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Abstract

This paper introduces a dynamic model of the wealth distribution with risk aversion and aggre-
gate risk in the capital market. It shows that aggregate risk increases the barriers to growth. It
gives sufficient conditions for the long-run distribution of wealth to be independent of the initial
income distribution. Credit rationing in the long run is consistent with these conditions. An
arbitrarily small amount of aggregate uncertainty can change an economy from one where the
initial conditions do matter, to one in which the long-run behaviour is independent of the initial
conditions.

1. Introduction

This paper presents a dynamic model of the income distribution in a closed economy with aggregate

risk. The first main result considers the model without aggregate risk and gives sufficient conditions

for the income distribution to converge to a limit which is independent of the initial conditions.

At this limiting distribution there is credit rationing, so in the long run there are a variety of

production techniques being used. When there is aggregate risk the barriers to growth become more

severe. This is because the flow of funds from risk-averse middle and high-income savers onto the

capital market is reduced. The second result provides sufficient conditions for long-run incomes to

be independent of the initial conditions when there is aggregate uncertainty. The final result shows

that small amounts of aggregate risk generally decreases the dependence of the long-run behaviour

on the initial conditions. Thus, the arguments for path-dependent growth may not be robust to the

introduction of a little risk.

The first result gives sufficient conditions for the economy to converge to a limit that is inde-

pendent of the initial income distribution when there is no aggregate risk. The sufficient conditions
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we require are weaker than those found in previous studies. In particular the conditions we give

allow for poor agents to be credit rationed at a zero rate of interest. This has two implications.

First, there are poor economies where the capital market does not open (because no agent is wealthy

enough to meet the credit rationing criterion), which will nevertheless grow and ultimately they will

have active credit markets and converge to the limiting income distribution. Second, as there is

credit rationing in the long-run, there will be a diversity of production technologies in the long run.

There will always exist a poor class of agents who are forced to use an inefficient technology, because

they are excluded from credit markets. The long-run inefficiency that arises from long-term credit

rationing also gives scope for a Pareto improving government intervention, which will increase the

long-run output and wealth of the economy.

The second set of results show that in spite of the stochastic aggregate shocks the long-run

behaviour of the income distribution is independent of the initial income distribution. This occurs

even though the aggregate risk increases the barriers to growth. We also show that the presence of

a small amount of noise in the system decreases the dependence of the income distribution on the

initial state. This suggests that models of non-ergodic growth should check whether their conclusions

are robust to aggregate shocks.

In dynamic models of the income distribution the functioning of capital markets is the key

issue.1 The common theme in these models is that growth is slowed by constraints on agents’ ability

to borrow to finance investment in new technology (credit rationing). In these models the demand

side of the capital market is modelled in considerable detail, this gives a direct restriction on growth.

However, the supply of funds to the capital market and its indirect effect on growth is considered

in less detail: either there is an infinite supply at the prevailing world interest rate, or all savings

in the economy get placed on the domestic capital market.2 This paper considers savings decisions

in greater detail and how these may impact on growth. In the model below agents have alternative

ways of saving and do not necessarily allocate their savings to the risky domestic capital market. In

developing countries the supply of funds to the domestic capital market is just as important as the

demand for loans. An under supply of capital may arise from various forms of capital flight, or from

individuals choosing to store wealth in “safe” storable commodities such as land and gold.3 Broadly

1Banerjee and Newman (1991) and Galor and Zeira (1993) use an open capital market. Aghion and Bolton (1997)
and Piketty (1997) use a closed capital market, so the market interest rate adjusts to equate the supply and demand
for funds.

2An exception to this is Matsuyama (1998).
3The term “capital flight” is used very loosely here; it describes any means of storing wealth outside the domestic

economy: it may be that domestic capital is held in overseas accounts or domestic capital may be held in foreign-
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speaking, the domestic capital market is just one asset the individual can invest in and portfolio

decisions determine the allocation of savings among available means of storing wealth. Growth

will, therefore, be contingent upon savers’ willingness to place their savings on the domestic capital

market.

The key features of the model below are risk aversion and capital market risk. The source of

the capital market risk is the investment projects undertaken by borrowers. In previous models

each individual’s technology generated random and independent returns. There is a continuum of

borrowers, so the law of large numbers applies and this idiosyncratic risk vanishes at the aggregate

level. In such models the lending institutions feel no aggregate effect from the idiosyncratic risks

and are able to pay a fixed rate of return to individuals who supply the funds. Below the outcomes

of individuals’ technology are correlated. This correlation does not vanish at the aggregate level, so

lenders also bear aggregate risk. It follows that these lenders do not pay a certain rate of return

to savers. When there is aggregate risk in the capital market, the capital supply from risk-averse

agents will generally be less than that observed in the absence of aggregate risk. Risk averse agents

will hedge the risk present in the domestic capital market by storing their wealth in a portfolio of

assets; holding some of their wealth in a safe, storable commodity and some of their wealth in the

country’s capital market. The way in which agents make these portfolio choices will have significant

implications for growth.

In the model below agents’ propensity to avoid the capital market will depend upon their location

in the wealth distribution, which has implications for trickle down growth. In general, asset market

risk increases the barriers to long-run growth, by reducing the capital supply from the middle classes.

The very poor (those on fixed subsistence incomes) will choose to hold all of their endowment in the

risky capital market, because a large part of their life-time wealth is certain. Those with minimal

inherited assets and a fixed lifetime’s income can only invest this minimal amount in the capital

market. They will choose to do this, because their lifetime’s portfolio is dominated by the fixed

element of their incomes.4 5 As poor individuals become richer the fixed component of their life-

time wealth becomes relatively smaller, so they allocate a smaller proportion of their total wealth to

the capital market. The switching of savings away from the domestic capital market is most extreme

when individuals are sufficiently wealthy to borrow to invest in risky technology. At this point they

denominated notes (e.g. dollars) within the country which cannot be used as a basis for making loans.
4This is a similar argument to economic justifications for gambling among the very poor.
5If subsistence labour income is also risky, this argument will not apply and the poor will also prefer to hedge this

risk by using a storage technology.
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are so exposed to risk in their production decisions that (at the margin) they prefer to hold any

additional wealth in a safe asset (or engage in capital flight). Ultimately, of course, when individuals

are very wealthy and the technology risk is small relative to the size of their portfolio they will again

supply funds to the capital market. Thus, (for a given rate of interest) the under supply of funds to

the capital market in the presence of aggregate uncertainty becomes more pronounced when a poor

economy gets richer. In the long run, however, when agents get sufficiently rich they will return to

the capital market. Two forms of trickle down have been isolated: in Aghion and Bolton (1997)

growth leads the rich to supply funds to poor borrowers, in Matsuyama (1998) the poor have raised

returns to saving because the rich demand their capital. The relative importance of these two forms

is affected by the presence of aggregate risk. The rich are already exposed to a lot of risk through

their individual investment decisions, so when there is capital market risk they are less willing to

supply savings to the capital market (they prefer capital flight or a storage technology). Thus to

attract a given supply of capital the domestic interest rate must be higher and this higher rate of

interest raises the rate of expected income growth of both the rich and the poor savers. Aggregate

risk, therefore, tends to reduce the first form of trickle down and increase the second.

2. The Model

This section begins with a bald description of the preferences of agents and the technology available

to them. Then the capital market is described. The first subsection describes the nature of the

credit rationing in this model and how there will be three types of agents present in our model.

There are the poor, who are credit rationed and obliged to use the subsistence technology. There

is the middle class, who are borrowers and use the capital intensive technology, and there are the

rich, who can afford to finance the use of capital intensive technology out of their own endowments.

In each case we will describe the portfolio choices of the three types of individuals and how they

make their bequests. The final subsection is devoted to writing down the (random) dynamic system

for the wealth distribution that results from behaviour of the agents in this model. To do this it is

necessary to describe the equilibrium in the asset markets.

