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Abstract

We study the long-run sustainability of reputations in games with im-
perfect public monitoring. It is impossible to maintain a permanent
reputation for playing a strategy that does not eventually play an equi-
librium of the game without uncertainty about types. Thus, a player
cannot indefinitely sustain a reputation for non-credible behavior in
the presence of imperfect monitoring.
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1 Introduction

The adverse selection approach to reputations is central to the study of long-
run relationships. In the complete-information finitely-repeated prisoners’
dilemma or chain store game, for example, the intuitively obvious outcome
is inconsistent with equilibrium. However, if some player’s characteristics
are not common knowledge, that player may acquire a reputation for co-
operating or playing “tough,” rendering the intuitive outcome consistent
with equilibrium (Kreps, Milgrom, Roberts, and Wilson (1982), Kreps and
Wilson (1982), and Milgrom and Roberts (1982)). In other situations, rep-
utation effects impose intuitive limits on the set of equilibria by imposing
“high” lower bounds on equilibrium payoffs (Fudenberg and Levine (1989,
1992)).

We explore the long-run possibilities for reputation effects in imperfect
monitoring games with a long-lived player facing a sequence of short-lived
players. The “short-run” reputation effects in these games are relatively
clear-cut. In the absence of incomplete information about the long-lived
player, there are many equilibria and the long-lived player’s equilibrium
payoff is bounded below that player’s Stackelbeg payoff. However, when
there is incomplete information about the long-lived player’s type and the
latter is patient, reputation effects imply that in every Nash equilibrium,
the long-lived player’s expected average payoff is arbitrarily close to her
Stackelberg payoff.

This powerful implication is a “short-run” reputation effect, concerning
the long-lived player’s expected average payoff calculated at the beginning of
the game. We show that this implication does not hold in the long run: A
long-lived player can maintain a permanent reputation for playing a strategy
in a game with imperfect monitoring only if that strategy eventually plays
an equilibrium of the corresponding complete-information game.

More precisely, a commitment type is a long-lived player who plays an
exogenously specified strategy. In the incomplete-information game, the
long-lived player is either a commitment type or a normal type who max-
imizes expected payoffs. We show (under some mild conditions) that if
the commitment strategy is not an equilibrium strategy for the normal
type in the complete-information game, then in any Nash equilibrium of
the incomplete-information game, if the long-lived player is normal, almost
surely the short-lived players will learn that the long-lived player is normal
(Theorems 1 and 2). Thus, a long-lived player cannot indefinitely maintain
a reputation for behavior that is not credible given the player’s type.

The assumption that monitoring is imperfect is critical. It is straightfor-
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ward to construct equilibria under perfect monitoring that exhibit perma-
nent reputations. Any deviation from the commitment strategy reveals the
type of the deviator and triggers a switch to an undesirable equilibrium of
the resulting complete-information continuation game. In contrast, under
imperfect monitoring, all public histories are on the equilibrium path. De-
viations neither reveal the deviator’s type nor trigger punishments. Instead,
the long-run convergence of beliefs ensures that eventually any current signal
of play has an arbitrarily small effect on the short-lived player’s beliefs. As
a result, a long-lived player ultimately incurs virtually no cost (in terms of
altered beliefs) from a single small deviation from the commitment strategy.
But the long-run effect of many such small deviations from the commit-
ment strategy is to drive the equilibrium to full revelation. Reputations
can thus be maintained only in the absence of an incentive to indulge in
such deviations, that is, only if the reputation is for behavior that is part
of an equilibrium of the complete-information game corresponding to the
long-lived player’s type.

The intuition of the previous paragraph is relatively straightforward to
formalize when the short-lived player’s beliefs are known by the long-lived
player. Such a case arises, for example, when the short-lived players’ actions
are public and it is only the long-lived player’s actions that are imperfectly
monitored. More generally, this case requires that the updating about the
long-lived player’s actions be independent of the actions taken by the short-
lived player. The long-lived player then knows when the short-lived players’
beliefs have converged, making deviations from a non-equilibrium commit-
ment strategy irresistibly costless. Our Theorem 1 covers this case.

The situation is more complicated when the short-lived players’ beliefs
are not known by the long-lived player. Now, a player trying to maintain
a reputation may not know when her opponent’s priors have converged and
hence when deviations from the commitment strategy are relatively costless.
Making the leap from the preceding intuition to our main result requires
showing that there is a set of states of the world under which the short-lived
player is relatively certain (in the long run) he faces the commitment type
of behavior from the long-lived player, and then using this to show that
in the even longer run the long-lived player will (correctly) think that the
short-lived player is best responding to the commitment type. This ensures
that the long-lived player will deviate from any nonequilibrium commitment
strategy, yielding the result (our Theorem 2). This situation is important
because the analysis also applies to games with private monitoring, situations
where there may be no public information (Section 6).

The impermanence of reputation arises at the behavioral as well as at
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the belief level. Not only do the short-lived players learn that the long-lived
player is normal, but asymptotically, continuation play in every Nash equi-
librium is a correlated equilibrium of the complete-information game (Theo-
rem 3). Moreover, while the explicit construction of equilibria in reputation
games is difficult, we are able to provide a partial converse when the short-
lived players’ beliefs are known by the long-lived player: Fix a strict Nash
equilibrium of the stage game and ε > 0. For all parameter values, there is
a Nash equilibrium of the incomplete-information game such that when the
long-lived player is normal, with probability at least 1 − ε, eventually the
stage-game Nash equilibrium is played in every period (Theorem 4). Note
that this is true even if the long-lived player is sufficiently patient that repu-
tation effects imply that, in all Nash equilibria of the incomplete-information
game, the normal type’s expected average payoff is strictly larger than the
payoff of that fixed stage-game Nash equilibrium.

For expositional clarity, most of the paper considers a long-lived player,
who can be one of two possible types—a commitment and a normal type—
facing a sequence of short-lived players. However, most of our results con-
tinue to hold when there are many possible commitment types and when
the uninformed player is long-lived (Sections 7 and 8).

While the short-run properties of equilibria are interesting, we believe
that the long run equilibrium properties are particularly relevant in many
situations. For example, the analyst may not know the age of the relation-
ship to which the model is to be applied. Long-run equilibrium properties
may then be an important guide to behavior. In other situations, one might
take the view of a social planner who is concerned with the continuation
payoffs of the long-run player and the fate of all short-run players, even
those in the distant future.

We view our results as suggesting that a model of long-run reputations
should incorporate some mechanism by which the uncertainty about types
is continually replenished. One attractive mechanism, used in Holmström
(1999), Cole, Dow, and English (1995), Mailath and Samuelson (2001), and
Phelan (2001), assumes that the type of the long-lived player is itself deter-
mined by some stochastic process, rather than being determined once and
for all at the beginning of the game. In such a situation, as these papers
show, reputations can indeed have long-run implications.

The next section presents a simple motivating example and discusses
related literature. Section 3 describes our model. Section 4 presents the
statements of the theorems described above. Section 5.1 presents some pre-
liminary results. Theorem 1 is proved in Section 5.2. Our main result,
Theorem 2, is proved in Section 5.3.
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2 Illustrative Example and Related Literature

Consider an infinite-horizon game involving an infinitely-lived player 1 with
discount factor δ and a succession of short-lived player 2’s who each live for
one period. In each period, the stage game given by

1

2
L R

T 2, 3 0, 2
B 3, 0 1, 1

(1)

is played. This stage game has a unique Nash equilibrium, BR, which is
strict.

If the repeated game has perfect monitoring, then we have a version of
the folk theorem: the interval [1, 2] is the set of average discounted subgame-
perfect equilibrium payoffs for player 1 as δ → 1 (Fudenberg, Kreps, and
Maskin (1990)).

In the incomplete-information game, there is a probability p0 > 0 that
player 1 is the pure Stackelberg type, i.e., a commitment type who plays
T in every period, irrespective of history. With complementary probability,
player 1 is normal, and hence has payoffs in each period given by (1). Fu-
denberg and Levine (1989) show that for any payoff u < 2, for δ sufficiently
close to 1, in every Nash equilibrium, the average discounted payoff to player
1 is at least u.1 An equilibrium (for large δ) with an average payoff of 2
is easy to describe: the normal type begins with T , and plays T in every
subsequent period (just like the commitment type). If the normal type ever
deviates to B, then she plays B forever thereafter. Player 2 begins with
L, plays L as long as T has been played, and plays R forever after B is
played. Note that, since there is perfect monitoring, player 2 knows that
if he observes B, it must be the case that player 1 is normal, so that BR
forever is an equilibrium outcome of the continuation game.

We now describe the game with imperfect monitoring. There are two
possible public signals, y′ and y′′, which depend on player 1’s action i ac-
cording to the distribution

Pr{y = y′|i} =
{
p, if i = T,
q, if i = B,

1Fudenberg and Levine (1989) observe that the argument in that paper cannot be ex-
tended to a mixed commitment type, such as a type that plays T with probability 3/4 and
B with probability 1/4. Since B is then effectively a noisy signal of the commitment type,
the game is more like a game with imperfect monitoring, the case covered by Fudenberg
and Levine (1992).
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where p > q. Player 2’s actions are public. Player 1’s payoffs are as in
the above stage game (1), and player 2’s ex post payoffs are given in the
following matrix,

L R

y′ 3 (1− q) /(p− q) −3q/(p− q)

y′′ (p− 1)/(p− q) p/(p− q)
.

The ex ante payoffs for player 2 are thus still given by (1). This structure
of ex post payoffs ensures that the information content of the public signal
and player 2’s payoffs is the same.

This game is an example of what Fudenberg and Levine (1994) call a
moral hazard mixing game. Even for large δ, the long-run player’s max-
imum Nash (or, equivalently, sequential) equilibrium payoff is lower than
when monitoring is perfect (Fudenberg and Levine (1994, Theorem 6.1, part
(iii))).2 For our example, it is straightforward to apply the methodology of
Abreu, Pearce, and Stacchetti (1990) to show that if 2p > 1 + 2q, then the
set of Nash equilibrium payoffs for large δ is given by the interval[

1, 2− (1− p)
(p− q)

]
. (2)

There is a continuum of particularly simple equilibria, with player 1 ran-
domizing in every period, with equal probability on T and on B, irrespective
of history and player 2’s strategy having one period memory. After the sig-
nal y′, player 2 plays L with probability α′ and R with probability 1 − α′.
After y′′, player 2 plays L with probability α′′ and R with probability 1−α′′,
with

2δ (p− q)
(
α′ − α′′

)
= 1.

The maximum payoff of 2 − (1− p) / (p− q) is obtained by setting α′ = 1
and

α′′ = 1− 1
2δ (p− q)

.

As in the case of perfect monitoring, we introduce incomplete information
by assuming there is a probability p0 > 0 that player 1 is the Stackelberg type
who plays T in every period. Fudenberg and Levine (1992) show that in this
case as well, for any payoff u < 2, there is δ sufficiently close to 1 such that

2In other words, the folk theorem of Fudenberg, Levine, and Maskin (1994) does not
hold when there are short-lived players.
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in every Nash equilibrium, the expected average discounted payoff to player
1 is at least u. We emphasize that u can exceed the upper bound in (2).
Establishing that u is a lower bound on equilibrium payoffs is significantly
complicated by the imperfect monitoring. Player 2 no longer observes the
action choices of player 1, and so any attempt by player 1 to manipulate the
beliefs of player 2 must be mediated through the full support signals. The
explicit construction of equilibria in this case is also very difficult.

In this example, player 2’s posterior belief that player 1 is the Stackelberg
type is independent of 2’s actions and hence public information. As such the
example falls within the coverage of our Theorem 1. To develop intuition,
temporarily restrict attention to Markov perfect equilibrium, with player
2’s belief that player 1 is the Stackelberg type (i.e., player 1’s “reputation”)
being the natural state variable. In any such equilibrium, the normal type
cannot play T for sure in any period: if she did, the posterior after any signal
in that period is the prior, and continuation play is also independent of the
signal. But then player 1 has no incentive to play T . Thus, in any period of
a Markov perfect equilibrium, player 1 must put positive probability on B.
Consequently, the signals are informative, and so almost surely, when player
1 is normal, beliefs must converge to zero probability on the Stackelberg
type.3

Our analysis is complicated by the fact that we do not restrict attention
to Markov perfect equilibria, as well as the possibility of more complicated
commitment types than the pure Stackelberg type (for example, we allow
for nonstationary history-dependent mixing). In particular, uninformative
signals may have future ramifications.

While some of our arguments and results are reminiscent of the recent
literature on rational learning and merging, there are also important dif-
ferences. For example, Jordan (1991) studies the asymptotic behavior of
“Bayesian Strategy Processes,” in which myopic players play a Bayes-Nash
equilibrium of the one-shot game in each period, players initially do not know
the payoffs of their opponents, and players observe past play. The central
result is that play converges to a one-shot Nash equilibrium of the complete-
information game. In contrast, the player with private information in our
game is long-lived and potentially very patient, introducing intertemporal
considerations that do not appear in Jordan’s model, and the information
processing in our model is complicated by the imperfect monitoring.

