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1.  Introduction 

"Reputation effects" arise when a player in a dynamic game is able to exploit some uncertainty that 

other players have concerning her preferences.  There may be some probability that the player is of 
a type which would play in a particular way independently of the strategies of the other players.  If, 

however, the player is not of this type, she might nevertheless wish to commit herself to playing in 
this way, because by mimicking the strategy of this type, the player can build up a "reputation" for 

following the type's strategy, even if the initial probability of the type is very small.   

We shall consider two-player repeated games with no discounting, perturbed so that one of 

the players  may be an automaton committed to a particular stage-game action.  For all possible 
stage games and for each such automaton, we shall calculate a lower bound on the set of Nash 

equilibrium payoffs for this player, and thus we shall be able to describe the benefit of acquiring a 
reputation in any given stage game.  Moreover we show that this bound is the best available.  We 

allow players to acquire reputations for playing mixed actions in the stage game, and we generalise 
our results to account for games where there are non-negligible probabilities for the commitment 

type.  The bounds we give are robust to the existence of other types.  Finally the bound is shown to 
apply also in the case of two-sided incomplete information.  

Our results extend those of Schmidt (1993), 2  who considers the effects of building a 
reputation for following the strategy of an automaton which plays the action that minmaxes the 

opponent.  His analysis builds on that of Fudenberg & Levine (1989, 1992) who considered games 
where a single long-run player faces a sequence of short-lived (one period) opponents.  Their key 

idea is that by mimicking the automaton action, the long-run player can eventually "convince" the 
short-run opponents that this action will be played in the next period, so the latter will play a best 

response.  A patient long-run player will thus receive approximately the payoff she would get from 
public commitment to the automaton action.  The payoffs from adopting such a strategy must 

provide a lower bound on any Nash equilibrium payoff.  Schmidt demonstrates that these results 
can be extended to the case of a long-run opponent when the automaton plays the action which 

minmaxes the opponent. 

Schmidt shows that if the automaton which always minmaxes the opponent has positive 

prior probability, then as the first player's discount factor converges to one (holding the opponent's 
discount factor fixed), so her Nash equilibrium average payoffs will be bounded below by an 

amount converging to the payoff she would get from committing to this action in the stage game.  In 
games of "conflicting interests" this is shown to lead to a powerful lower bound: a game is of 

                                                 
2 We originally obtained our results independently of this paper though the current version of our paper has 
benefitted considerably from our reading of Schmidt's paper. 
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conflicting interests if the action that one player, say player 1, would most  like to commit to in the 
stage game3, simultaneously holds the opponent, player 2, down to his minmax payoff.  In such a 

game the lower bound associated with the minmaxing automaton will equal the best commitment 
payoff.  Schmidt's results leave open the question of what lower bounds can be furnished from the 

possibility of mimicking automata playing non-minmax strategies, and whether these lower bounds 
may be better in games not of conflicting interests; or putting it differently, what is the best lower 

bound in an arbitrary repeated game?  This is the question we address. 

In Proposition 1 we give a lower bound derived from an arbitrary automaton action in any  

stage game, coinciding with Schmidt's bound when the automaton is a type playing the action which 
minmaxes the opponent.  We also show how the bound is defined when the prior probability of the 

commitment type is non-negligible.  In contrast to the analysis of Schmidt, who assumes discounted 
payoffs, we look at the no-discounting case.4  Thus while Schmidt's result requires the first player to 

be potentially arbitrarily patient relative to its opponent, our analysis shows that the lower bound 
holds when both players are equally  and infinitely patient (and in perturbed games with two-sided 

incomplete information we can therefore get a simultaneous lower bound for each player).5 

Our lower bound is defined as the least payoff player 1 can get in the stage game when 

playing the automaton action,  given that player 2 responds with a (possibly mixed) action which 
gives him at least his minmax payoff against the automaton action.  (Clearly for a minmaxing 

automaton this coincides with the payoff from public commitment to this action since individually 
rational responses to the commitment strategy must also be best responses.)  If the automaton is 

committed to playing an action other than the minmax action, then with a long-run opponent the 
reputation for playing that action is not  sufficient to force the opponent to play a best response; the 

reputation is only for the on-equilibrium path  behaviour of player 1, and the latter cannot convince 
player 2 that she will play the automaton action off-equilibrium path .  Thus, rather than playing a 

best response to the automaton action each period, player 2 might play any individually rational 
response (on average) to the automaton action.  Indeed, our tightness result (Section 5) shows that 

when the automaton is the "best" one, such an equilibrium can be constructed even when the game is 
perturbed to include other automata and other "rational" types, and so our bound is in this sense the 

best possible.  The following example illustrates this lower bound. 

                                                 
3Assuming that the opponent plays the least favourable best response from player 1's point of view, so this can 
differ from the usual Stackelberg action when the best responses are not unique. 
4In related work Watson (1992) studies reputation building in supergames where players do not discount 
payoffs and concentrates on equilibria where players use "forgiving strategies"; this restriction of the 
strategy space leads to stronger results than can be obtained in our framework. 
5Time averaging is of course the limit of many sequences of pairs of discount factors, including sequences 
where player 1 becomes much more patient than player 2, the case studied by Schmidt.  Proposition 1 below is 
extended in Cripps,  Schmidt and Thomas (1993) to this latter case.  
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EXAMPLE 1:   Consider the stage game given below: 
 

  

L          R

T
B

(2,1) (0,-1)
(0,0) (0,-1)  

In an equilibrium of the supergame with no discounting and no uncertainty, player 1 (the row player) 

could get any payoff between 0 (her minmax payoff) and 2.  Suppose the game is perturbed and 
that with probability p player 1 may be a commitment type always playing T.  To calculate our lower 

bound on player 1's equilibrium payoff in the repeated game of incomplete information, consider in 
the stage game player 1 playing T and player 2 responding in such a way as to get at least his 

minmax payoff (0).  This implies that player 2 must put at least a probability of one half on L; 
subject to this constraint the least payoff player 1 can get from T is 1.  This is a lower bound for any 

p>0, and considerably restricts the set of equilibrium payoffs.6  Notice that the bound attainable 
from a commitment type playing B (the action which minmaxes player 2) is zero, so in this example 

Schmidt's bound has no force.  

In some games other than conflicting interest games, however, the best type to mimic is the 

one which minmaxes the opponent (best in the sense of providing the greatest lower bound), and, as 
already mentioned,  the arguments in Schmidt (1993) can be used to calculate the bound for such 

types.   Whenever the minmax action is mixed, however, the Schmidt bound7 is weak and there will 
be some other type which provides a better bound.  This is illustrated in the next example. 

EXAMPLE 2:   The "Battle of the Sexes" game: 

L  R 

T
B

(3,1) (0,0)
(0,0) (1,3)

 

To minmax the opponent, the row player (player 1) needs to play T with probability 3/4.  Suppose 
that there is a positive probability automaton which plays this mixed action; then the lower bound 

derived by Schmidt is of no value because a best response to a minmaxing automaton by player 2 is 
any mixed action, including playing R which gives player 1 a payoff of 1/4; this is less than player 1's 

minmax payoff of 3/4.  Our results show that a type which always plays T gives a bound of 9/4, a 
considerable restriction on the possible equilibrium payoffs. The general superiority of a bound 

                                                 
6Our more general statement of the bound in this example is 1+p, implying that if the prior probability of the 
automaton is non-negligible, a higher value for the bound is attained. 
7His results are proved only when the minmax action is pure; that his argument goes through when it is mixed is 
established in Cripps, Schmidt and Thomas (1993). 
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based on a non-minmaxing automaton in the case where the minmax action is mixed is discussed in 
Section 5. 

