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Abstract

We analyze a game of strategic experimentation with two-armed bandits whose

risky arm might yield payoffs after exponentially distributed random times. Free-

riding causes an inefficiently low level of experimentation in any equilibrium where

the players use stationary Markovian strategies with beliefs as the state variable.

We construct the unique symmetric Markovian equilibrium of the game, followed by

various asymmetric ones. There is no equilibrium where all players use simple cut-

off strategies. Equilibria where players switch finitely often between experimenting

and free-riding all yield a similar pattern of information acquisition, greater effi-

ciency being achieved when the players share the burden of experimentation more

equitably. When players switch roles infinitely often, they can acquire an approx-

imately efficient amount of information, but still at an inefficient rate. In terms

of aggregate payoffs, all these asymmetric equilibria dominate the symmetric one

wherever the latter prescribes simultaneous use of both arms.
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tribution.
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1 Introduction

In this article we analyze a game of strategic experimentation based upon two-armed

bandits with a safe arm that offers a known payoff and a risky arm of unknown type. If

it is good, it generates positive payoffs after exponentially distributed random times; if

it is bad, it never pays out anything. The players have replica two-armed bandits with

all risky arms being of the same type (all good, or all bad), but with ‘breakthroughs’

occurring independently. Each player is endowed with one unit of a perfectly divisible

resource per unit of time, and continually has to decide what fraction of this resource to

allocate to each arm. Players observe each others’ actions and outcomes, so information

about the type of the risky arm is a public good.

Such a game of strategic experimentation arises for example with drug trials by health

authorities. Suppose there is an established drug with a known probability of curing a

certain disease, while a new drug is either more highly effective or little better than

a placebo. Health authorities in different jurisdictions face the allocation problem of

deciding what fraction of patients to give what drug. Given a free flow of information,

they will draw on each other’s experience, and a lack of success with the new drug would

make all parties more pessimistic. In the limiting case (assumed in our model) that a

bad new drug is completely ineffective, the first success with the new drug reveals it to

be good, leading all parties to adopt it.

As a second example, consider oil or gas companies any number of which may explore

a virgin site. This new site could either be very rewarding, having more reserves than

an old established one, or it could prove to be barren. Each company has to decide how

much of its effort, time and money to allocate to the new site, and how much to the old

one. The first breakthrough discovery by anyone at the new site reveals its superiority,

and all companies would henceforth drill there.

In situations such as these, players gradually become less optimistic as long as no

news arrives, and fully informed as soon as it does. In our model, this entails that the

players’ value functions are (closed-form) solutions to first-order differential equations.

As a consequence, we are able to provide a relatively simple and tractable taxonomy of

Markov perfect equilibria with the players’ posterior belief as state variable.

Above all, there is of course the fundamental inefficiency of information acquisition

because of free-riding. In the unique symmetric Markovian equilibrium of the game, the

effect of free-riding is extreme insofar as the critical belief at which all players change

irrevocably to the safe arm is the same as if there were only one player. This means

that there is no encouragement effect whereby the presence of other players encourages

at least one of them to continue experimenting at beliefs somewhat more pessimistic

2



than the single-agent cut-off belief. This effect was first analyzed by Bolton and Harris

(1999). Its absence in the exponential bandit framework is easy to explain, since the

encouragement effect rests on two conditions: the additional experimentation by one

player now must increase the likelihood that other players will experiment in the future,

and this future experimentation must be valuable to the player who acts as a pioneer.

With exponential bandits, however, the only way for this player to increase the likelihood

that others will experiment is to have a breakthrough – but as such a breakthrough is

fully revealing, he knows everything he needs to know from then on, and the additional

‘experimentation’ by the other players is of no value to him.

Having characterized the symmetric MPE, we go on to construct asymmetric equilib-

ria in which players use simple strategies, i.e. strategies that at any given belief allocate

the entire unit resource to one arm. We show that the players generate the same amount

of information in all simple equilibria if they switch actions only a finite number of times,

and this amount is again the same as the single-agent optimum. This result is driven

by backward induction: with finite switching there is a last agent to engage in experi-

mentation and this agent has no incentive to provide more information than would be

optimal in the single-agent set-up.

Quite surprisingly, there is no Markov perfect equilibrium where all players use the

simple cut-off strategies that are familiar from single-agent bandit problems (use only the

risky arm above some cut-off belief, and only the safe arm below it). In any two-player

simple equilibrium, for example, there is an ‘optimistic threshold’ (where the number of

experimenters drops from two to one) and a ‘pessimistic threshold’ (where the number

of experimenters drops from one to zero), but it is not compatible with equilibrium that

one player performs all the experimentation between these two thresholds while the other

is free-riding. This is because the free-rider would have the higher continuation value

at beliefs above the pessimistic threshold, and best responses are weakly increasing in

one’s continuation value. Consequently, there would be a range of beliefs around the

optimistic threshold where he would find it optimal to experiment regardless of what

his rival is doing. In turn, since best responses are weakly decreasing in the number of

other players experimenting, the player who is supposed to run the final leg would find

it optimal to free-ride just below the optimistic threshold. So there must be at least one

intermediate belief where the players swap roles, and the simplest two-player MPE have

precisely one such switch-point. This can be elaborated on by many switches between

the role of free-rider and pioneer, and we give a complete characterization of when and

how this can happen. Further, we indicate how these results generalize to the N -player

case.

Although the amount of information acquired is fixed over all simple Markovian
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equilibria with finite switching, the rate at which the information is acquired does vary.

The more equitably the players share the burden of experimentation when it becomes

costly (i.e., when ceasing to experiment would yield a higher short-term payoff), the more

they are able to maintain higher rates of information acquisition, and the more efficient

is the equilibrium. We also show that over the range of beliefs where the symmetric

equilibrium prescribes simultaneous use of both arms, even the worst simple equilibria are

more efficient than the symmetric one, and simple equilibria in which players frequently

switch roles Pareto-dominate the symmetric one except for beliefs in an arbitrarily small

interval just above the single-agent cut-off.

Our last result is to show that an approximately efficient amount of information can

be acquired if we allow the players to use Markovian strategies that switch actions an

infinite number of times during a finite time interval. If there is never a last period of

experimentation for any player, each individual can be given an incentive to take turns

in providing additional (smaller and smaller) amounts of experimentation. A level of

experimentation that is approximately efficient can then be induced; the rate at which

this information is acquired is, however, inefficient. In summary, while the Bolton-Harris

encouragement effect is not present here, players still do encourage each other by taking

turns in an incentive-compatible way.