3Benabou and Laroque (1992) study the Markov perfect equilibrium of a game with
similar properties. They show that player 1 eventually reveals her type in any Markov
perfect equilibrium.
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A key idea in our results (in particular, Lemmas 2 and 5) is that if
signals are statistically informative about a player’s behavior, then there is
little asymptotic value to other players learning private information that has
a nontrivial asymptotic impact on the first player’s behavior. Similar ideas
play an important role in merging arguments, which provide conditions un-
der which a true stochastic process and beliefs over that process converge.
Sorin (1999), for example, unifies much of the existing reputation literature
as well as recent results on repeated games with incomplete information
using merging. Kalai and Lehrer (1995), again using merging, provide a
simple argument that in reputation games, asymptotic continuation play is
a subjective correlated equilibrium of the complete-information game (that
result is immediate in our context, since we begin with a Nash equilibrium of
the incomplete-information game, while it is a harder for Kalai and Lehrer
(1995) since their hypothesis is a weaker). Subjective correlated equilibrium
is a significantly weaker solution concept than objective correlated equi-
librium. We discuss the relationship in Section 4.3, where we show that
asymptotic continuation play is an objective correlated equilibrium of the
complete-information game.

The idea that reputations are temporary is a central theme of Jackson
and Kalai (1999), who are interested in reputation in finitely repeated nor-
mal form games (for which Fudenberg and Maskin (1986) prove a reputation
folk theorem). Jackson and Kalai (1999) prove that if the finitely repeated
normal-form game is itself repeated (call the finite repetition of the original
stage a round), with new players (although not a new draw from a rich set
of types) in each round, then eventually, reputations cannot affect play in
the finitely repeated game. While the conclusion looks the same as ours, the
model is quite different. In particular, players in one round of the finitely
repeated game do not internalize the effects of their behavior on beliefs and
so behavior of players in future rounds. Moreover, there is perfect moni-
toring of actions in each stage game. We exploit the imperfection of the
monitoring to show that reputations are eventually dissipated even when
players recognize their long-run incentives to preserve these reputations.

3 The Model

3.1 The Complete-Information Game

The stage game is a two-player simultaneous-move finite game of public
monitoring. Player 1 chooses an action i ∈ {1, 2, ..., I} ≡ I and player 2
simultaneously chooses an action j ∈ {1, 2, ..., J} ≡ J . The public signal,
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denoted y, is drawn from a finite set, Y . The probability that y is realized
under the action profile (i, j) is given by ρy

ij . The ex post stage-game payoff
to player 1 (respectively, 2) from the action i (resp., j) and signal y is given
by f1(i, y) (resp., f2(j, y)). The ex ante stage game payoffs are π1 (i, j) =∑

y f1 (i, y) ρy
ij and π2 (i, j) =

∑
y f2 (j, y) ρy

ij .
The stage game is infinitely repeated. Player 1 (“she”) is a long-lived

(equivalently, long-run) player with discount factor δ < 1; her payoffs in the
infinite horizon game are the average discounted sum of stage-game payoffs,
(1− δ)

∑∞
t=0 δ

tπ1(it, jt). The role of player 2 (“he”) is played by a sequence
of short-lived (or short-run) players, each of whom only plays once.

Players only observe the realizations of the public signal and their own
past actions (the period-t player 2 knows the action choices of the previ-
ous player 2’s). Player 1 in period t has a private history, consisting of the
public signals and her own past actions, denoted by h1t ≡ ((i0, y0), (i1, y1),
. . . , (it−1, yt−1)) ∈ H1t ≡ (I × Y )t. Similarly, a private history for player 2
is denoted h2t ≡ ((j0, y0), (j1, y1), . . . , (jt−1, yt−1)) ∈ H2t ≡ (J × Y )t. Let
{H`t}∞t=0 denote the filtration on (I × J × Y )∞ induced by the private his-
tories of player ` = 1, 2. The public history observed by both players is the
sequence (y0, y1, ..., yt−1) ∈ Y t. Let {Ht}∞t=0 denote the filtration induced
by the public histories.

We assume the public signals have full support (Assumption 1), so every
signal y is possible after any action profile. We describe circumstances un-
der which this assumption can be weakened in Section 4.1. We also assume
that with sufficient observations player 2 can correctly identify, from the fre-
quencies of the signals, any fixed stage-game action of player 1 (Assumption
2).

Assumption 1 (Full Support) ρy
ij > 0 for all (i, j) ∈ I × J and y ∈ Y .

Assumption 2 (Identification) For all j ∈ J , there are I linearly inde-
pendent columns in the matrix (ρy

ij)y∈Y,i∈I .

A behavior strategy for player 1 is a map σ1 : ∪∞t=0H1t → ∆I , from
the set of private histories of lengths t = 0, 1, . . . to the set of distributions
over current actions. Similarly, a behavior strategy for player 2 is a map
σ2 : ∪∞t=0H2t → ∆J .

A strategy profile σ = (σ1, σ2) induces a probability distribution P σ over
(I × J × Y )∞. Let Eσ[·|H`t] denote player `’s expectations with respect to
this distribution conditional on H`t.4

4This expectation is well-defined, since I, J , and Y are finite.
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In equilibrium, the short-run player plays a best response after every
equilibrium history. Player 2’s strategy σ2 is a best response to σ1 if, for all
t,5

Eσ[ π2(it, jt) | H2t] ≥ Eσ[ π2(it, j) | H2t], ∀j ∈ J P σ-a.s.

Denote the set of such best responses by BR(σ1).
The definition of a Nash equilibrium is completed by the requirement

that player 1’s strategy maximizes her expected utility:

Definition 1 A Nash equilibrium of the complete-information game is a
strategy profile σ∗ = (σ∗1, σ

∗
2) with σ∗2 ∈ BR(σ∗1) such that for all σ1:

Eσ∗

[
(1− δ)

∞∑
s=0

δsπ1(is, js)

]
≥ E(σ1,σ∗2)

[
(1− δ)

∞∑
s=0

δsπ1(is, js)

]
.

This requires that after any history that can arise with positive probability
under the equilibrium profile, player 1’s strategy maximize her continuation
expected utility. Hence, if σ∗ is a Nash equilibrium, then for all σ1 and for
all t, P σ∗-almost surely

Eσ∗

[
(1− δ)

∞∑
s=t

δs−tπ1(is, js)

∣∣∣∣∣H1t

]
≥ E(σ1,σ∗2)

[
(1− δ)

∞∑
s=t

δs−tπ1(is, js)

∣∣∣∣∣H1t

]
.

Since every public history occurs with positive probability, the outcome
of any Nash equilibrium is a perfect Bayesian equilibrium outcome.

3.2 Never an Equilibrium Strategy in the Long Run

Suppose (σ̄1, σ̄2) is an equilibrium of the complete-information game and
that we extend this to an incomplete-information game by introducing the
possibility of a commitment type who plays σ̄1. The profile in which player
1 always plays like the commitment type and player 2 follows σ̄2 is then an
equilibrium of the incomplete-information game. Moreover, player 2 learns
nothing about the type of player 1 in this equilibrium. Hence, player 1 can
maintain a permanent reputation for behavior that would be an equilibrium
without that reputation, i.e., in the complete-information game.

5Note that j, the action of player 2, on the right hand side of the inequality is not
random, and so the right expectation is being taken only with respect to it, the choice of
player 1.

9



More generally, there may be no difficulty in maintaining a reputation for
behavior that features nonequilibrium play in the first ten periods and there-
after switches to σ̄1. Questions of whether player 2 will learn player 1’s type
can only be settled by long-run characteristics of strategies, independent of
initial histories. We accordingly introduce the concept of a strategy’s being
never an equilibrium strategy in the long run. Such a strategy for player
1 has the property that for all best responses by player 2 and all histories
h1t, there is always a profitable deviation for player 1 in periods beyond
some sufficiently large T . We emphasize that in the following definition, the
BR (σ̄1) is the set of player 2 best responses in the complete-information
game.

Definition 2 The strategy σ̄1 is never an equilibrium strategy in the long
run, if there exists T and ε > 0 such that, for every σ̄2 ∈ BR(σ̄1) and for
every t ≥ T , there exists σ̃1 such that P σ̄-a.s,

Eσ̄

[
(1− δ)

∞∑
s=t

δs−tπ1(is, js)

∣∣∣∣∣H1t

]
+ε < E(σ̃1,σ̄2)

[
(1− δ)

∞∑
s=t

δs−tπ1(is, js)

∣∣∣∣∣H1t

]
.

It is possible for a strategy to never be an equilibrium strategy in the
long run for some discount factors, but not for others.

This definition is most easily interpreted when the strategy is either
simple or implementable by a finite automaton:

Definition 3 (1) A behavior strategy σ1 is public if it is measurable with
respect to {Ht}, so that the mixture over actions induced in each period
depends only upon the public history.

(2) A behavior strategy σ1 is simple if it is a constant function, i.e.,
induces the same (possibly degenerate) mixture over ∆I after every history.

(3) A public strategy σ1 is implementable by a finite automaton if there
exists a finite set W , an action function d : W → ∆I , a transition function
ϕ : W × Y → W , and an initial element w0 ∈ W , such that σ1 (ht) =
d (w (ht)), where w (ht) is the state reached from w0 under the public history
ht and transition rule ϕ.

Any pure strategy is realization equivalent to a public strategy. A simple
strategy is clearly public and is implementable by a finite automaton with
a single state.

The following Lemma shows that for simple strategies or strategies im-
plementable by a finite automata, being never an equilibrium in the long run

10



is essentially equivalent to not being part of a Nash equilibrium of the stage
game or the complete-information repeated game. The point of Definition
2 is to extend this concept to strategies that have transient initial phases or
that never exhibit a stationary structure.

Lemma 1 Assume the monitoring has full support (Assumption 1).

1.1 Suppose player 2 has a unique best reply to some mixture ς ∈ ∆I .
The simple strategy of always playing ς is never an equilibrium strat-
egy in the long run if and only if ς is not part of a stage-game Nash
equilibrium.

1.2 Suppose σ̄1 is a public strategy implementable by the finite automaton
(W,d, ϕ,w0), with every state in W reachable from every other state in
W under ϕ. If player 2 has a unique best reply to d (w) for all w ∈W ,
then σ̄1 is never an equilibrium strategy in the long run if and only if
σ̄1 is not part of a Nash equilibrium of the complete-information game.

Proof. We prove only part 2, since part 1 is similar (but easier). The
only if direction is obvious. So, suppose σ̄1 is not a Nash equilibrium of the
complete-information game. Since player 2 always has a unique best reply to
d (w), σ2 is public, and can also be represented as a finite state automaton,
with the same set of states and transition function as σ̄1. Since σ̄1 is not
a Nash equilibrium, there is some state w′ ∈ W , and some action i′ not in
the support of d (w′) such that when the state is w′, playing i′ and then
following σ̄1 yields a payoff that is strictly higher than following σ̄1 at w′.
Since the probability of reaching w′ from any other state is strictly positive
(and so bounded away from zero), σ̄1 is never an equilibrium in the long
run.

The example from Section 2 illustrates the necessity of the condition in
Lemma 1 that player 2 have a unique best response. The simple strategy
that places equal probability on T and B is part of many equilibria of the
complete-information game (as long as δ > 1/ [2 (p− q)]), and hence fails the
criterion for being never an equilibrium strategy in the long run. However,
this strategy is not part of an equilibrium of the stage game, in contrast to
Lemma 1.1. On the other hand, player 2 has a unique best response to any
mixture in which player 1 randomizes with probability of T strictly larger
than 1

2 , and a simple strategy that always plays such a mixture is not part
of a stage-game equilibrium and is never an equilibrium strategy in the long
run.
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If we were only interested in the presence of “Stackelberg” commitment
types, and the attendant lower bounds on player 1’s ex ante payoffs, it would
suffice to consider commitment types who follow simple strategies. However,
allowing more general types leaves the structure of the argument unaffected
while simplifying our discussion of the case where player 2 is also long-lived
(see Section 8).

3.3 The Incomplete-Information Game

We now formally describe the game with incomplete information about the
type of player 1. For expositional clarity only, much of our analysis focuses
on the case of one commitment type. Section 7 discusses the case of many
commitment types.

At time t = −1 a type of player 1 is selected. With probability 1 − p0

she is the “normal” type, denoted n, with the preferences described above.
With probability p0 > 0 she is a “commitment” type, denoted c, who plays
a fixed, repeated-game strategy σ̂1.

A state of the world is now a type for player 1 and sequence of actions
and signals. The set of states is then Ω = {n, c}× (I × J × Y )∞. The prior
p0, commitment strategy σ̂1 and the strategy profile of the normal players
σ̃ = (σ̃1, σ2) induce a probability measure P over Ω, which describes how an
uninformed player expects play to evolve. The strategy profile σ̂ = (σ̂1, σ2)
(respectively σ̃) determines a probability measure P̂ (respectively P̃ ) over Ω,
which describes how play evolves when player 1 is the commitment (respec-
tively normal) type. Since P̃ and P̂ are absolutely continuous with respect
to P , any statement that holds P -almost surely, also holds P̃ - and P̂ -almost
surely. Henceforth, we will use E[·] to denote unconditional expectations
taken with respect to the measure P . Ẽ[·] and Ê[·] are used to denote con-
ditional expectations taken with respect to the measures P̃ and P̂ . Generic
outcomes are denoted by ω. The filtrations {H1t}∞t=0, {H2t}∞t=0, and {Ht}∞t=0

on (I × J × Y )∞ can also be viewed as filtrations on Ω in the obvious way;
we use the same notation for these filtrations (the relevant sample space will
be obvious). As usual, denote by H`∞ the σ-algebra generated by ∪∞t=0H`t.

