bi ≤ E(|ug|) ≤ 1

n1−α4

and so
E(lB(x)) ≤ 1

xn1−α4
. (26)
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establishing the Þrst claim. Now, note that in each realization,

SLB(1/n)) =
1

n
lB (1/n) +

Z 1

1/n

lB(x)dx.

(This is easily seen by noting that SLB(1/n) is a consumer surplus calculation
for demand curve lB(.) up to demand Q = lB(1/n). Therefore, by Fubini�s
theorem

E(SLB(1/n)) =
1

n
E(lB (1/n)) +

Z 1

1/n

E(lB(x))dx

≤ 1

n1−α4
+

Z 1

1/n

1

xn1−α4
dx using (26) twice

=
1

n1−α4
(1 + logn)

≤ 1

n1−α3
(for n SL)

which establishes the second claim. Repeat for sellers. ¥

7.5 Proofs for Section 4.4

Proof of Lemma 9 Suppose the lemma is false, so that there exists a sequence
{nt}, {xt} satisfying nt → ∞ and xt ≥ 1/n

1−α2/2
t such that Pr(|cg| ≥ xt) ≥

1/n2−α2
t x2t (the claim is vacuous for smaller xt).

Step 1. Sparse Intervals.
Recall from the proof of Lemma 3 the partition of [0, 1] into k ≡ £n1−α/4¤

disjoint intervals {Iκ} of equal length between 1/n1−α/4 and 2/n1−α/4. Let
M(Iκ) be the number of bids in Iκ. Let ω = zw0/24. Say Iκ is sparse if
E(M(Iκ)) < ωnα/4. Let X be the set of sparse intervals. For κ ∈ X, let
E3κ ≡

©
M(Iκ) ≤ 3

zωn
α/4
ª
be the event that there are not �too many� bids in

Iκ. For any given τ ∈ [0, 1] consider the process in which at step one, values
and bids are drawn according to the distributional strategy µ, and at stage two,
each bid is randomly and independently replaced by a bid in Iκ with probabilty
τ . Let Mτ (Iκ) be the random variable given the number of bids in Iκ for this
process. Clearly, Mτ (Iκ) stochastically dominates M(Iκ) for any τ . Choose τ∗

such that E(Mτ∗(Iκ)) = ωn
α/4. Then, Lemma 2 implies that

Pr (E3κ) ≥ Pr

µ
Mτ∗(Iκ) ≤ 3

z
ωnα/4

¶
≥ 1− e−ωnα/4

≥ 1− 1

n5

for n SL.
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For κ /∈ X, let E3κ ≡
©
M(Iκ) ≥ z

3ωn
α/4
ª
be the event that there are not

�too few� bids in Iκ. Lemma 2 implies that for n SL

Pr (E3κ) ≥ 1− e−zωnα/4 ≥ 1− 1

n5
.

Let N 0 ≡ N ∩ (∩κE3κ). Arguing as in the proof of Lemma 3, for n SL

Pr(N 0) ≥ 1− 3n
1−α/4

n5
(27)

≥ 1− 1/n4.

Step 2. Sparse Regions and the Endpoints of Competitive Gaps. Assemble
maximal groups of adjacent sparse intervals into sparse regions. Let {Jλ}λ∈Λ
be the set of sparse regions that are longer than x

2 . For n SL,
z
3ωn

α/4 > 1. So,
given N 0, for all n SL, each non-sparse interval contains at least 1 bid and so cg
cannot contain a non-sparse interval; cg can include at most a Jλ and parts of
the two non-sparse intervals immediately adjacent. These two intervals, having
length at most 2/n1−α/4 become arbitrarily short compared to x ≥ 1/n1−α2/2.
Hence, given N 0, and for n SL a competitive gap of length x must (a) have
intersection of length at least x/2 with some Jλ, and (b) intersect at most one
Jλ.
Let Jλy , y ∈ [0, 1] be the point a yth of the way up the interval Jλ. Our Þrst

lemma says that it is very unlikely that the competitive gap ends a long way
from the end of a Jλ.

Lemma 10 For all n SL

Pr
³
cg ∈ ∪λ[Jλ0 , Jλ4/5]

´
≤ 1

12n2−α2x2
,

Pr
³
cg ∈ ∪λ[Jλ1/5, Jλ1 ]

´
≤ 1

12n2−α2x2
.