The exponential model is a simple continuous-time analogue of the two-outcome

bandit model in Rothschild (1974), but has received little attention so far, Presman

(1990) covering the single-agent case. Exponential bandits are embedded in the financial

contracting models of Bergemann and Hege (1998, 2001) and the investment timing

model of Décamps and Mariotti (2003). Malueg and Tsutsui (1997) analyze a model

of a patent race with learning where the arrival time of the innovation is exponentially

distributed given the stock of knowledge, which leads to the same structure of belief

revisions as with exponential bandits. In these papers, however, the strategic interaction

is entirely different from the situation that we consider.

The articles closest to us are Bolton and Harris (1999, 2000). Their model of strategic

experimentation is based upon two-armed bandits where the risky arm yields a flow

payoff with Brownian noise. There, both good and bad news arrives continuously, and

beliefs are continually adjusted up or down by infinitesimally small amounts. Owing

to the technical complexity of the Brownian model, Bolton and Harris (1999) restrict

themselves to studying symmetric equilibria. They prove existence and uniqueness, and

show the presence of the encouragement effect described above. Except for this effect,

the symmetric equilibrium of our game confirms all their findings in a mathematically

much simpler framework. What is more, we are able to present asymmetric equilibria

and show that they are more efficient than the symmetric one.
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While the general case proves to be tractable in our framework, Bolton and Harris

(2000) take their model to the undiscounted limit thereby shutting down the encour-

agement effect and facilitating the construction of asymmetric equilibria. They demon-

strate an asymmetric equilibrium in pure strategies that depends primarily on the full-

information payoff and not on the players’ value functions; by contrast, in the equilibria

that emerge from our model, the best responses and value functions are co-determined.

In both models a graph of aggregate experimentation against beliefs is a step function,

but in their model the cut-offs where there is a move from one step to the next are fixed,

whereas in our model these cut-offs are determined endogenously – exchanging the roles

of two players when aggregate experimentation is one, for example, will ripple all the

way up, altering all the higher cut-offs and changing the equilibrium.

Our article is also related to a recent literature on the dynamic provision of public

goods which has found that efficient provision is possible if the players make smaller and

smaller contributions over time and there is no one player who is the last to contribute;

see, for example, Admati and Perry (1991), Marx and Matthews (2000), or Lockwood

and Thomas (2002). These models use (non-Markovian) trigger strategies to achieve

efficiency. If a player deviates from the agreed path of contributions at any point in

time, then no other player will make contributions to the public good in the future. Thus

the players choose to continue to contribute because their net gain (from others’ future

contributions) outweighs their current cost of provision. Although our infinite switching

equilibrium with its approximately efficient amount of information is quite different –

time is continuous whereas actions are binary – the same economic principle applies.

Trigger strategies are unnecessary here because the beliefs encode the punishment. If a

player does not perform an appropriate amount of experimentation, then her opponents’

beliefs will not fall sufficiently for them to embark on their round of experimentation,

and this hurts the deviating player.

The rest of the article is organized as follows. Section 2 introduces the exponential

bandit model and Section 3 establishes the efficient benchmark where players cooperate

in order to maximize joint expected payoffs. Section 4 sets up the strategic problem

and provides several auxiliary results. Sections 5 and 6 present the unique symmetric

Markov perfect equilibrium, asymmetric equilibria, and welfare comparisons. Section 7

contains some concluding remarks; some of the proofs are relegated to the Appendix.

2 Exponential Bandits

The purpose of this section is to introduce our model of strategic experimentation.
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Time t ∈ [0,∞) is continuous, and the discount rate is r > 0. There are N ≥ 1

players, each of them endowed with one unit of a perfectly divisible resource per unit

of time. Each player faces a two-armed bandit problem where she continually has to

decide what fraction of the available resource to allocate to each arm. One arm S is

‘safe’ and yields a known deterministic flow payoff that is proportional to the fraction of

the resource allocated to it. (More generally, this payoff can be the expected per-period

value of a stationary non-deterministic stream of payoffs.) The other arm R is ‘risky’

and can be either ‘bad’ for all players or ‘good’ for all players. If it is bad, then it

always yields 0 irrespective of the fraction of the resource allocated to it; if it is good,

then it yields lump-sum payoffs at random times, the arrival rate of these payoffs being

proportional to the fraction of the resource allocated to it. The arrival of lump-sums is

independent across players.

More precisely, if a player allocates the fraction kt ∈ [0, 1] of the resource to R over

an interval of time [t, t+ dt), and consequently the fraction 1− kt to S, then she receives

the payoff (1− kt)s dt from S, where s > 0 is a constant known to all players. Moreover,

the probability that she receives a lump-sum payoff from R at some point in the interval

is ktλθ dt where λ > 0 is a constant known to all players, θ = 1 if R is good, and θ = 0 if

R is bad. Lump-sums are independent draws from a time-invariant distribution on IR++

with a known mean h. When the fraction kt of the resource is allocated to R on [t, t+dt),

therefore, the overall expected payoff increment conditional on θ is [(1− kt)s + ktgθ] dt,

where g = λh.

We assume that 0 < s < g, so each player strictly prefers R, if it is good, to S, and

strictly prefers S to R, if it is bad. At t = 0, however, players do not know whether the

risky arm is good or bad; they start with a common prior belief about θ. Thereafter,

all players observe each other’s actions and outcomes, so they hold common posterior

beliefs throughout time. This means in particular that the arrival of the first lump-sum

on any of the N risky arms reveals to all players that the risky arm is good.

If a player used a time-invariant allocation kt = k, then by standard results the delay

between the arrivals of successive lump-sums on a good risky arm would be exponentially

distributed with parameter kλ, that is, with mean 1/(kλ); see Karlin and Taylor (1981,

p.146), for instance. In particular, the time of the first-lump sum, and hence of the

resolution of players’ uncertainty about the type of the risky arm, would be exponentially

distributed. This is the reason why we use the term exponential bandits for our set-up.

Players are said to experiment when they use R while its type is still unknown.