For any repeated-game behavior strategy σ1 : ∪∞t=0H1t → ∆I , denote
by σ1t the tth period behavior strategy, so that σ1 can be viewed as the
sequence of functions (σ10, σ11, σ12, . . .) with σ1t : H1t → ∆I . We extend
σ1t from H1t to Ω in the obvious way , so that σ1t (ω) ≡ σ1t(h1t(ω)), where
h1t(ω) is player 1’s t-period history under ω. A similar comment applies to
σ2.

Given the strategy σ2, the normal type has the same objective func-
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tion as in the complete-information game. Player 2, on the other hand, is
maximizing E[ π2(it, j) | H2t], so that after any history h2t, he is updating
his beliefs over the type of player 1 that he is facing.6 The profile (σ̃1, σ2)
is a Nash equilibrium of the incomplete-information game if each player is
playing a best response.

At any equilibrium, player 2’s posterior belief in period t that player
1 is the commitment type is given by the H2t-measurable random variable
pt : Ω → [0, 1]. By Assumption 1, Bayes’ rule determines this posterior after
all sequences of signals. Thus, in period t, player 2 is maximizing

ptÊ[ π2(it, j) | H2t] + (1− pt) Ẽ[ π2(it, j) | H2t]

P -almost surely. At any Nash equilibrium of this game, the belief pt is a
bounded martingale with respect to the filtration {H2t}t and measure P .7

It therefore converges P -almost surely (and hence P̃ - and P̂ -almost surely)
to a random variable p∞ defined on Ω. Furthermore, at any equilibrium the
posterior pt is a P̂ -submartingale and a P̃ -supermartingale with respect to
the filtration {H2t}.

A final word on notation: The expression Ẽ [σ1t|H2s] is the standard
conditional expectation, viewed as a H2s measurable random variable on Ω,
while Ẽ [σ1 (h1t) |h2s] is the conditional expected value of σ1 (h1t) (with h1t

viewed as a random history) conditional on the observation of the history
h2s.

4 Impermanent Reputations

Consider an incomplete-information game, with a commitment type strat-
egy that is never an equilibrium strategy in the long run. Suppose there
is a Nash equilibrium in which both the normal and the commitment type
receive positive probability in the limit (on a positive probability set of his-
tories). On this set of histories, player 2 cannot distinguish between signals
generated by the two types (otherwise player 2 can ascertain which type he
is facing), and hence must believe, on this set of histories, that the normal
and commitment types are playing the same strategies on average. But then
player 2 must eventually, again on the same set of histories, best reply to
the average behavior of the commitment type. Since the commitment type’s

6As in footnote 5, j is not random and the expectation is being taken with respect to
it, the action choice of player 1.

7These properties are well-known. Proofs for the model with perfect monitoring (which
carry over to imperfect monitoring) can be found in Cripps and Thomas (1995).
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behavior is never an equilibrium strategy in the long run, player 1 does not
find it optimal to play the commitment-type strategy in response to 2’s best
response, leading us very close to a contradiction.

There are two difficulties in making this argument precise. First, since
the game has imperfect monitoring, player 2 has imperfect knowledge of
player 1’s private history and thus the continuation strategy of player 1. If
the commitment type strategy is not pure, it may be that the normal type
is following a private strategy that on average is like the public commitment
strategy, but which is different from the latter on every history. Second, the
set of histories upon which the argument proceeded is typically not known
by either player at any point (although it will be in H2∞). Consequently,
player 1 may never know that player 2 is best responding to the average
play of the commitment type.

These two difficulties interact. Our first and easier result (Theorem 1) is
for the case where the informativeness of the signal about player 1’s action
is independent of player 2’s action. In this case, in any equilibrium, player
2’s beliefs about the type of player 1 are public and so the second difficulty
does not arise. We can then surmount the first difficulty to show that
reputations are impermanent, even when the commitment type is following
a mixed public strategy.

The second, harder result (Theorem 2) is for the case where the informa-
tiveness of the signal about player 1’s action depends on player 2’s action.
This case is important because, as we describe in Section 6, it also covers
games with private monitoring. In this case, we can only show that reputa-
tions are impermanent when we remove the first difficulty by imposing the
stronger requirement that the commitment type is following a pure (though
not necessarily simple or finitely-implementable) strategy.

Theorem 1 is presented in the next subsection with its proof given in
Section 5.2, Theorem 2 is presented in Section 4.2 and proved in Section
5.3. (Some preliminaries are presented in Section 5.1.) The behavioral
implications of the theorems are discussed in Sections 4.3 and 4.4.

4.1 The “Easy” Case: Player 2’s Beliefs Known

In the “easy” case, player 2’s beliefs about player 1 are known by player 1.
The full support assumption (Assumption 1) implies that player 1 in

general does not know the action choice of player 2. Under the following
assumption, however, player 1 can calculate 2’s inference without knowing
2’s action:
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Assumption 3 (Independence) For any (possibly mixed) actions ζ1 ∈
∆I , signal y ∈ Y , and actions i, j, and j′,

Pr{i|y, j, ζ1} = Pr{i|y, j′, ζ1},

where Pr{i|y, j, ζ1} is the posterior probability of player 1 having chosen
pure action i, given mixed action ζ1 and given that player 2 observed signal
y after playing action j.

Theorem 1 Suppose ρ satisfies Assumptions 1, 2, and 3. Suppose σ̂1 is a
public strategy with finite range that is never an equilibrium strategy in the
long run. Then in any Nash equilibrium, pt → 0 P̃ -almost surely.

The definition of never an equilibrium in the long run requires player 1’s
period-t deviation to generate an expected payoff increase, conditional on
reaching period t, of at least ε. Our proof rests on the argument that if play-
ers are eventually almost certain that the normal type player 1 is behaving
like a commitment type that is never an equilibrium in the long run, then
the normal type will have a profitable deviation. Without the ε wedge in
this definition, it is conceivable that while players become increasingly cer-
tain that the normal type is playing like the commitment type, the payoff
premium to deviating from the nonequilibrium commitment-type strategy
declines sufficiently rapidly as to ensure that the players are never certain
enough to support a deviation. The ε-uniform bound on the profitability of
a deviation precludes this possibility.

Section 5.1.2 explains how the assumptions that σ̂ has a finite range
plays a role similar to that of the ε just described. The requirement that
σ̂1 be public ensures that whenever player 2 is convinced that player 1 is
playing like the commitment type, player 2 can identify the period-t strategy
realization σ̂1(h1t) and play a best response.

A sufficient condition for Assumption 3 is that the public signal y be a
vector (y1, y2) ∈ Y1 × Y2 = Y , with y1 a signal of player 1’s action and y2

an independent signal of player 2’s action. In this case, action i induces a
probability distribution ρi over Y1 while action j induces ρj over Y2, with

ρy
ij = ρy1

i ρ
y2
j ∀i, j, y. (3)

The full-support Assumption 1 can be relaxed if (3) holds. The key
ingredient in the proof of Theorem 1 is that players 1 and 2 are symmetrically
informed about 2’s beliefs, and that the signal not reveal player 1’s action (so
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that trigger profiles are not equilibria). Assumption 1 can thus be replaced
by the requirement that, for all i and y1 ∈ Y1,

ρy1
i > 0.

Assumption 2, in the presence of (3), is equivalent to the requirement that
there are I linearly independent columns in the matrix

(ρy1
i )y1∈Y1,i∈I .

Since the key implication of Assumption 3 is that player 1 knows player
2’s posterior belief, an alternative to Assumption 3 is to assume that player
2’s actions are public, while maintaining imperfect public monitoring of
player 1’s actions. In this case, Y = Y1 × J , where Y1 is the set of public
signals of player 1’s actions, and

ρ
(y1,j′)
ij = 0 (4)

for all i ∈ I, j 6= j′ ∈ J , and y1 ∈ Y . The public nature of player 2’s actions
implies that H2t = Ht, and hence pt is measurable with respect to Ht (and
so player 1 knows the posterior of belief of player 2).

When player 2’s actions are public, the full support assumption is

ρ
(y1,j)
ij > 0

for all (i, j) ∈ I × J and y1 ∈ Y1, while the identification assumption is now
that for all j ∈ J , there are I linearly independent columns in the matrix(

ρ
(y1,j)
ij

)
y1∈Y1,i∈I

.

4.2 The Harder Case: Player 2’s Beliefs Unknown

The harder case is where player 2’s beliefs about player 1 are not known by
player 1. Our method of proof requires that player 1 can draw inferences
about player 2’s actions, and the following assumption allows this:

Assumption 4 For all i ∈ I, there are J linearly independent columns in
the matrix (ρy

ij)y∈Y,j∈J .

This assumption is dramatically weaker than Assumption 3. Consider
the example of Section 2, except that player 2’s choice of L or R is private.
Let ρ′ij be the probability of the signal y′ under the action profile ij ∈
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{T,B} × {L,R}, so that the probability of the signal y′′ is given by 1− ρ′ij .
Assumption 2 requires ρ′TL 6= ρ′BL and ρ′TR 6= ρ′BR, while Assumption 4
requires ρ′TL 6= ρ′TR and ρ′BL 6= ρ′BR. The assumptions are satisfied if
ρ′TL > ρ′BL and ρ′TR < ρ′BR, so that y′ is a signal that player 1 has played
T if player 2 had played L, but is a signal that she had played B if 2 had
played R. Unless player 1 knows the action of player 2, she will not know
how the signal is interpreted.

As we discussed at the beginning of this section, the cost of weakening
Assumption 3 to Assumption 4 is that we must assume the commitment type
does not randomize. The commitment type’s strategy, while pure, can still
depend upon histories in arbitrarily complicated ways. We also emphasize
that we are not imposing any restrictions on the normal type’s behavior
(other than it be a best response to the behavior of the short-lived players).

Theorem 2 Suppose ρ satisfies Assumptions 1, 2, and 4. Suppose σ̂1 is a
pure strategy that is never an equilibrium strategy in the long run. Then in
any Nash equilibrium, pt → 0 P̃ -almost surely.

Since any pure strategy is realization equivalent to a public strategy,
it is again the case that whenever player 2 is convinced that player 1 is
playing like the commitment type, player 2 can identify the period-t strategy
realization σ̂1(h1t) and play a best response.

4.3 Asymptotic Equilibrium Play

We now explore the implications for equilibrium play of the impermanence
of reputations. More precisely, we will show that in the limit, the normal
type of player 1 and player 2 play a correlated equilibrium of the complete-
information game. Hence, differences in the players’ subjective beliefs about
how play will continue vanish in the limit. This strengthens the result on
convergence to subjective equilibria (see below) obtained by Kalai and Lehrer
(1995, Corollary 4.4.1). To begin, we describe some notation for the corre-
lated equilibrium of our repeated games with imperfect monitoring.

We use the term continuation game for the game with initial period in
period t, ignoring the period t-histories.8 We use the notation t′ = 0, 1, 2, ...
for a period of play in a continuation game (which may be the original game)

8Since a strategy profile of the original game induces a probability distribution over
t-period histories, H1t ×H2t, we can view the period t continuation, together with a type
space H1t×H2t and induced distribution on that type space, as a Bayesian game. Different
strategy profiles in the original game induce different distributions over the type space in
the continuation game.
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and t for the time elapsed prior to the start of the continuation game. A
pure strategy for player 1, s1, is a sequence of maps s1t′ : H1t′ → I for
t′ = 0, 1, . . ..9 Thus, s1t′ ∈ IH1t′ and s1 ∈ I∪t′H1t′ ≡ S1, and similarly s2 ∈
S2 ≡ J∪t′H2t′ . The spaces S1 and S2 are countable products of finite sets.
We equip the product space S ≡ S1 × S2 with the σ-algebra generated by
the cylinder sets, denoted by S. Denote the players’ payoffs in the infinitely
repeated game (as a function of these pure strategies) as follows

u1(s1, s2) ≡ E[(1− δ)
∞∑

t′=0

δt′π1(it′ , jt′)]

ut′
2 (s1, s2) ≡ E[π2(it′ , jt′)].

The expectation above is taken over the action pairs (it′ , jt′). These are
random, given the pure strategy profile (s1, s2), because the pure action
played in period t depends upon the random public signals.

In the following definitions, we follow Hart and Schmeidler (1989) in
using the ex ante definition of correlated equilibria for infinite pure strategy
sets. Note also that we need player 2’s incentive compatibility conditions to
hold at all times t′, because of player 2’s zero discounting.

Definition 4 A subjective correlated equilibrium of the complete-information
game is a pair of measures µ`, ` = 1, 2, on (S,S) such that for all S-
measurable functions ζ1 : S1 → S1, ζ2 : S2 → S2∫

S
[u1(s1, s2)− u1(ζ1(s1), s2)]dµ1 ≥ 0; (5)∫

S
[ut′

2 (s1, s2)− ut′
2 (s1, ζ2(s2))]dµ2 ≥ 0, ∀t′. (6)

A correlated equilibrium of the complete-information game is a subjective
correlated equilibrium satisfying µ1 = µ2.