In this model there is one good (a consumption good), a continuum of identical individuals with

mass 1 (a generation) and each generation lives for one period. The consumption good is storable

and does not depreciate between periods. An individual begins her existence at the start of a period

and is endowed with one unit of labour and a wealth bequest from her mother. She then chooses how
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to invest her assets and which technology to use. At the end of the period she realises the returns

from her investments and her productive activity, consumes, makes a bequest of the consumption

good to her child and finally dies. Time is denoted t = 0, 1, 2, ... . A generic wealth level is denoted

x ∈ [0,X], where X is chosen to be a fixed upper bound on the feasible incomes generated by this

system. To describe a wealth distribution at time t we will use a probability measure λt defined

on [0,X] and let Λ denote the space of all (Borel) probability measures λt on [0,X].
6 An agent’s

preferences, u, are defined on her consumption ct and her bequest of the consumption good to her

child xt+1;

u(ct, xt+1) =

Ã
cαt x

1−α
t+1

αα(1− α)1−α

!γ

,

where 0 < α < 1 and 0 < γ < 1. If an agent realises z units of the consumption good at the end

of her life, then these preferences imply that she leaves a bequest of size (1− α)z and consumes αz.

Substitution shows that her indirect utility for the quantity of consumption good at the end of her

life is v(z) = zγ , so she has constant relative risk aversion.

There are two sources of income in the model. There is a subsistence technology. This technology

does not require any labour it just provides individuals with y units of income at the end of their life.

Every individual receives y simply by being alive, this subsistence income is specific to the individual

and cannot be removed or seized by creditors. We will treat y as being small and it represents

the lowest level of income people can be certain of. There are also two types of capital-intensive

technology one is more efficient than the other. Each capital-intensive technology requires k units

of the consumption good and one unit of labour. The output level of both technologies is risky and,

unlike previous studies, correlated across projects. The returns to the capital intensive technologies

are as follows. In the bad state of the world all capital-intensive technologies produce nothing; the

bad state occurs with probability 1 − β. In the good state of the world technology 1 produces G

units of the consumption good with probability φ/β and 0 units with probability 1 − φ/β, where

0 ≤ φ ≤ β. In the good state of the world technology 2 produces B units of the consumption good

with probability π/β and 0 units with probability 1 − π/β. In good states the outcomes of the

technologies are independent across agents. Technology 1 has a lower maximum level of output than

technology 2. But, technology 1 gives a higher expected utility than storage which in turn gives

a higher expected utility than technology 2. These assumptions are summarised in the following

6To be precise we will define λt as a probability measure on the measurable space ([0,X],B), where B is the Borel
sigma-algebra restricted to [0,X].
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conditions:

B > G, φ(G+ y)γ + (1− φ)yγ > (k + y)γ > π(B + y)γ + (1− π)yγ .(1)

The outputs of the capital-intensive technologies are correlated across agents. The amount of corre-

lation is determined by the parameter β; as β → 1 the amount of correlation approaches zero and

as β → φ the correlation approaches unity. Notice that as β varies the probability distribution over

returns to the technology does not vary, so all technology choices are independent of β. The role of

β in the model is to represent the aggregate risk in making loans. As β → 1 so all projects become

independent of each other and the law of large numbers ensures that there is no aggregate risk in

providing loans. However, when β → φ the aggregate risk in providing loans is the same as the risk

undertaken by the borrower.

The capital market in this closed economy is described by a mutual fund. Capital is supplied to

the mutual fund by individuals allocating some of their wealth endowment to it. The mutual fund

in turn supplies capital to individuals endowed with less than k units of the consumption good who,

nevertheless, want to use a capital-intensive technology and must borrow to finance the acquisition

of the technology. There is free entry so the mutual fund makes zero profits. Investing in this mutual

fund is risky, because in bad states all of the assets supplied to the fund will be lost. Let r denote

the rate of interest paid by the fund in good states, so every unit of the good supplied to the fund

is repaid with 1 + r units at the end of the period and every unit borrowed from the fund is repaid

by 1 + r units; the expected rate of return from the mutual fund is β(1 + r).

2.1 Technology Choice, Credit Rationing and Portfolio Decisions

In this economy there will be three types of individuals: those who only use the subsistence technol-

ogy, those who borrow but use the capital-intensive technology and those who can use the capital-

intensive technology without borrowing. Below we will describe each of these types’ portfolio de-

cisions, that is, how they allocate their inherited wealth between investing in the capital intensive

technology, saving in the safe storage technology and investing in the risky mutual fund. And as

agents’ decisions to join each of the three groups is endogenous it is also necessary to describe what

determines agents’ decisions to become borrowers and lenders. We will treat each of these types in

turn below.

First, we will study those individuals who borrow and use the capital-intensive technology.
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These individuals must make two choices: how much to borrow and which technology to use. These

individuals borrow part, or all of the set up costs k and can use their bequest x to fund their

investment also. The fund is unable to observe which project the borrowers use or what the returns

to the project actually are. But the fund does have a liquidation technology which does not retrieve

any of the borrower’s assets, but simply ensures that borrowers receive only their subsistence income

if the loan is not repaid. The fund liquidates all loans that are not paid back and borrowers are

unable to renegotiate repayments ex-post. If the borrowers choose how much to borrow (and how

much of k to fund from their bequest), then they will always prefer to use their entire bequest to

fund the investment and minimize the amount they borrow.7 Thus it is an optimal strategy for the

borrowers to repay loans whenever they are able to. Borrowers prefer technology 1 to technology 2

when

φ[G+ y + (1 + r)(x− k)]γ + (1− φ)yγ > π[B + y + (1 + r)(x− k)]γ + (1− π)yγ .(2)

When x = k this inequality is satisfied (by (1)), however as the left increases faster than the right

there exists x̃(r) < k such that

φ[G+ y + (1 + r)(x̃(r)− k)]γ − φyγ = π[B + y + (1 + r)(x̃(r)− k)]γ − πyγ .(3)

Thus, as in Stiglitz and Weiss (1981), there is credit rationing for all individuals with wealth less

than x̃(r). The fund will not lend to borrowers with a bequest less than x̃(r), because such borrowers

will choose to use the inefficient technology. Only individuals with bequests satisfying x̃(r) ≤ x ≤ k
will be borrowers; when their project is successful their bequest is (1 − α)(G + y + (x − k)) and
otherwise it is (1− α)y.8

The individuals who use only the subsistence technology choose how much of their bequest to

allocate to the mutual fund and how much to keep in the consumption good. The very poorest

of these allocate their entire bequest to the mutual fund and above a threshold level of bequest

their investment in the mutual fund is an affine function (4) of the bequest x. Let θ denote the

proportion of the endowment that is held in the mutual fund. A subsistence type’s expected payoff

is β[y + x + θxr]γ + (1 − β)[y + x − θx]γ . The optimal θ (provided 0 ≤ θ ≤ 1) for subsistence

7If the investment project is unsuccessful they always receive income y, so expected utility is maximized by maxi-
mizing wealth from a successful investment project this is achieved by minimising the amount borrowed.

8The debt contract described here is not optimal, because the borrowers are risk averse. Generally, an optimal
contract would offer the borrowers some insurance against the project being unsuccessful, but not complete insurance
to prevent the borrower from choosing the bad technology. Such a contract would tend to increase the risk borne by
the mutual fund and therefore increase the aggregate risk borne by the savers in this economy. Thus a truly optimal
contract would tend to increase the effects ascribed to aggregate risk in this model.
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individuals satisfies

xθ =
(1− ψ)(y + x)

1 + rψ
, where ψ =

µ
1− β

βr

¶ 1
1−γ

.(4)

If the expected payoff from the mutual fund is greater than unity, β(1 + r) > 1, then ψ < 1 and all

individuals using the subsistence technology allocate some of their endowment to the mutual fund:

xθ > 0. Moreover, the very poorest individuals will allocate all of their wealth endowment to the

mutual fund, that is θ = 1 when

x ≤ x := 1− ψ

ψ(1 + r)
y.(5)

The final type in our model are those individuals who are sufficiently wealthy to invest in the

capital-intensive technology without borrowing x > k. It is always optimal for these individuals

to choose the technology with the highest expected return and not to borrow, but they must also

decide whether to use the capital intensive technology and what proportion of their remaining assets

to allocate to the mutual fund. We begin by assuming these individuals do use the capital-intensive

technology and will describe their portfolio choices. The individuals with inheritance close to k do

not invest in the mutual fund, because they are already exposed to a lot of risk from their technology

choice. As individuals become richer they allocate more of their inheritance to this fund. Again let

θ denote the proportion of their endowment (net of their investment costs) that they allocate to the

mutual fund. Their expected payoff is

φ[G+ y + (x− k)(1 + rθ)]γ + (β − φ)[y + (x− k)(1 + rθ)]γ + (1− β)[y + (x− k)(1− θ)]γ .

