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1. Introduction

"Reputation effects’ arise when aplayer in adynamic gameis able to exploit some uncertainty that
other players have concerning her preferences. There may be some probahility that the player is of
atype which would play in a particular way independently of the Strategies of the other players. If,
however, the player is not of thistype, she might nevertheless wish to commit hersdf to playing in
thisway, because by mimicking the strategy of this type, the player can build up a"reputation” for
following the type's drategy, even if theinitid probability of the typeisvery smdl.

We shdl consider two-player repested games with no discounting, perturbed so that one of
the players may be an automaton committed to a particular stage-game action. For dl possible
stage games and for each such automaton, we shdl caculate alower bound on the set of Nash
equilibrium payoffs for this player, and thus we shall be able to describe the benefit of acquiring a
reputetion in any given stage game. Moreover we show that this bound is the best available. We
dlow players to acquire reputations for playing mixed actions in the stage game, and we generdise
our results to account for games where there are non negligible probabilities for the commitment
type. The bounds we give are robust to the existence of other types. Findly the bound is shown to
apply aso in the case of two-Sded incomplete information.

Our results extend those of Schmidt (1993), 2 who considersthe effects of building a
reputation for following the strategy of an automaton which plays the action that minmaxes the
opponent. Hisanalysis builds on that of Fudenberg & Levine (1989, 1992) who considered games
whereasingle long-run player faces a sequence of short-lived (one period) opponents. Their key
ideaistha by mimicking the automaton action, the long-run player can eventudly "convince' the
short- run opponents that this action will be played in the next period, so the latter will play abest
response. A patient long-run player will thus receive gpproximately the payoff she would get from
public commitment to the automaton action. The payoffs from adopting such a strategy must
provide alower bound on any Nash equilibrium payoff. Schmidt demongtrates that these results
can be extended to the case of along-run opponent when the automaton plays the action which
minmaxes the opponent.

Schmidt shows thet if the automaton which dways minmaxes the opponent has postive
prior probability, then asthe first player's discount factor converges to one (holding the opponent's
discount factor fixed), so her Nash equilibrium average payoffs will be bounded below by an
amount converging to the payoff she would get from committing to this action in the sage game. In
games of "conflicting interests' thisis shown to lead to a powerful lower bound: agameis of

2 We originally obtained our resultsindependently of this paper though the current version of our paper has
benefitted considerably from our reading of Schmidt's paper.
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conflicting interests if the action that one player, say player 1, wouldmost like to commit tointhe
sage game3, smultaneoudy holds the opponent, player 2, down to his minmax payoff. Insucha
game the lower bound associated with the minmaxing automaton will equal the best commitment
payoff. Schmidt's results leave open the question of what lower bounds can be furnished from the
possihility of mimicking automeata playing non- minmax strategies, and whether these lower bounds
may be better in games not of conflicting interests; or putting it differently, whet is the best lower
bound in an arbitrary repeated game? Thisis the question we address.

In Proposition 1 we give alower bound derived from an arbitrary automaton action in any
sage game, coinciding with Schmidit's bound when the automaton is atype playing the action which
minmaxes the opponent. We aso show how the bound is defined when the prior probability of the
commitment type is non-negligible. In contrast to the andysis of Schmidt, who assumes discounted
payoffs, welook at the no-discounting case4 Thuswhile Schmidt'sresult requires the first player to
be potentidly arbitrarily patient relative to its opponent, our analys's shows that the lower bound
holds when both players are equally and infinitely patient (and in perturbed games with two-sided
incomplete information we can therefore get a Smultaneous lower bound for each player) 5

Our lower bound is defined as the least payoff player 1 can get in the stage game when
playing the automaton action, given that player 2 responds with a (possibly mixed) action which
gves him & least his minmax payoff againg the automaton action. (Clearly for aminmaxing
automeaton this coincides with the payoff from public commitment to this action since individudly
rational responses to the commitment strategy must aso be best responses.) If the automaton is
committed to playing an action other than the minmax action, then with along-run opponent the
reputation for playing that action isnot sufficient to force the opponent to play a best response; the
reputation is only for the on-equilibriumpath behaviour of player 1, and the latter cannot convince
player 2 that she will play the automaton action off-equilibrium path. Thus, rather than playing a
best response to the automaton action each period, player 2 might play any individudly rational
response (on average) to the automaton action. Indeed, our tightness result (Section 5) shows that
when the automaton is the "best" one, such an equilibrium can be constructed even when the game is
perturbed to include other automata and other "rationd" types, and so our bound isin this sense the
best possible. The following example illustrates this lower bound.

3Assuming that the opponent plays the least favourable best response from player 1's point of view, so this can
differ from the usual Stackelberg action when the best responses are not unique.

“4In related work Watson (1992) studies reputation building in supergames where players do not discount
payoffs and concentrates on equilibria where players use "forgiving strategies"; this restriction of the
strategy space leads to stronger results than can be obtained in our framework.

STime averaging is of coursethe limit of many sequences of pairs of discount factors, including sequences
where player 1 becomes much more patient than player 2, the case studied by Schmidt. Proposition 1 below is
extended in Cripps, Schmidt and Thomas (1993) to this |atter case.
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ExampLE 1. Congder the stage game given below:

L R
T (21)  (0-1) }
B ©0 (0

In an equilibrium of the supergame with no discounting and no uncertainty, player 1 (the row player)
could get any payoff between O (her minmax payoff) and 2. Suppose the game is perturbed and
that with probability p player 1 may be a commitment type dways playing T. To cdculae our lower
bound on player 1's equilibrium payoff in the repeated game of incomplete information, consider in
the stage game player 1 playing T and player 2 responding in such away asto get a least his
minmax payoff (0). Thisimpliesthat player 2 must put a least a probability of onehalf onL;

subject to this condraint the least payoff player 1 can get from T is1. Thisisalower bound for any
p>0, and consderably restricts the set of equilibrium payoffs.6 Notice that the bound attainable
from a commitment type playing B (the action which minmaxes player 2) is zero, so in this example
Schmidit's bound has no force.

In some games other than conflicting interest games, however, the best type to mimic isthe
one which minmaxes the opponent (best in the sense of providing the grestest lower bound), and, as
dready mentioned, the arguments in Schmidt (1993) can be used to cdculate the bound for such
types. Whenever the minmax action is mixed, however, the Schmidt bound” iswesk and there will
be some other type which provides a better bound. Thisisillustrated in the next example.