Let M denote the space of probability measures µ on (S,S), equipped
with the product topology. Then, a sequence µn converges to µ if, for each
τ > 0, we have

µn|I(I×Y )τ×J(J×Y )τ → µ|I(I×Y )τ×J(J×Y )τ . (7)

Moreover, M is sequentially compact with this topology. Payoffs for players
1 and 2 are extended to M in the obvious way. Since player 1’s payoffs are

9Note that we have used σ1 for general behavior strategies, not only pure strategies.
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discounted, the product topology is strong enough to guarantee continuity
of u1 : M→R. Each player 2’s payoff is trivially continuous. The set of
mixed strategies for player ` is denoted by M`.

Fix an equilibrium of the incomplete-information game with imperfect
monitoring. When player 1 is the normal (respectively, commitment) type,
the monitoring technology and the behavior strategies (σ̃1, σ2) (resp., (σ̂1, σ2))
induce a probability measure φ̃t (resp., φ̂t) on the t-period histories (h1t, h2t) ∈
H1t×H2t. If the normal type of player 1 observes a private history h1t ∈ H1t,
her strategy σ̃1, specifies a behavior strategy in the continuation game. This
behavior strategy is realization equivalent to a mixed strategy λ̃

h1t ∈M1 for
the continuation game. Similarly, the commitment type will play a mixed
strategy λ̂

h1t ∈ M1 for the continuation game and player 2 will form his
posterior pt(h2t) and play the mixed strategy λh2t ∈M2 in the continuation
game. Conditional on player 1 being normal, the composition of the prob-
ability measure φ̃t and the measures (λ̃

h1t
, λh2t) induces a joint probability

measure, ρ̃t, on the pure strategies in the continuation game and player 2’s
posterior (the space S × [0, 1]). Similarly, conditional upon player 1 being
the commitment type, there is a measure ρ̂t on S × [0, 1]. Let µ̃t denote the
marginal of ρ̃t on S and µ̂t denote the marginal of ρ̂t on S.

At the fixed equilibrium, the normal type is playing in an optimal way
from time t onwards given her available information. This implies that for
all S-measurable functions ζ1 : S1 → S1,∫

S
u1(s1, s2)dµ̃t ≥

∫
S
u1(ζ1(s1), s2)dµ̃t. (8)

Let S × B denote the product σ-algebra on S × [0, 1] generated by S on S
and the Borel σ-algebra on [0, 1]. Player 2 is also playing optimally from
time t onwards, which implies that for all S × B-measurable functions ξ2 :
S2 × [0, 1] → S2, and for all t′,∫

S×[0,1]
ut′

2 (s1, s2)d(p0ρ̂t+(1−p0)ρ̃t) ≥
∫

S×[0,1]
ut′

2 (s1, ξ2(s2, pt))d(p0ρ̂t+(1−p0)ρ̃t).

Comparing the previous two inequalities with (5) and (6), it is clear that
the equilibrium behavior from period t onwards is a subjective correlated
equilibrium for the continuation game for all t.

If we had metrized M, a natural formalization of the idea that asymp-
totically, the normal type and player 2 are playing a correlated equilibrium
is that the distance between the set of correlated equilibria and the induced
distributions µ̃t on S goes to zero. While M is metrizable, a simpler and
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equivalent formulation is that the limit of every convergent subsequence of
{µ̃t} is a correlated equilibrium. This equivalence is an implication of the
sequential compactness of M, since every subsequence of {µ̃t} has a conver-
gent sub-subsequence. The proof is in Section A.1.

Theorem 3 Fix a Nash equilibrium of the incomplete-information game
and suppose pt → 0 P̃ -almost surely. Let µ̃t denote the distribution on S
induced in period t by the Nash equilibrium. The limit of every convergent
subsequence is a correlated equilibrium of the complete-information game.

Since players have access to a coordination device, namely histories,
in general it is not true that Nash equilibrium play of the incomplete-
information game eventually looks like Nash equilibrium play of the complete-
information game.

Suppose the Stackelberg payoff is not a correlated equilibrium payoff of
the complete-information game. Recall that Fudenberg and Levine (1992)
provide a lower bound on equilibrium payoffs in the incomplete-information
game of the following type: Fix the prior probability of the Stackelberg
(commitment) type. Then, there is a value for the discount factor, δ̄, such
that if δ > δ̄, then in every Nash equilibrium, the long-lived player’s ex ante
payoff is essentially no less than the Stackelberg payoff. The reconciliation of
this result with Theorem 3 lies in the order of quantifiers: while Fudenberg
and Levine (1992) fix the prior, p0, and then select δ̄ (p0) large (with δ̄ (p0) →
1 as p0 → 0), we fix δ and examine asymptotic play, so that eventually pt is
sufficiently small that δ̄ (pt) > δ.

We do not know if Nash equilibrium play in the incomplete-information
game eventually looks like a public randomization over Nash equilibrium
play in the complete-information game.10

4.4 Impermanent Restrictions on Behavior

We now provide a partial converse to the previous section by identifying a
class of equilibria of the complete-information game to which equilibrium
play of the incomplete-information game can converge. The construction
of equilibria in incomplete-information games is difficult, and so we restrict

10As far as we know, it is also not known whether the result of Fudenberg and Levine
(1994, Theorem 6.1, part (iii)) extends to correlated equilibrium. That is, for moral hazard
mixing games and for large δ, is it true that the long-run player’s maximum correlated
equilibrium payoff is lower than when monitoring is perfect? We believe that, at least for
simple games like that described in Section 2, allowing for correlation does not increase
the long-lived player’s payoff.
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attention to the case in which the posterior beliefs of player 2 are known by
player 1.

Recall that in the example of Section 2, the stage game has a (unique)
strict Nash equilibrium BR. Moreover, this achieves player 1’s minmax
utility. It is a straightforward implication of Fudenberg and Levine (1992)
that the presence of the commitment type ensures that, as long as player 1
is sufficiently patient, for much of the initial history of the game, in every
equilibrium, play is like TR. On the other hand, an implication of Theorem
4 below, is that for the same parameters, (in particular, the same prior
probability of the commitment type), there is an equilibrium in which with
arbitrarily high probability under P̃ , BR is eventually played in every period.
The construction of such an equilibrium must address the following two
issues. First, reputation effects may ensure that for a long period of time,
equilibrium play will be very different from BR (this is just Fudenberg and
Levine (1992)). Theorem 4 is consistent with this, since it only claims that
in the equilibrium of interest, BR is eventually played in every period with
high probability. The second issue is that, even if reputation effects are not
initially operative (because the initial belief that player 1 is the commitment
type is low relative to the discount factor), with positive probability (albeit
small), a sequence of signals will arise that will make reputation effects
operative (because the posterior that player 1 is the commitment type is
increased sufficiently).

Theorem 4 Suppose the assumptions of Theorem 1 are satisfied (i.e., ρ
satisfies Assumptions 1, 2, and 3, and σ̂1 is a public strategy with finite
range that is never an equilibrium strategy in the long run). Suppose (i∗, j∗)
is a strict Nash equilibrium of the stage game. Given any prior p0 and any δ,
for all ε > 0, there exists a Nash equilibrium of the incomplete-information
game in which the P̃ -probability of the event that eventually (i∗, j∗) is played
in every period is at least 1− ε.

The proof is in Section A.2.

5 Proofs of Theorems 1 and 2

5.1 Preliminary results

5.1.1 Player 2’s Posterior Beliefs

The first step is to show that either player 2’s expectation (given his private
history) of the strategy played by the commitment type is in the limit iden-
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tical to his expectation of the strategy played by the normal type, or player
2’s posterior probability that player 1 is the commitment type converges to
zero (given that player 1 is indeed normal). This is an extension of a familiar
merging-style argument to the case of imperfect monitoring. If, for a given
private history for player 2, the distributions generating his observations are
different for the normal and commitment types, then he will be updating his
posterior, continuing to do so as the posterior approaches zero. His posterior
converges to something strictly positive only if the distributions generating
these observations are in the limit identical for each private history. In the
statement of the following Lemma, h1t is to be interpreted as a function
from Ω to (I × Y )t.

Lemma 2 At any Nash equilibrium of a game satisfying Assumptions 1 and
2,11

lim
t→∞

pt(1− pt)
∥∥∥Ê[ σ̂1t | H2t ]− Ẽ[ σ̃1t | H2t ]

∥∥∥ = 0, P -a.s. (9)

Proof. Let pt+1(h2t; jt, yt) denote player 2’s belief in period t+ 1 after
playing jt in period t, observing the signal yt in period t, and given the
history h2t. By Bayes’ rule,

pt+1(h2t; jt, yt) =
pt Pr[yt|h2t, jt, c]

pt Pr[yt|h2t, jt, c] + (1− pt) Pr[yt|h2t, jt, n]
.

The probability player 2 assigns to observing the signal yt from the commit-
ment type is Ê[

∑
i∈I σ̂

i
1(h1t)ρ

yt

ijt
|h2t], and from the normal type is Ẽ[

∑
i∈I σ̃

i
1(h1t)ρ

yt

ijt
|h2t].

Using the linearity of the expectations operator, we write pt+1(h2t; jt, yt) as

pt+1(h2t; jt, yt) =
pt

∑
i∈I ρ

yt

ijt
Ê[σ̂i

1(h1t)|h2t]∑
i∈I ρ

yt

ijt

(
ptÊ[σ̂i

1(h1t)|h2t] + (1− pt)Ẽ[σ̃i
1(h1t)|h2t]

) .
Rearranging this formula allows us to write

pt(1− pt)
∑
i∈I

ρyt

ijt

(
Ê[σ̂i

1(h1t)|h2t]− Ẽ[σ̃i
1(h1t)|h2t]

)
= (pt+1 − pt)

∑
i∈I

ρyt

ijt

(
ptÊ[σ̂i

1(h1t)|h2t] + (1− pt)Ẽ[σ̃i
1(h1t)|h2t]

)
.

The summation on the right is bounded above by maxi ρ
yt

ijt
< 1, thus

pt(1− pt)

∣∣∣∣∣∑
i∈I

ρyt

ijt

(
Ê[σ̂i

1(h1t)|h2t]− Ẽ[σ̃i
1(h1t)|h2t]

)∣∣∣∣∣ ≤ |pt+1 − pt|.

11We use ‖x‖ to denote the sup-norm on Rn.
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For any fixed realization y of the signal yt, it follows that for all h2t and jt,

pt(h2t)(1− pt(h2t))

∣∣∣∣∣∑
i∈I

ρy
ijt

(
Ê[σ̂i

1(h1t)|h2t]− Ẽ[σ̃i
1(h1t)|h2t]

)∣∣∣∣∣
≤ max

y′

∣∣pt+1(h2t; jt, y′)− pt(h2t)
∣∣ . (10)

Since pt is a P -almost sure convergent sequence, it is Cauchy P -almost
surely.12 So the right hand side of (10) converges to zero P -almost surely.
Thus, for any y,

pt(1− pt)

∣∣∣∣∣∑
i∈I

ρy
ijt

(
Ê[σ̂i

1t|H2t]− Ẽ[σ̃i
1t|H2t]

)∣∣∣∣∣ → 0, P -a.s. . (11)

Hence, if both types are given positive probability in the limit then the
frequency that any signal is observed is identical under the two types.

We now show that (11) implies (9). Let Πjt be a |Y | × |I| matrix whose
y-th row, for each signal y ∈ Y , contains the terms ρy

ijt
for i = 1, . . . , |I|.

Then as (11) holds for all y (and Y is finite), it can be restated as

pt(1− pt)
∥∥∥Πjt

(
Ê[σ̂1t|H2t]− Ẽ[σ̃1t|H2t]

)∥∥∥ → 0, P -a.s., (12)

where ‖.‖ is the supremum norm. By Assumption 2, the matrices Πjt have
I linearly independent columns for all jt, so x = 0 is the unique solution
to Πjtx = 0 in RI . In addition, there exists a strictly positive constant
b = infj∈J,x 6=0 ‖Πjx‖/‖x‖. Hence ‖Πjx‖ ≥ b‖x‖ for all x ∈ RI and all j ∈ J .
From (12), we then get

pt(1− pt)
∥∥∥Πjt

(
Ê[σ̂1t|H2t]− Ẽ[σ̃1t|H2t]

)∥∥∥
≥ pt(1− pt)b

∥∥∥Ê[σ̂1t|H2t]− Ẽ[σ̃1t|H2t]
∥∥∥ → 0, P -a.s.,

which implies (9).

Condition (9) says that either player 2’s best prediction of the normal
type’s behavior at the current stage is identical to his best prediction of the
commitment type’s behavior (that is, ‖ Ê[ σ̂1t | H2t ]− Ẽ[ σ̃1t | H2t ] ‖ → 0
P -almost surely), or the type is revealed (that is, pt(1 − pt) → 0 P -almost

12Note that the analysis is now global, rather than local, in that we treat all the expres-
sions as functions on Ω.
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surely). However, lim pt < 1 P̃ -almost surely, and hence (9) implies a simple
corollary:13

Corollary 1 At any equilibrium of a game satisfying Assumptions 1 and 2,

lim
t→∞

pt

∥∥∥Ê[ σ̂1t | H2t ]− Ẽ[ σ̃1t | H2t ]
∥∥∥ = 0, P̃ -a.s.