Proof Consider the event
n
cg ∈ [Jλ0 , Jλ4/5]

o
∩N 0 for some λ ∈ Λ. Let y ≡ Jλ1 −

cg. As cg ∈ [Jλ0 , Jλ4/5], y/2 ≥ x/10 ≥ 1/n1−α/4. So, By Lemma 3, the number of
values in

£
Jλ1 − y/2, Jλ1

¤
is at least w0yn/2. On the other hand, by Step 1, given

N 0, each Iκ ⊆
£
Jλ1 − y/2, Jλ1

¤
includes at most 3

zωn
α/4 = 3

z (zw
0/24)nα/4 =

w0nα/4/8 bids. For n SL, this implies that the number of bids in
£
Jλ1 − y/2, Jλ1

¤
is at most w0yn/4 (by the same argument as in the proof of Lemma 3). Thus,
given

n
cg ∈ [Jλ0 , Jλ4/5]

o
∩ N 0, there are at least w0yn/2 − w0yn/4 = w0yn/4

players with value in
£
Jλ1 − y/2, Jλ1

¤
but bid below cg = Jλ1 − y. But then,

SLB(y/2) ≥ w0yn
4

y

2
.

As cg ∈ [Jλ0 , Jλ4/5], y ≥ x/5. So, whenever
n
cg ∈ [Jλ0 , Jκ4/5]

o
∩N 0,
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SLB(x/10) ≥ SLB(y/2)

≥ w0nx2

200
.

And, for n SL,

Pr
³n
cg ∈ [Jλ0 , Jκ4/5]

o
∩N 0

´
≥ Pr

³
cg ∈ ∪λ[Jλ0 , Jλ4/5]

´
− 1

n4

≥ 1

2
Pr
³
cg ∈ ∪λ[Jλ0 , Jλ4/5]

´
.

Thus,

E
³
SLB

³ x
10

´´
≥ w0nx2

400
Pr
³
cg ∈ ∪λ[Jλ0 , Jλ4/5]

´
.

Now, for n SL x
10 >

1
n , and hence SLB(

x
10 ) < SLB(

1
n).However, E(SLB(1/n)) ≤

1
n1−α3

by Lemma 8. Thus,

1

n1−α3
≥ w0nx2

400
Pr
³
cg ∈ ∪λ[Jλ0 , Jλ4/5]

´
.

Rearranging,

Pr
³
cg ∈ ∪λ[Jλ0 , Jλ4/5]

´
≤ 400

n2−α3x2

≤ 1

12n2−α2x2

for n SL. Repeat for sellers in the lower Þfth to get the second claim. ¥

Step 4. Relative Probabilities of competitive and supporting gaps. Let cgλ ≡n
cg ⊇ [Jλ1/5, Jλ4/5]

o
, and let cλ ≡ Pr(cgλ). Similar, let lgλ ≡

n
lg ⊇ [Jλ1/5, Jλ2/5]

o
,

and lλ ≡ Pr(lgλ). Finally, let ugλ ≡
n
ug ⊇ [Jλ3/5, Jλ4/5]

o
, and uλ ≡ Pr(ugλ).

Our next lemma shows that for some λ, cλ is both non-trivial, and much larger
than either lλ or uλ.

Lemma 11 For n SL, there exists λ such that

cλ >
1

n4
, (28)

and such that
lλ + uλ
cλ

≤ 4

nα2−α3
. (29)
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Proof As Pr(|cg|2 ≥ x) > nα2−2x−2 and Pr(N 0) ≥ 1− 1/n4, for n SL Pr
³n
|cg|2 ≥ x

o
∩N 0

´
≥

5
6n

α2−2x−2. By Lemma 10, the probability of a competitive gap in Jλ not
including the middle 3/5 is also less than 1

6n
α2−2x−2 for n SL. Therefore,P

λ∈Λ cλ ≥ 4
6n

α2−2
t x−2t . Let Λ0 denote the subset of regions with cλ > 1/n4.

There are at most n regions. Thus,X
λ∈Λ\Λ0

cλ ≤ n

n4
≤ 1

6
nα2−2x−2

for n SL. Thus X
λ∈Λ0

cλ ≥ 1

2
nα2−2x−2.