Given a player’s actions {kt}t≥0 such that kt is measurable with respect to the infor-

mation available at time t, her total expected discounted payoff, expressed in per-period
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units, is

E
[∫ ∞

0
r e−r t [(1− kt)s + ktgθ] dt

]
,

where the expectation is over both the random variable θ and the stochastic process

{kt}.
Let pt denote the subjective probability at time t that players assign to the risky arm

being good, so that given a player’s action kt on [t, t+dt), her expected payoff increment

conditional on all available information is [(1− kt)s + ktgpt] dt. By the Law of Iterated

Expectations, we can rewrite the above total payoff as

E
[∫ ∞

0
r e−r t [(1− kt)s + ktgpt] dt

]
,

where the expectation is now over the stochastic processes {kt} and {pt}. This highlights

the potential for beliefs to serve as a state variable. It also shows that a player’s payoff

depends on others’ actions only through their impact on the evolution of beliefs.

To derive the law of motion of beliefs, suppose that over the interval of time [t, t+dt)

player n = 1, . . . , N allocates the fraction kn,t of the unit resource to her risky arm.

Let Kt =
∑N

n=1 kn,t. If the risky arms are good, the probability of none of the players

achieving a breakthrough is
∏N

n=1(1 − kn,tλ dt) = 1 −Ktλ dt (this is up to terms of the

order o(dt), which we can ignore here and in what follows); if the risky arms are bad, the

probability of none of them achieving a breakthrough is 1. When the players start with

the common belief pt at time t and none of them achieves a breakthrough in [t, t + dt),

therefore, the updated belief at the end of that time period is

pt + dpt =
pt (1−Ktλ dt)

1− pt + pt (1−Ktλ dt)

by Bayes’ rule. Simplifying, we see that as long as there is no breakthrough, the belief

changes by dpt = −Ktλpt(1−pt) dt. Once there is a breakthrough, of course, the posterior

belief jumps to 1.

Were an agent to act myopically, she would simply maximize the expected short-

run payoff (1 − kt)s + ktgpt. The belief that makes her indifferent between R and S is

pm = s/g. For pt > pm it is myopically optimal to allocate the resource exclusively to R;

for pt < pm it is myopically optimal to allocate it exclusively to S. As we shall see next,

it is efficient to play R exclusively for some beliefs below pm.
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3 The Cooperative Problem

Suppose that the N players work cooperatively, i.e. want to maximize the average ex-

pected payoff by jointly choosing the action profiles {(k1,t, . . . , kN,t)}t≥0. This is a dy-

namic programming problem with the current belief p as the state variable.

If current actions are (k1, . . . , kN), the average expected payoff increment is given by[
(1− K

N
)s + K

N
gp
]

dt with K =
∑N

n=1 kn, and the subjective probability of a breakthrough

on at least one risky arm is pKλ dt. As the evolution of beliefs also merely depends on K,

the cooperative’s problem reduces to choosing the optimal level of the overall allocation

K given the current belief p.

By the Principle of Optimality, the value function of the cooperative, expressed as

average payoff per agent, satisfies

u(p) = max
K∈[0,N ]

{
r
[
(1− K

N
)s + K

N
gp
]

dt + e−r dtE [u(p + dp) | p, K ]
}

where the first term is the average expected current payoff again and the second term is

the discounted expected continuation payoff. As to the latter, with subjective probability

pKλ dt a breakthrough occurs and the value function jumps to u(1) = g; with probability

p(1−Kλ dt)+(1−p) = 1−pKλ dt there is no breakthrough and the value function changes

to u(p) + u′(p)dp = u(p)−Kλp(1− p)u′(p) dt.1 Using these expectations, together with

1− r dt as an approximation to e−r dt, we replace the second term in the earlier equation,

simplify and rearrange, to obtain the Bellman equation

u(p) = max
K∈[0,N ]

{
(1− K

N
)s + K

N
gp + Kλp[g − u(p)− (1− p)u′(p)]/r

}
,

which can be rewritten more succinctly as

u(p) = s + max
K∈[0,N ]

K {b(p, u)− c(p)/N} ,

where

c(p) = s− gp

and

b(p, u) = λp[g − u(p)− (1− p)u′(p)]/r.

1Note that infinitesimal changes of the belief are always downward, so strictly speaking only the
left-hand derivative of the value function u matters here. While this turns out to be of no relevance
to the cooperative case, we will indeed see equilibria of the strategic experimentation game where a
player’s payoff function is not of class C1.
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Clearly, c(p) is the opportunity cost of playing R; the other term, b(p, u), is the discounted

expected benefit of playing R, and has two parts: λp[g − u(p)] is the expected value of

the jump to u(1) = g should a breakthrough occur; −λp(1−p)u′(p) is the negative effect

on the overall payoff should no breakthrough occur.

The linearity in K of the maximand in the Bellman equation immediately implies

that it is always optimal to choose either K = 0 (all agents use S exclusively), or K = N

(all agents use R exclusively), depending on whether or not the shared opportunity cost

of playing R exceeds the full expected benefit. In the former case, u(p) = s; in the latter

case, u satisfies the first-order ODE

Nλp(1− p)u′(p) + (r + Nλp)u(p) = (r + Nλ)gp.(1)

This has the solution

VN(p) = gp + C (1− p) Ω(p)µ/N(2)

where

Ω(p) =
1− p

p

denotes the odds ratio at the belief p, and µ = r/λ. The first term, gp, is the expected

payoff from committing to the risky arm, while the second term captures the option value

of being able to change to the safe arm. At sufficiently optimistic beliefs, this option

value is positive, implying a positive constant of integration C and a convex solution VN .

Proposition 3.1 (Cooperative solution) In the N-agent cooperative problem, there

is a cut-off belief p∗N given by

p∗N =
µs

(µ + N)(g − s) + µs
(3)

such that below the cut-off it is optimal for all to play S exclusively and above it is optimal

for all to play R exclusively. The value function V ∗
N for the N-agent cooperative is given

by

V ∗
N(p) = gp + (s− gp∗N)

(
1− p

1− p∗N

)(
Ω(p)

Ω(p∗N)

)µ/N

(4)

when p > p∗N , and V ∗
N(p) = s otherwise.

Proof: The expression for p∗N and the constant of integration in (4) are obtained by

imposing V ∗
N(p∗N) = s (value matching) and (V ∗

N)′(p∗N) = 0 (smooth pasting). Optimality

follows by standard verification arguments. Q.E.D.