An outline of the paper is as follows.  In Section 2 a complete information repeated game is 
described; in Section 3 a perturbed version of this game is given with player 1 being a number of 

different types; in Section 4 the lower bound on player 1's payoff is established; in Section 5 the 
value and tightness of the bound is analysed; in Section 6 the two-sided reputation problem is 

analysed. 
 

2.  The unperturbed game 

We begin with a standard complete information infinitely repeated game Γ with two players: 1 and 
2.  Each period t=1,2,... player 1 selects an action from a finite set I={1, 2, ..., I} and player 2 

simultaneously selects an action from a finite set J={1, 2, ..., J}.  Payoffs from the stage game are 

given by a pair of payoff matrices (A,B), so from actions (i,j) player 1 receives A(i,j) and player 2 
receives B(i,j). 

 We assume players can observe all previous moves.  Let Ht, t=1,2,..., be the set of histories 
ht up to, but not including, stage t:  Ht=(IxJ)t-1,  and we define H1 to consist of a single element.  By 

Kuhn's Theorem we can restrict attention to behaviour strategies.  A behaviour strategy for player 1 

is a sequence of maps {σt }t=1
•

 where σt : Ht∅∆I, t=1,2,...(denoting by ∆n the unit simplex in Rn).  

Likewise for player 2, a behaviour strategy is {τt } t=1
•  where τt  : Ht∅∆J, t=1,2,... .  Payoffs in the 

repeated game are defined as the (Banach) limit of expected average stage game payoffs (it will be 
convenient to delay formal definitions until the next section), with Nash equilibria defined as usual.  

Denote by minmax1(A) and minmax2(B) the respective minmax payoffs of  players 1 and 2.  The 
following notation will also be needed.  We start with an abuse: given u�∆I and v�∆J we let A(u,v) 
= Σi�I,j�JuivjA(i,j) be player 1's expected payoff when mixed stage-game strategies  (hereafter 

mixed actions )  u and v are selected.  Define B(u,v) analogously.  Now define player 2's best 
response payoff  against u�∆I by BR2(u) := maxv�∆J B(u,v). 

 

3.  The perturbed game of incomplete information 

This section introduces a game Γ(p) which may be considered as a perturbed version of the original 

game.  In the new game, player 1 may be one of a number of types, including the type previously 
described,  and player 2 does not know what type of opponent he is playing against (although he 

knows his own payoff matrix which is fixed).  Using Harsanyi's (1967) notion of a game of 
incomplete information, we identify player 1 with a type k�K, where K is a countable set.  It is 
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assumed to be common knowledge that a type κ�K is selected at the beginning of the game 
according to a probability measure p=(p1,p2,p3,... ) on K.8  We identify the type described in 

Section 2 with k=1, and refer to this type as the ‘normal type’.  While we wish to allow for very 
general types of player 1, including automata, at least some of the types may be similar to type k=1 

in that they have preferences defined by average stage-game payoffs.  Some of the other types may 

be automata, by which we mean types k with a fixed strategy { σt
k }t=1

•
.  Of particular interest will 

be commitment types playing the same pure, or mixed, stage-game action each period 

independently of history.  There may also be other types, for example, with discounted payoffs, but 
since we are only interested in necessary conditions, explicit description of such types is 

superfluous.9 

 Type k of player 1 plays a strategy σk={ σt
k } t=1

•
 , and we define  σ = (σk)k�K, while 

player 2 plays τ = {τt }t=1
• ; hence we can define a probability space as follows.  Let H8 =Πt=1

•
(I∞J) 

be the set of infinite histories.  For each t=1, 2, ..., we define ht to be the σ-field generated on H8  
by Ht and let h8  be the σ-field generated by the union of the ht's.  Let Ω  = H8 ∞K be the set of 

states of nature and endow this with the σ-field h8 �2K.  Strategies (σ,τ) and probabilities p 

determine a probability measure P on Ω and let Pk be the conditional probability measure on Ω 

given player 1 is type k (for k such that pk>0).  We will write E[.] for expectation with respect to 
the measure P, and Ek[.] for conditional expectation given player 1 is type k.  Where it is necessary 
to emphasise the dependence of the expectation on the strategy played we shall also write Eσ,τ,p for 
E and Ekσ,τ for Ek. 

 Long-run averages need not converge, so we use some Banach Limit L to define payoffs.10  
The bounds on equilibrium payoffs we obtain will always be independent of the particular form of 

Banach limit taken.  The average payoffs for type 1 of player 1 and for player 2 up to period T are 
respectively 

  aT =
1
T

A(i t , j t )
t =1

T

∑ ,                bT =
1
T

B(i t , jt )
t =1

T

∑ ,  

and repeated game payoffs are respectively 

  a  =  L[{E1(aT)}T=1
∞ ],  b  =  L[{E1(bT)}T=1

∞ ]. 

                                                 
8We use κ to denote the random variable and k for a particular value. 
9That is to say, the lower bounds we obtain on payoffs arise solely from the consideration that type k=1 
optimises. 
10 L is a real linear operator on the space of all real bounded sequences, and for any x={xT}, y={yT}, satisfies (i) 
L[λx + µy] = λL[x] + µL[y] for λ, µ �R, (ii) limsup T∅ �xT = L[x] = liminfT∅ �xT; it follows from (ii) that L[x] = 
limT∅ �xT whenever the latter exists.  See Dunford & Schwartz (1988) and Myerson (1991, Chap. 7). 
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Henceforth L[{xT}] will be abbreviated to L[xT] and it will be assumed that the limits are taken with 

respect to the index T.11  (Notice that to calculate type 1's equilibrium payoff the expectations are 

conditional on κ=1.)  Necessary conditions which must be satisfied by any Nash equilibrium (σ,τ) 
are 12 

  L[E1σ,τ(aT)]  =  L[E1σ',τ(aT)]  ∀σ ', 
 L[Eσ,τ,p(bT)]  =  L[Eσ,τ',p(bT)]  ∀τ'. 

The lower bound we develop exploits necessary  conditions of a Nash equilibrium.  This is only a 
meaningful exerciseif there are equilibria which exist in this environment.  The existence question will 

be discussed in Section 5. 

 We shall also need notation describing player 2's priors at the beginning of period s.  For a 
fixed equilibrium (σ,τ), let  psk = psk(hs) be the conditional probability of the true type of player 1, κ, 

being type k, given hs .  The value  psk is a random variable measurable with respect to the sigma-

field hs, and if 1κ=k is the indicator function for the event κ=k, then the priors can be written psk  = E[ 

1κ=k | hs ].  It follows from this that  psk is a martingale with respect to the filtration {ht}, with p1
k=pk. 