Let θ(x) denote the optimal value of θ, when 0 < θ(x) < 1 it satisfies the first order condition

0 = φ

·
G+ y

x− k + 1 + rθ
¸γ−1

(6)

+(β − φ)

·
y

x− k + 1 + rθ
¸γ−1

− 1− β

r

·
y

x− k + 1− θ

¸γ−1
.

The right is decreasing in θ, so a necessary condition for the individual to allocate a positive pro-

portion of her wealth to the mutual fund is that the right is positive when θ = 0. There exists a

threshold wealth level x̄, such that all individuals with bequests k ≤ x ≤ x̄ do not invest in the

mutual fund; θ(x) = 0 for k ≤ x ≤ x̄. It is the case that x̄ > k when the returns to the mutual fund
are positive but not large. To be precise, when 0 < β(1 + r)− 1 < rφ the threshold, x̄, satisfiesµ

φr + 1− β(1 + r)

φr

¶ 1
1−γ

=
y + x̄− k

G+ y + x̄− k .
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When the returns to the mutual fund are positive and sufficiently large β(1 + r) − 1 > rφ, then

x̄ = k and all the rich use the mutual fund. Also notice that (6) is positive for all θ when there is a

small amount of aggregate uncertainty, when 1− β, is small, so in this case all of the rich put all of

their assets in the capital market. In summary the function θ(x) will satisfy (6) for x > x̄ and for

x ∈ [k, x̄] it will have θ(x) = 0.

We will now show that all individuals prefer to use the capital intensive technology, if the interest

rate is not too high. That is, the poor always want to borrow to use the capital intensive technology

and the rich prefer to use the capital intensive technology rather than invest in the mutual fund.

This establishes that the individuals who are excluded from the market for loans are definitely credit

rationed. Although individuals’ expected income must rise as result of undertaking the risky project,

it is not immediately obvious that they strictly prefer to use the capital intensive technology, because

this requires them to allocate a fixed part of their wealth to the risky technology which upsets their

optimal pattern of risk allocation. Thus by using the risky technology they are constraining their

portfolio choices. The conditions for the existence of credit rationing are an upper bound on the

expected return to the mutual fund, β(1+r) and a lower bound on the expected return to the capital

intensive technology, because when β(1+ r) is high or φG is low it is more attractive to invest in the

mutual fund rather than to use the more risky technology 1.

Lemma 1 When (7) and (8) holds every individual prefers technology 1 and an optimal

portfolio to using the subsistence technology with an optimal portfolio.

φ1/γ(G+ y) > β(1 + r)(k + y)(7)

φ1/γ
·
G+ y

µ
1 + rψ

ψ(1 + r)

¶¸
> β(1 + r)

·
k + y

µ
1 + rψ

ψ(1 + r)

¶¸
(8)

Proof: See the Appendix.

2.2 Capital Market Equilibrium and a Stochastic Process for Wealth

The dynamics of the income distribution are determined by the map from the current income distri-

bution to future income distributions. As there is aggregate uncertainty this map is state-dependent.

There is one map that applies in good states and a different map that applies in bad states. The

details of these two maps are determined by the equilibrium in the capital market and the optimal

bequest behaviour described in the previous section. This section begins with a formal description
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of the state-dependent map from current wealth to future wealth in (9) and (10) below, then by

writing down the expected evolution of the average level of wealth in (11). This Section ends with

a formal description of the equilibrium interest rate (13).

In bad states the behaviour in the previous section induces the map (9) from current inheritance

xt to next period’s bequest xt+1.

xt+1 = (1− α)


y, xt ≤ x
ψ(1 + rt)(y + xt)(1 + rψ)

−1, x ≤ xt < x̃
y, x̃ ≤ xt < k
y + (1− θ(xt))(xt − k), k ≤ xt.

(9)

The map (9) takes each wealth level in period t to a wealth level in period t + 1. This map thus

takes an income distribution λt ∈ Λ and maps it to an income distribution tomorrow λt+1 ∈ Λ
conditional on a bad state having occurred. We will define f : Λ → Λ to be the map from today’s

income distribution to tomorrow’s income distribution in the bad states. In good states the map

from today’s income level to tomorrow’s depends upon whether the individual technology used was

successful and produced output G or failed and produced nothing.

xt+1 = (1− α)



y + (1 + rt)xt, xt ≤ x
(1 + rt)(y + xt)(1 + rψ)

−1, x ≤ xt < x̃
G+ y + (1 + rt)(xt − k), successful, x̃ ≤ xt < k
y, fails, x̃ ≤ xt < k
G+ y + (xt − k)(1 + rθ(xt)), successful, k ≤ xt
y + (1 + rθ(xt))(xt − k), fails k ≤ xt.

(10)

This map again induces a map from today’s income distribution λt ∈ Λ to tomorrow’s income

distribution λt+1 ∈ Λ conditional on a bad state having occurred. We will define F : Λ → Λ to be
this map.

A state of our system at time t is a probability measure λt ∈ Λ. One way of summarising this
measure is its mean or average Eλtx :=

R
xdλt. The expectations, Eλt , are taken relative to the

information available at the start of period t. Tomorrow’s distribution of wealth is random from

today’s point of view, because it depends upon whether a good or a bad state occurred. Similarly,

tomorrow’s average wealth is random because it depends upon the state. We will let Eλtxt+1 denote

the expected value of the average wealth tomorrow, where expectations are taken relative to period

t’s state, from above we can write down the following relation for tomorrow’s expected average

wealth.

Eλtxt+1 = (1− α)y + β(1 + r)(1− α)Eλtxt(11)

−(1− α)
ψ(1 + r)

1 + rψ
(β(1 + r)− 1)

Z x̃

x

(x− x)dλt
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+(1− α)

Z k

x̃

φG− β(1 + r)k + (β − φ)(1 + r)(k − x)dλt

+(1− α)

Z ∞
k

φG− β(1 + r)k + (1− θ)(1− β(1 + r))(x− k)dλt.

When β = 1 no bad states occur and (11) describes a deterministic relationship between the average

of the current income distribution and its average next period.

We assume that the capital market is closed. The equilibrium of the capital market in period t

determines the rate of interest rt as a function of the current wealth distribution λt. The supply of

capital to the mutual fund comes from the subsistence individuals who invest and the very rich who

invest.

St(r) :=

Z x

0

xtdλt +

Z x̃

x

(1− ψ)(y + xt)

1 + rψ
dλt +

Z ∞
k

θ(xt)(xt − k)dλt(12)

The function St(r) increases in r.
9 As no individual will enter the capital market when it yields a

return less than the storage technology we must have St(r) = 0 for r + 1 < 1/β. However, as r + 1

approaches 1/β from above capital may still be in positive supply when individuals are risk neutral.

The demand for capital comes from the borrowers

Dt(r) :=

Z k

x̃

(k − xt)dλt.

If there is a positive mass of individuals that want to borrow,
R k
x̃
dλt > 0, then demand is a decreasing

function of r (as x̃ increases in r). When the rates of interest are low the demand will be positive

and Lemma 1 shows that when is r sufficiently high using the risky technology is less attractive than

investing in the mutual fund. At this point the demand for capital jumps to zero and the supply of

capital jumps up.

The capital market can be in two states: either there is a unique interest rate that equates

the demand and supply of capital, or there is autarky where there is zero demand for capital at

any interest rate that savers are willing to supply it. So, either there exists a unique interest rate

rt > (1/β)− 1 such that Dt(r) = St(r), or there is zero demand for capital at any interest rate such
that (1+ r)β > 1. It will prove useful to re-write the equation for St(r) = Dt(r) in the following way

Eλtxt =
ψ(1 + r)

1 + rψ

Z x̃

x

(x− x)dλt + k
Z ∞
x̃

dλt +

Z ∞
k

(1− θ(x))(x− k)dλt.(13)

The equations (9), (10) and (13) together with an initial position λ0 describe a stochastic

process for the wealth distribution λt. With probability 1 − β a current state λt ∈ Λ is mapped
9As x decreases in r, x̃ increases in r, ψ decreases in r, x̄ decreases in r and θ(x) increases in r.
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to a new wealth distribution f(λt) described by the map (9) and capital market equilibrium (13).

With probability β current state λt ∈ Λ is mapped to a new wealth distribution F (λt) described by
the map (10) and capital market equilibrium (13). The quadruple (λ0,β, f, F ) defines a stochastic

process on the state space Λ starting at the initial distribution λ0.