This solution exhibits all of the familiar properties, which were described in Roth-
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schild (1974) for one agent and in Bolton and Harris (1999) for several agents: the

optimal strategy has a threshold where the agents change irrevocably from R to S; there

are occasions where the agents make a mistake by changing from R to S although the

risky action is actually better (R is good); the probability of mistakes decreases as the

reward from the safe action decreases, as agents become more patient, and as the number

of agents increases. Moreover, each player’s payoff V ∗
N(p) increases in N over the range

of beliefs where playing the risky arm is optimal.

The above proposition determines the efficient strategies. More precisely, we can

distinguish two aspects of efficiency here. Given an action profile {(k1,t, . . . , kN,t)}t≥0 for

the N players, the sum Kt =
∑N

n=1 kn,t measures how much of the N units of the resource

is allocated to risky arms at a given time t – we will call this number the intensity of

experimentation. On the other hand, the integral
∫ T
0 Kt dt measures how much of the

resource is allocated to risky arms overall up to time T – we will call this number the

amount of experimentation that is performed.

In the absence of a breakthrough, the amount of experimentation depends only on

the initial belief and the belief at which all experimentation ceases, and is independent

of the intensity.

Lemma 3.1 Suppose that there is no breakthrough and all experimentation ceases when

the common belief decays to pc < p0. Then the amount of experimentation performed is

(ln Ω(pc)− ln Ω(p0)) /λ.

Proof: With an intensity of experimentation Kt, the change in the belief is given by

dpt = −Ktλpt(1− pt) dt when no breakthrough occurs. Thus

∫ ∞

0
Kt dt = −1

λ

∫ pc

p0

dp

p(1− p)
=

1

λ

[
ln Ω(p)

]pc

p0

.

Q.E.D.

With this lemma, Proposition 3.1 implies that the efficient amount of experimentation

is (ln Ω(p∗N)− ln Ω(p0)) /λ. The efficient intensity of experimentation exhibits a bang-

bang feature, being N when the current belief is above p∗N , and 0 when it is below. Thus,

the efficient intensity is maximal at early stages, and minimal later on.

As we shall see next, Markov equilibria of the N -player strategic problem are never

efficient. Although it is possible to approach the efficient amount of experimentation in

such an equilibrium, the intensity of experimentation will always be inefficient because

of each player’s incentive to free-ride on the efforts of the others.
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4 The Strategic Problem

From now on, we assume that there are N ≥ 2 players acting non-cooperatively. We

consider stationary Markovian strategies with the common belief as the state variable.

We describe the best response correspondence, present explicit representations of players’

payoff functions, establish bounds on equilibrium payoffs, and show that all Markov

equilibria are inefficient.

Best responses

Fix a belief p. With kn ∈ [0, 1] indicating player n’s action at that belief and K =∑N
n=1 kn, let K¬n = K − kn, which summarizes the actions of the other players.

Proceeding in the same way as in the previous section, we find that player n’s value

function satisfies the Bellman equation

un(p) = s + K¬n b(p, un) + max
kn∈[0,1]

kn {b(p, un)− c(p)} .

Note that the second term on the right-hand side measures the benefit to player n of the

information generated by the other players.

Player n’s best response, k∗n, is determined by comparing the opportunity cost of

playing R with the expected private benefit:

k∗n


= 0 if c(p) > b(p, un),

∈ [0, 1] if c(p) = b(p, un),

= 1 if c(p) < b(p, un).

(5)

Using the Bellman equation together with the relationship between opportunity cost

and expected benefit that defines each of the three cases in (5), we obtain the following

alternative representation of best responses:

k∗n


= 0 if un(p) < s + K¬n c(p),

∈ [0, 1] if un(p) = s + K¬n c(p),

= 1 if un(p) > s + K¬n c(p).

(6)

Thus, player n’s best response depends on whether in the (p, u)-plane, the point (p, un(p))

lies below, on or above the line

DK¬n := {(p, u) ∈ [0, 1]× IR+ : u = s + K¬n c(p)}.
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For K¬n > 0 this is a downward sloping diagonal that cuts the safe payoff line u = s at

p = pm, the myopic cut-off; for K¬n = 0, it coincides with the safe payoff line. Note that

the higher is K¬n > 0, the larger is the range of continuation payoffs un(p) for which it is

optimal to play S exclusively – this illustrates the incentive to free-ride on other players’

experimentation efforts.

Explicit solutions for payoff functions

On intervals of beliefs where K¬n is constant and player n has a unique best response,

we can solve for the value function un explicitly up to a constant of integration. If k∗n = 1

then un satisfies the ODE

Kλp(1− p)u′(p) + (r + Kλp)u(p) = (r + Kλ)gp(7)

with K = K¬n + 1.2 The solution to (7) is

VK(p) = gp + C (1− p) Ω(p)µ/K .(8)

If k∗n = 0 then un satisfies

Kλp(1− p)u′(p) + (r + Kλp)u(p) = rs + Kλgp(9)

with K = K¬n. The solution to (9) is

FK(p) = s +
K(g − s)

µ + K
p + C (1− p) Ω(p)µ/K .(10)

If the graphs of FK¬n and VK¬n+1 meet DK¬n at the belief pc then F ′
K¬n

(pc) = V ′
K¬n+1(pc),

which is a manifestation of the usual smooth-pasting property.

Using the indifference condition from (5), c(p) = b(p, un), we can also provide an

explicit representation for a player’s value function on any interval of beliefs where that

player is indifferent between the two arms. On such an interval, un satisfies

λp(1− p)u′(p) + λpu(p) = (r + λ)gp− rs,(11)

2Note that equation (7) for the strategic problem is the same ODE as that for the cooperative
problem with an overall endowment of K units of the resource; cf. equation (1). This is because the
arrival probability of a breakthrough is the same in both situations.
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which has the (strictly convex) solution

W (p) = s + (µ + 1)(g − s) + µs(1− p) ln Ω(p) + C (1− p).(12)

Bounds on equilibrium payoffs

We now derive some bounds on the players’ payoffs in any Markov perfect equilibrium.

Lemma 4.1 In any Markov perfect equilibrium, the average payoff can never exceed V ∗
N

and no individual payoff can fall below V ∗
1 .