ExampLE 2: The "Béttle of the Sexes' game:

L R
T [(3,1) (0,0)}
B 00 (1.3

To minmax the opponent, the row player (player 1) needsto play T with probability 3/4. Suppose
that there is a pogitive probability automaton which plays this mixed action; then the lower bound
derived by Schmidt is of no value because a best response to a minmaxing automeaton by player 2 is
any mixed action, including playing R which gives player 1 a payoff of 1/4; thisislessthan player 1's
minmax payoff of 3/4. Our results show that atype which dways plays T gives abound of 9/4, a
congderable restriction on the possible equilibrium payoffs. The generd superiority of a bound

80ur more general statement of the bound in this exampleis 1+p, implying that if the prior probability of the
automaton is non-negligible, a higher value for the bound is attained.

"Hisresults are proved only when the minmax action is pure; that his argument goes through when it is mixed is
established in Cripps, Schmidt and Thomas (1993).
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based on a nort minmaxing automaton in the case where the minmax action is mixed is discussed in
Section 5.

An outline of the paper isasfollows. In Section 2 a complete information repesated game is
described; in Section 3 a perturbed version of thisgame is given with player 1 being anumber of
different types, in Section 4 the lower bound on player 1's payoff is established; in Section 5 the
vaue and tightness of the bound is analysed; in Section 6 the two-sided reputation problem is
analysed.

2. The unperturbed game

We begin with a sandard complete information infinitely repeated game Gwith two players: 1 and
2. Each period t=1,2,... player 1 selects an action from afinite set 1={1, 2, ..., I} and player 2
smultaneoudy sdects an action from afinite set J={1, 2, ..., J}. Payoffs from the Stage game are
given by apair of payoff matrices (A,B), so from actions (i,j) player 1 receives A(i,j) and player 2
receives B(i,j).

We assume players can observe dl previous moves. Let Hy, t=1,2,..., bethe set of histories
h up to, but not including, stage t: H=(IxJ)t-1, and we define H, to congst of asingle dement. By
Kuhn's Theorem we can restrict attention to behaviour drategies. A behaviour Strategy for player 1
is a sequence of maps{ s 2 wheres, : H/AD!, t=1,2,...(denoting by D" the unit Smplexin Rn).
Likewise for player 2, abehaviour strategy is{t}-, wheret, : H/EDJ, t=12,.... Payoffsinthe
repeated game are defined as the (Banach) limit of expected average stage game payoffs (it will be
convenient to delay formd definitions until the next section), with Nash equilibria defined as usud.
Denote by minmax1(A) and minmax2(B) the respective minmax payoffsof players1and 2. The
following notation will aso be needed. We start with an abuse: given LAD! and vaDJ we let A(u,v)
= Sialja JuivjA(i J) be player 1's expected payoff when mixed stage-game strategies (heregfter
mixed actions) uandv are sdected. Define B(u,v) analogoudy. Now define player 2's best
response payoff against uAD! by BR2(u) := max, zpJ B(u,v).

3. The perturbed game of incomplete information

This section introduces a game G(p) which may be considered as a perturbed version of the origina
game. Inthe new game, player 1 may be one of a number of types, including the type previoudy
described, and player 2 does not know what type of opponent he is playing againgt (although he
knows his own payoff matrix which isfixed). Using Harsanyi's (1967) notion of a game of
incomplete information, we identify player 1 with atype ki K, where K isa countable set. Itis
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assumed to be common knowledge thet atype kaK is selected &t the beginning of the game
according to a probability measure p=(p1,p2,p3,... ) on K.8 Weidentify the type described in
Section 2 with k=1, and refer to thistype asthe ‘norma type. While we wish to dlow for very
generd types of player 1, including automata, at least some of the types may be smilar to type k=1
in that they have preferences defined by average stage-game payoffs. Some of the other types may
be automata, by which we mean types k with afixed strategy { Slt( }er. OF particular interest will
be commitment types playing the same pure, or mixed, stage-game action each period
independently of history. There may aso be other types, for example, with discounted payoffs, but
since we are only interested in necessary conditions, explicit description of such typesis
superfluous?

Typek of player 1 playsastrategy sk={ s }t=1 , and we define s = (sK)a k. while
player 2 playst ={t, }t=1; hence we can define a probability space as follows. Let Hg =PE=1(I¥J)
be the set of infinite histories. For eacht=1, 2, ..., we define h, to be the s -field generated on Hg
by H, and let hy bethe s-field generated by the union of the hy's. Let W = Hg ¥ K be the set of
states of nature and endow this with the s-fidd hg E2K. Strategies (s t ) and probabilities p
determine a probability measure P on W and let Fx be the conditiona probability measure on W
given player Listypek (for k such that pk>0). We will write E[.] for expectation with respect to
the measure P, and EK][.] for conditiona expectation given player Listypek. Whereit is necessary
to emphasise the dependence of the expectation on the strategy played we shall also write E o for
E and Ek ¢ for Ex.

Long-run averages need not converge, SO we use some Banach Limit L to define payoffsi0
The bounds on equilibrium payoffs we obtain will dways be independent of the particular form of
Banach limit taken. The average payoffsfor type 1 of player 1 and for player 2 up to period T are

repectively

_1lg _1d
ar = Ttaz'lA(I“Jt)’ br - T elB(INJt)’
and repeated game payoffs are respectively
a = L[{ Elanir_,]. b = L[{EXbp)}r_,].

8We use k to denote the random variable and k for a particular value.

9Thatisto say, the lower bounds we obtain on payoffs arise solely from the consideration that type k=1
optimises.

10| isareal linear operator on the space of all real bounded sequences, and for any x={xr}, y={yT}, satisfies (i)
L[l x+ny] =1L[x] +nL[y] for | ,maR, (ii) limsup T & X1 = L[X] = liminfr g x7; it follows from (i) that L[x] =
limr &1 XT whenever the latter exists. See Dunford & Schwartz (1988) and Myerson (1991, Chap. 7).
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Henceforth L[{x1}] will be abbreviated to L[] and it will be assumed thét the limits are taken with
respect to theindex T11 (Notice that to caculate type 1's equilibrium payoff the expectations are
conditional onk=1.) Necessary conditions which must be stisfied by any Nash equilibrium (s,t)
arel2

L[Est(ar)] = L[Est(ar)] "s
L o) = LIEsppBp] "t

The lower bound we develop exploitsnecessary conditions of aNash equilibrium. Thisisonly a
meaningful exercisaf there are equilibriawhich exigt in this environment. The existence question will
be discussed in Section 5.