From Lemma 7, for n SL
P
λ∈Λ0 lλ + uλ ≤ 2nα3−2x−2. ThusP

λ∈Λ0 lλ + ulP
λ∈Λ0 cλ

≤ 2nα3−2x−2
1
2n

α2−2x−2
=

4

nα2−α3
.

for n SL. Since this is true on average, it must be true for at least one λ ∈ Λ0.¥

In what follows, we refer to a λ for which Lemma 11 holds. Let �c ≡ Pr(cg ⊇
[Jλ2/5, J

λ
3/5]) be the probability of a competitive gap including the middle Þfth

of Jλ. We will show that �c is close to 1. The idea is that the only way to have
cλ be large relative to u = uλ and l = lλ will be for players to almost always
get it almost right.
Let Ui ≡ {bi ≥ Jλ4/5} be the event that i bids up and �Ui ≡ {bi ≥ Jλ2/5}

be the event that i bids weakly up. Symmetrically, let Di ≡ {bi ≤ Jλ1/5}
and �Di ≡ {bi ≤ Jλ3/5} be the events that i bids down and weakly down. Let
pi ≡ Pr(Ui), �pi ≡ Pr( �Ui), qi ≡ Pr(Di) and �qi ≡ Pr( �Di). Order the players so
that �q1 ≤ �q2 ≤ ... ≤ �q2n.

Step 5. A preliminary inequality. DeÞne

Ai−j ≡ ∩j0>i,j0 6=jDj
as the event that all players after i not including j bid down. Then, for any
event F involving 1, 2, ..., i,

Pr(Ai−j | F ) ≤
Y

j0>i,j0 6=j
Pr(Dj0 | Dj0−1, ...,Di+1, F ) (30)

= exp

 X
j0>i,j0 6=j

log Pr(Dj0 | Dj0−1, ...,Di+1, F )


≤ exp

 X
j0>i,j0 6=j

(Pr(Dj0 | Dj0−1, ...,Di+1, F )− 1)
 (since log x ≤ x− 1)
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≤ exp

− X
j0>i,j0 6=j

Pr(Dcj0 | Dj0−1, ...,Di+1, F )


≤ e−z
P

j0>i,j0 6=j 1−qj0 (by z-independence)

≤ e−z
P

j0>i,j0 6=j pj0 (since 1− qj0 ≥ pj0)
≤ e−z(−1+

P
j0>i pj0).

Step 6. Two Bounds. Recall that cgλ ≡
n
cg ⊇ [Jλ1/5, Jλ4/5]

o
. Let cgijλ , i < j, be

the event cgλ where i and j are the two highest indexed players for whom Ui
holds. Let cijλ = Pr(cg

ij
λ ). Let F

i be the event that Uj0 holds for j0 = i and for
n− 2 other j0 ∈ {1, ..., i}, while Dj0 holds for all other j0 ∈ {1, ..., i}. Then,

cijλ = Pr(F i ∩Ai−j ∩ Uj)
= Pr(Uj |F i ∩Ai−j) Pr(F i ∩Ai−j)

=
Pr( �Dj | F i ∩Ai−j)
Pr( �Dj | F i ∩Ai−j)

Pr(Uj |F i ∩Ai−j)Pr(F i ∩Ai−j)

≤ pj
z2�qj

Pr( �Dj | F i ∩Ai−j)Pr(F i ∩Ai−j)

=
pj
z2�qj

Pr( �Dj ∩ F i ∩Ai−j).

Let ugiλ be the event ugλ, where i is the last player to bid up, and let u
i
λ =

Pr(ugiλ).When �Dj∩F i∩Ai−j holds, i is the last player to bid up and in total n−1
players bid up while the rest bid weakly down. Thus,

n
�Dj ∩ F i ∩Ai−j

o
⊆ ugλ,

and so Pr( �Dj ∩ F i ∩Ai−j) ≤ uiλ. The previous equation thus implies

cijλ ≤
pj
z2�qj

uiλ. (31)

Another bound on cijλ comes from (30):

cijλ ≤ Pr
¡
Ai−j

¢ ≤ e−z(−1+P j0>i pj0). (32)

Step 7. Up and Down Players. We next show that for all n SL, Pr( �Di) ≤ 1
4 for

i ≤ n, and Pr( �Ui) ≥ 1
4 for i > n.