Proof: The upper bound follows immediately from the fact that the cooperative

solution maximizes the average payoff. As to the lower bound, we know that V ∗
1 (p) =

s + max {b(p, V ∗
1 )− c(p), 0} with b(p, V ∗

1 ) ≥ 0, that player n’s payoff satisfies un(p) =

s+K¬n b(p, un)+max {b(p, un)− c(p), 0}, and that in any equilibrium un(1) = V ∗
1 (1) = g

and un(0) = V ∗
1 (0) = s. If un were to fall below V ∗

1 , there would have to be some belief

p′ such that un(p′) < V ∗
1 (p′) and u′n(p′) ≤ (V ∗

1 )′(p′), implying that b(p′, un) > b(p′, V ∗
1 ).

Thus we would obtain the chain of inequalities following from V ∗
1 (p′) > un(p′):

max {b(p′, V ∗
1 )− c(p′), 0} > K¬n b(p′, un) + max {b(p′, un)− c(p′), 0}

≥ K¬n b(p′, V ∗
1 ) + max {b(p′, V ∗

1 )− c(p′), 0}

≥ max {b(p′, V ∗
1 )− c(p′), 0} ,

which is a contradiction. Q.E.D.

Inefficiency of Markov perfect equilibria

We can use the above results to show the following.

Proposition 4.1 (Inefficiency) All Markov perfect equilibria of the N-player exper-

imentation game are inefficient.

Proof: Since the average payoff lies between V ∗
1 and V ∗

N , there must be some belief

greater than p∗N where the payoff of each player is below DN−1 and above D0, in which

case the efficient strategies from Proposition 3.1 are not best responses. Q.E.D.

The intuition for this result is simple. Along the efficient experimentation path,

the benefit of an additional experiment, b(p, V ∗
N), tends to 1/N of its opportunity cost,

c(p)/N , as p approaches p∗N . From the perspective of a self-interested player, therefore,

the benefit of an additional experiment drops below the full opportunity cost, c(p), so
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it becomes optimal to deviate from the efficient path by using S instead of R. Thus,

the incentive to free-ride on the experimentation efforts of the other players makes it

impossible to reach efficiency.

In the following two sections we turn to the question as to what can be achieved in

Markov perfect equilibria.

5 Symmetric Equilibrium

Since the efficient strategy profile is symmetric and Markovian with the belief as state

variable, it is natural to ask what outcomes can be achieved in symmetric Markovian

equilibria of the N -player game.

It is easy to see from our characterization of best responses that there can be no

symmetric equilibrium where all players always allocate the entire unit resource to one

arm – there must be an interval of beliefs where players allocate a positive fraction of the

resource to either arm. More precisely, the diagonal DN−1 separates the region where all

players exclusively use the risky arm from the region where they use both arms; along

this diagonal, we have smooth pasting of the relevant solutions W and VN . Moreover,

as we show, the equilibrium value function reaches the level s smoothly.

Proposition 5.1 (Symmetric equilibrium) The N-player experimentation game has

a unique symmetric equilibrium in Markovian strategies with the common posterior belief

as the state variable. In this equilibrium, the safe arm is used exclusively at beliefs below

the single-player cut-off p∗1; the risky arm is used exclusively at beliefs above a cut-off

p†N > p∗1 solving

(N − 1)

(
1

Ω(pm)
− 1

Ω(p†N)

)
= (µ + 1)

[
1

1− p†N
− 1

1− p∗1
− 1

Ω(p∗1)
ln

(
Ω(p∗1)

Ω(p†N)

)]
;

and a positive fraction of the resource is allocated to each arm at beliefs strictly between

p∗1 and p†N . The fraction of the resource that each player allocates to the risky arm at

such a belief is

k†N(p) =
1

N − 1

W †(p)− s

c(p)
(13)

with

W †(p) = s + µs

[
Ω(p∗1)

(
1− 1− p

1− p∗1

)
− (1− p) ln

(
Ω(p∗1)

Ω(p)

)]
,(14)

which is each player’s value function on [p∗1, p
†
N ] and satisfies W †(p∗1) = s, (W †)′(p∗1) = 0.

Below p∗1 the value function equals s, and above p†N it is given by VN(p) from equation (2)
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with VN(p†N) = W †(p†N).

Proof: Consider a function W that solves (11) below and to the left of DN−1.

Lemma 4.1 implies that for W to be part of a common equilibrium value function it

cannot reach the level s to the right of p∗1 (else it would fall below V ∗
1 ), and also that

it cannot stay above the level s on [p∗N , p∗1] (else it would lie above V ∗
N in some inter-

val of beliefs). So in a symmetric equilibrium there must be a belief in [p∗N , p∗1] where

the relevant function W assumes the value s. Let pc be the largest such belief, so that

W ′(pc) ≥ 0. By (11), this implies pc ≥ p∗1, so the only possibility is that the solution to

(11) has pc = p∗1, which implies W (p∗1) = s and W ′(p∗1) = 0.

Using W (p∗1) = s in equation (12) determines the constant of integration C, giving

the expression (14) for the value function over the range where both arms are used.

Given this function, the expression (13) for the fraction k†N of the unit resource allocated

to R follows from the indifference condition in (6) and the fact that K¬n = (N−1)k†N by

symmetry. As W † is strictly convex, k†N is strictly increasing to +∞ as p ↑ pm. Thus there

is a unique cut-off p†N < pm where k†N(p†N) = 1. Simplifying W †(p†N)− s = (N − 1) c(p†N)

gives the equation satisfied by p†N . Q.E.D.

A number of points are noteworthy. First, the lower cut-off belief at which all ex-

perimentation in the symmetric MPE stops does not depend on the number of players;

by Lemma 3.1, this means that the same amount of experimentation is performed, no

matter how many players participate. This is very strong evidence of the free-rider effect

at work here.

Second, the lower cut-off equals the optimal cut-off from the single-player problem.

While it is clear that experimentation in a symmetric equilibrium cannot stop at a belief

above the single-agent cut-off, it is remarkable that experimentation does not extend at

all to beliefs below that cut-off. As discussed in the introduction, this means that we do

not have the encouragement effect of Bolton and Harris (1999).