We shdl aso need notation describing player 2's priors at the beginning of period s. For a
fixed equilibrium (s t), let P& = P&(hy) be the conditional probability of the true type of player 1,k,
being typek, given h,. Thevaue P& is a random variable measurable with respect to the sgma:
fidd hs, and if 1 istheindicator function for the event k=k, then the priors can be written pk = E[
-y I hs ]. 1t follows from this that P& isamartingale with respect to thefiltration {h}, with p'izpk.

4. Thevaue of areputation to player 1

We shdl now congtruct alower bound on player 1's equilibrium payoff usng smple martingde
arguments—because the rate of convergence does not matter to time- averaged payoffs such
methods are sufficient, in contrast to the discounted case asin Schmidt (1993) and Fudenberg and
Levine (1989, 1992). To do thiswefirst estimate alower bound on player 2's equilibrium payoff
after each history. We then show that if player 1 mimics acommitment type, the bound on player
2's payoff impliesthat player 1 must receive a least a certain payoff.

Below, we introduce a second type of player 1 which correspondsto the event k=k. Type
k playsthe fixed stage game (possibly mixed) action G& D! in every period of play independently of
the history. Thus we think of type k as acommitment type.13 We henceforth assume that type k

occurs with strictly positive probability: pk>0,

11 Where thereiis no ambiguity we shall write LE[ ] for L[E(.)].

2we present our results as restricitions on Nash equilibrium payoffs but they only depend on the following
inequalities; hence our resultswill aso apply to some generalizations of Nash equilibrium.

13 Thisis not atype in the sense of Harsanyi (1967-68) which maximises a payoff function; rather it adheresto a
fixed strategy. For an analysis of one-sided incompleteinformation when K consists of afinite number of types
with stage game payoff matrices see Shalev (1988); also see Forges(1992). Shalev showsthat all equilibriaare
payoff equivalent to equilibriain which each type completely revealsitself at the beginning of the game. It can
be shown that thisis not true of the class of games considered here. Fudenberg and Levine (1992) show itis
possible to derive mixed strategy commitment types from a belief distribution over pure strategy types.
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The bound we caculate in Proposition 1 can be explained with the following intuition.
Suppose we have found a Nash equilibrium of the perturbed game G(p) and, after some history h,

the normal type of player 2 hasaprior P¢ that his opponent is the commitment type playing the
action U in every period. From this point onwards player 2 could use the following review
drategy: play abest responseto U for afinitetime period, while smultaneoudly wetching the
opponent's actions to find out whether player 1 redlly is playing U on average. Asplayer 2islong-
sghted the cogts associated with any finite experiment of this sort are negligible, whilst from the laws
of large numbers he wil be able to verify whether his opponent is playing closetoll on average.
With probability IOE, player 2 facestype Kk and therefore receives gpproximeately the payoff BR2(
7). If player 2 suspects adeviation from U, then he must always be able to receive a payoff of a
leest minmax¥2(B). At any stage of play/i\n an equilibri um of the perturbed game, player 2's expected
payoff must therefore be no less than IOE‘BRZ( 0)+(2- IO's‘) minmaxX(B); see Lemma 1.

Now consider player 1's payoff in this Nash equilibrium of G(p). Player 1 dways hasthe
option ot\ mimicking the commitment type, that is, playing U each period. If she doesthis, player 2's
beliefsP¥ will converge (dmog surdly) to some positive vaue. Thisisonly possbleif player 2's
beliefs only assign positive probability to types whose actions are near to U each period, as
otherwise player 2's bdiefs would continue to change. Hence "in the limit" player 2 expectsy to be
f(l)\llowed on the eguilibri um path, and from above he must receive a least
pk BR2( U)+(1- p's‘)mi nmax2(B) againg this drategy. Taking expectations without conditioning on a
particular history, h,, givesalower bound on player 2's expected payoff against the strategy of T
eech period. Thisrestricts, by feasibility, player 1's expected payoff, and hence gives us our
bound.

For any history h, player 2's expected payoffs for the future are L[E( by | hy)]. Following
the above argument we shdl give alower bound for player 2's expected payoffs, after any podtive
probability Hstory at a Nash equilibrium, which depends upon pfs‘\ , minmax2(B) and player 2's best
response payoff to the type k, BR2(1).

Lemma 1; Let s=1be given; then at any Nash equilibriumof G(p)

LE[ by |hg] = pls'2 BRAU) + (1 pls'2 Yyminmax(B) as.

(Proofs of dl lemmas are contained in Appendix A.) We shdl use thisresult to construct a bound
on player 1's payoffs. Before the main result is proved, two technica lemmas are needed. Thefirgt
shows that conditiona on type k's strategy being followed, PK isasubmarti ngde and it converges



Reputation in two-person repeated games. 8

to a pogtive number with probability one. The intuition for thisis straightforward: if player 1istype
k, then the priors that player 2 attaches to this type on average cannot fal. (Recdl that the
expectation operator E<[.] denotes expectations conditiona on player 1 playing astypek.)

Lemma 2; Supposethat pk>0. Then at any Nash equilibrium of G(p)
() Pf=EqPS|h] Peas,
(ii) pk converges Pk-as.to astrictly positive random variable.

Since Pf is amartingae, at a Nash equilibrium the priors converge amost surely by martingale
convergence. A consequence of thismust be that player 1 ultimately revedslessand less
information about her type. Asthe priors converge, so the strategies of positive probability types
must aso converge as otherwise the priors could not be close to their limits. Thus player 2 cares
less about what he will learn about the true type of his opponent, in the sense that payoffs
conditiona upon a positive probability type k will be close to unconditiond payoffs:

Lenma3:; Atany Nash equilibriumof G(p)

PE |LEK by |hy - LE[ by |h]|&D, as,  as<&B.

Inthe light of Lemma 2(ii), Lemma 3 provides away of approximating the unconditiond payoff of
player 2 by its conditional payoff against type k. Lemma 3 is essential because it alows usto use
the bound on player 2's unconditiona payoffs to make statements about player 2's conditiona
payoffs.14 Next, define the function

min | A(uv) | B(uv)* pPBR3(U) + (1-p<)minmax?(B)
1 D

D &) =

We can now state our main result.

14 An example might make this clearer. Suppose that player 1 is either the normal type or the automaton
with equal probability, and in equilibrium player 1 will reveal her typein period 1, with player 2 getting
BRZ(G ) against the automaton and minma><2(B) against the normal type. In period 2, the conditional and

unconditional payoffs convergeto BR2(0 ) if p'§ >0 (i.e. if player 1 isthe automaton), so the convergence of
Lemma 3 takes place within aperiod. Sincetheinequality of Lemma 1 must be satisfied for player 2's
unconditional payoff, it will be satisfied here also for player 2's conditional payoff, strictly in this example. If
full revelation does not, even in the limit, take place in equilibrium, then the conditional payoff may be
closer, or equal, to theright hand side of the inequality of Lemma 1, but the inequality cannot be violated.
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Proposition 1: At a Nash equilibrium of G(p), where a positive probability type k plays
mixed action U at every stage of the game, the normal type (k=1) of player 1 receives at
least & (PX.0).