 

4.  The value of a reputation to player 1 

We shall now construct a lower bound on player 1's equilibrium payoff using simple martingale 

arguments—because the rate of convergence does not matter to time-averaged payoffs such 
methods are sufficient, in contrast to the discounted case as in Schmidt (1993) and Fudenberg and 

Levine (1989, 1992).  To do this we first estimate a lower bound on player 2's equilibrium payoff 
after each history.  We then show that if player 1 mimics a commitment type, the bound on player 

2's payoff implies that player 1 must receive at least a certain payoff.   

 Below, we introduce a second type of player 1 which corresponds to the event κ= k.  Type 

k  plays the fixed stage game (possibly mixed) action  u�∆I in every period of play independently of 
the history.  Thus we think of type k as a commitment type.13  We henceforth assume that type  k 

occurs with strictly positive probability: pk>0. 

                                                 
11 Where there is no ambiguity we shall write LE[.] for L[E(.)]. 
12 We present our results as restricitions on Nash  equilibrium payoffs but they only depend on the following 
inequalities; hence our results will also apply to some generalizations of Nash equilibrium. 
13 This is not a type in the sense of Harsanyi (1967-68) which maximises a payoff function; rather it adheres to a 
fixed strategy.  For an analysis of one-sided incomplete information when K consists of a finite number of types 
with stage game payoff matrices see Shalev (1988); also see Forges(1992).  Shalev shows that all equilibria are 
payoff equivalent to equilibria in which each type completely reveals itself at the beginning of the game.  It can 
be shown that this is not true of the class of games considered here.  Fudenberg and Levine (1992) show it is 
possible to derive mixed strategy commitment types from a belief distribution over pure strategy types. 
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 The bound we calculate in Proposition 1 can be explained with the following intuition.  
Suppose we have found a Nash equilibrium of the perturbed game Γ(p) and, after some history hs, 

the normal type of player 2 has a prior  ps
k that his opponent is the commitment type playing the 

action  u in every period.  From this point onwards player 2 could  use the following review 

strategy: play a best response to  u for a finite time period, while simultaneously watching the 
opponent's actions to find out whether player 1 really is playing  u on average.  As player 2 is long-

sighted the costs associated with any finite experiment of this sort are negligible, whilst from the laws 
of large numbers he will be able to verify whether his opponent is playing close to u on average.  

With probability  psk,  player 2 faces type  k and therefore receives approximately the payoff BR2( 

u).  If player 2 suspects a deviation from  u, then he must always be able to receive a payoff of at 
least minmax2(B).  At any stage of play in an equilibrium of the perturbed game, player 2's expected 

payoff must therefore be no less than  ps
kBR2( u)+(1- ps

k) minmax2(B); see Lemma 1. 

 Now consider player 1's payoff in this Nash equilibrium of Γ(p).  Player 1 always has the 

option of mimicking the commitment type, that is, playing  u each period.  If she does this, player 2's 

beliefs ps
k will converge (almost surely) to some positive value. This is only possible if player 2's 

beliefs only assign positive probability to types whose actions are near to  u each period, as 

otherwise player 2's beliefs would continue to change.  Hence "in the limit" player 2 expects u  to be 
followed on the equilibrium path, and from above he must receive at least  

ps
kBR2( u)+(1- ps

k)minmax2(B) against this strategy.  Taking expectations without conditioning on a 
particular history, hs, gives a lower bound on player 2's expected payoff against the strategy of  u  

each period.  This restricts, by feasibility,  player 1's expected payoff, and hence gives us our 
bound. 

 For any history hs, player 2's expected payoffs for the future are L[E( bT | hs  )].  Following 

the above argument we shall give a lower bound for player 2's expected payoffs, after any positive 

probability history at a Nash equilibrium, which depends upon psk  , minmax2(B) and player 2's best 

response payoff to the type  k, BR2( u). 
 

   Lemma 1:  Let  s=1 be given; then at any Nash equilibrium of  Γ(p) 

 

LE[ bT | hs  ]  =   ps
k BR2( u)  +  ( 1- ps

k  )minmax2(B)  a.s.  

 
(Proofs of all lemmas are contained in Appendix A.)  We shall use this result to construct a bound 

on player 1's payoffs.  Before the main result is proved, two technical lemmas are needed.  The first 
shows that conditional on type k's strategy being followed,  pt

k  is a submartingale and it converges 
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to a positive number with probability one.  The intuition for this is straightforward: if player 1 is type 
k, then the priors that player 2 attaches to this type on average cannot fall.  (Recall that the 

expectation operator Ek[.] denotes expectations conditional on player 1 playing as type k.) 
 

   Lemma 2:  Suppose that  pk>0.  Then at any Nash equilibrium of  Γ(p) 

 (i)  pt
k  =  Ek[ pt+1

k  | ht ]    Pk-a.s., 

 (ii) pt
k converges  Pk-a.s. to a strictly positive random variable. 

 

Since pt
k is a martingale, at a Nash equilibrium the priors converge almost surely by martingale 

convergence.  A consequence of this must be that player 1 ultimately reveals less and less 

information about her type.  As the priors converge, so the strategies of positive probability types 
must also converge as otherwise the priors could not be close to their limits.  Thus player 2 cares 

less about what he will learn about the true type of his opponent, in the sense that payoffs 
conditional upon a positive probability type k will be close to unconditional payoffs: 

   Lemma 3:  At any Nash equilibrium of  Γ(p) 

 

 psk  | LEk[ bT | hs] - LE[ bT | hs] |∅0, a.s.,    as s∅8 . 

 
In the light of Lemma 2(ii), Lemma 3 provides a way of approximating the unconditional payoff of 
player 2 by its conditional payoff against type  k.  Lemma 3 is essential because it allows us to use 

the bound on player 2's unconditional payoffs to make statements about player 2's conditional 
payoffs.14  Next, define the function 

 

(1) a*(pk, u)  :=  
min
v∈∆

J
  A(u,v)  |  B(u,v) • pkBR2(u) + (1-pk)minmax2(B) 

. 

We can now state our main result. 
 

                                                 
14 An example might make this clearer.  Suppose that player 1 is either the normal type or the automaton 
with equal probability, and in equilibrium player 1 will reveal her type in period 1, with player 2 getting 
BR2( ˆ u ) against the automaton and minmax2(B) against the normal type.  In period 2, the conditional and 

unconditional payoffs converge to  BR2( ˆ u ) if p2
ˆ k >0 (i.e. if player 1 is the automaton), so the convergence of 

Lemma 3 takes place within a period.  Since the inequality of Lemma 1 must be satisfied for player 2's 
unconditional payoff, it will be satisfied here also for player 2's conditional payoff, strictly in this example.  If 
full revelation does not, even in the limit,  take place in equilibrium, then the conditional payoff may be 
closer, or equal,  to the right hand side of the inequality of Lemma 1, but the inequality cannot be violated. 



Reputation in two-person repeated games:  9 
 

 
 

Proposition 1:  At a Nash equilibrium of  Γ(p), where a positive probability type  k plays 

mixed action   u  at every stage of the game, the normal type  (k=1) of player 1 receives at 

least   a*( pk,u). 