5.1.2 Player 2’s Behavior

We next show that if player 2 believes player 1’s strategy is close to the
commitment strategy, then 2’s best response is a best response to the com-
mitment type.

Lemma 3 Suppose σ̂1 has a finite range. There exists ψ > 0 such that
for any history h1s and any ζ1 ∈ ∆I satisfying ‖ζ1 − σ̂1 (h1s)‖ < ψ, a best
response to ζ1 is also a best response to σ̂1(h1s).

Proof. The best response correspondence is upper semi-continuous.
Thus, for any mixed action σ̂1(h1s), there exists a ψ(σ̂1(h1s)) > 0 such that
a best response to any mixed action ζ1 which satisfies ‖ζ1 − σ̂1(h1s)‖ <
ψ(σ̂1(h1s)) is also a best response to σ̂1(h1s). We then let ψ be the minimum
of such ψ(σ̂1(h1s)) over the finite range of σ̂.

Thus, if player 2 believed his opponent was “almost” the commitment
type, then 2 would be playing the same equilibrium action as if he was
certain he was facing the commitment type.

The finiteness of the range of σ̂ ensures that the minimum of the ψ(σ̂1(h1s))
is strictly positive. Otherwise, player 2 could conceivably become ever more
convinced that the normal type is playing like the commitment type, only
to have the commitment type’s stage-game action drift in such a way that
player 2 is never sufficiently convinced of commitment-type play to choose
a best response to the commitment type.

5.1.3 Beliefs about Player 2’s Beliefs

Lemma 4 Suppose Assumptions 1 and 2 are satisfied. Suppose there exists
a P̃ -positive measure set of states A on which limt→∞ pt(ω) > 0. Then, for

13Since the odds ratio pt/(1− pt) is a P̃ -martingale, p0/(1− p0) = Ẽ[pt/(1− pt)] for all
t. The left side of this equality is finite, so lim pt < 1 P̃ -almost surely.
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sufficiently small η, there exists a set F ⊂ A with P̃ (F ) > 0 such that, for
any ξ > 0, there exists T for which, on F ,

pt > η, ∀t > T (13)

and

Ẽ

[
sup
s≥t

∥∥∥Ẽ[σ̃1s|H2s]− Ê[σ̂1s|H2s]
∥∥∥∣∣∣∣H2t

]
< ξ, ∀t > T. (14)

If Assumption 3 also holds, then for all ψ > 0,

P̃

{
sup
s≥t

∥∥∥Ê[σ̂1s|H2s]− Ẽ[σ̃1s|H2s]
∥∥∥ < ψ

∣∣∣∣Ht

}
→ 1, (15)

uniformly on F .

Proof. Define the event Dη = {ω ∈ A : limt→∞ pt(ω) > 2η}. Be-
cause the set A on which limt→∞ pt(ω) > 0 has P̃ -positive measure, for any
η > 0 sufficiently small, we have P̃ (Dη) > 2µ, for some µ > 0. On the
set of states Dη the random variable ‖Ẽ[σ̃1t|H2t] − Ê[σ̂1t|H2t]‖ tends P̃ -
almost surely to zero (by Lemma 2). Therefore, on Dη the random variable
Zt = sups≥t ‖Ẽ[σ̃1s|H2s] − Ê[σ̂1s|H2s]‖ converges P̃ -almost surely to zero
and hence14

Ẽ[Zt|H2t] → 0 P̃ − almost surely. (16)

Egorov’s Theorem (Chung (1974, p. 74)) then implies that there exists
F ⊂ Dη such that P̃ (F ) ≥ µ on which the convergence of pt and Ẽ[Zt|H2t]
is uniform. Hence, for any ξ > 0, there exists a time T such that the
inequalities in (13) and (14) hold almost everywhere on F for all t > T .

Fix ψ > 0. Then, for all ξ′ > 0, (14) holds for ξ = ξ′ψ, which implies
that, uniformly on F ,

P̃

{
sup
s≥t

∥∥∥Ê[σ̂1s|H2s]− Ẽ[σ̃1s|H2s]
∥∥∥ < ψ

∣∣∣∣H2t

}
→ 1.

But if Assumption 3 holds, then player 2’s beliefs are measurable with re-
spect to Ht, so that (15) holds.

14The following implication is proved in Hart (1985, Lemma 4.24). Section A.3 repro-
duces the argument.
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5.2 Proof of Theorem 1 (the “Easy” Case)

Since σ̂1 is never an equilibrium strategy in the long run, from Definition 2,
there exists T̄ such that after any positive probability history of length at
least T̄ , σ̂1 is not a best response to any strategy σ2 ∈ BR(σ̂1) of player 2
that best responds to σ̂1. Indeed, there exists η > 0 such that this remains
true for any strategy of player 2 that attaches probability at least 1 − η to
any strategy in BR(σ̂1).

Let γ ≡ miny,i,j ρ
y
ij , which is strictly positive from Assumption 1. Since

σ̂1 is a strategy with a finite range, β ≡ mini,h1t

{
σ̂i

1 (h1t) : σ̂i
1 (h1t) > 0

}
is

also strictly positive.
Suppose that there is a positive P̃ -probability set of outcomes A on which

pt 9 0. Choose ξ, ζ such that ζ < βγ and ξ < min {ψ, β − ζγ}, where ψ is
the bound from Lemma 3. By (15), there is a P̃ -positive measure set F ⊂ A
and T ≥ T̄ such that, on F and for any t > T ,

P̃

{
sup
s≥t

∥∥∥Ê[σ̂1s|H2s]− Ẽ[σ̃1s|H2s]
∥∥∥ < ξ

∣∣∣∣Ht

}
> 1− ηζ. (17)

Moreover, Assumption 3 ensures that both Ê[σ̂1t|H2t] and Ẽ[σ̃1t|H2t] are in
fact Ht-measurable, and so (17) implies on F ,∥∥∥Ê[σ̂1t|H2t]− Ẽ[σ̃1t|H2t]

∥∥∥ < ξ P̃ a.s. (18)

Let

gt = P̃

{
sup
s≥t

∥∥∥Ê[σ̂1s|H2s]− Ẽ[σ̃1s|H2s]
∥∥∥ < ξ

∣∣∣∣H1t

}
.

Using the fact that {H1t}t is a finer filtration than {Ht}t for the first equality,
we have

P̃

{
sup
s≥t

∥∥∥Ê[σ̂1s|H2s]− Ẽ[σ̃1s|H2s]
∥∥∥ < ξ

∣∣∣∣Ht

}
= Ẽ [gt|gt ≤ 1− η,Ht] P̃ (gt ≤ 1− η|Ht) + Ẽ [gt|gt > 1− η,Ht] P̃ (gt > 1− η|Ht)
≤ (1− η) P̃ (gt ≤ 1− η|Ht) + P̃ (gt > 1− η|Ht)
= 1− η + ηP̃ (gt > 1− η|Ht) ,

and so on F ,
1− ηζ < 1− η + ηP̃ (gt > 1− η|Ht) ,

i.e.,
P̃ (gt > 1− η|Ht) > 1− ζ,
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or equivalently,

P̃

(
P̃

{
sup
s≥t

∥∥∥Ê[σ̂1s|H2s]− Ẽ[σ̃1s|H2s]
∥∥∥ < ξ

∣∣∣∣H1t

}
> 1− η

∣∣∣∣Ht

)
> 1− ζ,

(19)
i.e., player 2 assigns a probability of at least 1− ζ to player 1 believing with
probability at least 1− η that player 2 believes player 1’s strategy is within
ξ of the commitment strategy. Because the commitment strategy is public,
Lemma 3 ensures that player 2 plays a best response to the commitment
strategy whenever believing that 1’s strategy is within ξ of the commitment
strategy. Hence, player 2 assigns a probability of at least 1 − ζ to player
1 believing that player 2 is best responding to σ̂1 with at least probability
1− η.

We now argue that there is a period t ≥ T and an outcome in F such
that σ̂1 is not optimal in period t. Given any outcome ω ∈ F and a period
t ≥ T , let ht be its t-period public history. There is a K > 0 such that
for any t large, there is a public history yt, . . . , yt+k, 0 ≤ k ≤ K, under
which σ̂1(ht, yt, . . . , yt+k) puts positive probability on a suboptimal action.
(Otherwise, no deviation can increase the period-t expected continuation
payoff by at least ε.) Moreover, by full support, any K sequence of signals
has probability at least λ > 0. If the public history (ht, yt, . . . , yt+k) is
consistent with an outcome in F , then we are done. So, suppose there
is no such outcome. That is, for every t ≥ T , there is no outcome in F
for which σ̂1 attaches positive probability to a suboptimal action within
the next K periods. Letting Ct(F ) denote the t-period cylinder set of F ,
P̃ (F ) ≤ P̃ (Ct+K(F )) ≤ (1− λ) P̃ (Ct (F )) (since the public history of signals
that leads to a suboptimal action has probability at least λ). Proceeding
recursively from T , we have P̃ (F ) ≤ P̃ (CT+`K(F )) ≤ (1− λ)` P̃ (CT (F )),
and letting `→∞, we have P̃ (F ) = 0, a contradiction.

Hence, there is a period t ≥ T and an outcome in F such that one of the
actions in the support of σ̂1, i′ say, is not optimal in period t. That is, any
best response assigns zero probability to i′ in period t. From (19), player
2’s beliefs give a probability of at least 1 − ζ to a strategy of player 1 that
best responds to 2’s best response to σ̂1, which means that player 2 believes
that i′ is played with a probability of no more than ζ. But since β − ζ > ξ,
this contradicts (18).

5.3 Proof of Theorem 2 (the Harder Case)

If players 1 and 2 are not symmetrically informed about 2’s beliefs, then
player 1 needs to know player 2’s private history h2s in order to predict 2’s
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period-s beliefs and hence behavior. Unfortunately for player 1, she knows
only her own private history h1s.

We begin by identifying a circumstance under which the value of knowing
player 2’s private history becomes quite small. In general, telling player 1
the private history h2t that player 2 observed through period t < s will be
of use in helping 1 predict 2’s period-s behavior. However, the following
Lemma shows that for a given t, h2t becomes of arbitrarily small use in
predicting player 2’s actions in period s as s→∞.

The intuition is straightforward. Suppose first that h2t is essential to
predicting player 2’s behavior in all periods s > t. Then, as time passes
player 1 will figure out that h2t actually occurred from her own observations.
Hence, player 1 continues to receive information about this history from
subsequent observations, reducing the value of having h2t explicitly revealed.
On the other hand if h2t is of less and less use in predicting current behavior,
then there is eventually no point in player 1 using it to predict player 2’s
behavior, again reducing the value of having h2t revealed. In either case
player 1’s own period-s information swamps the value of learning h2t, in the
limit as s grows large.

Denote by β(A,B) the coarsest common refinement of the σ-algebras A
and B. Thus, β (H1s,H2t) is the σ-algebra describing player 1’s information
at time s if she were to learn the private history of player 2 at time t. We
also write β (A, B) for β (A, {B,Bc}).

Lemma 5 Suppose assumptions 1 and 2 hold. For any t > 0 and τ ≥ 0,

lim
s→∞

∥∥∥Ẽ[σ2,s+τ |β(H1s,H2t)]− Ẽ[σ2,s+τ |H1s]
∥∥∥ = 0, P̃ -a.s. .

Proof. We first provide the proof for the case of τ = 0. Suppose that
K ⊂ J t is a set of t-period player 2 action profiles (j0, j1, ..., jt−1). We also
denote byK the event (i.e., subset of Ω) that the history of the first t-periods
of player 2’s action profiles are in K. By Bayes’ rule and the finiteness of
the action and signal spaces, we can write the conditional probability of the
event K given the observation by player 1 of h1,s+1 = (h1s, ys, is) as follows

P̃ [K|h1,s+1] = P̃ [K|h1s, ys, is]

=
P̃ [K|h1s]P̃ [ys, is|K,h1s]

P̃ [ys, is|h1s]

=
P̃ [K|h1s]

∑
j ρ

ys

isjẼ[σj
2(h2s)|h1s,K]∑

j ρ
ys

isjẼ[σj
2(h2s)|h1s]

,
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where the last equality uses P̃ [is|K,h1s] = P̃ [is|h1s].
Subtract P̃ [K|h1s] from both sides to obtain

P̃ [K|h1,s+1]−P̃ [K|h1s] =
P̃ [K|h1s]

∑
j ρ

ys

isj

(
Ẽ[σj

2(h2s)|h1s,K]− Ẽ[σj
2(h2s)|h1s]

)
∑

j ρ
ys

isjẼ[σj
2(h2s)|h1s]

.