3. The Evolution of the Distribution with No Aggregate Risk

This section studies the dynamics of the system when β = 1. The Proposition below gives sufficient

conditions for the system to converge to a unique limiting distribution, that is, the long-run behaviour

is independent of the initial income distribution. The limiting interest rate is zero. At this limit,

however, there can be production inefficiency because there are individuals using the subsistence

technology. This arises because the existence of a unique limit is consistent with credit rationing

at zero interest rates. This result establishes an extension of the convergence result of Aghion and

Bolton (1997). In their model the interest rate falls to zero, at which every agent can borrow, and

the resultant linear Markov process converges to a unique ergodic distribution. In their paper it is

essential for there to be no credit-rationing at zero interest rates, because otherwise there is a non-

monotone map from current wealth to future bequests and the results of Hopenhayn and Prescott

(1992) do not apply. Proposition 1, below, shows that there is still convergence to a unique limiting

distribution, even if there is credit rationing at zero interest rates. Thus the presence of credit

rationing can be consistent with unique long-run behaviour. This contrasts with Piketty (1997) who

derives multiple ergodic distributions for income in a model with long-run credit rationing.

When the parameters of the model imply that some poor individuals are credit rationed at zero

interest rates, then it is possible that poor economies do not have a capital market at all. If no-one

is rich enough to satisfy the credit-rationing condition, then the demand for capital is zero at all

non-negative prices, although there are agents ready to supply capital at all non-negative prices.

Thus our model will generate cases where there is no capital market in the early periods of growth

of poor economies and that the capital market only comes into being when agents the economy are

sufficiently wealthy.

The nature of the convergence used in this paper is strict. We will measure the distance between

two income distributions using the strong topology rather than the weak topology. 10 11 If λ, λ0 are
10Aghion and Bolton (1997) and Piketty (1997) establish convergence in the weak topology, because they apply the

results of Hopenhayn and Prescott (1992). Sakuragawa and Mitsui (1999) study convergence in the strong topology.
11For descriptions of the strong and weak topology on distributions see Stokey and Lucas (1989) Chapters 11 and
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two income distributions in Λ we will denote the distance between these distributions as

kλ− λ0k := 2 sup
B∈B

|λ(B)− λ(B0)|.

The distance between two distributions is an upper bound on the difference between the proportion

of the population in any (Borel) set of incomes.12 The distance measure above can be used to define

open sets in the state space Λ, we will let L denote the Borel sigma-algebra generated by these open
sets.

The proof of the Proposition in this section is very different from the one in the next section,

but in fact they both rely on the coupling of stochastic processes. This simple and intuitive approach

to proving limit theorems for Markov processes is explained in Grimmett and Stirzaker (1982), for

example, and is the basis of much modern work on stochastic processes. The proof of Proposition

1 proceeds in two stages (as in Aghion and Bolton 1997). In the first stage the rate of interest

is shown to fall to zero in finite time and after this capital is in permanent excess supply. This

part of the proof requires assumptions, because otherwise for some initial conditions it is possible

that that the economy does not grow sufficiently quickly to drive interest rates to zero (this issue

is studied in Piketty 1997). For this part of the proof to go through it is necessary to ensure that

the expected returns to the investment project are sufficiently large for growth to be self-sustaining,

(1 − α)φG > k. In the second part of the proof there is a permanent excess supply of capital and

interest rates are always zero, so there are no aggregate changes in the dynamics and it is sufficient

to study the evolution of one individual and all her descendants (a dynasty). We will show that once

r = 0 there is a strictly positive probability, ω > 0, such that after n periods any two dynasties with

initial levels of wealth, x and x0 have both been mapped to the income level (1−α)y. This happens if
all their investment projects are initially successful, so both of the dynasties’ wealth levels converge

to close to the maximum feasible, then they both experience a sequence of unsuccessful projects

until they are both borrowers with an unsuccessful project. All borrowers with unsuccessful projects

are mapped to income levels (1 − α)y. When the dynasties have been simultaneously mapped to

the wealth level (1 − α)y the future distributions of wealth for these two dynasties are identical

(by the Markov structure). For any two individuals there is a probability of at most 1 − ω < 1

that their successors’ wealth levels do not have identical distributions after n periods. After mn

periods, therefore, there is a probability of at most (1− ω)m that their successors’ wealth levels do

12, for example. This also gives examples of sequences that converge in the weak topology but not the strong topology.
12This metric induces a complete topology on the state space Λ.
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not have identical distributions. It follows that any two individuals eventually have identical wealth

distributions, and that convergence is exponentially fast.

The Proposition below uses the notation x̃0 for x̃ when r = 0. There is no credit rationing at

the zero interest rate if x̃0 < (1−α)y, so all individuals are able to borrow. The proposition assumes
that x̃0 < (2 − α)(1 − α)y. Thus there can be credit rationing. This condition is sufficient for the

subsistence class to acquire enough savings in one life time to satisfy the credit rationing constraint.

It seems likely that an even weaker condition will work where it takes a finite number of periods to

leave the subsistence class at zero interest rates, but this requires a great deal of additional work.

Proposition 1 Suppose β = 1, (1−α)(2−α)y > x̃0, (1−α)φG > k, and (1−α)(φ2G+
y) > k then:

(1) If λ0,λ
0
0 ∈ Λ then kλt − λ0tk → 0, where λt (λ

0
t) is the state at time t of the process

starting in state λ0 (λ
0
0)

(2) rt = 0 for all t > ky
−1(1− α)−1.

Proof: See the Appendix.

4. The Evolution of the Distribution with Aggregate Risk

This section starts with a discussion of the short-run effects of aggregate uncertainty, which is then

summarized in Lemma 2. After these comparative statics there are two Propositions. These give

sufficient conditions for the stochastic process governing the income distribution to converge to unique

limiting behaviour. Proposition 2 considers the case where the aggregate risk in the model generates

substantial barriers to growth. It describes sufficient conditions for the long-run to be independent of

the initial distribution. This proposition requires that there is no credit rationing when r = 0, so the

capital market will always open. Proposition 3 shows that if the aggregate uncertainty is sufficiently

small, then the long-run behaviour of wealth is independent of the initial distribution even when

the economy can generate credit rationing at zero interest rates. Thus, for the present specification

of aggregate uncertainty, arbitrarily small amounts of uncertainty will ensure long-run behaviour

that is independent of the initial distribution. The section ends with an informal description of the

stationary behaviour of the income distribution in this model.

We will begin by presenting some short-run comparative-statics results. We will show that
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small amounts of aggregate risk have no effect on the interest rates in poor economies, although

risk increases the equilibrium interest rate in general. At a given state, λt, aggregate demand for

capital is independent of aggregate risk, because the amount of credit rationing, x̃, depends on the

idiosyncratic risk of projects not on the level of aggregate risk. (The idiosyncratic risk determines an

agent’s choice between projects not the aggregate risk.) However, the supply of capital, at a given

interest rate, does depend on the amount of aggregate uncertainty. Investors will supply less savings

to the mutual fund as risk increases, so the capital supply curve shifts inwards as risk rises while the

upward sloping demand curve stays fixed. Consequently, the equilibrium rate of interest cannot fall

in response to an increase in aggregate risk. An extreme case arises when the economy is poor and

the aggregate risk is small. In this case the subsistence class are the only suppliers of capital and are

unable to adjust their portfolio of assets optimally, because of credit rationing. The credit-rationed

individuals are rationed in their ability to take risks. The only opportunity they have to take risks

is in supplying assets to the mutual fund. They, therefore, supply all their savings to this fund and

will continue to do so if the amount of aggregate risk changes a little. In consequence the supply

of capital to the mutual fund is independent of the level of aggregate risk when there are no rich

individuals. In poor economies the credit constraint (and the implicit constraint on risk bearing this

imposes) drives an equilibrium in the asset market where the poor savers are willing to absorb any

small changes in aggregate asset-market risk. Thus trickle-up growth is still strong in the presence

of aggregate risk. The final part of the Lemma shows that trickle down growth (when savers are

generally rich while borrowers are poor) can be strengthened by aggregate risk. It is possible to find

states where aggregate risk is beneficial for income growth. In sufficiently rich economies, where

there is enough capital for every low-income individual, aggregate uncertainty raises income growth.

When there is no credit rationing the rich supply the funds for the poor borrowers, an increase

in aggregate risk leads the rich to demand a higher rate of interest on these loans. Consequently,

aggregate uncertainty (when there is no credit rationing) leads to a re-distribution of wealth from

borrowers to savers. The preceding discussion is made precise in the following Lemma.