Proof:  Let δ>0 and φ>0 be given.  If player 1 mimics type  k, then  ps
k converges a.s. to some 

p•
k
>0 by Lemma 2(ii).  Hence there exists an η>0 and an S such that 

(2)  Pr[  ∃s=S such that  ps
k  < η  | κ= k ] < δ . 

Next, because  Pk is absolutely continuous with respect to P, the convergence of Lemma 3 holds  

Pk-almost surely.  Hence for any ξ>0, there exists an S' such that 

Pr[  ∃s=S' : ps
k  | L Ek[ bT | hs] − LE[ bT | hs] | > ξ | κ=    k ] < δ . 

Hence using (2) and defining S*=max{S,S'}, 

Pr[  ∃s=S* : | L Ek[ bT | hs] − LE[bT | hs] | > ξ/η  | κ=    k ] < 2δ . 

Setting ξ=φη and using Lemma 1, we therefore have that there exists an S* such that 

Pr[ ∃s=S* : L Ek[ bT | hs] <  psk  BR2( u)+( 1- psk  )minmax2(B)− φ | κ=  k ] < 2δ. 

This implies 

Pr[  L Ek[ bT | hS*]  ε   pS*
k  BR2( u)+( 1- pS*

k   )minmax2(B)− φ | κ=  k ] = 1-2δ . 

Now taking expectations of L Ek[ bT | hS*] without conditioning on history (but conditioning on κ= 

k  ) and using Lemma 2(i) on  pS*
k  (the operators  Ek[.] and L[.] can be transposed as hs  is a finite 

sigma field: see Hart (1985, Lemma 4.6)): 

  L Ek[ bT ]  ε  (1−2δ)(  pkBR2( u)+( 1- pk )minmax2(B)-φ) − 2δMB, 

where MB:=maxi,j|B(i,j)|.  Since δ>0 and φ>0 are arbitrary, we have 

(3)  L Ek[ bT ]  ε   pkBR2( u)+( 1- pk )minmax2(B). 

Letting  Fu =co{ (A( u,v),B( u,v) )| v�∆J } be the convex hull of the set of stage-game payoffs 

when player 1 plays  u, then (L Ek[aT], L Ek[bT])� Fu  (by Hart (1985, Lemma 4.7)).  Inequality 

(3) gives a lower bound on L Ek[bT], which thus implies that player 1 receives at least the amount 
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a*(pk,u) from imitation of type  k.  Player 1's payoff at a Nash equilibrium is therefore bounded 

below by this quantity. Q.E.D. 

Remark 1: The bound a*(pk,u) is non-decreasing in the initial belief  pk, and, not surprisingly, 

converges as  pk converges to one to the (least) payoff that player 1 would get from committing to  

u in the stage game.  Of particular interest is a bound that holds for all  pk>0.  This gives a bound 

valid for even very small perturbations of the complete information game.  Such a bound is found by 

setting  pk = 0 in the definition of a*(pk,u), so that player 2 is being restricted only to play 

individually rational responses to  u .  If  u  minmaxes player 2, then a*(0, u) equals the payoff 
player 1 would get from commitment to u  (this is the main result of Schmidt (1993), established in 

the discounted case). 
 

5.  Value and tightness of the bound 

Three questions arise about the value of the bound of Proposition 1.  First, to what extent does it 

restrict the payoffs that player 1 can receive in equilibrium?  Second, is it tight in the sense that for a 
given commitment automaton it is the highest possible lower bound?  Finally, is the existence of 

Nash equilibrium guaranteed (otherwise the bound may be meaningless)? We address all of these 
questions in this section.  

We shall restrict attention to the bound which applies for all pk  > 0 (see Remark 1).  

Consider the "best" type to mimic, in the sense of a type which maximises the lower bound a*(0, u) 
of Proposition 1;  this yields a value for the bound of 

 
(4)  sup     min     A(u,v)   =      sup    min   A(u,v), 
  u�∆I    v�{v�∆ J | B(  u,v)=minmax2(B)}   u�∆I     v�∆ J 

where the right hand side of the inequality is minmax1(A) by the "minmax theorem".  Hence the 

difference between the best lower bound and player 1's minmax payoff is that in the definition of the 
former, player 2 can only minimise over mixed actions which give him at least his own minmax 

payoff, whereas in the definition of the latter this is unrestricted.  Our lower bound is valuable to 
player 1 whenever this restriction matters.  Examples 1 and 2 in the Introduction are games where 

there is a strict inequality in (4).  Only   in games of conflicting interests (see the Introduction), 
however, is the bound equal to the best payoff from public commitment in the stage game.  It should 

also be stressed that in many games commitment has no value.  For example, in Prisoners' Dilemma 
games reputation for following a fixed action is worthless and our best bound equals the minmax 

payoff. 
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 A further issue affecting the value of the bound derived in this paper concerns whether the 
best bound will be delivered by an automaton playing the action that minmaxes player 2; the bound 

from such a type has already been characterised by Schmidt (1993) in the discounted case.  Again, 
Examples 1 and 2 illustrate cases where this is not true,  and in generic games, if the action which 

minmaxes player 2 is mixed, there will be a type which will provide a better bound than the 
minmaxing automaton.  This follows from  

 Lemma 4:  If  (A,B) is a generic  I∞J  (I, J = 2) bi-matrix game and if the zero-sum game  

(-B,B) has a mixed strategy equilibrium  (u*,v*), then there exists  z�∆I such that  

min
v ∈∆J

{ztAv | ztBv = minmax2(B) }  >  min
v ∈∆J

{(u*)tAv | (u*)tBv = minmax2(B) }. 

Hence from equation (1), a*(0, z) > a*(0, u*), where z and u* are as in the statement of the lemma; 
a*(0, u*) is the bound from a small perturbation involving a minmaxing automaton and a*(0, z) is a 

superior bound arising from a small perturbation involving an automaton playing z.  (The intuition 
behind this result is demonstrated by the discussion of Example 2 in the Introduction.)  When player 

1's minmaxing action is pure, however, an automaton playing this action may or may not (cf. 
Example 1) deliver the best bound, even for generic games. 

 The second question concerned the tightness of the bound: is it is possible to find a better 
lower bound than that described in Proposition 1?  We will be interested only in the best possible 

automaton (see above); this automaton plays   uk such that a*(0, uk)=a*(0,u) for all u�∆I and we 
shall identify type  k with this strategy.  It is clear that a tightness result cannot be established for 

other automata in games in which, for example, the best automaton is also present.15   Proposition 2 
considers perturbations involving a finite number of (fixed stage-game action) automata, including 

this best automaton, and also a possible finite number of other normal (i.e. payoff matrix, zero 
discounting) types.16  Provided all other types (kð1,  k) have sufficiently small probability, an 

equilibrium with payoffs to player 1, type 1, arbitrarily close to a*(pk,uk) can be constructed.  In 
Cripps, Schmidt and Thomas (1993) perturbations involving a single pure-strategy automaton 

playing a history dependent strategy are considered for the discounted case.  These automata do 
not provide a bound better than would the 'best' automaton playing a fixed, pure, stage-game 

action.   