The term
∑

j ρ
ys

isjẼ[σj
2(h2s)|h1s] is player 1’s conditional probability of ob-

serving the period-s signal ys given she takes action is and hence is strictly
positive and less than one by Assumption 1. Thus, we get,∣∣∣P̃ [K|h1,s+1]− P̃ [K|h1s]

∣∣∣ ≥ P̃ [K|h1s]

∣∣∣∣∣∣
∑

j

ρys

isj

(
Ẽ[σj

2(h2s)|h1s,K]− Ẽ[σj
2(h2s)|h1s]

)∣∣∣∣∣∣ .
The random variable P̃ [K|H1s] is a martingale with respect to the filtration
{H1s}. Consequently it converges almost surely as s → ∞ and hence the
left side of this inequality converges almost surely to zero.15 The signals
generated by player 2’s actions satisfy Assumption 2, so an identical argu-
ment to that given at the end of Lemma 2 establishes that for P̃ -almost all
ω ∈ K,

lim
s→∞

P̃ [K|H1s]
∥∥∥Ẽ[σ2s|β (H1s,K)]− Ẽ[σ2s|H1s]

∥∥∥ = 0.

The probability P̃ [K|H1s] is a martingale on the filtration {H1s}s with
respect to P̃ , and so P̃ -almost surely converges to a nonnegative limit,
P̃ [K|H1∞]. Moreover, P̃ [K|H1∞] (ω) > 0 for P̃ -almost all ω ∈ K. Thus,
for P̃ -almost all ω ∈ K,

lim
s→∞

∥∥∥Ẽ[σ2s|β(H1s,K)]− Ẽ[σ2s|H1s]
∥∥∥ = 0.

Since this holds for all K,

lim
s→∞

‖Ẽ[σ2s|β(H1s,H2t)]− Ẽ[σ2s|H1s]‖ = 0, P̃ -a.s,

giving the result for τ = 0.
The proof for τ ≥ 1 follows by induction. In particular, we have

Pr[K|h1,s+τ+1] = Pr[K|h1s, ys, is, ..., ys+τ , is+τ ]

=
Pr[K|h1s] Pr[ys, is, . . . , ys+τ , is+τ |K,h1s]

Pr[ys, is, . . . , ys+τ , is+τ |h1s]

=
Pr[K|h1s]

∏s+τ
z=s

∑
j ρ

yz

izjẼ[σj
2(h2z)|h1s,K]∏s+τ

z=s

∑
j ρ

yz

izjẼ[σj
2(h2z)|h1s]

,

15See footnote 12.
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where h2,z+1 = (h2z, yz, iz). Hence,

|Pr[K|h1,s+τ+1]− Pr[K|h1s]|

≥ Pr[K|h1s]

∣∣∣∣∣∣
s+τ∏
z=s

∑
j

ρyz

izjẼ[σj
2(h2z)|h1s,K]−

s+τ∏
z=s

∑
j

ρyz

izjẼ[σj
2(h2z)|h1s]

∣∣∣∣∣∣ .
The left side of this inequality converges to zero P̃ -almost surely, and hence
so does the right side. Moreover, the right side is larger than

Pr[K|h1s]

∣∣∣∣∣∣
s+τ−1∏

z=s

∑
j

ρyz

izjẼ[σj
2(h2z)|h1s]

∣∣∣∣∣∣
×

∣∣∣∣∣∣
∑

j

ρ
ys+τ

is+τ jẼ[σj
2(h2,s+τ )|h1s,K]−

∑
j

ρ
ys+τ

is+τ jẼ[σj
2(h2,s+τ )|h1s]

∣∣∣∣∣∣

−Pr[K|h1s]

∣∣∣∣∣∣
s+τ−1∏

z=s

∑
j

ρyz

izjẼ[σj
2(h2z)|h1s,K]−

s+τ−1∏
z=s

∑
j

ρyz

izjẼ[σj
2(h2z)|h1s]

∣∣∣∣∣∣
×

∣∣∣∣∣∣
∑

j

ρ
ys+τ

is+τ jẼ[σj
2(h2,s+τ )|h1s,K]

∣∣∣∣∣∣ .
From the induction hypothesis that ‖Ẽ[σ2z|β (H1s,H2t)]− Ẽ[σ2z|H1s]‖ con-
verges to zero P̃ -almost surely for every z ∈ {s, ..., s+ τ − 1}, the negative
term also converges to zero P̃ -almost surely. But then the first term also
converges to zero, and, as above, the result holds for z = s+ τ .

If the P̃ limit of player 2’s posterior belief pt is not zero, then (from
Lemma 4) there must be a positive probability set of states of the world and
a time T such that at time T , player 2 thinks he will play a best response to
the commitment type in all future periods (with arbitrarily high probability).
At time T , player 1 may not realize player 2 has such a belief. However, there
is a positive measure set of states where an observer at time s, given the
finer information partition β(H1s,H2t), attaches high probability to player
2 playing a best response to the commitment type forever. However, by
Lemma 5 we can then deduce that player 1 will also attach high probability
to player 2 playing a best response to the commitment type for s large:
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Lemma 6 Suppose Assumptions 1 and 2 hold and σ̂1 is realization equiv-
alent to a public strategy. Suppose, moreover, that there exists a P̃ -positive
measure set of states of the world for which limt→∞ pt(ω) > 0. Then, for
any ν > 0 and any integer τ > 0 there exists a P̃ -positive measure set of
states F † and a time T (ν, τ) for which, for all s > T (ν, τ), for all ω ∈ F †

and any s′ ∈ {s, s+ 1, ..., s+ τ},

minσ̂2∈BR(σ̂1)

∥∥∥Ẽ[σ2s′ |H1s]− σ̂2s′

∥∥∥ < ν, P̃ -a.s.

Proof. The first step of this proof establishes the existence of a positive
probability event (P̃ (F ) > 0) such that, for all t large, player 2 attaches
high probability to always playing a best response to the commitment type
in all future periods almost surely on F .

Define the event Dη = {ω : limt→∞ pt(ω) > 2η}. From Lemma 4, for
sufficiently small η there exists F ⊂ Dη such that P̃ (F ) = µ for some µ > 0
and such that, for any ξ < {µ2, ν2/9}, there exists T for which, on F and
∀t > T ,

pt > η, (20)

and
Ẽ[sup

s≥t
‖Ẽ[σ̃1s|H2s]− Ê[σ̂1s|H2s]‖ |H2t] < ξψ,

where ψ > 0 is given by Lemma 3. Let Zt = sups≥t

∥∥∥Ẽ[σ̃1s|H2s]− Ê[σ̂1s|H2s]
∥∥∥.

As Ẽ[Zt|H2t] < ξψ for all t > T on F and Zt ≥ 0, P̃ ({Zt > ψ}|H2t) < ξ for
all t > T on F . This and Lemma 3 imply that, almost everywhere on F ,

P̃ ({σ2s ∈ BR(σ̂1s),∀s > t}|H2t) > 1− ξ, ∀t > T. (21)

This last argument uses the condition that σ̂1 is realization equivalent to a
public strategy, ensuring that σ̂1s is measurable with respect to player 2’s
filtration.

The second step in the proof shows that there is a positive probability
set of states F ∗ where (21) holds and where player 1 must also believe
that player 2 is playing a best response to the commitment type with high
probability. Now we define two types of event:

Gt ≡ {ω : σ2s ∈ BR(σ̂1s),∀s ≥ t}

and
Kt ≡

{
ω : P̃ (Gt | H2t) > 1− ξ

}
.
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Note that Kt ∈ H2t and F ⊂ ∩t>TKt. For a given t define the random
variable gs to be the P̃ -probability of the event Gt conditional on the private
history h1s of player 1 and the private history h2t of player 2, that is16

gs ≡ Ẽ [ 1Gt | β(H1s,H2t) ] ,

where 1Gt is the indicator function for the set Gt. However, P̃ (Gt|H2t) =
Ẽ[gs|H2t] and

Ẽ[gs|H2t] = Ẽ[gs|gs ≤ 1−
√
ξ,H2t]P̃ (gs ≤ 1−

√
ξ|H2t)

+Ẽ[gs|gs > 1−
√
ξ,H2t]P̃ (gs > 1−

√
ξ|H2t)

≤ (1−
√
ξ)P̃ (gs ≤ 1−

√
ξ|H2t) + P̃ (gs > 1−

√
ξ|H2t)

= (1−
√
ξ) +

√
ξP̃ (gs > 1−

√
ξ|H2t).

For every ω ∈ Kt ∈ H2t it is the case that P̃ (Gt|H2t) > 1− ξ. Thus

P̃ (gs > 1−
√
ξ|H2t) >

(1− ξ)− (1−
√
ξ)√

ξ
= 1−

√
ξ, ∀ω ∈ Kt. (22)

As F ⊂ Kt, (22) holds for all ω ∈ F . The random variable gs is a bounded
martingale with respect to the filtration {H2s} and so converges almost
surely to a limiting random variable, which we denote by g∞. There is
a P̃ -positive measure set F ∗ ⊂ F and a time Tt such that for s > Tt,
gs (ω) > 1 − 2

√
ξ on F ∗.17 To summarize — for almost every state on F ∗

and all t > T and all s > Tt > T :

Ẽ[ 1Gt | H2t ] > 1− ξ, P̃ -a.s.

and
Ẽ[ 1Gt | β(H1s,H2t) ] > 1− 2

√
ξ, P̃ -a.s. (23)

Finally, by Lemma 5 and an application of Egorov’s Theorem, for any
ξ > 0, ζ > 0 and τ there exists F † ⊂ F ∗ satisfying P̃ (F ∗)− P̃ (F †) < ζ and
Tτ such that for all s > Tτ and s′ = s, s+ 1, ..., s+ τ ,∥∥∥Ẽ[σ2s′ |β(H1s,H2t)]− Ẽ[σ2s′ |H1s]

∥∥∥ < √
ξ, P̃ -a.s. (24)

16Recall that we use β(A,B) to denote the σ-algebra that is the coarsest common
refinement of the σ-algebras A and B.

17Proof: As F ⊂ Kt and µ = P̃ (F ) we have that P̃ (F |Kt) = µ/P̃ (Kt). However,
if g∞ < 1 −

√
ξ for almost every ω ∈ F , then P̃ (F |Kt) ≤ P̃ (g∞ < 1 −

√
ξ|Kt). By

(22) however, this implies that P̃ (F |Kt) ≤
√

ξ. Combining P̃ (F |Kt) = µ/P̃ (Kt) and
P̃ (F |Kt) ≤

√
ξ, we get µ/

√
ξ ≤ P̃ (Kt), contradicting ξ < µ2. Hence, there exists a

positive probability subset of F and a Tt such that on which gs ≥ 1− 2
√

ξ P̃ -a.s. for all
s > Tt.
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Now Ẽ[σ2s′ |β(H1s,H2t)] = gsσ̂2s′ + (1− gs)Ẽ[(1− 1Gt)σ2s′ |β(H1s,H2t)] for
some σ̂2 ∈ BR(σ̂1). Hence∥∥∥Ẽ[σ2s′ |β(H1s,H2t)]− σ̂2s′

∥∥∥ ≤ |1− gs|, P̃ -a.s. (25)

Now, combine (24) and (25) with (23). This gives the result that there is a
T and a T ′ = max{Tt, Tτ} and F † such that for all t > T , all s > Tt > T
and s′ = s, s+ 1, ..., s+ τ :

minσ̂2∈BR(σ̂1)

∥∥∥Ẽ[σ2s′ |H1s]− σ̂2s′

∥∥∥ < 3
√
ξ, P̃ -a.s. .

Given 3
√
ξ < ν we have proved the lemma.

We can now prove Theorem 2. Intuitively, suppose the theorem is false
and hence there is a positive measure set of states on which the limiting pos-
terior p∞ is positive. Since σ̂1 is a pure strategy, it is realization equivalent
to a pure public strategy. By Lemma 6 there is a set of states where, for
all s sufficiently large, the normal type attaches high probability to player 2
best responding to the commitment type for the next τ periods. The nor-
mal type’s best response is not the commitment strategy, which is never an
equilibrium in the long run. At an equilibrium, therefore, the normal type
is not playing the commitment strategy on this set of states. From Lemma
2, however, we know that player 2 believes the average strategy played by
the normal type is close to the strategy played by the commitment type
whenever the limiting posterior p∞ is positive. Moreover, if the commit-
ment type is playing a pure strategy, the expected strategy of the normal
type can only converge to the commitment type’s strategy if the probability
(conditional upon player 2’s information) that the normal type is not playing
the commitment action is vanishing small. This will give a contradiction.

More formally, suppose there exists an equilibrium where p∞ > 0 on a
set of strictly positive P̃ -measure. Choose M > max`∈{1,2},i∈I,j∈J |π`(i, j)|.
Choose τ sufficiently large that δτ32M < ε, where ε is given by Definition
2. Also, choose ν sufficiently small for 14ε > (τ + 1) ν(32M + 15ε). By
Lemma 6, there exists F † and a time T (ν, τ) such for all t > T (ν, τ) the
normal type believes that player 2 is playing within ν of a best response to
the commitment type over the next τ periods.