Lemma 2 Fix a state λt ∈ Λ.

(1) The equilibrium interest rate, r, does not increase in β. If
R∞
k
dλt = 0, then there

exists a β̄ < 1, such that the equilibrium interest rate is independent of β, for β ∈ [β̄, 1].

(2) If
R∞
k
dλt = 0 and φ(1 − α)G ≥ k, then ∆t := Eλtxt+1 − Eλtxt > (1 − α)y when

β ∈ [β̄, 1] and ∆t is increasing in β. Also, ∆t is increasing in β if λt has a continuous
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density and β → φ.

(3) If
R x̃
0
dλt = 0 and λt has a continuous density, then an increase in β decreases Eλtxt+1

if Eλtxt is sufficiently high.

Proof: See the Appendix.

It is difficult to describe the effect of aggregate risk on the long-run behaviour, because the

long-run behaviour of the model is described by a distribution over a space of measures, Λ. We will

show that the limiting behaviour of the income distribution λt is independent of the initial income

distribution and that the rate of convergence to this limiting behaviour is exponential. Thus, the

long-run behaviour of the income distribution is unaffected by the initial state of the system. That

is not to say, however, that the income distribution or the rate of interest becomes constant as time

passes. This could never be the case, as the aggregate uncertainty in the model continues to shock

the wealth distribution. Instead there is a stationary distribution of the states λt ∈ Λ and each
realisation of the stochastic process converges exponentially fast to this stationary distribution. The

convergence of the states λt to a stationary distribution is not sufficient, however, to show that

individuals within the economy have equal chances of being rich and being poor. In general, it is

possible for the states λt to converge to behaviour that is independent of the initial distribution, but

for individual’s incomes within the distribution to depend on the initial condition. (For example, if

the individual with the lowest income always had the lowest income.) Our proof will also show that

not only will the long-run behaviour of λ be independent of the initial state, but so will individuals’

incomes within the distribution be independent of their initial position.

The proofs of convergence will again use the coupling of stochastic processes. The first step in the

proof of Proposition 2 is to show that there is a finite number N , such that if there are N consecutive

bad states the entire income distribution is concentrated at the point (1− α)y. All individuals will

have wealth less than k after a finite number of bad states, because successive failures of the capital

intensive technology will eventually destroy the richest generation’s asset stock. Because the capital

markets are always open, the richest individuals borrow and the poorest lend if all individuals have

wealth less than k. In bad states the borrowers always leave a bequest of (1 − α)y. We show that

individuals with inherited wealth (1−α)y use the subsistence technology and invest all of their wealth
in the mutual fund, so in the bad state their savings are constantly being destroyed and they can

never leave a bequest of more than (1− α)y. The borrowers also end up at the lowest wealth after
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one bad state, thus the stock of people at the lowest inherited wealth level grows and includes the

entire population in a finite number of periods. Once this is established, for any two initial income

distributions there is a probability (1− β)2N (the probability that they both have N successive bad

states) that after N periods they are both concentrated at (1−α)y. Once they are both concentrated
at (1−α)y the future evolution of these distributions must be identical because they have both started
from the same point. This implies there is a probability of at most 1−(1−β)2N , that after N periods

the future evolution of the income distribution is not identical. After MN periods, therefore, there

is at most a probability [1− (1− β)2N ]M that the distributions of the income distributions are not

identical. As M tends to infinity there is a zero probability that the income distributions are not

identical. This argument shows that, independent of the initial distribution, ultimately all income

distributions must be evolving in an identical fashion and that the rate of convergence is exponential.

Three assumptions are necessary for this argument to work. The first is that bad states do not occur

with probability greater than one half and that x̃0 < (1 − α)y, which ensures the capital market

continues to open no matter how poor the economy is. The second is that the bequest of an individual

with one period’s subsistence income is insufficient to finance a capital purchase. The final condition

in the Proposition, (14), ensures that all individuals with inherited wealth (1 − α)y put all their

inheritance in the mutual fund.

Conditional on two initial wealth distributions, λ0 and λ00 say, the state of the system at time t

is a random variable, denoted λt or λ
0
t, that can take a finite number of values. The values taken by

these random variables are determined by the sequence of good and bad states that actually occur.

In the Proposition we will use the expression E0λt, respectively E0λ
0
t, to denote expectations of λt,

λ0t, taken over the values of the stochastic process governing good and bad states, but conditional

on the initial state λ0, λ
0
0. Thus E0kλt − λ0tk is the expected distance (using the strong topology)

between the states at time t for two different initial conditions.

Proposition 2 Assume that 1 > β > 1/2, x̃0 < (1− α)y < k and

k − y(1− α)

β − (1− α)(1− β)(1− γ)
<

φG− πB

φ− π
.(14)

Let λt be the state of the stochastic process (λ0,β, f, F ) at time t and let λ
0
t be the state

of the stochastic process (λ00,β, f, F ) at time t, for λ0,λ00 ∈ Λ. Then E0kλt − λ0tk→ 0.

Proof: See the Appendix.
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The proof of this proposition shows that at some time the income distribution is concentrated

at (1 − α)y, but this does not mean that the income distribution continues to be a point mass.

There are two mechanisms whereby the point mass is spread out, the first arises because of the

random returns to the high technology. Some individuals will have successful projects and others

will not, although they have exactly the same wealth. The second arises because of credit rationing.

Equilibrium in the capital market can force individuals with identical incomes to be on each side

of the capital market. This again spreads out the future income distribution for individuals with

identical current income. These two mechanisms treat identical individuals identically, so the way in

which the income distribution gets spread out means that all individuals do have equal probability

of being at different points in the wealth distribution. This is why we claimed earlier that not only

are the states, λt, independent of the initial position in the long run, but so too is an individual’s

relative location in the income distribution independent of her initial location.

Proposition 3 considers the model with an arbitrarily small amount of aggregate risk. It again

shows that the long-run behaviour of the income distribution is independent of the initial income

distribution. The intuition for this proposition is as follows. If the rate of interest is strictly bounded

away from zero and the amount of aggregate risk is small then all individuals will put all of their

assets into the mutual fund. So, one bad state will eliminate all asset holdings by all individuals and

drive everyone in the economy to the wealth level (1− α)y. However, this argument will only work

if the rate of interest is sufficiently high, that is, if there is a significant under supply of capital. The

proof of the Proposition is again based on coupling. It constructs a sequence of states, some bad

and one good, that steers two arbitrary initial states to a position where capital is under supplied.

Then, the final bad state occurs and both economies are simultaneously mapped to the same wealth

distribution. The additional assumption (15) is made to guarantee the existence of a state where

capital is under supplied. This assumption will fail to hold when G is very large or if k is small

relative to y. Of course, if (15) fails and capital is always in excess supply then there is no real

problem of growth, so this assumption is actually makes it harder for economies to grow.

Proposition 3 Assume either (a) x̃0 < (1− α)y, or (b) (1− α)(2− α)y > x̃0 and

[k − (1− α)y(α2 − 3α+ 3)]2 > G(2− α)(1− α)2y.(15)

If λ0,λ
0
0 ∈ Λ are two different initial income distributions and λt and λ0t are the states of
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these processes at time t. Then there exists a β < 1 such that for all β ∈ (β, 1)

E0kλt − λ0tk < [1− (1− β)2]t, ∀λ0,λ00 ∈ Λ.

Proof : See the Appendix.

We have shown that the initial conditions do not affect the long-run behaviour of the model,

but so far have said little about what actually happens in the long run. In particular does the

economy grow, or is it always stuck in a subsistence state? The proofs above show that eventually

the economy must visit a state where the income distribution is concentrated at (1−α)y, let us call

this the primal state. As all economies must eventually visit this primal state, economies will only

progress beyond subsistence in the long run if they are able to grow away from the primal state.

Suppose that the economy has experienced a sequence of bad states, which have driven it to the

primal state. Also suppose that the bad states are sufficiently improbable for there to be many good

states following this. In general, the conditions given in Proposition 2 do not prevent the economy

from getting stuck at low wealth, high interest rates and few people using the low technology after

visiting the primal state. Conditions resembling those in Proposition 1, or 3, are necessary if the

wealth in the economy is to grow, so that there is a net increase in wealth in the economy. The

underlying risk makes this growth slower, because there are higher interest rates and fewer savers

investing in the asset market (see Lemma 2). But more risk will not affect the net increase in wealth

in good states. The underlying risk also changes the shape of the wealth distribution. After many

good states it makes the rich richer, because they can always get a positive rate of return on their

savings (whereas r = 0 if there is no risk) and it makes the subsistence types richer as there is a

positive rate of interest in the long run. The middle classes, however, are made poorer. Ultimately,

another sequence of bad states occurs and the economy is driven back to the primal state and the

whole process begins again.