Proof: Letd>0andf >0 begiven. If player 1 mimicstype k, then pk converges as. to some

k
P-'>0 by Lemma2(ii). Hencethereexistsan h>0 and an S such that
) Pr[ $s=Ssuchthat P¥ <h |k=k]<d.

Next, because PI'; is absolutely continuous with respect to P, the convergence of Lemma 3 holds
Pk-amosgt surely. Hence for any x>0, there exists an S such that

=2

Pl $5=S: P |LE by |h] - LE[by |[h] [>x [k= K] <d.
Hence using (2) and defining S*=max{S,S},
PI[ $55* : [LEX[ by [hd - LE[br |hd [>x/h [k= K]<2d.
Sating x=f h and usng Lemma 1, we therefore have that there exists an S* such that
P $s=S* : L EX[ by |h] < pk BR2(0)+( 1- pk )minma(B)- f |k= k] < 2d.
Thisimplies
AL LEN b, [he] e PS5 BRAD)+(1- P )minmax®)- f |k= K]=1-2d.

Now taking expectations of L El'z[ br | he] without conditioning on history (but conditioning on k=
k ) and using Lemma 2(i) on P& (the operators El'z[.] and L[.] can be transposed as hy isafinite
sgmafied: see Hart (1985, Lemma4.6)):

LEK by ] e (1- 2d)( P*BR( 0)+( 1- P*)minmae(B)-f ) - 2dMs,
where MB:=maxi’j|B(i J)l- Sinced>0and f >0 are arbitrary, we have
3 LEK br] e PKBRR(T)+(1- P<)minmac(B).

Letting = =co{ (A(T,V),B(Tv) )| vaDJ} bethe convex hull of the sat of sage- game payoffs
when player 1 plays T, then (L Ek[ar] L Ek[bT])a FU (by Hart (1985, Lemma4.7)). Inequality
(3) givesalower bound on L Ek[bT], which thusimpliesthat player 1 receives at least the amount
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a (P* 1)) from imitation of type k. Player 1's payoff at aNash equilibrium is therefore bounded
below by this quantity. Q.E.D.

Remark 1: The bound & (PX 1)) is non-decreasing in the initia belief PX, and, not surprisingly,
converges as P convergesto oneto the (least) payoff that player 1 would get from committing to

{iin the stage game. Of particular interest is a bound that holds for dl PK>0. This gives a bound
vdid for even very smdl perturbati ons of the complete information game. Such abound isfound by
stting P¥ = 0in the definition of a* (P, )), so that player 2 is being restricted only to play
individually rationa responsesto U . If U minmaxes player 2, then a* (0, U) equals the payoff
player 1 would get from commitmentto G (thisis the main result of Schmidt (1993), establishedin
the discounted case).

5. Vaue and tightness of the bound

Three questions arise about the value of the bound of Proposition 1. First, to what extent doesiit
restrict the payoffs that player 1 can recaive in equilibrium? Second, isit tight in the sense that for a
given commitment automeaton it is the highest possible lower bound? Findly, is the existence of
Nash equilibrium guaranteed (otherwise the bound may be meaningless)? We address al of these
questionsin this section.

Weshall restrict attention to the bound which appliesfor al PX > 0 (see Remark 1).
Consider the "best” type to mimic, in the sense of atype which maximises the lower bound & (0, T)
of Propostion 1; thisyieldsavaue for the bound of

4 sup min A@GV) = sup min AQV),
A0 v&{vaDJ|B( Lv)=minmal(B)} tap  vap?

where the right hand sde of the inequdlity is minmaxl(A) by the "minmax theorem". Hencethe
difference between the best lower bound and player 1's minmax payoff isthat in the definition of the
former, player 2 can only minimise over mixed actions which give him at least his own minmax
payoff, whereas in the definition of the latter thisis unrestricted. Our lower bound is vauable to
player 1 whenever this restriction matters. Examples 1 and 2 in the Introduction are games where
thereisadrict inequdity in (4). Only in gamesof conflicting interests (see the Introduction),
however, isthe bound equa to the best payoff from public commitment in the tage game. It should
aso be stressed that in many games commitment has no vaue. For example, in Prisoners Dilemma
games reputation for following afixed action is worthless and our best bound equals the minmax

payoff.
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A further issue affecting the vaue of the bound derived in this pgper concerns whether the
best bound will be delivered by an automaton playing the action that minmaxes player 2; the bound
from such atype has aready been characterised by Schmidt (1993) in the discounted case. Again,
Examples 1 and 2 illudtrate cases where thisis not true, and in generic games, if the action which
minmaxes player 2 is mixed, there will be atype which will provide a better bound than the
minmaxing automaton. Thisfollowsfrom

Lemma4 If (AB)isageneric 1¥J (I, J= 2) bi-matrix game and if the zero-sum game
(-B,B) has a mixed strategy equilibrium (u* ,v*), then there exists zaD! such that

r?ig]{ztAv|zth=minma<2(B)} > n?igl{(u*)tAv|(u*)th=minmax2(B)}.

Hence from equation (1), & (0, z) > a* (0, u*), where z and u* are asin the statement of the lemma;
a (0, u*) isthe bound from a smdl perturbation involving a minmaxing automaton and & (0, z) isa
superior bound arising from asmdl perturbation involving an automaton playing z. (The intuition
behind this result is demongtrated by the discussion of Example 2 in the Introduction.) When player
1'sminmaxing action is pure, however, an automaton playing this action may or may not (cf.
Example 1) ddiver the best bound, even for generic games.

The second question concerned the tightness of the bound: isit is possible to find a better
lower bound than that described in Proposition {? We will beinte/r\eﬂed only in the best possible
automaton (see above); this automaton plays UK such that a* (0, U)=a* (0,u) for al udD! and we
shall identify type k with this strategy. It is clear that atightness result cannot be established for
other automata in gamesin which, for example, the best automaton is o present.15  Proposition 2
consders perturbations involving a finite number of (fixed Sage- game action) autometa, including
this best automaton, and aso a possible finite number of other normd (i.e. payoff matrix, zero
discounting) types 16 Provided al other types (k& 1, k) ha/ewffici?']tly smdl probability, an
equilibrium with payoffsto player 1, type 1, arbitrarily closeto a*(pk,ﬁ") can be constructed. In
Cripps, Schmidt and Thomeas (1993) perturbations involving a Sngle pure-strategy automaton
playing ahistory dependent strategy are considered for the discounted case. These automata do
not provide a bound better than would the 'best' automaton playing afixed, pure, Sage-game
action.