By our choice of τ any change in player 1’s strategy after t+τ periods will
change her expected discounted payoff at time t by at most ε/16. However,
if player 2 always plays a best response to σ̂1, which is never an equilibrium
in the long run, then there exists a deviation from σ̂1 that yields player 1
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an increased discounted expected payoff of ε. This deviation must increase
player 1’s expected payoff by at least 15

16ε over the first τ periods. On F † for
t > T (ν, τ), player 1 attaches probability at least 1 − (τ + 1) ν to player 2
playing a best response to σ̂1(h1s′) in periods s′ = t, t+1, ..., t+τ . (Since the
commitment type’s strategy is public, the set of player 2’s best responses to
σ̂1(h1s′) is public, and any belief that player 2 is playing some best reply to
σ̂1(h1s′) is equivalent to a point belief that player 2 is playing a particular,
possibly randomized, best reply.) Thus her expected gain from the deviation
is at least (1 − (τ + 1) ν)15

16ε + (τ + 1) ν(−2M), which exceeds 1
16ε (by our

choice of ν), which is the largest payoff gain player 1 can achieve by adhering
to the commitment strategy for τ periods and playing optimally thereafter.
Hence, on F † for all t > T (ν, τ), the continuation strategy σ̂1 is not a best
reply to the expected behavior of player 2.

Let F s
t denote the subset of F † where the normal type’s strategy first

puts zero probability on the commitment action in period s ≥ t, i.e., if
iz (ω) ∈ I denotes the action specified by the pure strategy σ̂1 in period z in
state ω (σ̂iz(ω)

1z (ω) = 1), then F s
t ≡ {ω ∈ F † : σ̃is(ω)

1s (ω) = 0, σ̃iz(ω)
1z (ω) > 0

∀z = t, t + 1, . . . , s − 1}. Then, for infinitely many t > max
{
T (v, τ), T̄

}
,

P̃ (F †\∪t+τ
s=tF

s
t ) = 0, where T̄ is the bound from Definition 2. (The argument

is identical to that in the penultimate paragraph of the proof of Theorem
1.)

The remainder of the proof argues on the subsequence of t just identified.
If we choose s to maximize P̃ (F s

t ), then P̃ (F s
t ) ≥ P̃ (F †)/(τ + 1). Moreover,

there is a subset F ‡ ⊂ F † with P̃
(
F ‡) > 0, and an increasing sequence of

dates, {sm}, such that for all sm on F ‡,

‖σ̂1sm − σ̃1sm‖ = 1.

Since pt > η on F †, by (20), on F ‡,

psm ‖σ̂1sm − σ̃1sm‖ ≥ η.

As the random variable psm‖σ̂1sm − σ̃1sm‖ is non-negative,

Ẽ [psm ‖σ̂1sm − σ̃1sm‖] ≥ ηP̃ (F ‡) > 0. (26)

From Corollary 1, we have

lim
t→∞

pt‖σ̂1t − Ẽ[σ̃1t|H2t]‖ = 0, P̃ -a.s.

This uses the fact that σ̂1 is (realization equivalent to) a public strategy and
so σ̂1t = Ê[σ̂1t|H2t]. Let i(h2t) be the pure action played by the commitment
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strategy after the history h2t, that is, σ̂i(h2t)
1t (ω) = 1. (This is observable by

player 2 at time t if σ̂1 is pure.) Then, as ‖ · ‖ is the supremum norm and
both vectors are contained in ∆I ,

‖σ̂1t − Ẽ[σ̃1t|H2t]‖ = 1− Ẽ[σ̃i(·)
1t |H2t]

= Ẽ[1− σ̃
i(·)
1t |H2t]

= Ẽ[‖σ̂1t − σ̃1t‖|H2t].

Since pt is measurable with respect to the filtration {H2t}t, we have

lim
t→∞

Ẽ[pt‖σ̂1t − σ̃1t‖|H2t] = 0, P̃ -a.s.

Now, taking an unconditional expectation of the conditional expectation,
we get

lim
t→∞

Ẽ[pt‖σ̂1t − σ̃1t‖] = 0,

contradicting (26).

6 Imperfect Private Monitoring

In this section, we briefly consider the case of imperfect private monitoring.
At the end of the period, player 1 observes a private signal θ (drawn from
a finite signal space Θ) of the action profile chosen in that period. Simi-
larly, player 2 observes a private signal ζ (drawn from a finite signal space
Z) of the action profile chosen in that period. Given the underlying action
profile (i, j), we let ρij be a probability distribution over Θ×Z, so that ρθζ

ij

is the probability that the signal profile (θ, ζ) is observed. The marginal
distributions are given by ρθ

ij =
∑

ζ ρ
θζ
ij and ρζ

ij =
∑

θ ρ
θζ
ij . If Θ = Z and

Σθ∈Θρ
θθ
ij = 1 for all i, j, the monitoring is public. A particular signal real-

ization θ′ζ ′ ∈ Θ × Z is public if for all i and j, ρθ′ζ′

ij > 0, and ρθ′ζ
ij = 0 and

ρθζ′

ij = 0 for all ζ 6= ζ ′ and θ 6= θ′. Histories for the players are defined in the
obvious way. The full-support assumption is:

Assumption 5 ρθ
ij , ρ

ζ
ij > 0 for all θ ∈ Θ, ζ ∈ Z, and (i, j) ∈ I × J .

Note that we do not assume that ρθζ
ij > 0 for all (i, j) ∈ I × J and (θ, ζ) ∈

Θ × Z (which would rule out public monitoring). Rather the full-support
assumption is that each signal is observed with positive probability under
every action profile.

35



Even when monitoring is truly private, in the sense that ρθζ
ij > 0 for

all (i, j) ∈ I × J and (θ, ζ) ∈ Θ × Z, reputations can have very power-
ful short-run effects. While Fudenberg and Levine (1992) explicitly assume
the game has public monitoring, under the following identification assump-
tion, the analysis of Fudenberg and Levine (1992) covers imperfect private
monitoring, implying the following Theorem 5.

Assumption 6 For all j ∈ J , there are I linearly independent columns in
the matrix (ρζ

ij)ζ∈Z,i∈I .

Theorem 5 Suppose the game has imperfect private monitoring satisfying
Assumptions 5 and 6. Suppose the commitment type is a simple action type
that plays the pure action i∗ in every period. For all priors p0 > 0 and all
ε > 0, there exists δ̄ ∈ (0, 1) such that for all δ ∈ n

(
δ̄, 1

)
, player 1’s expected

average discounted payoff in any Nash equilibrium is at least

min
j∈BR(i∗)

π1 (i∗, j)− ε,

where
BR (i) = argmax

j∈J
π2 (i, j) .

Assumption 6 covers the setting where the signal of player 1’s action is
only observed by player 2, and player 1 observes no signal.18 When player 1
also receives signals, we will need an assumption analogous to Assumption
4:

Assumption 7 For all i ∈ I, there are J linearly independent columns in
the matrix (ρθ

ij)θ∈Θ,j∈J .

The result (the proof is essentially that of Theorem 2) in the setting with
imperfect private monitoring is then:

Theorem 6 Suppose the imperfect private monitoring distribution ρ sat-
isfies Assumptions 5, 6, and 7. Suppose σ̂1 is a pure public strategy that
is never an equilibrium strategy in the long run. In any Nash equilibrium,
pt → 0 P̃ -almost surely.

18In this case, when there is complete information, the one-period memory strategy
profiles that we describe as equilibria in Section 2 are also equilibria of the game with
private monitoring. We thank Juuso Valimaki for showing us how to construct such
equilibria.
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If the monitoring is truly private, then there is no public information. In
that case, a pure public strategy is simple, i.e., the same pure action taken
in every period.19 This is, of course, the typical type studied in applications.

Finally, it is straightforward to verify that Theorem 3 in Section 4.3
extends to the case of imperfect private monitoring.

7 Many Types

It is straightforward to extend the preceding analysis to case of many types.
Let T be the set of possible commitment types. The commitment type

c plays the fixed, repeated-game strategy σ̂c
1. We assume T is either finite

or countably infinite. At time t = −1 a type of player 1 is selected. With
probability pc

0 > 0, she is commitment type c, and with probability pn
0 =

1 −
∑

c∈T p
c
0 she is the “normal” type. A state of the world is, as before,

a type for player 1 and sequence of actions and signals. The set of states
is then Ω = T × (I × J × Y )∞. We denote by P̂ c the probability measure
induced on Ω by the commitment type c ∈ T , and as usual, we denote by
P̃ the probability measure on Ω induced by the normal type. Finally, we
denote by pc

t player 2’s period t belief that player 1 is the commitment type
c.

Definition 5 A set of commitment types T is separated if for all c, c′ ∈ T ,

P̂ c′ (h2t)
P̂ c (h2t)

→ 0 P̂ c-a.s.

In other words, a set of commitment types is separated if player 2 can always
learn which commitment type he faces, if he knows he is facing one of them.

We need the following Lemma.

Lemma 7 For all c and c′ in a separated set of commitment types, in any
Nash equilibrium, P̃ -almost surely,

pc
tp

c′
t → 0.

Proof. We argue to a contradiction. Suppose there exists a set F ⊂ Ω
such that P̃ (F ) > 0, and on F , for c and c′ in a separated set of commitment
types,

lim
t→∞

pc
t > 0 and lim

t→∞
pc′

t > 0. (27)

19Notice that if the monitoring is not public, then a pure strategy for player 1 need not
be realization equivalent to a public strategy, prompting the requirement in Theorem 6
that player 1’s strategy be pure public.
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We first argue that P̂ c (F ) = 0. If P̂ c (F ) > 0, since the commitment
types are separated, on a full measure subset of F ,

P̂ c′ (h2t)
P̂ c (h2t)

→ 0.

But

pc′
t =

P̂ c′ (h2t)
P̂ c (h2t)

pc′
0 p

c
t ,

and so on this full measure subset, pc′
t → 0, contradicting (27). Thus,

P̂ c (F ) = 0.
However, since the unconditional probability of F is strictly positive,

0 < E {pc
t |F} =

P̂ c (F ) pc
0

P (F )
.

But P̂ c (F ) = 0 implies E {pc
t |F} = 0, a contradiction.

We then have:

Theorem 7 Suppose ρ satisfies Assumptions 1, 2, and 3. Suppose T is a
separated set of commitment types and the support of the prior p0 is T ∪ {n}.
Let T ∗ be the set of commitment types c ∈ T for which σ̂c

1 is a public strategy
with finite range that is never an equilibrium strategy in the long run. Then
in any Nash equilibrium, pc

t → 0 for all c ∈ T ∗ P̃ -almost surely.

Theorem 8 Suppose ρ satisfies Assumptions 1, 2, and 4. Suppose T is a
separated set of commitment types and the support of the prior p0 is T ∪ {n}.
Let T ∗ be the set of commitment types c ∈ T for which σ̂c

1 is a pure strategy
that is never an equilibrium strategy in the long run. Then in any Nash
equilibrium, pc

t → 0 for all c ∈ T ∗ P̃ -almost surely.

The proofs of these two results are almost identical to the proofs of
Theorems 1 and 2, with the following change. Fix some type c′ ∈ T ∗. In
the proofs, reinterpret P̃ as P−c′ =

∑
c 6=c′ p

c
0P̂

c + pn
0 P̃ , the unconditional

measure on Ω implied by the normal type and all the commitment types
other than c′. The only point at which it is important that P̃ is indeed the
measure induced by the normal type is at the end of each proof, when the
normal type has a profitable deviation that contradicts player 2’s beliefs.
We now apply Lemma 7. Since we are arguing on a P̃ -positive probability
subset where pc′

t is not converging to zero, every other commitment type is
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receiving little weight in 2’s beliefs. Consequently, from player 2’s point of
view, eventually the measures P−c′ and P̃ are sufficiently close to obtain the
same contradictions.

8 Two Long-Run Players

Lemma 3 is the only place where the assumption that player 2 is short-
lived makes an appearance. When player 2 is short-lived, player 2 is best
responding to the current play of player 1, and so as long as player 2 is
sufficiently confident that he is facing the commitment type, he will best
respond to the commitment type. On the other hand, if player 2 is long-lived,
like player 1, then there is no guarantee that this is still true. For example,
player 2 may find experimentation profitable. Nonetheless, reputation effects
can still be present (Celentani, Fudenberg, Levine, and Pesendorfer (1996)).

In order to extend our results to long-lived players we need an analog of
Lemma 3. Again, for expositional clarity, we restrict attention to the case
of a single commitment type.

Lemma 8 Suppose σ̂1 is a public strategy implementable by a finite automa-
ton, denoted (W,d, ϕ,w0), and BR (σ̂1;w′) is the set of best replies for player
2 to the public strategy implemented by the finite automaton (W,d, ϕ,w′),
i.e., the initial state is w′ ∈ W . For any history h2t, let w (h2t) ∈ W be
the state reached from w0 under the public history consistent with h2t. Let
(σ̃1, σ2) be equilibrium strategies in the incomplete-information game where
player 2 is long-lived with discount factor δ2 ∈ [0, 1). If σ2 is a pure strategy,
then for all T > 0 there exists ψ > 0 such that if player 2 observes a history
h2t so that

P

{
sup
s≥t

∥∥∥Ê[σ̂1s|H2s]− Ẽ[σ̃1s|H2s]
∥∥∥ < ψ

∣∣∣∣h2t

}
> 1− ψ, (28)

then for some σ′2 ∈ BR (σ̂1;w (h2t)), the continuation strategy of σ2 after
the history h2t agrees with σ′2 for the next T periods.

If player 2’s posterior that player 1 is the commitment type fails to
converge to zero on a set of states of positive P̃ -measure, then the same
argument as in Lemma 4 shows that (28) holds (note that (14) in Lemma 4
uses P̃ rather than P to evaluate the probability of the event of interest).