Third, the expected equilibrium payoff that each player obtains at beliefs where both

arms are used does not depend on the number of players either; see equation (14). The

reason for this is that the relevant ODE, equation (11), is just the indifference condition

of a single player, and that the boundary condition at the lower cut-off belief is the same

for any number of players. What does depend on N is the upper cut-off belief, of course:

with more players, the temptation to free-ride becomes stronger, and p†N increases (the

indifference diagonal DN−1 rotates clockwise as N increases).
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6 Asymmetric Equilibria

We now turn to the behavior that can arise in asymmetric Markov perfect equilibria.

We will focus our attention on equilibria where at each belief, each player allocates the

entire unit resource to one of the arms, that is, where the action profile (k1, . . . , kN) is

always an element of {0, 1}N . We will call these equilibria simple.3

We will present two types of simple MPE. The first type consists of strategies where

the action of each player switches at finitely many beliefs. As a consequence, there is

a last point in time at which any player is willing to experiment. As in the symmetric

MPE, the belief at which this happens (provided no breakthrough has occurred) will be

the single-player cut-off p∗1. So a similar inefficiency arises: both the amount and the

intensity of experimentation are too low. Nevertheless, these equilibria differ in terms

of the time taken to reach the belief where experimentation ceases, and also in terms of

aggregate payoffs.

In the second type of simple MPE, each player’s strategy has infinitely many switch-

points, and although there is a finite time after which no player ever experiments again,

no single player has a last time for experimentation. That is, somewhat prior to reaching

a certain cut-off belief, the players switch roles after progressively smaller belief revisions,

and infinitely often. We will see that we can take this cut-off belief arbitrarily closely

to the efficient cut-off. Still, the equilibrium is inefficient: although an almost efficient

amount of experimentation is performed, it is performed with an inefficient intensity.

6.1 Finitely many switches

For ease of exposition, we focus on the two-player case initially and then extend our

results to more than two players.

Figure 1 illustrates the best response correspondence for N = 2, the faint straight line

being D1 and the solid kinked line being the myopic payoff. From this figure we can see

that a simple Markov perfect equilibrium with two players has three phases. When the

players are optimistic, both play R; when they are pessimistic, both play S; in between,

one of them free-rides by playing S while the other is playing R. We shall see that this

mid-range of beliefs further splits into two regions: the roles of free-rider and pioneer are

assigned for the whole of the upper region; in the lower region, players can swap roles.

The next proposition first describes the most inequitable equilibrium, in which one

3It is not difficult to construct asymmetric equilibria that are not simple. Apart from their use in
constructing bounds for aggregate payoffs (see footnote 4), these equilibria do not lead to additional
insights, so we do not pursue them further here.
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Figure 1: Best responses for N = 2, and payoffs in an asymmetric equilibrium

particular player experiments and the other free-rides throughout the lower region, and

then characterizes all simple MPE where players’ actions switch at finitely many beliefs.

Proposition 6.1 (Finite number of switches) In the two-player experimentation

game, there is a simple Markov perfect equilibrium where the players’ actions depend

as follows on the common posterior belief. There are two cut-offs, p∗1 and p̂2, and one

switch-point, p̂s, with p∗1 < p̂s < p̂2 such that: on (p̂2, 1], both players play R; on (p̂s, p̂2],

player 1 plays S and player 2 plays R; on (p∗1, p̂s], player 1 plays R and player 2 plays

S; on [0, p∗1], they both play S. The low cut-off, p∗1, is given in Proposition 3.1; the

switch-point and other cut-off are given by the solution to

(
Ω(p̂s)
Ω(p∗1)

)µ+1

+ (µ + 1)
[

Ω(p̂s)
Ω(pm)

− 1
]
− 1 = 0

and the solution to{
(µ + 1)(2µ + 1)

µ

Ω(p̂s)
Ω(pm)

− µ2 + (µ + 1)(µ + 2)
µ

}(
Ω(p̂2)
Ω(p̂s)

)µ+1

+ (µ + 1)
[

Ω(p̂2)
Ω(pm)

− 1
]
− 1 = 0.

Moreover, in any simple MPE with finitely many switches there are two cut-offs, p∗1
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and p̄2, and a belief, p̄s, with p∗1 < p̂s ≤ p̄s ≤ p̄2 ≤ p̂2, such that: on (p̄2, 1], both players

are above D1 and play R; throughout (p̄s, p̄2], one player is above D1 and plays R, while

the other is below D1 but above s and plays S; on (p∗1, p̄s], both players are below D1 but

above s, exactly one plays R and one S, and they swap roles at least once; on [0, p∗1],

they both play S.

Proof: Here we just sketch the proof; for details, and a procedure how to construct

all equilibria of this type, see the Appendix.

We first note that there must be a last player to experiment since the level u = s can

only be reached via the part of the (p, u)-plane where R and S are mutual best responses.

This player, say player 1, will necessarily stop experimenting at the single-agent cut-off

belief p∗1.

We can now work backwards (in time) from (p∗1, s). On an interval to the right of p∗1,

player 1 plays R and his continuation value (as a function of the belief) is a slowly rising

convex function. On this interval, player 2 free-rides by playing S and her continuation

value is a steeply rising concave function. Thus, at some belief, player 2’s value meets

D1 while player 1’s value is still below it – this defines p̂s. On an interval to the right of

p̂s, player 2 is content to be a pioneer and play R, while player 1 responds by free-riding

with S. At some belief, player 1’s value meets D1 while player 2’s value is yet further

above it – this defines p̂2. To the right of p̂2, both players optimally play R.

As to other equilibria of this sort, we again work backwards from (p∗1, s). If the players

swap roles (at least once) before the value of either of them has met D1, then the one

with the lower value will be above that of player 1 in the inequitable equilibrium sketched

above, and the one with the higher value will be below that of player 2. At some belief,

the value of one of the players meets D1 while the other’s value is still (weakly) below it

– this defines p̄s > p̂s. The one with the higher value plays R to the right of p̄s, while

the other one free-rides until the value meets D1 – this defines p̄2 < p̂2 – and then joins

in by playing R. Q.E.D.

The value functions of the two players in the equilibrium with cut-offs p∗1 and p̂2, and

switch-point p̂s are illustrated in Figure 1. Observe that the higher payoff meets this line

at p̂s while the lower payoff meets it at p̂2. Note also that a player’s payoff function is

concave where the player is a free-rider, and convex otherwise.