15 a*(pk, 0k )>a*(0, Gk) then the proof goes through for this type k for such a value of pk. Tightness can
also be established for any automaton (which gives a bound above player 1's minmax payoff) in a
perturbation involving only this automaton; a simple variant of the proof of Proposition 2 establishes this.

16 For games involving afinite number of normal types only, an equilibrium existsin which player 1 gets
a0, u k) or less: seelsraeli (1989) and also the discussion in Forges (1992).
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Proposition 2 dso offers apartial answer to the third question we raised, that of existence.
Itisclosdy related to the tightnessissue, and asimilar construction can be used to establish
existence under the same assumption of finiteness of the sets of automata and normal types.

Proposition 2: Consider the perturbed game G(p) involving a finite number K  types of
player 1: anormal type (k=1) with preferences A(i,), k-1 (=1) automata (k=2,..., k) playing
the distinct actions (kaD! in every period, and K-k (=0)further normal types (k= k+1....,K)
with preferences Ak(i,j). (i) (Existence) There exists a Nash equilibrium of trlis game. (ii)
(Tightness) Suppose a* (0, Gl';)=a*(0,u) for all uaD!. Then given h>0 and P*>0 we can
choose >0 such that provided pk<e for ka1, k, there exists an equilibrium ofA G(p)in

whichtype k=1of player 1 receives a payoff that is at most h larger than a* (P, GK).

See Appendix B for the proof. The equilibrium of part (ii) can be described briefly asfollows.

(The normd type, k=1) At the Sart of the game this type will randomly sdlect and mimic one from a
subset of the automata. The subset comprises the 'best' atomaton, type k, together with any

automaton which with full reputation would give type k=1 a payoff greater than a* (pk,ﬁ").

(Other normal types) Typesk>k play out deterministic sequences which, when player 2 playsa
corresponding sequence, replicate the average outcome (relative frequencies over action profiles) of
abest response to the monitoring phase (see below). Ther actions differ during the first K periods
dlowing player 2 to provisondly identify which of these normd types heisfacing (with mixed
drategy automatafull revelaion may not be possible since one of the automatamay aso follow such
a sequence with postive probability).

(Player 2) So long as player 1 follows one of the above deterministic sequences then player 2
follows a corresponding determinigtic sequence. If player 1 plays an action inconsstent with any
such sequence, play enters themonitoring phase in which player 2 eventudly verifies through a
sequence of review phases, which of the automaton Strategiesis being followed. If some other
drategy isbeing followed then thiswill repestedly trigger a punishment strategy which eventudly
holds type k=1 down to a*(O,GI';), and at the same time guarantees player 2 at least minmax2(B). In
the review phases for the automaton strategies which type k=1 might follow, player 2 playsto give
type k=1 the same payoff (of a*) that iswithin h of a* (IDIIZ ,’u\l'z), and againgt the other automaton
strategies player 2 plays a best response.

(Equilibrium) Type 1 of player 1 isindifferent about mimicking one of the subset of autometa, and
prefers this to facing repested punishment phases. By construction none of the other normal types



Reputation in two-person repeated games. 13

can benefit by deviations. Likewise, player 2's Srategy is congtructed to be determinitic in dl but
punishment phases, and deviations are minmaxed by normal types. (Deviations by player 2 during
punishment phases do not affect hislong-run payoff.) Against the other norma types player 2
receives at least his minmax payoff since these outcomes correspond to monitoring phase outcomes,
and player 2 dways gets his minmax payoff in that case. His Srategy against the automaton
drategies together with the initia randomization of type k=1 are chosen to ensure that the thresat of
being minmaxed by normd typesis sufficient to prevent player 2 from deviating.

6. Two-sided uncertainty

If player 2 is one of many possible types, the arguments above will ill gpply. Let player 2stypesg
belong to a countable set G and let g be an independent probability measure on this set describing
how player 2'stypeis sdlected at the beginning of play. Identify the type described in Section 2 as
0=1. To denote the game of two-sded uncertainty we shdl use G[p,0).

As player 1 mimics the commitment type by aways playing U, so player 2'slearning will still
settle down, asin Lemmas 2 and 3, and type g=1's expected payoff will gill be bounded below by
the deviation payoff asin Proposgition 1. The only problem comesin evauating player 1's payoff to
mimicking type k, becauise sometimes she will be playing against type g=1 of player 2 and
sometimes she will be playing againgt other types of player 2. We therefore get arevised statement
of the lower bound & on player 1's payoff in G(p,q), where we define M AI=ax; IAG))I:

a =qgymn { A(TV) | B(Uyv)= IOI‘\BRZ( 0) +(1- p/'z)ninmaxZ(B)}) +(1-g)(-M,).
vapJ

With probability gl player 2 faces the same incentive congraints asin the one-sided case; with
probability (1-q1) however he doesnot.17 In this paper we are interested in smal perturbations of
repeated games of complete information. Thus we are particularly interested in the lower bound on
Nash equilibrium payoffsto both players asthe probabilities of types k, g > 1 becomesmdl. Aspl
and g1 tend to unity the lower bound for pll\ayer 1's Nash equilibrium payoff becomes a = a* (0, U)
(i.e. the one-sided bound caculated for PX near zero); and likewise, a symmetric expression givesa
lower bound for player 2 if he can mimic an automaton (which has postive probability) playing a
fixed sage-game mixed action .

The possibility of two-sided uncertainty aso implies that no Nash equilibrium may exigt in
the perturbed game. For example, if the Battle of the Sexes game (Example 2 in the Introduction) is
the stage game and player 1 can mimic acommitment type playing T with probability one, then a*—

17 Hereit is essential that p and q are independent probability distributions.
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2.25if pland ql arecloseto one. Similarly, if player 2 can mimic a commitment type playing R
with probability one at every stage game, then 2.25 is gpproximately alower bound on his
equilibrium payoff. But thereis no feasible payoff pair giving both players a payoff of 2.25, so no
equilibrium can exig. The possibility of non-existence in undiscounted repested games of
incomplete information iswell known: see Mertens, Sorin & Zamir (1991). For asmilar examplein
a standard repeated game with "known own payoffs' see Koren (1988).