Proof. Fix T > 0. Since W is finite, it is enough to argue that for each
w ∈W , there is ψw > 0 such that for such if player 2 observes a history h2t
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so that w = w (h2t) and

P

{
sup
s≥t

∥∥∥Ê[σ̂1s|H2s]− Ẽ[σ̃1s|H2s]
∥∥∥ < ψw

∣∣∣∣h2t

}
> 1− ψw, (29)

then for some σ′2 ∈ BR (σ̂1;w), the continuation strategy of σ2 after the
history h2t agrees with σ′2 for the next T periods.

Fix a private history for player 2, h′2t. Let σ̂1 (h2s) denote the play of the
finite automaton (W,d, ϕ,w (h′2t)) after the public history consistent with
h2s, where h′2t is the initial segment of h2s. Since player 2 is discounting,
there exists T ′ such for any w ∈ W , there is εw > 0 such that if for s =
t, . . . , t+ T ′ and for all h2s with initial segment h′2t,∥∥∥σ̂1 (h2s)− Ẽ [σ̃1s|h2s]

∥∥∥ < εw, (30)

then for some σ′2 ∈ BR (σ̂1;w (h′2t)), the continuation strategy of σ2 after
the history h′2t agrees with σ′2 for the next T periods.

Recall that γ ≡ miny,ij ρ
y
ij and set ψw = 1

2 min
{
εw, γ

T ′
}

. Suppose (29)
holds with this ψw. We claim that (30) holds for s = t, . . . , t+T ′ and for all
h2s with initial segment h′2t. Suppose not. Since player 2 is following a pure
strategy, the probability of the continuation history h2s, conditional on the
history h′2t, is at least γT ′ . Thus,

P

{
sup
s≥t

∥∥∥Ê[σ̂1s|H2s]− Ẽ[σ̃1s|H2s]
∥∥∥ ≥ ψw

∣∣∣∣h2t

}
≥ γT ′ ,

contradicting (29), since γT ′ > ψw.

With this result in hand, the proofs of Theorems 1 and 2 go through
as before, extending our result to two long-lived players, provided the com-
mitment type is a public strategy implementable by a finite automaton and
player 2 plays a pure strategy in the Nash equilibrium.

A Appendix

A.1 Proof of Theorem 3 (Section 4.3)

Proof. Since pt → 0 P̃ -almost surely, we have pt → 1 P̂ -almost surely. For
any ε, ν > 0 there exists a T such that for all t > T , P̃ (pt > ε) + P̂ (pt <
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1− ε) < ν. Hence, for t′ > T ,

0 ≤
∫

S×[0,1]
[ut′

2 (s1, s2)− ut′
2 (s1, ξ2(s2, pt))]d(p0ρ̂t + (1− p0)ρ̃t)

≤ (1− p0)
∫

S×[0,ε]
[ut′

2 (s1, s2)− ut′
2 (s1, ξ2(s2, pt))]dρ̃t

+p0

∫
S×[1−ε,1]

[ut′
2 (s1, s2)− ut′

2 (s1, ξ2(s2, pt))]dρ̂t + 2Mν,

where M is an upper bound on the magnitude of the stage-game payoffs and
the first inequality holds because we have a subjective correlated equilibrium.
As ξ2 is measurable with respect to pt, we can ensure that the final integral
in the preceding expression is zero by setting ξ2(s2, pt) = s2 for pt > ε, and
hence, for any ε, ν > 0 and for all ξ2,∫

S×[0,ε]
[ut′

2 (s1, s2)− ut′
2 (s1, ζ2(s2, pt))]dρ̃t ≥ − 2Mν

1− p0
, ∀t′ > T. (A.1)

Again, because P̃ (pt > ε) < ν, (A.1) implies∫
S×[0,1]

[ut′
2 (s1, s2)− ut′

2 (s1, ξ2(s2, pt))]dρ̃t ≥ − 2Mν

1− p0
− 2Mν, ∀t′ > T.

Integrating out pt implies that, for all ξ′2 : S2 → S2,∫
S
[ut′

2 (s1, s2)− ut′
2 (s1, ξ′2(s2))]dµ̃t ≥ − 2Mν

1− p0
− 2Mν, ∀t′ > T. (A.2)

Consider now a convergent subsequence, denoted µ̃tk
with limit µ̃∞, and

suppose µ̃∞ is not a correlated equilibrium. Since (8) holds for all t′, it also
holds in the limit, and so for some t′ and some ξ′′2 : S2 → S2, there exists
κ > 0 so that ∫

S
[ut′

2 (s1, s2)− ut′
2 (s1, ξ′′2(s2))]dµ̃∞ < −κ < 0.

But then for tk sufficiently large,∫
S
[ut′

2 (s1, s2)− ut′
2 (s1, ζ ′′2(s2))]dµ̃tk

<
−κ
2

< 0,

contradicting (A.2) for ν sufficiently small.
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A.2 Proof of Theorem 4 (Section 4.4)

We begin by focusing on games that are “close” to the complete-information
game.

Lemma A Let (i∗, j∗) be a strict Nash equilibrium of the one-shot game.
For all T , there exists η̂ > 0 such that for all p0 ∈ (0, η̂), there is a Nash
equilibrium of the incomplete-information game in which the normal type
plays i∗ and player 2 plays j∗ for the first T periods, irrespective of history.

Proof. Let ε′ = 1
2 [π1 (i∗, j∗)−maxi6=i∗ π1(i, j∗)] > 0. Since the Nash

equilibrium correspondence is upper hemicontinuous, there exists η′ > 0
and a Nash equilibrium of the complete-information game, σ (0), such that
for each belief p ∈ [0, η′), there is a Nash equilibrium of the incomplete-
information game, σ (p), satisfying |Epu1 (σ (p))− E0u1 (σ (0))| < ε′

2 , where
Ep denotes taking expectations with probability p on the commitment type.

Since j∗ is player 2’s strict best response to i∗, there exists η′′ > 0 so
that for all pt < η′′, j∗ is still a best response to the normal type playing i∗.
Now, for any T , there exists η̂ > 0 so that if p0 < η̂, max pt < min{η′, η′′}
for all t ≤ T . The equilibrium strategy profile is to play (i∗, j∗) for the
first T periods (ignoring history), and then play according to the strategy
profile identified in the previous paragraph for the belief pT , σ (pT ). By
construction, no player has an incentive to deviate and so the profile is
indeed a Nash equilibrium.

While the equilibrium just constructed yields payoffs to player 1 that
are close to π1(i∗, j∗), the equilibrium guarantees nothing about asymptotic
play. The equilibrium of the next Lemma does.

Lemma B Let (i∗, j∗) be a strict Nash equilibrium of the one-shot game.
For all ε > 0, there exists η > 0 such that for all p0 ∈ (0, η], there is a
Nash equilibrium of the incomplete-information game, σ∗∗(p0), in which the
P̃ -probability of the event that (i∗, j∗) is played in every period is at least
1− ε.

Proof. Fix ζ = 1
3 [π1 (i∗, j∗)−maxi6=i∗ π1(i, j∗)] > 0, and choose T large

enough so that δTM < ζ
2 (recall that M is an upper bound for stage game

payoffs) and that the average discounted payoff to player 1 from T periods
of (i∗, j∗) is within ζ

2 of π1 (i∗, j∗). Denote by η̂ the upper bound on beliefs
given in Lemma A. For any prior p ∈ (0, η̂) that player 1 is the commitment
type, let σ∗(p) denote the equilibrium of Lemma A. By construction, σ∗(p)
yields player 1 an expected payoff within ζ of π1 (i∗, j∗).

42



There exists η′′ < η̂ such that if pt < η′′, then the posterior after T peri-
ods, pt+T (pt), is necessarily below η̂. Consider the following strategy profile,
consisting of two phases. In the first phase, play (i∗, j∗) for T periods, ignor-
ing history. In the second phase, behavior depends on the posterior beliefs
of player 2, pt+T (pt). If pt+T (pt) > η′′, play σ∗(pt+T (pt)). If pt+T (pt) ≤ η′′,
begin the first phase again.

By construction, the continuation payoffs at the end of the first phase
are all within ζ of π1(i∗, j∗), and so for any prior satisfying p0 < η′′, the
strategy profile is an equilibrium.

By Theorem 1, pt → 0 P̃ -almost surely, and so supt′≥t pt′ → 0 P̃ -almost
surely. By Egorov’s Theorem, there exists a t∗ such that P̃

{
supt′≥t∗ pt′ > η′′

}
<

ε. But then for some history for player 2, h2t∗ , P̃
{
supt′≥t∗ pt′ > η′′|h2t∗

}
< ε.

By the construction of the equilibrium, the continuation play after such a
history (which necessarily leads to a belief, pt∗(h2t∗), for player 2 satisfying
pt∗(h2t∗) ≤ η′′) is identical to that in the incomplete-information game with
initial prior p0 = pt∗(h2t∗). Thus, for the incomplete-information game with
prior p0 = pt∗(h2t∗), the probability that the posterior after any history
exceeds η′′ is no more than ε.

The proof is completed by setting η = pt∗(h2t∗), since for all t and all
h2t, we have pt(h2t; p′0) < pt(h2t; p0) for any prior p0 < pt∗(h2t∗).

We can then prove Theorem 4:

Proof. We prove this by first constructing an equilibrium of an artificial
game, and then arguing that this equilibrium induces an equilibrium with
the desired properties in the original game.

Fix ε and the corresponding η from Lemma B. In the artificial game,
player 2 has the action space J × {g, e} × [0, 1], where we interpret g as
“go,” e as “end,” and p ∈ [0, 1] as an announcement of the posterior belief
of player 2. The game is over immediately when player 2 chooses e. The
payoffs for player 2 when player 2 ends the game with the announcement of
p depend on the actions as well as on the type of player 1 (recall that n is
the normal type and c is the commitment type):

π∗2 (i, j, e, p;n) = π2 (i, j) + η − p2

and
π∗2 (i, j, e, p; c) = π2 (i, j)− (1− η)− (1− p)2 ,

where η > 0 is from Lemma B. The payoffs for player 2 while the game
continues are:

π∗2 (i, j, g, p;n) = π2 (i, j)− p2
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and
π∗2 (i, j, e, p; c) = π2 (i, j)− (1− p)2 .

The payoffs for the normal type of player 1 from the outcome {(is, js, g, ps)}∞s=0

(note that player 2 has always chosen g) are as before (in particular, the be-
lief announcements are irrelevant):

(1− δ)
∞∑

s=0

δsπ1(is, js).

For the outcome
{

(is, js, g)
t−1
s=0 , (it, jt, e, pt)

}
, the payoffs for player 1 are

(1− δ)
t∑

s=0

δsπ1(is, js) + δtu1(σ∗∗(pt)),

where u1(σ∗∗ (pt)) is player 1’s equilibrium payoff under σ∗∗(pt) from Lemma
B.

By construction, player 2 always finds it strictly optimal to announce
his posterior.20 Moreover, again by construction, player 2 ends the game if
and only if his posterior is less than η.

Now consider an equilibrium (σ∗1, σ
∗
2) of the artificial game.21 Then let

play in the original game be given by (σ∗1, σ
∗
2), with the modification that

should (σ∗1, σ
∗
2) call for player 2 to announce e, then play proceeds according

to the equilibrium specified in Lemma B for the corresponding value of ρ
(< η). It follows from Lemma B that this is an equilibrium of the original
game. It then follows from Theorem 1 that P̃ -almost surely, the probability
of the event that (i∗, j∗) is played eventually is at least 1− ε.

A.3 Verification of (16) (Section 5.1.3)

Lemma C Suppose {Xm} is a bounded sequence of random variables, and
Xm → 0 almost surely. Suppose {Fm} is a non-decreasing sequence of σ-
algebras. Then, E [Xm|Fm] → 0 almost surely.

20This follow from the observation 2 must choose the announcement p ∈ [0, 1] to mini-
mize (1− pt)p

2 + pt(1− p)2, which is accomplished by choosing p = pt.
21The existence of such an equilibrium is established by Theorem 6.1 of Fudenberg

and Levine (1983). In a finite horizon, existence would be ensured by Glicksberg’s the-
orem (that any game with continuous payoff functions on compact subsets of Euclidean
spaces has a (possibly mixed) equilibrium. Fudenberg and Levine use a limiting argu-
ment, exploiting discounting to achieve the required continuity, to extend this result to
infinite-horizon games.
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Proof. Define Ym = supm′≥m |Xm′ |. The sequence {Ym} is a non-
increasing sequence of random variables converging to 0 almost surely. Since
E [Ym+1|Fm] ≤ E [Ym|Fm] almost surely, {E [Ym|Fm]} is a bounded su-
permartingale with respect to {Fm}, and so there exists Y∞ such that
E [Ym|Fm] → Y∞ almost surely. But since E [E [Ym|Fm]] = E [Ym] → 0,
EY∞ = 0. Since Y∞ ≥ 0 almost surely, we have Y∞ = 0 almost surely.22

Finally, −E [Ym|Fm] ≤ E [Xm|Fm] ≤ E [Ym|Fm] implies E [Xm|Fm] → 0
almost surely.
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