5. Conclusions

We can draw the following conclusions from the above: The persistence of credit rationing is quite

compatible with ergodic behaviour of the income distribution. Aggregate risk in dynamic models

of the income distribution impacts on agents capital supply decisions and thereby has the potential

to slow the rate of growth of incomes. A small amount of aggregate risk is quite compatible with

ergodic growth and can make ergodic growth more likely.
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Appendix

Proof of Lemma 1

From the text an individual’s expected utility from the subsistence technology (and an optimal

portfolio) is β(y + x)γ(1 + r)γ(1 + rψ)1−γ , when x > x. (When x ∈ [0, x] this over estimates the
utility obtained from using the subsistence technology, because these individuals are constrained in

their portfolio decisions.)

Consider individuals with 0 ≤ x ≤ k. Their expected utility from borrowing is φ[G+ y + (1 +

r)(x − k)]γ + (1 − φ)yγ . For all x ∈ [0, k] a sufficient condition for borrowing to be better than
subsistence is

(A.1) φ[G+ y + (1 + r)(x− k)]γ ≥ β(1 + rψ)

µ
(y + k)(1 + r)

1 + rψ

¶γ
, x ∈ [0, k].
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Raise both sides to the power 1/γ, then the left and the right of (A.1) are linear functions of x, and

the slope of the function on the left is less than the slope of the function on the right (as φ < β and

ψ > 0). A necessary and sufficient condition for (A.1) is, therefore, found by setting x = k in (A.1).

Some rearranging of (A.1) with x = k gives the condition

φ1/γ(G+ y) ≥ β(y + x)(1 + r)(β + (1− β)ψγ)
1−γ
γ .

As ψ, γ,β ∈ [0, 1] the condition (7) is sufficient for this.

Now consider individuals with k < x < k + y(1 − ψ)/ψ(1 + r). If these individuals use the

risky technology and do not invest in the capital market (θ = 0) they have the expected utility

φ(G+ y + x− k)γ + (1− φ)(y + x− k)γ . Their expected utility from the subsistence technology is

given above, thus a sufficient condition for these individuals to use the risky technology is

φ(G+ y + x− k)γ ≥ β(1 + rψ)

µ
(y + k)(1 + r)

1 + rψ

¶γ
, x ∈ [k, k + y 1− ψ

ψ(1 + r)
].

A similar argument to the one used above now applies. Raise both sides to the power 1/γ and then

compare the slopes. A sufficient condition for the above is that it holds when x = k+y(1−ψ)/ψ(1+r).
Using the fact that β(1 + rψ) < 1 we get the sufficient condition (8).

Now consider individuals with x > k + y(1− ψ)/ψ(1 + r). A feasible portfolio policy for these

individuals is to choose θ(x − k) = (y + x − k)(1 − ψ)/(1 + rψ). The expected payoff from such a

portfolio is

φ

·
G+ (y + x− k) 1 + r

1 + rψ

¸γ
+ (y + x− k)γ

µ
1 + r

1 + rψ

¶γ
[β − φ+ (1− β)ψγ ].

As (1− β)ψγ = rβψ, this expression is greater than the expected payoff from using the subsistence

technology if and only if

φ

β(1 + rψ)

·
G

µ
1 + rψ

1 + r

¶
+ y + x− k

¸γ
+

β − φ+ rβψ

β(1 + rψ)
(y + x− k)γ ≥ (y + x)γ .

This holds if and only if an individual with constant relative risk aversion and initial wealth y + x

wants to take a gamble that costs k and pays out G(1 + rψ)/(1 + r) with probability φ/β(1 + rψ).

All individuals with wealth y + x ≥ k will take this constant gamble, if and only if the individual
with the lowest wealth y + x = k does. That is, if

φGγ ≥ β(1 + rψ)1−γ(1 + r)γkγ .

As β(1 + rψ) < 1 a sufficient condition for this is φ1/γG > βk(1 + r). As φ1/γ < β(1 + r) this is

implied by the condition (7). Q.E.D.
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Proof of Proposition 1

If β = 1 then x = x̃ and θ(x) = 1 for all x. The condition for equilibrium in the capital market (13)

is

Eλtxt = k

Z ∞
x̃

dλt.

This equality can only be satisfied if Eλtxt ≤ k. (If the above fails, then the supply of capital exceeds
the demand at any positive interest rate and r = 0.) When the capital market clears we can use (13)

to substitute for Eλtxt into (11). Then using the fact that β = 1 gives

Eλtxt+1 −Eλtxt = (1− α)[y + (1 + r)(1− φ)

Z k

x̃

(k − x)dλt] + [(1− α)φG− k]
Z ∞
x̃

dλt.

β = 1 implies that tomorrow’s average income is known today, Eλt+1xt+1 = Eλtxt+1. The above,

therefore, implies that average income grows by at least (1 − α)y each period that capital markets

clear. There can be at most T = ky−1(1− α)−1 successive periods when the capital market clears,

average income grows by (1 − α)y and Eλtxt ≤ k. So, there is a finite time period t when there is
excess supply of capital, rt = 0 and Eλtxt > k

R∞
x̃0
dλt. Period t+1’s average wealth is described by

(11) with r = 0

Eλtxt+1 = (1− α)

Ã
y +Etxt + (1− φ)

Z k

x̃0

(k − x)dλt +
Z ∞
x̃0

φG− kdλt
!
.

Capital is in excess supply in period t+ 1 if Eλtxt+1 > k
R∞
x̃0
dλt+1. We will give an inductive proof

to show that if capital is in excess supply in period t it must also be in excess supply in period t+1.

Substituting the above expression for Eλtxt+1 into the condition for an excess supply of capital

in period t+ 1 gives

k

Z ∞
x̃0

dλt+1 < (1− α)

Ã
y +Etxt + (1− φ)

Z k

x̃0

(k − x)dλt +
Z ∞
x̃0

(φG− k)dλt
!
.

As Eλtxt > k
R∞
x̃0
dλt in period t a sufficient condition for this is

k

Z ∞
x̃0

dλt+1 < (1− α)

Ã
y + (1− φ)

Z k

x̃0

(k − x)dλt +
Z ∞
x̃0

φGdλt

!
.

As
R k
x̃0
(k − x)dλt ≥ 0 the following is a sufficient condition for this inequality.

k < (1− α)y + (1− α)φG

Z ∞
x̃0

dλt

The assumption that (2− α)(1− α)y > x̃0 implies that the only individuals born with inheritances

in the interval [(1 − α)y, x̃0] are the daughters of individuals with failing projects, so
R x̃0
0
dλt ≤
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1 − φ. This gives a lower bound on
R∞
x̃0
dλt. Combining all of this we get the sufficient condition

k < (1− α)[y + φ2]G, which is true by assertion.

Once r = 0 the income distribution evolves according to the linear map

xt+1 = (1− α)


y + x, xt < x̃0
G+ y + xt − k, successful, x̃0 ≤ xt < k
y, fails, x̃0 ≤ xt < k
G+ y + xt − k, successful, k ≤ xt
y + xt − k, fails k ≤ xt

.

There exists a finite N such that N successive failures of the technology drives a dynasty with wealth

(1−α)(G+y−k)/α to an endowment x ∈ (x̃0, k). This is because successive failures eventually drive
a dynasty’s wealth below x̃0 and the assumption on x̃0 and k imply that individuals with wealth

in the interval [(1 − α)y, x̃0) are borrowers next period. For ² > 0 sufficiently small, N successive

failures of the technology drives a dynasty with initial wealth within ² of (1−α)(G+ y− k)/α to an
endowment in (x̃0, k).