                                                 
15 If a*(pk, ˆ u k )> a*(0, ˆ u 

ˆ k ) then the proof goes through for this type k for such a value of pk.  Tightness can 
also be established for any automaton (which gives a bound above player 1's minmax payoff) in a 
perturbation involving only  this automaton; a simple variant of the proof of Proposition 2 establishes this. 
16 For games involving a finite number of normal types only, an equilibrium exists in which player 1 gets 

a*(0, ˆ u 
ˆ k ) or less: see Israeli (1989) and also the discussion in Forges (1992). 
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 Proposition 2 also offers a partial answer to the third question we raised, that of existence.  
It is closely related to the tightness issue, and a similar construction can be used to establish 

existence under the same assumption of finiteness of the sets of automata and normal types.  

 

Proposition 2:  Consider the perturbed game  Γ(p) involving  a finite number K  types of 

player 1: a normal type  (k=1) with preferences  A(i,j),  k-1 (=1) automata (k=2,..., k) playing 

the distinct actions  ûk�∆I in every period, and  K- k  (=0)further normal types (k= k+1,...,K) 
with preferences  Ak(i,j).  (i) (Existence) There exists a Nash equilibrium of this game.  (ii) 

(Tightness) Suppose  a*(0, uk)=a*(0,u) for all  u�∆I.  Then given  η>0 and  pk>0 we can 
choose  ε>0 such that provided  pk<ε for  kð1,  k, there exists an equilibrium of  Γ(p) in 

which type  k=1of player 1 receives a payoff that is at most  η larger than  a*(pk, uk). 

 
See Appendix B for the proof.  The equilibrium of part (ii) can be described briefly as follows. 

(The normal type, k=1)  At the start of the game this type will randomly select and mimic one from a 
subset of the automata. The subset comprises the 'best' automaton, type k, together with any 

automaton which with full reputation would give type k=1 a payoff greater than a*(pk,uk). 

(Other normal types)  Types k>k  play out  deterministic sequences which, when player 2 plays a 

corresponding sequence, replicate the average outcome (relative frequencies over action profiles) of 
a best response to the monitoring phase (see below). Their actions differ during the first K periods 

allowing player 2 to provisionally identify which of these normal types he is facing (with mixed 
strategy automata full revelation may not be possible since one of the automata may also follow such 

a sequence with positive probability).  

(Player 2) So long as player 1 follows one of the above deterministic sequences then player 2 

follows a corresponding deterministic sequence.  If player 1 plays an action inconsistent with any 
such sequence, play enters the monitoring phase  in which player 2 eventually verifies, through a 

sequence of review phases, which of the automaton strategies is being followed. If some other 
strategy is being followed then this will repeatedly trigger a punishment strategy which eventually 

holds type k=1 down to a*(0,uk), and at the same time guarantees player 2 at least minmax2(B).  In 

the review phases for the automaton strategies which type k=1 might follow, player 2 plays to give 

type k=1 the same payoff (of a*) that is within η of a*(pk,uk), and against the other automaton 

strategies player 2 plays a best response.  

(Equilibrium)  Type 1 of player 1 is indifferent about mimicking one of the subset of automata, and 

prefers this to facing repeated punishment phases.  By construction none of the other normal types 



Reputation in two-person repeated games:  13 
 

 
 

can benefit by deviations. Likewise, player 2's strategy is constructed to be deterministic in all but 
punishment phases, and deviations are minmaxed by normal types. (Deviations by player 2 during 

punishment phases do not affect his long-run payoff.)  Against the other normal types player 2 
receives at least his minmax payoff since these outcomes correspond to monitoring phase outcomes, 

and player 2 always gets his minmax payoff in that case.  His strategy against the automaton 
strategies together with the initial randomization of type k=1 are chosen to ensure that the threat of 

being minmaxed by normal types is sufficient to prevent player 2 from deviating.  

 

6.  Two-sided uncertainty 

If player 2 is one of many possible types, the arguments above will still apply.  Let player 2's types g 

belong to a countable set G and let q be an independent probability measure on this set describing 
how player 2's type is selected at the beginning of play.  Identify the type described in Section 2 as 

g=1.  To denote the game of two-sided uncertainty we shall use Γ(p,q). 

 As player 1 mimics the commitment type by always playing  u, so player 2's learning will still 

settle down, as in Lemmas 2 and 3, and type g=1's expected payoff will still be bounded below by 
the deviation payoff as in Proposition 1.  The only problem comes in evaluating player 1's payoff to 

mimicking type  k, because sometimes she will be playing against type g=1 of player 2 and 
sometimes she will be playing against other types of player 2.  We therefore get a revised statement 
of the lower bound a* on player 1's payoff in Γ(p,q), where we define MA:=maxi,j |A(i,j)|: 

 a* = q1( min   { A( u,v)  |  B( u,v) = pkBR2( u) + (1- pk)minmax2(B)}) + (1-q1)(-MA). 
 v�∆J 

With probability q1 player 2 faces the same incentive constraints as in the one-sided case; with 

probability (1-q1) however he does not.17  In this paper we are interested in small perturbations of 
repeated games of complete information.  Thus we are particularly interested in the lower bound on 

Nash equilibrium payoffs to both players as the probabilities of types  k, g > 1 become small.  As p1 
and q1 tend to unity the lower bound for player 1's Nash equilibrium payoff becomes  a*= a*(0, u) 

(i.e. the one-sided bound calculated for  pk near zero); and likewise, a symmetric expression gives a 
lower bound for player 2 if he can mimic an automaton (which has positive probability) playing a 

fixed stage-game mixed action  v.  

 The possibility of two-sided uncertainty also implies that no Nash equilibrium may exist in 

the perturbed game.  For example, if the Battle of the Sexes game (Example 2 in the Introduction) is 
the stage game and player 1 can mimic a commitment type playing T with probability one, then a*–
                                                 
17 Here it is essential that p and q are independent probability distributions. 
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2.25 if p1 and q1 are close to one.  Similarly, if player 2 can mimic a commitment type playing R 
with probability one at every stage game, then 2.25 is approximately a lower bound on his 

equilibrium payoff.  But there is no feasible payoff pair giving both players a payoff of 2.25, so no 
equilibrium can exist.  The possibility of non-existence in undiscounted repeated games of 

incomplete information is well known: see Mertens, Sorin & Zamir (1991). For a similar example in 
a standard repeated game with "known own-payoffs" see Koren (1988). 

 

7.  Conclusion 

 
In this note we have established the extent to which a player can guarantee herself a certain level of 

payoffs by exploiting reputation effects when she is playing against a long-run opponent.  Even a 
small amount of uncertainty on the part of an opponent about a player's type can lead, in a class of 

games, to a large reduction in the set of possible equilibrium payoffs.  Moreover the lower bound 
we derive is tight, and is robust to the existence of other possible types. 

 
 Department of Economics, University of Warwick, Coventry CV4 7AL, U.K. 