Consider the Þrst claim. Suppose that �qn > 0 (if �qn = 0 the result is
immediate). Let ciλ ≡

P
j>i c

ij
λ be the probability that cgλ occurs, where i is

the second last up player. Let i∗ ≤ n be the last index with the property thatP
j0>i pj0 > n

(α2−α3)/2. Then,
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X
i≤i∗

ciλ =
X

i≤i∗j>i
cijλ

≤ n2e−z(−1+
P

j0>i pj0) (using (32))

≤ n2e−z(−1+n
(α2−α3)/2)

≤ 1

2n4
(for n SL)

≤ 1

2
cλ (using (28))

So, as cλ =
P
i≥n−1 c

i
λ, for n SL,

1

2
cλ ≤

X
i>i∗,i≥n−1

ciλ

≤
X

i>i∗,i≥n−1

X
j>i

pj
z2�qj

uiλ (using (31))

≤ 1

z2�qn

X
i>i∗,i≥n−1

X
j>i

pju
i
λ (since �qi is increasing)

≤ n(α2−α3)/2

z2�qn

X
i>i∗,i≥n−1

uiλ (by choice of i
∗)

≤ n(α2−α3)/2

z2�qn
uλ

≤ n(α2−α3)/2

z2�qn

4

nα2−α3
cλ (by (29))

=
4

z2�qn

1

n(α2−α3)/2
cλ.

Comparing the Þrst and last expressions, �qn → 0, and so in particular, qi ≤ 1/4
all i ≤ n for all n SL.
If the players are ordered so that �pi increases, this argument can be repeated

considering events in which n− 1 of the Þrst i players bid down and the others
bid up. Thus there are n players for which �pi → 0. As �pi + �qi ≥ 1 these players
are disjoint from players 1, . . . , n, and so must be the players {n+ 1, . . . , 2n}.

Let R ≡ ∩i≤nUi ∩i>n Di = cgn−1,nλ be the event that all the players bid
according to their type (and a competitive gap occurs).

Step 8. A lower bound for Pr(R): We already know that
P
i≤i∗,j>i c

ij
λ ≤ 1

2cλ

for n SL. We will show that for n SL
P
i>i∗,j>n+1 c

ij
λ ≤ 1

4 . Since R is the only
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event left, it would then follow that Pr(R) ≥ cλ
4 . So, as in Step 7 note thatX

i>i∗,j≥n+1
cijλ ≤

X
i>i∗,j≥n+1

pj
z2�qj

uiλ (using (31) )

≤ 1

z2�qn+1

X
i>i∗

uiλ
X
j>i

pj (note the n+ 1)

≤ n(α2−α3)/2

2z2

X
i>i∗

uiλ (by choice of i
∗, and since �qn+1 ∼= 1)

≤ n(α2−α3)/2

2z2
uλ

≤ n(α2−α3)/2

2z2
1

nα2−α3
cλ (by (29) )

=
1

2z2
1

n(α2−α3)/2
cλ

≤ 1

4
cλ (for n SL).

Step 9. A Persistent Competitive Gap. Let �R ⊃ R be the event that all the
players get it nearly right � the Þrst n players are not bidding below Jλ3/5 and
the others are not bidding above Jλ2/5. For i > n, deÞne R−i to be the event
that all players except i play according to type. If R−i occurs and player i bids
weakly up, then there will be a lg ⊃ [Jλ1/5, Jλ2/5]. Thus,

uλ ≥
X
i>n

Pr(R−i) Pr( �Ui|R−i)

≥ zPr(R)
X
i>n

�pi (by z-independence and since R ⊆ R−i)

≥ zcλ
4

X
i>n

�pi

Since uλ
cλ
→ 0, X

i>n

�pi → 0.

Arguing symmetrically, X
i≤n

�qi → 0.

With the ordering described in Step 2, �R occurs when the Þrst n players
do not bid weakly down and the last n players do not bid weakly up, that is,
�R = (∩i≤n �Dci ) ∩ (∩i>n �Uci ). Thus,

Pr( �R) ≥ 1−
X
i≤n

�qi −
X
i>n

�pi → 1.
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Step 10. A Contradiction. When �R ∩N 0 occurs, [Jλ2/5, J
λ
3/5] is in the interior

of cg (players 1, . . . , n bid strictly above J3/5, and other players strictly below
J2/5. And since the probability of trade is bounded away from 0, and since
Pr( �R) → 1, there is at least one buyer in {1, . . . , n} and at least one seller in
{n+ 1, . . . , 2n} .
Let p∗ be the expected price conditional on �R. Either p∗ ≤ Jλ1/2, or p