7. Conclusion

In this note we have established the extent to which a player can guarantee hersdf acertain leve of
payoffs by exploiting reputation effects when she is playing againgt along-run opponent. Even a
smal amount of uncertainty on the part of an opponent about a player's type can leed, in a class of
games, to alargereduction in the set of possible equilibrium payoffs. Moreover the lower bound
we derive istight, and is robust to the existence of other possible types.

Department of Economics, University of Warwick, Coventry CV4 7AL, U.K.

APPENDIX A: PROOFSOF LEMMAS

Proof of Lemma1: Without loss of generdity, fix any h, which has positive probability under
type k (player 2 must optimise against player 1's strategy theresfter). If BR2( ) = minmax2(B) the
result istrue, because player 2 can dways obtain his minmax payoff by playing independently of his
opponent'stype. If BR2(T)>mi nma<2£B) we shdl oonstf\uct adrategy for player 2 that ensures he
receives apayoff arbitrarily closeto pk BRZ 1) + (1- pk )minmax2(B). Definef(i,st) to bethe
random variable which counts the number of times action i is played by player 1 in the periods s,
..t. Suppose player Listruly playing U=(Uy, Us.-.. , Tj)); then, by the strong law of large numbers,
f(ist/(t-s-1) £ T, ast &£ , for dl i, dmost surely conditiond onhg and k. Hence for any >0,
d>0 there exists by Egoroff's Theorem at (e,d) such that

Pr[ fist) ‘ <e fordlt>t(ed)andali ‘ K, hs] >1-d.

t-s+1

Player 2 can be dmost certain that if he faces type k, and waits until after periodt (e,d), and then
cdculaes the relative frequency digtribution of player 1's actions, thiswill be (and will remain) within
eof T.

Let player 2 play afixed pure strategy best responseto U in periodss, s+1, ..., t(e,d), and
once this review session is over continue to play the best responseto U until there exists ani such
that |(f(i,st)/(ts-1)) - U | = e. If thiscondition is satisfied for the first time in some period t, player
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2 playsto achieve his minmax payoff in al future periods. The condition is violated with probability
1-d if player Listruly playing U. Player 1 isacommitment type playing T with probability pg, 0
with prot’)\ebility at leest (1-d) pls'; player 2 gets from this strategy BR2( 1) and with probability a
most d P¥ he gets minma2(B). In dl other casesthis strategy will get player 2 a lesst hisminmax
payoff provided e is chosen sufficiently small. (Continuity ensures that playing a congtant pure best
responseto U when player 1 actudly playswithin e of G will give player 2 apayoff greater than
minmax2(B), provided BR2( U)>minmax2(B) and e issmall.) Thus, player 2's expected payoff from
the strategy must be at least (1-d) prRz( 0) + (1-(1-d) p’s'z)mi nmax2(B). This completes the proof
because a a Nash equilibrium a deviation by player 2 to this strategy must be unprofitable and d
can be chosen arbitrarily closeto zero. Q.E.D.

Proof of Lenma 2; Itisadandard result that the odds ratio is a supermartingae conditiona
on k=K (see, eg., Fudenberg & Levine (1992)):

1'p{( . k 1'p|t(+1
K E[ K | D

Pt Pt+1 Pk-as,
or, subtracting one and using Jensen's inequdlity,
(AY) (Py1 = E{(PSa)1|h] = (BqPEa|R]1  Pras

Inverting the extremes of (A1) gives(i). By (i) conditiona on player 1 being typek, PKisa
bounded submartingae and it therefore converges dmost surely to some random variable p? .
Suppose P* were zero on a st of positive measure; then (1_p'.‘ )/p',‘ would beinfinite on aset of
nonzero measure, which implies EX[ (1- plt()/ pf ]A8 astA8. Thisleadsto acontradiction since
the supermartingale property of the odds ratio impliest > (1- PEYPE e Bx{(1- PE)/PE |, forall

t. Hence (ii) is established. Q.E.D.

Proof of Lemma 3: Fix apostive probability h,. Consider how player 2 updates his beliefs
after ahistory i where t>s (and h has positive probability conditiond on h). From Bayes

Theorem we have
K ps Pr[h,kh,]

R Prindk g
2

This gives areation between the conditiona and unconditiond distributions in the expectations E .
Ing] and EX[ . |ry]. If we subdtitute for the conditiond distribution we get that for any h-measurable

random variable x, where t>s,
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kEXxIh]= & PSPrihkhdx(®) = & p (h)& pf Pk hdx(hy = El PE X |hg;

h, TH,

thusit is possible to write the conditiona expectation of the random variable x as an unconditiona
expectation of pK x. Notice that player 2's payoff in period t, B(i,,j,), isan h,,-measurablerandom
variable, and hence the following holds dmost surely:

pk | LEK] by [hy] - LE[ by [ K] |
= &LE( T-ASE1 k(i) |hy] - LE[ TS péBli) I ] &
=20 [T-Us- DMgh+ & L[ PEEK T-L St=sB(iyjg| hy )] - LE[ T St=s pB(Qil hy 1 &
=0+ & LE[T-1St=c phyBlyip [hg] - LE[ T-1 Stz pBidy) [y ] &
= MgLE][ TaSte g Py - Pl g | hl.

where both inequalities use the fact that L isalinear operator (recal that Mg bounds payoffs) and in
the third line we take P¥ outside B[ - | hg] inorder to use the above result on conditiona
expectations. Following Hart (1985) we now define a non-increasing sequence of random variables

k
Z,=Up & P - P & which converges as. to zero. It followsthat E[ zg | hy ] isabounded
supermartingdew.r.t. {h} and E[ z |h ] £ z g as for somerandom varieblez g. But E[E[ Z |

;
h 1] = E[z]AD, 0 E[ 4] =0andzg=0as Wethenhave LE[ T-15t=sg Pk1- P¥& |h.]=
Elspc& M1 - PE& |hg] =E[ 2z |h] A0 as.

QE.D.

Proof of Lemma 4 A generic zero-sum game (- B,B) has aunique equilibrium (u* v*): this
equilibrium isregular and quas-gtrict (see Van Damme (1987, p.56)), and we are assuming h =
#aupp(u*)=#supp(v*)>1. The equilibrium is regular so there is a non-singular hixh submetrix B of B
such that (u*)tB = et(minmaxB) and Bv* = e(minmaxB), where u* (v*) isu* (v*)with al zeros
deleted and e is a vector of ones.