 

APPENDIX A: PROOFS OF LEMMAS 

Proof of Lemma 1:  Without loss of generality, fix any hs  which has positive probability under 

type  k (player 2 must optimise against player 1's strategy thereafter).  If BR2( u) = minmax2(B) the 
result is true, because player 2 can always obtain his minmax payoff by playing independently of his 

opponent's type.  If BR2( u)>minmax2(B) we shall construct a strategy for player 2 that ensures he 

receives a payoff arbitrarily close to  ps
k BR2( u) + ( 1- ps

k )minmax2(B).  Define f(i,s,t) to be the 
random variable which counts the number of times action i is played by player 1 in the periods s, 
...,t.  Suppose player 1 is truly playing  u=( u1, u2,... , uI); then, by the strong law of large numbers, 
f( i,s,t)/(t-s-1) ∅   ui, as t ∅ �, for all i, almost surely conditional on hs  and  k.  Hence for any ε>0, 

δ>0 there exists by Egoroff's Theorem a τ(ε,δ) such that 

Pr      f i,s,t
t-s+1

  - ui   <ε,   for all t>τ(ε,δ) and all i  k , hs   > 1-δ .  

Player 2 can be almost certain that if he faces type  k, and waits until after period τ(ε,δ), and then 

calculates the relative frequency distribution of player 1's actions, this will be (and will remain) within 

ε of  u . 

Let player 2 play a fixed pure strategy best response to  u  in periods s, s+1, ..., τ(ε,δ), and 
once this review session is over continue to play the best response to  u until there exists an i such 
that |(f( i,s,t)/(t-s-1)) −  ui | = ε.  If this condition is satisfied for the first time in some period t, player 



Reputation in two-person repeated games:  15 
 

 
 

2 plays to achieve his minmax payoff in all future periods.  The condition is violated with probability 

1-δ if player 1 is truly playing  u.  Player 1 is a commitment type playing  u with probability psk, so 

with probability at least (1-δ) psk  player 2 gets from this strategy BR2( u) and with probability at 

most δ ps
k he gets minmax2(B).  In all other cases this strategy will get player 2 at least his minmax 

payoff provided ε is chosen sufficiently small.  (Continuity ensures that playing a constant pure best 

response to  u when player 1 actually plays within ε  of  u will give player 2 a payoff greater than 
minmax2(B), provided BR2( u)>minmax2(B) and ε  is small.)  Thus, player 2's expected payoff from 

the strategy must be at least (1-δ ) pskBR2( u) +  (1-(1-δ ) psk)minmax2(B).  This completes the proof 

because at a Nash equilibrium a deviation by player 2 to this strategy must be unprofitable and δ  
can be chosen arbitrarily close to zero. Q.E.D. 
 
Proof of Lemma 2:    It is a standard result that the odds ratio is a supermartingale conditional 

on κ=k (see, e.g.,  Fudenberg & Levine (1992)): 

  

1 - pt
k

pt
k

     •    Ek   1 - pt+1
k

pt+1
k

   |   h t 
   Pk-a.s., 

or, subtracting one and using Jensen's inequality,  

(A1)  (pt
k)-1  =  Ek[ ( pt+1

k )-1 | ht ]  =  (Ek[ pt+1
k  | ht ])-1 Pk-a.s. 

Inverting the extremes of (A1) gives (i).  By (i) conditional on player 1 being type k, pt
k is a 

bounded submartingale and it therefore converges almost surely to some random variable p•
k
.  

Suppose p•
k
 were zero on a set of positive measure; then (1-p•

k
)/p•

k
 would be infinite on a set of 

non-zero measure, which implies Ek[(1- pt
k)/pt

k ]∅8  as t∅8.  This leads to a contradiction since 

the supermartingale property of the odds ratio implies � > (1- pt
k)/pt

k  ε  Ek[(1- pt
k)/pt

k  ], for all 
t.  Hence (ii) is established. Q.E.D. 

Proof of Lemma 3:  Fix a positive probability hs .  Consider how player 2 updates his beliefs 
after a history ht where t>s (and ht has positive probability conditional on hs).  From Bayes' 

Theorem we have 

  pt
k =

ps
k Pr [h t | k,h s ]

ps
k'  Pr [h t| k' ,h s ]

k'
∑

  . 

This gives a relation between the conditional and unconditional distributions in the expectations E[ . 
|hs] and Ek[ . |hs].  If we substitute for the conditional distribution we get that for any ht-measurable 

random variable x, where t>s, 
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psk Ek[ x |hs] = 
h t ∈H t

∑ psk  Pr[ht|k,hs]x(ht) = p t
k (ht ) ps

k'

k'
∑

h t ∈H t

∑ Pr[ht|k',hs]x(ht)  = E[ pt
k x |hs]; 

thus it is possible to write the conditional expectation of the random variable x as an unconditional 
expectation of pt

k x.  Notice that player 2's payoff in period t, B(it,jt), is an ht+1-measurable random 

variable,  and hence the following holds almost surely: 

psk  | LEk[ bT | hs ] - LE[ bT | hs  ] |  

 =  &LEk[ T-1 Σ t=1
T

 pskB(it,jt) | hs  ] - LE[ T-1 Σt=1
T

  pskB(it,jt) | hs  ] & 

 =2L[T-1(s-1)MB]+ &L[  pskEk( T-1 Σt=s
T

 B(it,jt)| hs  )] - LE[ T-1  Σt=s
T

  pskB(it,jt)| hs  ] & 

 = 0 +  & LE[ T-1 Σt=s
T

  pt+1
k B(it,jt) | hs ] - LE[ T-1 Σt=s

T
  pskB(it,jt) | hs  ] & 

  = MBLE[ T-1Σ t=s
T

 & pt+1
k  − psk & | hs  ], 

 
where both inequalities use the fact that L is a linear operator (recall that MB bounds payoffs) and in 

the third line we take psk outside Ek[ . | hs  ]  in order to use the above result on conditional 

expectations.  Following Hart (1985) we now define a non-increasing sequence of random variables 

zs:=supt=s& pt+1
k  - p•

k
 & which converges a.s. to zero.  It follows that E[ zs  | hs  ] is a bounded 

supermartingale w.r.t. {hs} and E[ zs  | hs  ] ∅  ˆ z 8  a.s. for some random variable ˆ z 8 .  But E[E[ zs  | 

hs  ]] = E[zs]∅0, so E[  ˆ z 8 ] = 0 and ˆ z 8 =0 a.s.  We then have LE[ T-1Σt=s
T

 &  pt+1
k  − psk &  | hs ] = 

E[sup t=s& pt+1
k  − psk & | hs ] = E[ 2zs | hs  ] ∅0   a.s.  

 Q.E.D. 

Proof of Lemma 4:  A generic zero-sum game (-B,B) has a unique equilibrium (u*,v*): this 

equilibrium is regular and quasi-strict (see Van Damme (1987, p.56)), and we are assuming h = 

#supp(u*)=#supp(v*)>1.  The equilibrium is regular so there is a non-singular hxh submatrix B of B 
such that (u*)tB = et(minmaxB) and Bv* = e(minmaxB), where u* (v*) is u* (v*)with all zeros 

deleted and e  is a vector of ones. 
 Let z(p) := α-1 { u* + δ (ptB-1)t } for p�Rh, where α ,δ>0.  Choose δ small enough so that 

z(p)>>0 and α so that z(p)te=1; thus z(p) is a potential mixed strategy for player 1.  Notice that if 

v�∆h, then  

 

z(p)tBv   =   α-1 { et(minmax2(B)) + δpt }v   =   α -1{ (minmax2(B)) + δptv}.  