Consider a dynasty with initial income x ∈ [0,X]. It takes any dynasty only one lifetime to
become a borrower if it is on a subsistence income, so after M + 1 successes the dynasty’s current

generation has an endowment xM which satisfies.

|xM − 1− α

α
(G+ y − k)| ≤ (1− α)M |(1− α)(x+ y)− 1− α

α
(G+ y − k)|

(Recall that (1−α)(x+ y) is the bequest after one period of subsistence.) There exists a finite value

of M so that the right of the above is less than ² for all x ∈ [0,X]. Thus for a finite M and a finite

N (from the last paragraph) a sequence of M +1 successes and then N failures of technology drives

a dynasty with initial wealth x to an endowment in the interval (x̃0, k). At this point the dynasty

is a borrower and a further failure of the technology drives it to an endowment (1− α)y. There is a

probability ζ := φM+1(1−φ)N+1 that in anyM+N+2 periods the dynasty is driven to endowment

(1− α)y.

Consider two dynasties with initial wealth x and x0. Let µtx ∈ Λ (respectively µtx0 ∈ Λ) denote
the distribution of the dynasty’s endowment at time t when it had initial wealth x (respectively x0).

Then for t =M +N + 2 there is a probability of at least ζ2 that both dynasties have been mapped

to endowment level (1− α)y in period t. Once this has happened the Markov property implies that

the future distributions of these dynasty’s wealth are identical. Thus the two probability measures

in all periods t ≥M +N + 2 can only differ with probability at most 1− ζ2.
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kµtx − µtx0k ≤ (1− ζ2)1 ∀t ≥M +N + 2, x, x0 ∈ [0,X]

If t ≥ d(M +N +2), then there are at least d independent opportunities for the two processes to be

driven to the endowments (1 − α)y. By iterating this idea we find that, whatever the initial state,

the Markov process converges exponentially to a unique stationary distribution.

kµtx − µtx0k ≤ (1− ζ2)d1 ∀t ≥ d(M +N + 2) x, x0 ∈ [0,X]

Q.E.D.

Proof of Lemma 2

Part (1): The proof that r does not increase in β follows from the discussion, so it remains to prove

the rest of the Lemma. Since limβ→1 x =∞ and x̃ ≤ k is independent of β, for all states λt there is
an interval β̄ ≤ β ≤ 1 with strictly positive Lebesgue measure such that x ≥ k ≥ x̃. When x > x̃
and

R∞
k
dλt = 0 the condition for credit market equilibrium is

Eλtxt = k

Z ∞
x̃

dλt.

Both sides of this are independent of β, so the equilibrium value of r is too.

Part (2): We can use (13) to substitute out Eλtxt in (11). When λt([k,∞)) = 0 this gives

Eλtxt+1 −Eλtxt = (1− α)y − αψ(1 + r)

1 + rψ

Z x̃

x

(x− x)dλt

+

Z k

x̃

(1− α)φG− k + (β − φ)(1 + r)(1− α)(k − x)dλt.

When β ∈ [β, 1] (and x̃ < x) the second term on the right vanishes. As (1− α)Gφ > k, the right is

strictly larger than (1 − α)y and increases in β, as r and x̃ are constant. If λt([k,∞)) = 0 capital
market equilibrium implies.

αψ(1 + r)

1 + rψ

Z x̃

x

(x− x)dλt = α

Ã
Eλtxt − k

Z k

x̃

dλt

!
.

If this is substituted into (11) when λt([k,∞)) = 0 we get
Eλtxt+1
1− α

= y +Eλtxt +

Z k

x̃

φG− k + (β − φ)(1 + r)(k − x)dλt.

λt has a continuous density function (say f(.)), so we can differentiate this with respect to β.

∂Etxt+1
∂β

= (1− α)

Z k

x̃

(k − x)
µ
1 + r + (β − φ)

∂r

∂β

¶
dλt

− ∂r

∂β

∂x̃

∂r
(1− α)(φG− k + (1 + r)(β − φ)(k − x̃))f(x̃)
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As ∂r
∂β ≤ 0 and ∂x̃

∂r > 0 the second term on the right is positive. The whole of the right is positive

provided the term in the integral is positive, which will be true for β sufficiently close to φ.

Part (3): There is no credit rationing so x̃ ≤ (1− α)y and (13) becomes

Eλtxt = k +

Z ∞
k

(1− θ(x))(x− k)dλt.

By differentiating this with respect to β we get

(A.2)
∂r

∂β
= −

R∞
k

∂θ(x)
∂β (x− k)dλtR∞

k
∂θ(x)
∂r (x− k)dλt

.

There is no credit rationing, so (11) can be re-written as

Eλtxt+1
1− α

= y + φG− φ

Z k

0

(1 + r)(k − x)dλt +
Z ∞
k

(x− k)(1− θ + θβ(1 + r))dλt

= y + φG+

Z ∞
k

(x− k)dλt + [(β − φ)(1 + r)− 1]
Z k

0

(k − x)dλt.

(Capital market equilibrium implies
R k
0
(k− x)dλt =

R∞
k

θ(x− k)dλt and this gives the second line.)
When λt has a continuous density the above can be differentiated with respect to β.

∂Etxt+1
∂β

= (1− α)

Z k

0

(k − x)dλt
·
1 + r + (β − φ)

∂r

∂β

¸
When there is no credit rationing the effect of β on growth depends on the sign of 1+ r+(β−φ) ∂r∂β .

The derivative ∂r
∂β is negative, as an increase in β shifts capital supply outwards, so the effect is

ambiguous.

By the first order conditions as x − k → ∞ so θ(x) → (1 − ψ)/(1 + rψ). For x large we can

approximate θ(x) by (1 − ψ)/(1 + rψ) which is independent of x. We can, therefore, approximate

∂r
∂β , using (A.2), by

∂r

∂β
≈ −

∂θ
∂β

∂θ
∂r

, where θ =
1− ψ

1 + rψ
.

Some elementary calculus gives

∂r

∂β
(β − φ) + 1 + r ≈ −r(1 + r)

β(1− β)[1 + r(1− (1− γ)ψ)]
(β − φ) + 1 + r

=
(1 + r){β(1− β) + rφ− rβ[β + (1− β)(1− γ)ψ]}

β(1− β){1 + r[1− ψ(1− γ)]} .

This is negative when β is close to unity. Q.E.D.

Proof of Proposition 2
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Let λ be an initial state. We will first show that there exists a finite integer N , independent of λ

such that N consecutive bad states concentrates the income distribution fN (λ) at a point mass at

(1− α)y.

Given (1 − α)y < k there exists a finite N 0 such that no individual has wealth greater than k

after N 0 consecutive bad states. By (9) no subsistence individual can move from xt ≤ k to xt+1 > k
in a bad state when

(1− α)
ψ(1 + r)

1 + rψ
(y + k) < k.

(A sufficient condition for this inequality is (1 − α)y < k.) It is sufficient to show that after N 0

consecutive bad states all individuals with income greater than k are mapped to incomes less than k.

For xt > k the bequest in bad states is xt+1 = (1−α)(y+(1− θ(xt))(xt− k)) ≤ (1−α)(y− k+xt).
By iterating we get xN 0 ≤ (y− k)(1− (1−α)N

0
)(1−α)α−1+(1−α)N

0
x0. A sufficient condition for

no individual to have wealth greater than k after N 0 bad states is

k > (y − k)(1− (1− α)N
0
)(1− α)α−1 + (1− α)N

0
X,

for N 0 finite and a sufficient condition for this is k > (1− α)y.

When no individual has wealth greater than k there are a finite number, N 00, of consecutive bad

states before the income distribution is concentrated at (1− α)y. The first step is to show that all

individuals with the lowest wealth put all their savings into the mutual fund, x > (1 − α)y. From

(5) an equivalent condition for this is 1 > ψ(1 + (1 + r)(1 − α)), and as the right is decreasing in

r this describes a lower bound on the interest rate. The value x̃ is adjusted to equate demand and

supply of capital to the mutual fund. x̃ ≥ (1−α)y when there are no individuals with x > k, because
otherwise every individual with x ∈ [0, k) wishes to borrow and there is no supply of capital. But
x̃ ≥ (1 − α)y implies that individuals with x = (1 − α)y do not satisfy the strict credit-rationing

condition (2).

φ[G+ y + (1 + r)(y(1− α)− k)]γ + (1− φ)yγ ≤ π[B + y + (1 + r)(y(1− α)− k)]γ + (1− π)yγ

This defines another lower bound on the interest rate. We will show that if r satisfies this second

lower bound then x > (1−α)y. By monotonicity, it is sufficient to show that 1 = ψ(1+(1+r)(1−α))
implies

G+ y + (1 + r)(y(1− α)− k) >
µ
π

φ
[B + y + (1 + r)(y(1− α)− k)]γ + (1− π

φ
)yγ
¶1/γ

.
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It is, therefore, sufficient to show that

1 = ψ(1 + (1 + r)(1− α)) =⇒ G+ (1 + r)(y(1− α)− k) > π

φ
[B + (1 + r)(y(1− α)− k)],

or

(A.3) 1 = ψ(1 + (1 + r)(1− α)) =⇒ (1 + r)(k − y(1− α)) <
φG− πB

φ− π
.