Letz(p) :=a-1{ u* +d(ptB-It } for paRh, wherea ,d>0. Choose d smal enough o that
Z(p)>>0 and a so that z(p)te=1; thus A p) isapotential mixed strategy for player 1. Noticethat if
vaDh, then

Zp)tBv = a-1{ et(mnmax2(B)) +dpt}v = a-L (minmal(B))+ dptv}.
Thus, Zp)tBv = minmax2(B)A dptv = (a-1)minmax(B) Aptv = ptv*. (z(p)te=1 together with

v* = B-lg(minmax2(B)) impliesa-1 = dptv*minmax[B)-1.) The equilibrium (u* ,v*) is quas-
drict so V:={vaDJ | (U*)tBv = minma(B) } conagsof dl v's satifying supp(v)1 supp(v*). Let
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Z(p)a DM be z(p) with zerosin appropriate locations and let paDJ be p with appropriate extra zeros.
AsdAOtheset V(p) : = { vaDI| z(p)tBv=minmax2(B) } convergesto V*(p):=V« {vaDJ|
ptv=ptv* } in the Hausdorff topology. (V*(p) 1 V(p) andif vaV (p), but supp(v) E supp(v*),
then v plays an action which is not a best response to u*; hence z(p)tBv < minmax(B) as d A20. If
vaV but v(iV* (p) then ptv < ptv* (where v isv with appropriate zeros deleted), and thisimplies
z(p)tBv < minmax2(B): a contradiction.)

By lineaxity min, 5, (U*)tAv occurs on a convex subset of the boundary of V; choose p so
that VV* (p) does not include this set (possible for generic A). By continuity, asd A0 m'nvév(p)
(U*YtAv isdrictly greater thanmin, 5\, (U*)!AV. Asd A S0 z(p)AEu* and thus we aso have
m'nvév(p) Z(p)tAv >min g, (U*AV. QED.

APPENDIX B: TIGHTNESS OF THE BOUND

Proof of Proposition 2: We prove part (ji) first.

(The strategy of the normal type, k=1) Typek=1 of player 1 randomly selects one of the
automatak, 2=k=k, wil:[h probability gk =0 and mimics its stage-game mixed action k in dl future
periods (where g2+...+a*=1). Let pk = pk(gkp1+pk)-1; thiswill be player 2's condiitional
probability for type k given he knows k is being played (thus pk=pK). If type k=1 mimics k, then
by Proposition 1, once learning has settled down, this must guarantee her at least a* (pk,dk). We
shall congtruct an equilibrium which ddlivers exactly & (pk, k) to type 1 when she mimics type k.
Relabel the automata k<k so that a* (1,0K) > a*(p@f@) if k=k<k (set k=K if there are no such
automata). The gk's are chosen so that MaXogs k a* (pk,0K) isminimised: thiswill minimise the
payoff to type 1 and smultaneoudy ensure that al types which are mimicked with postive
probability offer the same (maximal) payoff, as & (pk, (k) isadecreasing continuous function of gk
for k=k< k (cealy gk =0 for 2=k<k,, mimicking one of these automatawill give player 1 full
reputation, pk=1, but thisis not desirable). Hence define & :=minj, maX,g¢ a* (pk,0k), where

q:=(q2,...,ok). We need to choose e smdl so that & iscloseto a*(pk,ﬁk). For e amdl, evena
smdl increasein gk away from zero will lead to pk faling from 1 to close to zero. Hencefor e

sufficiently small, our choice of the gk's resultsin & (pk, 0K) having the same value for al k,=k= /IE,
that isa*=a* (pk,0k) for k =k= K . Moreover as e shrinks, a will gotolandplto 1-PX so
ol'2 (respectively &) can be made arbitrarily closeto P (respectively a* (P 0¥)): we choose e so

that a* (PX,G¥)+h > a*.

Deviations by player 2 during the punishment phase areignored. If dayer 2 deviatesfrom
his (determinigtic) strategy a any other point of play, type k=1 minmaxes him theregfter.

(The strategy of player 2) Player 2 plays an arbitrary constant action for the first K
periods and then follows a prescribed deterministic sequence {jlt( }so long asthe sequence{ilt( }
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(somek> /k\) is observed-this corresponds to the normd type k being provisonaly identified.
Player 2 continuesto follow { it} until an action i it is observed (the sequences {ir} {if}, will be
determined below). As soon as an action incongstent with any sequence { i{(} , k> k, isobserved,
play enters the monitoring phase in the following period-this meansthat player 2 believes heis not
facing one of the normal typesk> k.

In the monitoring phase, player 2 reviews whether player 1 keeps to one of the automaton
drategies k, k=2,..., k, in asequence of customised review phases of increasing length. Each time
player 1 falsto play close to tk on average during the review phase, she will face afinite period of
punishment, or "punishment phasg’. Player 2's srategy will eventudly identify the correct strategy
(k and play the correct review for this strategy.

Review phases are indexed by n, the number of the review in the naturd order. Review n
lasts for afixed number of periods L(n); its (random) starting period is denoted by t(n). The
automaton for which player 1 is being reviewed is denoted by k(n); thisis an integer random
variable taking vaues between 2 and k. For k(n)=k, player 2 follows a fixed sequence of actions
{J'f} during the review. Let vk DI be a (possibly mixed) action which attains the minimum in the
definition of & (pk, (k) (see equation (1)) if k =k= Kk, and which is abest response against k if

KYt(n)+L(n)- 1 <o that
t=t(n)

v(n K):=#ta {t(n), .. t(n)+L(n)+1} | it 5j}L(n), the relativefrequency withwhich action j is
chosen converges to vJ asnd , with v(nk)=0if and only if v; k=0, L et f; be the number of times

2=k<k,,. For eachreview nwith k(n)=k, choose afixed sequence’8 {J

profile (i) is chosen during the review. Then player 1 falsreview nwith k(n)=k if the relive
frequency of her actions againgt each of player 2's actionsis not sufficiently closeto (k, specificaly
if
& (v(nk) L(M)1 - Gf &=n4/3for any (i) such thet v[>0.