 
Thus, z(p)tBv = minmax2(B)� δptv  =  (α-1)minmax2(B) � ptv  =  ptv*.  (z(p)te=1 together with 

v* = B-1e(minmax2(B)) implies α-1  =  δptv*minmax2(B)-1.)  The equilibrium (u*,v*) is quasi-
strict so V:={v�∆J | (u*)tBv = minmax2(B) } consists of all v's satisfying supp(v)⊆ supp(v*).  Let 
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z(p)�∆m be z(p) with zeros in appropriate locations and let p�∆J be p with appropriate extra zeros.  
As δ∅0 the set V(p) : = { v�∆J | z(p)tBv=minmax2(B) } converges to V*(p):=V↔{v�∆J| 

ptv=ptv* } in the Hausdorff topology.  (V*(p)   ⊆V(p) and if v�V(p), but supp(v) ⊄  supp(v*), 
then v plays an action which is not a best response to u*; hence z(p)tBv < minmax2(B) as δ∅0.  If 

v�V but v�V*(p) then ptv < ptv* (where v is v with appropriate zeros deleted), and this implies 

z(p)tBv < minmax2(B): a contradiction.) 
By linearity minv�V (u*)tAv occurs on a convex subset of the boundary of V; choose p so 

that V*(p) does not include this set (possible for generic A).  By continuity, as δ∅0 minv�V(p) 

(u*)tAv  is strictly greater than minv�V (u*)tAv.  As δ∅0 so z(p)∅u* and thus we also have 
minv�V(p) z(p)tAv  > minv�V (u*)tAv. Q.E.D. 

APPENDIX B:  TIGHTNESS OF THE BOUND 

Proof of Proposition 2:   We prove part (ii) first. 

(The strategy of the normal type, k=1)   Type k=1 of player 1 randomly selects one of the 
automata k,  2=k= k,  with probability θk =0 and mimics its stage-game mixed action ûk in all future 

periods (where θ2+...+θk=1).  Let πk = pk(θkp1+pk)-1; this will be player 2's conditional 

probability for type k given he knows ûk is being played (thus πk=pk).  If type k=1 mimics ûk, then 
by Proposition 1, once learning has settled down, this must guarantee her at least a*(π k,ûk).  We 

shall construct an equilibrium which delivers exactly a*(π k,ûk) to type 1 when she mimics type k.  

Relabel the automata k<k so that a*(1,ûk) > a*(pk,uk) if km=k< k (set km= k if there are no such 

automata).  The θk's are chosen so that max2ŠkŠk a*(πk,ûk) is minimised: this will minimise the 
payoff to type 1 and simultaneously ensure that all types which are mimicked with positive 

probability offer the same (maximal) payoff, as a*(πk,ûk) is a decreasing continuous function of θk 

for km=k< k ( clearly θk =0 for 2=k<km: mimicking one of these automata will give player 1 full 
reputation, πk=1, but this is not desirable).  Hence define a*:=minθ max2ŠkŠk a*(π k,ûk), where 

θ:=(θ2,...,θk).  We need to choose ε small so that a* is close to a*(pk ,uk).  For ε small, even a 
small increase in θk away from zero will lead to πk falling from 1 to close to zero.  Hence for ε  
sufficiently small, our choice of the θk's results in a*(π k,ûk) having the same value for all km=k=  k, 

that is a*=a*(πk,ûk) for km=k= k .  Moreover as ε shrinks,  θk will go to 1 and p1 to 1-pk, so 

πk (respectively a*) can be made arbitrarily close to pk (respectively a*(pk,uk)): we choose ε  so 

that a*(pk,uk)+η > a*.   
 

Deviations by player 2 during the punishment phase are ignored.  If player 2 deviates from 
his (deterministic) strategy at any other point of play, type k=1 minmaxes him thereafter.  

 (The strategy of player 2)   Player 2 plays an arbitrary constant action for the first K 

periods and then follows a prescribed deterministic sequence {jt
k  }so long as the sequence {it

k} 
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(some k> k) is observed–this corresponds to the normal type k being provisionally identified.  

Player 2 continues to follow { jt
k} until an action it?  it

k  is observed (the sequences {it
k},{jt

k}, will be 

determined below).  As soon as an action inconsistent with any sequence {it
k}, k> k, is observed, 

play enters the monitoring phase in the following period–this means that player 2 believes he is not 
facing one of the normal types k> k. 

 In the monitoring phase, player 2 reviews whether player 1 keeps to one of the automaton 
strategies ûk, k=2,..., k, in a sequence of customised review phases of increasing length.  Each time 

player 1 fails to play close to ûk on average during the review phase, she will face a finite period of 
punishment, or "punishment phase".  Player 2's strategy will eventually identify the correct strategy 

ûk and play the correct review for this strategy. 
 Review phases are indexed by n, the number of the review in the natural order.  Review n 

lasts for a fixed number of periods L(n); its (random) starting period is denoted by t(n).  The 
automaton for which player 1 is being reviewed is denoted by k(n); this is an integer random 

variable taking values between 2 and k.  For k(n)=k, player 2 follows a fixed sequence of actions 

{jt
k } during the review.  Let vk�∆J be a (possibly mixed) action which attains the minimum in the 

definition of  a*(πk,ûk) (see equation (1)) if km=k=  k, and which is a best response against ûk if 

2=k<km.  For each review n with k(n)=k, choose a fixed sequence18 jt
k{ }t =t(n)

t(n )+L(n )−1
 so that 

vj(n,k):= #{t � {t(n), ..., t(n)+L(n)+1} | jt
k=j}/L(n), the relative frequency with which action j is 

chosen, converges to v j
k  as n∅�, with vj(n,k)=0 if and only if v j

k =0.  Let fij be the number of times 

profile (i,j) is chosen during the review.  Then player 1 fails review n with k(n)=k if the relative 
frequency of her actions against each  of player 2's actions is not sufficiently close to ûk, specifically 

if  
&fij (vj(n,k) L(n))-1  -  ˆ u i

k &=n-4/3 for any (i,j) such that v j
k >0. 

 If the nth review is failed, play enters punishment phase n, which lasts for P(n) periods.  To 
construct the punishment strategy, define IR(u):={v�∆J | B(u, v)=minmax2(B)}.  Next, for λ�[0,1], 

  
min
v∈∆J

(λA(u,v) +(1− λ)(−B(u, v)) ≤ min
v ∈IR(u )

(λA(u,v) + (1 − λ)(− B(u,v))
 

       ≤ min
v∈IR(u)

λA(u, v) + max
v∈IR(u)

(1 − λ)(− B( u,v)) ≤ min
v∈IR( u)

λA(u, v) + (1 − λ)(− min max 2 (B)) . 

Taking the maximum over u ∈ ∆I , 

         max
u∈∆I

min
v∈∆J

(λA( u,v) + (1 − λ)(−B(u,v)) ≤   λa*(0,  uk) + (1-λ) (–minmax2(B)). 