The interest rate that solves 1+ (1−α)(1+ r) = ψ−1 = [rβ/(1−β)]1/(1−γ) is smaller than (β− (1−
α)(1− β)(1− γ))−1 − 1. (The convex function [rβ/(1− β)]1/(1−γ) is bounded below by its tangent

at r = (1−β)/β, so the value of r where this tangent intersects 1+ (1−α)(1+ r) is an upper bound

on the point of intersection of 1 + (1− α)(1 + r) and [rβ/(1− β)]1/(1−γ).) So, a sufficient condition

for (A.3) is stated in the Proposition.

When everyone has wealth less than k and x > (1− α)y, then there are a finite number of bad

states before the income distribution is concentrated at (1 − α)y. As x > (1 − α)y all individuals

with wealth in [0, x] and [x̃, k] are mapped to (1 − α)y in bad states, by (9). Once at wealth level

(1 − α)y they stay there in bad states. To prove the final step it is sufficient to show that there

are only a finite number of periods when x̃ > (1 − α)y, because when (1 − α)y = x̃ a bad state

implies the bequest distribution is concentrated at (1 − α)y. Suppose that x̃ > (1 − α)y, and all

the population have inheritances in the interval [(1 − α)y, k]. For a given supply, S, of capital the

proportion of borrowers ω is minimized by assuming that all borrowers have wealth (1 − α)y so

ω ≥ S[k− (1−α)y]−1. The supply of capital S is minimized by assuming that all savers have wealth
(1− α)y, so S ≥ (1− ω)(1− α)y. Eliminating S from these inequalities gives a lower bound on the

number of borrowers in any period of ω ≥ (1−α)y/k. In successive bad states all borrowers stay at

(1− α)y, so there can be at most k/(1 − α)y bad states before all borrowers have been mapped to

(1− α)y.

From above, there exists a finite number, N say, such that after N bad states any income

distribution is mapped to Dirac distribution at (1 − α)y. The probability of there not being N

consecutive bad states is 1− (1 − β)N , so in a sequence of t > nN periods the probability of there

not being N consecutive bad states is at most [1− (1− β)N ]n. The probability that {λt} and {λ0t}
do not have N periods where they both have bad states is at least [1− (1− β)2N ]n. Thus

E0kλt − λtk ≤ [1− (1− β)2N ]n1, t > Nn;

because k.k ≤ 1 and once both process have had N consecutive bad states in the same periods
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kλt − λ0tk = 0. Letting t (and therefore n) tend to infinity proves the proposition. Q.E.D.

Proof of Proposition 3

Again the proof is by coupling, we will show that there exists a fixed finite sequence of states that

maps all income distributions to a point mass at (1−α)y. Then, the proof is the same as that given

in Proposition 2.

By an identical argument to that used in the proof of Proposition 2 there exists a finite N , such

that N successive bad states at any λ ∈ Λ ensures that no individual has a wealth greater than k.

(a) Suppose that x̃0 < (1−α)y, by continuity we can choose an interest rate r0 sufficiently close

to zero such that x̃r0 < (1−α)y, (we use x̃r0 to denote the value of x̃ at the interest rate r
0). Choose

β sufficiently close to unity such that x > k (defined in (5)) for all β > β and r > r0. Then, the

capital market always opens and as x̃ > (1−α)y so r > r0. Further, all savers put all of their savings
in the mutual fund (because no one has wealth greater than k and everyone puts all of their savings

into the capital market (x̃ ≥ (1 − α)y implies r > r0)), so one more bad state maps the income

distribution to a point mass at (1− α)y.

(b) Choose an interest rate r0 sufficiently close to zero such that x̃r0 < (2−α)(1−α)y. For this

value r0 choose β sufficiently close to unity such that: (i) x > k for all β > β and r > r0, (ii) any

type with wealth greater than k puts all their assets in the mutual fund for all β > β and r > r0.

Suppose there have been N +2 successive bad states, so at least two bad states have occurred where

no player has a wealth greater than k. We will show that one good state and then one bad state will

map the income distribution to a point mass at (1− α)y.

If the capital market is not open after theseN+2 bad states, then all players put their inheritance

in the storage technology and everyone’s bequest is in the interval [(1 − α)y, x̃0]. The evolution of

wealth is independent of which state occurs. In the second period the lowest wealth is at least

(2 − α)(1 − α)y and the highest wealth is at most (1 − α)(y + x̃0). The capital market will open

and the equilibrium rate of interest ensures x̃ > (2 − α)(1 − α)y (otherwise there is zero supply of

capital). This implies that r > r0 and all savers put all of their bequests in the risky asset. If a bad

state occurs now, the income distribution is mapped to a point mass at (1− α)y.

If the capital market does open after N + 2 bad states, then there are some individuals with

sufficient wealth to satisfy the credit rationing constraint. In the previous period it could not have
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been the case that the bad state mapped everyone to (1− α)y, so in the previous period r ≤ r0 and
x̃ ∈ (x̃0, x̃r0 ]. In the current period the supply and demand of capital are equated. Let µ < 1 denote
the proportion of individuals who are lenders; we will derive a bound for µ. The maximum supply of

capital is µx̃, because then the lenders lend all of the maximum feasible endowment. The minimum

demand for capital occurs if all borrowers have a large endowment. The borrowers this period were

subsistence types last period, so the maximum endowment a borrower can have is (1− α)(x̃r0 + y).

Thus the minimum demand for capital is (1 − µ)[k − (1 − α)(x̃r0 + y)]. As the minimum demand

must be less than the maximum supply

1− µ < x̃

k + x̃− (1− α)(x̃r0 + y)
.

Now a good state occurs and there are 3 groups: (1) φ(1 − µ) daughters of successful projects
with wealth at least (1 − α)[G + y − (1 + r0)[k − (1 − α)(x̃ + y)]]. (2) (1 − φ)(1 − µ) daughters of
unsuccessful projects with wealth (1−α)y. (3) µ children of subsistence types with wealth no greater
than (1− α)(y + x̃r0(1 + r

0)).

We will assume that the market clearing interest rate after the good state is such that r ≤ r0

and derive a contradiction, thereby showing that r > r0. If r ≤ r0, then all of the third class will
borrow x̃ ≤ x̃r0 < (2−α)(1−α)y. They will demand at least µ(k− (1−α)(y+ x̃r0(1+ r

0))) capital.

The supply of capital comes from the very poor and the very rich. This is at most

(1− µ) {(1− φ)(1− α)y + φ{(1− α)[G+ y − (1 + r0)[k − (1− α)(x̃+ y)]]− k}} .

By using the fact that r0 can be chosen to make r arbitrarily close to zero and x̃, x̃r0 arbitrarily close

to x̃0, and the fact that the greatest feasible supply is larger than the least feasible demand we can

get an approximate lower bound on 1− µ.

1− µ ≥ k − (1− α)(y + x̃0)

(1− φ(1− α))[k − (1− α)(y + x̃0)] + φ[(1− α)G− k] + (1− α)y

We have a contradiction if this lower bound on 1−µ is greater than the above upper bound on 1−µ
above. This occurs iff

(k − (1− α)(x̃0 + y))
2 > x̃0(1− α)[y + φG− φ

1− α
k − φ(k − (1− α)(y + x̃0))].

The RHS of the above is a linear function of φ, when φ = 1 and when φ = 0 it gives:

k − (1− α)y

G
>

(1− α)x̃0
k + αx̃0 − (1− α)y

,

(k − (1− α)(x̃0 + y))
2 > x̃0(1− α)y.
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By applying the upper bound on x̃0 assumed in the Proposition we get the following sufficient

condition for a contradiction.

(k − (1− α)y)(k − (1− α)3y) > G(2− α)(1− α)2y

(k − (1− α)y(α2 − 3α+ 3))2 > x̃0(1− α)2(2− α)y.

A sufficient condition for these two is (15).

Thus in the period where a bad state occurs it must be the case that r > r0 and all savers are

putting all of their capital into the mutual fund. The bad state will then drive all individuals in the

economy to wealth level (1− α)y. Q.E.D.
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