If the rth review isfailed, play enters punishment phase n, which lagts for P(n) periods. To
construct the punishment strategy, define IR(U):={vaDJ| B(4, v)=minmax2(B)}. Next, for | 4[0,1],

min (I A(uv) +(1- 1)(-B(u,v)) £ vm{r(\u)(l Au,v)+@- 1) B(u,v))

£ Vlrnl?rgu)l A(u, v)+ max (1- 1)(- B(u,v)) £ m|rg I A(u,v)+(@- 1 )(- min max (B))

Teking themaximumover ui O,

maé( min (I A(u,v) +@- 1)(- B(u,v)) £ | a(0, G") +(1-1) (~minmax2(B)).
|

18T he sequence depends only on n and k, but the starting period is random.
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Hence by Blackwel's gpproachability theorem (see Myerson (1991, ch.7), Mertens et al. (1991))
the set of payoffs below (a* (0, GK),-minma’(B)) isapproachable by player 2 when player 1 has
vector payoffs(A,-B). Define

S:={(a b)& R2& a=a*(0, %), b = minma2(B)},
and for t=0, where || - || is used to denote the Euclidean norm,
t(n)+L(n)+t

= min
(ab) S

L(n)@b) (Alisjs).Bliss) | _
((L(n)ﬂ)lw(m WORS ) (@b)

wherea = max ;A(i j) and b =max; {B(i,j). Then by approachability there exists a continuation
drategy t for player 2 after the history h(n)+|_(n), and afinite integer R, depending only on n, such
that for any continuation strategy s followed by player 1 during the punishment phase I:Js,?[

SUP (4L (r)+R d=nl& h((n) +|_(n)] =nl DeineP(n)=R+landlet { befollowed for the
P(n) periods of punishment phase n.

Review 1 with k(1)=/k\ isawaysthefirst review phase played once the monitoring phase has
begun. Review nwith k(n)=k is followed by review n+1 with k(n+1)=k if review n with k(n)=k is
pased. If the review n with k(n)=k isfailed punishment phase n occurs. Player 1 could fail a
review because she is following a different automaton strategy, o at the end of the punishment
phase, review n+1 with k(n+1)=k is played unless there exists a k', 1<k'= k, such that
& (v(n k) L(m)-1- (1 &= n4/3for al (i) such that vjk' >0, in which case review n+1 with
k(n+1)=K' is played (choose the smalest if there are multiple such k).

(The strategies of the normal types k> 12) Consider type k playing a best response to
that part of player 2's strategy which is played during the monitoring phase. Choosethe
deterministic sequences{i; }, { j;}, to replicate the best-response outcome, that is so thet the
limiting average relative frequency over slage-game action profilesisthe samein either case. (If a
best response does not exig, then replicate the limit relative frequencies from a convergent sequence
of frequencies of e -best responses as e A0). The sequences{;\ } for k> k are chosen additionally

to ensure that they differ during the first K periods: for each k, k' > k, there is some t=K such that

i1 ik, Findly if any of the automata play deterministic strategies, ensurethat each { ¥}, k' > k,

differsfrom al such automaton Strategies at some point during thefirst K periods. If player 2 does
not respond to { i }with{ j¥} thentypek>k minmaxes player 2 theresfter.

(Optimality of Players Strategies) Suppose that type 1 chooses to mimic the automaton
drategy of (k each period. Thisimpliesthat the monitoring phase beginsin finite time with
probability one. We choose L(n)=r#. Congider review n with k(n)=k; by Chebychev's Inequdity,
for (i) such that v >0,
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Pr fij - uI
3 vj(n,k)L(n)

where we are using the fact that f;; (vi(n,k) L(n))-1hasmeen ;" and variance
ﬁ!‘ (1-0 )(v(n K) L(n))- l-(4v(n k) L(n))1. Choosef, such that O<f <v(n K) for dl k, j, with
v}‘ >0, and al n=n. Then the probability of faling review n with k(n)=k for n=fiis no grester than

-4/3

3 4v;(nk)L(M)n 83~ 4v,(n,k)’

k

IJn-4/3(4f )-1. Since Sp=1""%3 < 8, by the Borel-Cantdli Lemmas with probehility one a player
playing (k fails only afinite number of reviews n with k(n)=k in equilibrium, and likewise (by
essentialy the same argument) only undertakes a finite number of reviews n with k(n)= kak. Hence
type 1 must receive the limit of her expected payoffs from review phases n with k(n)=k which by
construction equals & for k,=k= k , and isno greater than a* for 2=k<k,.

If type 1 chooses to mimic one of the typesk>k and play the sequence{i't‘} then by
construction the outcome corresponds to some response to the monitoring phase; thus this cannot
be aprofitable deviation. Nor can type 1 profitably deviate by playing some other strategy during
the monitoring phase: failing areview phase leads, with a probability approaching one as n£E8A, toa
payoff, for the entire review/punishment phase, no grester than a number approaching a* (0, U¥)=a*,
and since L(n)/t(n) = ré/ Spﬁzllm“ /A0 as n/E8, her possible gains obtained by deviating from Ck in
the current review phase become insignificant in the caculation of a for T large. Itisthen
straightforward, but tedious, to show that limsup 1 ¢ Eé‘t* [a]=a forany s, wheret* isplayer 2's
equilibrium strategy, so LEs.t*[a]=limap. g, EL [ ]=a. (Deviations during the punishment
phase do not affect average payoffs.)

By construction the typesk> k receive payoffs generated by the sequence { (if it )} which
gives them their payoff from an optima response to the monitoring phase strategy and so they
cannot gain by deviation.

Since in equilibrium punishment phases only take place a finite number of timeswith
probability one, deviations during such phases do not affect player 2's payoff. Indl other phases
player 2 plays determiniticaly. It isthen sufficient to show that a deviation during a deterministic
phase of play cannot improve player 2's payoff after any positive probability history h,. Conditiona
upon k being played, player 2's equilibri um payoff isat least pkBRZ((K) + (1-pk)minmax(B) —
note that pk=1 for 2=k<k ... Whenk> k player 2's equilibrium payoff is a least minmax2(B): the
deterministic sequences{i! },{ j}, k> k, correspond to some response against player 2's
monitoring phase strategy and from each review/punishment phase player 2 plays so asto guarantee

himsdf a payoff converging, as n increases, to minmax2(B) with probability approaching one.
Payer 2's expected payoff given his priors (ptk)m « Istherefore at leest
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g Spk
kS pk{ pkBRR((K) + (1- pk)minma?(B) } + k>k minmax(B),
=2

where p'; / p" ishis belief that (kisbeing followed. If player 2 deviates he gets & most

Stzz pE BR2((K) + (1- St=2 p{‘)mi nmax2(B), which equals the above expression. Therefore player 2
never benefits from deviating.

To prove part (i), asmilar congtruction isused. Type k=1 can now be treated in the same way as
the other normd types, and reved its type at the beginning of the game, and play out a deterministic
equilibrium corresponding to a best response againgt the monitoring phase strategy of player 2.
Moreover player 2 no longer needs to punish type 1 during the monitoring phase; adl that is
necessary is that player 2 plays a prudent stage- game mixed action (i.e. to guarantee his minmax
payoff) during the punishment phases. During the review phases for automaton k, player 2 playsa
best response againgt (k. The congtruction is otherwise identicdl to that of part (ii). Q.ED.
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