∗ ≥
Jλ1/2. Wlog, assume p

∗ ≥ Jλ1/2. Let x
λ be the length of Jλ. By construction,

xλ ≥ 1
2x ≥ 1

2n1−α2/2

Assume Þrst that Jλ1 ≥ 1 − 3xλ. Consider any buyer in {1, . . . , n} . A bid
of Jλ2/5 wins whenever �R occurs, and forces the price to at most Jλ2/5. So,

conditional on �R, the buyer�s expected gain from lowering the price is at least
Jλ1/2 − Jλ2/5 ≥ xλ

6 . On the other hand, when
�R does not occur, he may go from

being a winner to a loser. But, for this to happen, it must be that cg ≥ Jλ2/5.
But then i�s lost proÞt is at most 1− cg ≤ 4xλ. Since Pr( �R)→ 1,

Pr( �R)
xλ

6
− (1− Pr( �R))4xλ

is eventually positive, and we have a contradiction.
Assume Jλ1 < 1 − 3xλ. Given N 0, the number of buyers with value in¡

Jλ1 + 2x
λ, Jλ1 + 3x

λ
¢
is at least w0nxλ. But, by Lemma 8 for n SL

E(#U(xλ)) ≤ 1

n1−α4xλ
.

It follows that for n SL, at least half the buyers with value in
¡
Jλ1 + 2x

λ, Jλ1 + 3x
λ
¢

trade conditional on �R∩N 0 (and so bid above Jλ3/5) Consider the deviation that
any buyer with value in

¡
Jλ1 + 2x

λ, Jλ1 + 3x
λ
¢
and bid above Jλ bids Jλ2/5 in-

stead. Given �R∩N 0, this gains the buyer at least xλ/6. Given N 0, the number
of players for in

¡
Jλ1 + 2x

λ, Jλ1 + 3x
λ
¢
is at least w0nxλ and at most W 0nxλ.

So, given R ∩N 0, the expected sum of gains is at least w
0nxλ
2

xλ

6 . The loss from
such a buyer going from being a winner to a loser is again at most 4xλ. Given
N 0\ �R, there are at most W 0nxλ such buyers. In N 0c, the worst case is that all
n buyers are in

¡
Jλ1 + 2x

λ, Jλ1 + 3x
λ
¢
. So, the expected sum of losses is at most

Pr(N 0\ �R)W 0nxλ4xλ +Pr(N 0c)n4xλ

≤
³
1− Pr( �R)

´
W 0nxλ4xλ +

1

n4
n4xλ

and thus, since the deviation cannot be proÞtable,

Pr( �R)
w0nxλ

2

xλ

6
≤
³
1− Pr( �R)

´
W 0nxλ4xλ +

1

n4
n4xλ.
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Dividing both sides by n(xλ)2,

Pr( �R)
w0

12
≤ 4W 0

³
1− Pr( �R)

´
+

4

n2xλ

≤ 4W 0
³
1− Pr( �R)

´
+

8

n2x
(since xλ ≥ 1

2
x)

≤ 4W 0
³
1− Pr( �R)

´
+

8

n2 1
n1−α2/2

= 4W 0
³
1− Pr( �R)

´
+

8

n1+α2/2
.

The LHS goes to w0/12, while the RHS goes to 0, a contradiction. ¥

7.6 Proofs for Section 5

Let x be the random variable sgm − cg. In an m unit demand/supply setting,
this is the maximum impact of raising a buyer�s bid vector on price. Let p be
the price. We will show that in expectation buyers achieve within 1

2n1−α of the
consumer surplus if they can price take at p. A symmetric argument applies to
sellers. But, the sum of consumer and producer surplus at an arbitrary p is at
least as large as the surplus at the Walrasian price. So, this both establishes
that the market achieves within 1/n1−α of the efficient surplus and that price
must be asymptotically Walrasian (else the market achieves more than the fea-
sible surplus, a contradiction). Finally, from NAG and NAA, expected feasible
surplus grows like n, and the result follows.
Consider the truth-telling deviation di(bi, vi) = vi, remembering that vi and

bi are now vectors in [0, 1]m. Let W be the set of ih , i ∈ NB that are allocated
an object. Let SLih = 0 if i wins an object h, and let SLih = max [vih − p, 0]
otherwise. So, SLih gives the loss in consumer surplus compared to taking at p
from i not winning object h.
In any given realization, think about moving from bi to vi one bid at a time,

starting from bi1. Let �Cih be the cost to i from raising bid h in terms of raising
the price paid on units already won, and �Bih the proÞt to i of winning an extra
unit.
If vih < cg, then raising bih to vih is irrelevant to both p and the allocation.