The N-player case

With N players, the equilibrium strategies will depend on where the players are in the

(p, u)-plane, specifically where they are in terms of the diagonals D0, D1, . . . , DN−1. If
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they are all weakly below D0 (i.e. u = s), then S is the dominant strategy, and if they

are all above DN−1, then R is the dominant strategy; elsewhere we will look for mutual

best responses involving some players taking the risky action and some playing safe.

If we define N +1 “bins” as the areas between DK−1 and DK (K = 1, . . . , N−1),

with bin 0 being D0 and bin N being the area above DN−1, then mutual best responses

will depend on how many players are in which bins. The size of this combinatorial task

is reduced by first noting that we are seeking a relatively small number of cases: when

it is the case that just one player is playing R, when two, and so on; then grouping the

combinations of players-in-bins so that each grouping corresponds to a certain number

playing R and the rest playing S; and finally allocating those actions to the various

players.

Define areas of the plane as follows:

AK := {(p, u) ∈ [0, 1]× IR+ : u > s + K c(p)}

BK := {(p, u) ∈ [0, 1]× IR+ : u ≤ s + K c(p)}

so that AK is the area above DK , and BK is the area below it. The various cases are
then given by:

(0) all players in B0;

(K) at least K players in AK−1, at least N−K players in BK , for 0 < K < N ;

(N) all players in AN−1.

To see that these cases exhaust all the possible combinations, observe that if we are not

in case (0), then at least 1 player is in A0; if at least N−1 players are in B1, then we

have case (1), else at least 2 players are in A1; if at least N−2 players are in B2, then

we have case (2), else at least 3 players are in A2; and so on.

Lemma 6.1 In case (K), the mutual best responses are such that K players in AK−1

play R, and N−K players in BK play S. Moreover, when all players are playing mutual

best responses any player in AK plays R, any player in BK−1 plays S, and the players

(if any) between DK−1 and DK are assigned actions arbitrarily so that the experimental

intensity is as prescribed.

Proof: Consider case (K).

For K 6= 0, assume that K−1 players in AK−1 play R, and N−K players in BK

play S. Then the best response of the remaining player in AK−1 is to play R, since he is

above DK−1.

For K 6= N , assume that K players in AK−1 play R, and N−K−1 players in BK

play S. Then the best response of the remaining player in BK is to play S, since she is

below DK .
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Since all the safe players are in BK , it follows that any player in AK plays risky;

similarly, since all the risky players are in AK−1, it follows that any player in BK−1 plays

safe; any unassigned player must be between DK−1 and DK , and who plays which action

is arbitrary as long as there are K risky players and N−K safe players. Q.E.D.

Generalizing the two-player situation, we work backwards (in time) from case (0),

i.e., from (p∗1, s). On an interval to the right of p∗1, we are in case (1), where one player

experiments while the rest free-ride. At some point, the value function of (at least) one

player meets D1; that player then plays R while any player who is still below D1 indulges

in a free-ride until two players have met D1. Now we are in case (2), where two players

are above D1 and playing R while the rest are still below D2 and free-riding. We continue

the construction in the obvious way, with more and more experimenters and fewer and

fewer free-riders, until everyone is above DN−1 and playing R.

Again, there emerges a most inequitable equilibrium. Number the players 1 through

N . Whenever we enter case (K), look at each player in turn, starting with the lowest

numbered, and assign him the risky action provided he is in the appropriate bin, else

let him free-ride; continue until K players are assigned to R, and let the rest free-ride.

(When any player crosses a diagonal, thereby moving into a different bin, we might have

to reassign actions.) The beliefs at which we move from one case to an adjacent case are

then as high as possible in equilibrium.

Figure 2 illustrates these actions for the most inequitable three-player equilibrium,

the faint dotted line showing the efficient outcome. To the right of p∗1, in case (1), player

1 experiments while the other two free-ride until, at p̄2, we enter case (2), which has four

regions. Now, player 1 free-rides on the experiments of the others as long as he is below

D1; when he crosses into a different bin, actions are reassigned so that players 1 and 2

are the experimenters as long as the third player is below D2. When she crosses that

diagonal, actions are again reassigned so that players 1 and 3 are the experimenters until

player 2 also hits D2. Actions are reassigned for a third time, R now being dominant for

both players 2 and 3, so player 1 has another free-ride as long as he is below D2. At p̄3

we enter case (3) and all players are experimenting.

Welfare results

Note that with finitely many beliefs at which players change actions, the average payoff is

determined by a decreasing sequence of cut-off beliefs p̄N , p̄N−1, . . . , p̄K , . . . , p̄1 at which

the intensity of experimentation drops from N to N −1, from N −1 to N −2, and so on.

The cut-off belief at which all experimentation stops, p̄1, is again that of a single agent,

namely p∗1; in particular, it is the same for all equilibria of this type (and thus they all
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exhibit the same amount of experimentation – see Lemma 3.1), whereas the higher cut-

off beliefs are determined endogenously by how the burden of experimentation is shared

at beliefs to the right of p∗1 (and hence the intensity of experimentation will vary across

these equilibria). Only for beliefs in a neighborhood of p∗1 – specifically when fewer than

two players are experimenting – is the average payoff the same across all these equilibria.

The most inequitable equilibria described above are the worst from a welfare per-

spective. This is because the cut-off beliefs at which the intensity of experimentation

drops from K to K−1 are as high as they can be in equilibrium. The most inequitable

equilibria therefore exhibit the slowest experimentation – in equilibria where the cut-off

beliefs are lower, greater intensities of experimentation are maintained for a wider range

of beliefs, so the same overall amount of information is acquired faster. As the following

proposition shows, such equilibria are more efficient.

Proposition 6.2 (Welfare ranking) In terms of aggregate payoffs, the simple Markov

perfect equilibria with finitely many switches can be partially ordered as follows: consider

two equilibria characterized by cut-offs {p̄K}N
K=1 and {p̄′K}

N
K=1, respectively; if p̄K ≤ p̄′K

for all K with at least one inequality being strict, then the equilibrium with the lower

cut-off(s) yields a higher aggregate payoff.

Proof: See the Appendix. Q.E.D.