                                                 
18The sequence depends only on n and k , but the starting period is random. 
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Hence by Blackwell's approachability theorem (see Myerson (1991, ch.7), Mertens et al. (1991)) 

the set of payoffs below (a*(0, uk),-minmax2(B)) is approachable   by player 2 when player 1 has 

vector payoffs (A,-B).  Define 

 S := {(a, b) � R2 & a = a*(0, uk), b = minmax2(B)}, 

and for t=0, where || . || is used to denote the Euclidean norm,   

   δt  := min
(a,b)∈S

  L(n)(a,b)
(L(n) + t)

 + (A(is, js),B( is, js))
(L(n) + t)•

s=t(n)+L(n)

t(n)+L(n)+t

  −  ( a, b )  , 

 
where a = maxi,jA(i,j) and b =maxi,jB(i,j). Then by approachability there exists a continuation 
strategy ˜ τ  for player 2 after the history ht(n)+L(n), and a finite integer R, depending only on n, such 

that for any  continuation strategy σ followed by player 1 during the punishment phase Pσ, τ[ 
sup t=t(n)+L(n)+R δt = n-1 & ht(n)+L(n)] = n-1.  Define P(n) = R+1 and let    ˜ τ  be followed for the 

P(n) periods of punishment phase n. 
 Review 1 with k(1)=k is always the first review phase played once the monitoring phase has 

begun.  Review n with k(n)=k is followed by review n+1 with k(n+1)=k if review n with k(n)=k is 
passed.  If the review n with k(n)=k is failed punishment phase n occurs.  Player 1 could fail a 

review because she is following a different automaton strategy, so at the end of the punishment 
phase, review n+1 with k(n+1)=k is played unless there exists a k', 1<k'= k, such that 
&fij (vj(n,k') L(n))-1 -  ˆ u i

k' &= n-4/3 for all (i,j) such that v j
k' >0, in which case review n+1 with 

k(n+1)=k' is played (choose the smallest if there are multiple such k'). 

 (The strategies of the normal types k> ˆ k )   Consider type k playing a best response to 
that part of player 2's strategy which is played during the monitoring phase.  Choose the 
deterministic sequences {i t

k }, { j t
k }, to replicate the best-response outcome, that is so that the 

limiting average relative frequency over stage-game action profiles is the same in either case.  (If a 

best response does not exist, then replicate the limit relative frequencies from a convergent sequence 
of frequencies of ˆ ε -best responses as ˆ ε ∅0).  The sequences {i t

k }for k> k are chosen additionally 

to ensure that they differ during the first K periods: for each k, k' > k, there is some t=K such that 
i t
k ≠ i t

k' .  Finally if any of the automata play deterministic strategies, ensure that each {i t
k }, k' > k, 

differs from all such automaton strategies at some point during the first K periods.  If player 2 does 
not respond to {i t

k }with { j t
k} then type k> k  minmaxes player 2 thereafter. 

 (Optimality of Players' Strategies)   Suppose that type 1 chooses to mimic the automaton 
strategy of ûk each period.  This implies that the monitoring phase begins in finite time with 

probability one.  We choose L(n)=n4.  Consider review n with k(n)=k; by Chebychev's Inequality, 
for (i,j) such that v j

k >0, 

 



Reputation in two-person repeated games:  20 
 

 
 

Pr
f ij

v j(n,k)L( n)
− ˆ u i

k ≥ n−4/ 3 k
 

 
 

 

 
 =  

1
4v j(n,k)L(n)n−8/3 =

n−4/3

4v j(n, k)
, 

 
where we are using the fact that fij (vj(n,k) L(n))-1 has mean  ˆ u i

k   and variance  
ˆ u i

k (1- ˆ u i
k )(vj(n,k) L(n))-1=(4vj(n,k) L(n))-1.  Choose φ, ñ, such that 0<φ<vj(n,k) for all k, j, with 

v j
k >0, and all n=ñ.  Then the probability of failing review n with k(n)=k for n=ñ is no greater than 

IJn-4/3(4φ)-1.  Since  Σn=1
• n-4/3 < 8, by the Borel-Cantelli Lemmas with probability one a player 

playing ûk fails only a finite number of reviews n with k(n)=k in equilibrium, and likewise (by 

essentially the same argument) only undertakes a finite number of reviews n with k(n)= ˜ k ðk.  Hence 
type 1 must receive the limit of her expected payoffs from review phases n with k(n)=k which by 
construction equals a* for km=k= k , and is no greater than a* for 2=k<km. 

 If type 1 chooses to mimic one of the types k> k  and play the sequence {it
k} then by 

construction the outcome corresponds to some response to the monitoring phase; thus this cannot 
be a profitable deviation.  Nor can type 1 profitably deviate by playing some other strategy during 

the monitoring phase: failing a review phase leads, with a probability approaching one as n∅8 , to a 

payoff, for the entire review/punishment phase, no greater than a number approaching a*(0, uk)=a*, 

and since L(n)/t(n) = n4/ Σm=1
n-1 m4 ∅0 as n∅8, her possible gains obtained by deviating from ûk in 

the current review phase become insignificant in the calculation of aT for T large.  It is then 

straightforward, but tedious, to show that limsupT∅8  Eσ,τ*
1 [aT]=a* for any σ, where τ* is player 2's 

equilibrium strategy, so LEσ,τ*
1

[aT]=limsupT∅8  Eσ,τ*
1 [aT]=a*.  (Deviations during the punishment 

phase do not affect average payoffs.) 

 By construction the types k> k receive payoffs generated by the sequence {(it
k,jt

k)} which 

gives them their payoff from an optimal response to the monitoring phase strategy and so they 
cannot gain by deviation.  

 Since in equilibrium punishment phases only take place a finite number of times with 
probability one, deviations during such phases do not affect player 2's payoff.  In all other phases 

player 2 plays deterministically.  It is then sufficient to show that a deviation during a deterministic 
phase of play cannot improve player 2's payoff after any positive probability history ht.  Conditional 

upon ûk being played, player 2's equilibrium payoff is at least πkBR2(ûk) + (1-πk)minmax2(B) —
note that π k=1 for 2=k<km.  When k>  k player 2's equilibrium payoff is at least minmax2(B): the 
deterministic sequences {i t

k }, { j t
k }, k>  k, correspond to some response against player 2's 

monitoring phase strategy and from each review/punishment phase player 2 plays so as to guarantee 

himself a payoff converging, as n increases, to minmax2(B) with probability approaching one.  
Player 2's expected payoff given his priors (pt

k )k∈K
 is therefore at least 
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Σ
k=2

k
  

pt
k

πk{ π kBR2(ûk) + (1−πk)minmax2(B) }  +  
Σ

k>k
pt

k

minmax2(B), 

where pt
k / π k  is his belief that ûk is being followed.  If player 2 deviates he gets at most  

Σk=2
k pt

kBR2(ûk) + (1-Σk=2
k pt

k)minmax2(B), which equals the above expression.  Therefore player 2 

never benefits from deviating.  

To prove part (i), a similar construction is used.  Type k=1 can now be treated in the same way as 

the other normal types, and reveal its type at the beginning of the game, and play out a deterministic 
equilibrium corresponding to a best response against the monitoring phase strategy of player 2.  

Moreover player 2 no longer needs to punish type 1 during the monitoring phase; all that is 
necessary is that player 2 plays a prudent stage-game mixed action (i.e. to guarantee his minmax 

payoff) during the punishment phases.  During the review phases for automaton k, player 2 plays a 
best response against ûk. The construction is otherwise identical to that of part (ii). Q.E.D. 
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