Hence, �Bih − �Cih = 0. And, since vih < p, SLih = 0.
If vih ∈ [cg, sg + 2mx], then raising bih to vih may raise the price on units

already won by as much as x. So, �Bih − �Cih ≥ − (m− 1)x. And, since vih ∈
[cg, sg + 2mx] and p ≥ cg, SLih ≤ (2m+ 1)x. In any normal realization, the
number of such ih is at mostKnx for some K <∞. In a non-normal realization,
there are at most nm values in this range. Hence, the expected number of such
values is at most µ

1− 1

n4

¶
Knx+

1

n4
nm

≤ Knx+
m

n3
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Consider ih ∈ W such that vih > sg + 2mx. In any realization, at most
1 player who is winning an object is also in a position to affect the price by
changing the associated bid. And, the impact of that bid on price is at most x.
Hence, X

{ih∈W |vih>sg+2mx}
�Cih ≤ x

and X
{ih∈W |vih>sg+2mx}

SLih = 0.

Finally, consider ih /∈ W such that vih > sg + 2mx. Then, by deviating to
bih = vih, i raises the raise the price on at most m−1 previous units by at most
x. But, i also wins an extra object at price at most sg. So,

�Bih − �Cih ≥ vih − sg − (m− 1)x ≥ vih − p
2

=
SLih
2
.

Since we are in equilibrium

0 ≥ E

ÃX
ih

�Bih − �Cih

!
(33)

= E

E
 X
{ih/∈W |vih>sg+2mx}

�Bih − �Cih

¯̄̄̄
¯̄x
+E

E
 X
{ih∈W |vih>sg+2mx}

�Bih − �Cih

¯̄̄̄
¯̄x


+E

E
 X
{ih|vih∈[cg,sg+2mx]}

�Bih − �Cih

¯̄̄̄
¯̄̄x



≥ E

E
 X
{ih|vih>sg+2mx}

SLih
2

¯̄̄̄
¯̄x
−E(x)−E

E
 X
{ih|vih∈[cg,sg+2mx]}

(m− 1)x

¯̄̄̄
¯̄̄x



≥ E

E
 X
{ih|vih>sg+2mx}

SLih
2

¯̄̄̄
¯̄x
−E(x)−E ³³Knx+ m

n3

´
(m− 1)x

´

≥ E

E
 X
{ih|vih>sg+2mx}

SLih
2

¯̄̄̄
¯̄x
− 2E(x)−K00nE(x2) (for n SL)

Let H be the cumulative for x. By Lemmas 7 and 9, H(x) ≤ 1
n2−α2x2 for all
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x > 1
n . Hence,

nE(x2) =

Z 1

0

nx2dH(x)

=

Z 1

0

n2x[1−H(x)]dx

≤ 0 +

Z 1/n

0

2nxdx+

Z 1

1/n

2nx
1

n2−α2x2
dx

= nx2|1/n0 +
2

n1−α2

Z 1

1/n

1

x
dx

≤ 1 + 2 logn

n1−α2

≤ 1

n1−α1
(for n SL).

And, E(x) ≤ 1
n1−α1

as well (a simple integration by parts). So, (33) yields

E

E
 X
{ih|vih>sg+2mx}

SLih

¯̄̄̄
¯̄x
 ≤ 2

µ
1

n1−α
+K00 1

n1−α

¶
= K000 1

n1−α

But then,

E

ÃX
ih

SLih

!
= E

E
 X
{ih|vih>sg+2mx}

SLih

¯̄̄̄
¯̄x
+E

E
 X
vih∈[cg,sg+2mx]

SLih

¯̄̄̄
¯̄x


≤ K000 1

n1−α1
+E

³
Knx+

m

n3

´
(2m+ 1)x

≤ K000 1

n1−α1
+
2m+ 1

n3
xmE(x) +K0000E(nx2)

≤ 1

2n1−α
for n SL

Arguing analogously for sellers, E (
P
ih SLih) ≤ 1

2n1−α . Hence, the expected
sum of consumer and producer surplus is within 1/n1−α of that achieved by the
Walrasian outcome, and we are done. ¥
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