The way to achieve a more efficient equilibrium is to move the payoff functions towards

each other by sharing the burden of experimentation more equally. The least upper

bound on aggregate payoffs (in simple equilibria with finite switching) is then given by

a situation of payoff symmetry where each player obtains exactly 1/N of the payoff of

the cooperative strategy that has all N players experiment above DN−1 and K < N

players experiment between the diagonals DK and DK−1. This is the same payoff as if

each player allocated exactly K/N of his resource to the risky arm on the entire region

between DK and DK−1 (and so the players cross successive diagonals together), and

hence clearly different from the payoff in the symmetric equilibrium where the fraction

of the resource that each player allocates to the risky arm falls gradually from 1 to 0

over the region below DN−1.
4

4We can increase aggregate payoffs further if we consider non-simple equilibria, and the least upper
bound on equilibrium payoffs is again given by a situation of payoff symmetry. It is the payoff that
would obtain if the total intensity of experimentation were K on the entire region between DK−1 and
DK−1+1/(K+1), and increasing from K to K + 1 on the region between DK−1+1/(K+1) and DK , the
incentive-compatible individual intensity being calculated in much the same way as we derived the ex-
pression (13) in the symmetric equilibrium. This is because just above DK−1 players using one arm
exclusively produce more intense experimentation than is prescribed by symmetric equilibrium strate-
gies, but less intense experimentation just below DK – and exactly the same intensity on DK−1+1/(K+1).
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In particular, in an interval of beliefs above the single-agent cut-off where W † is below

D(N−1)/N , the intensity of experimentation in the symmetric equilibrium is lower than

even in the most inequitable asymmetric one. By the logic of the last proposition, this

ought to mean that welfare in the symmetric equilibrium should be lower at those beliefs

than in any asymmetric equilibrium. The following proposition confirms this, and shows

that there is a knock-on effect in a much wider interval of beliefs.

Proposition 6.3 (Welfare comparison with symmetric MPE) For beliefs in the

interval (p∗1, p
†
N ] the average payoff in any simple Markov perfect equilibrium with finitely

many switches is strictly greater than the common payoff in the symmetric equilibrium.

Proof: See the Appendix. Q.E.D.

The idea underpinning this result can be brought out by a closer comparison of

the three-player symmetric equilibrium with a three-player simple equilibrium. If we

were to superimpose a curve showing the intensity of experimentation in the symmetric

equilibrium on the step function in Figure 2 for an asymmetric equilibrium, we would see

that the curve connects (p∗1, 0) to (p†3, 3) (lying to the right of (p̄3, 3)), and almost goes

through (p̄2, 1) and (p̄3, 2). Thus for a large majority of beliefs where some, but not all,

of the aggregate resource is devoted to experimentation, the intensity of experimentation

is higher in a simple equilibrium than in the symmetric equilibrium and the former is

therefore more efficient.

Finally, note that for any ε > 0 there is a simple MPE that Pareto-dominates the

symmetric one at all beliefs in the interval [p∗1+ε, p†N ]. It is enough to take an equilibrium

with players’ payoff functions sufficiently close to the least upper bound identified above.

Then, even the player who is the last one to experiment is better off at beliefs slightly

above p∗1 as he benefits from some free-riding before running the last leg.

6.2 Infinitely many switches

Propositions 6.2 and 6.3 show that sharing the roles of free-rider and pioneer by alter-

nating as the belief changes is an effective (and incentive-compatible) way of increasing

players’ aggregate payoff. Players can do even better if we allow them to switch between

actions at infinitely many beliefs. In that case, they can take turns experimenting in

such a way that no player ever has a last time (or lowest belief) at which he is supposed

to use the risky arm. Surprisingly, it is then possible to reach cut-off beliefs below p∗1 in

equilibrium – in fact, it is possible to almost attain the efficient cut-off p∗N , but it is still

reached too slowly.
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The intuition for these equilibria is that for all beliefs above the cooperative cut-off

there is a Pareto gain from performing more experiments, so provided any player’s imme-

diate contributions are sufficiently small relative to the long-run Pareto gain, performing

experiments in turn can be sustained as an equilibrium.

The description of mutual best responses in Lemma 6.1 implies that at beliefs above

the cooperative cut-off and where we are in case (1), any MPE must have exactly one

player experimenting. The equilibria constructed below specify a sequence of intervals of

beliefs where each player assumes the role of pioneer on every Nth interval. Moreover,

the intervals are such that a player’s expected payoff when embarking on a round of

single-handed experimentation equals s. While pinning down payoffs this way simplifies

the construction, other choices would work as well.

Proposition 6.4 (Infinite number of switches) For each belief p‡∞ with p∗N <

p‡∞ < p∗1, the N-player experimentation game admits a simple Markov perfect equilib-

rium with infinitely many switches where at least one player experiments as long as the

current belief is above p‡∞. More precisely, there exists a strictly decreasing sequence of

beliefs {p‡i}∞i=1 with p‡1 ≤ p∗1 and limi→∞ p‡i = p‡∞ such that the equilibrium strategies at

beliefs below p‡1 can be specified as follows: player n = 1, . . . , N plays R at beliefs in the

intervals (p‡n+jN+1, p
‡
n+jN ] (j = 0, 1, . . .) and S at all other beliefs below p‡1.

Proof: See the Appendix. Q.E.D.

The payoffs in a two-player equilibrium with an infinite number of switches are illus-

trated in Figure 3. (For clarity, we focus on beliefs between p∗2 and p‡1.) Coming from

the right, a player’s value function resembles a decaying saw-tooth, with rapidly falling

concave sections (for a free-rider) alternating with slowly rising convex sections (for a

pioneer).

Note that if no breakthrough occurs, the limit belief p‡∞ is reached in finite time as the

overall intensity of experimentation is bounded away from zero at beliefs above p‡∞. Note

also that as we take p‡∞ closer to the efficient cut-off p∗N , the amount of experimentation

performed in equilibrium approaches the efficient amount; see Lemma 3.1. The intensity

of experimentation, however, remains inefficient; it is 1 at beliefs in (p‡∞, p‡1], for instance,

and therefore too low relative to the efficient benchmark.

7 Concluding Remarks

One extension of our model that we are actively researching is where a single break-

through is not fully revealing, so that the encouragement effect identified by Bolton and
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Figure 3: Payoffs in a two-player equilibrium with an infinite number of switches

Harris (1999) reappears. Such a model can be easily adapted to situations where an

event is bad news: a ‘breakdown’ rather than a ‘breakthrough’.

A second extension that we intend to pursue is the introduction of asymmetries be-

tween players, for example regarding the discount rate or the ability to generate informa-

tion from their experimentation effort. This may reduce the multiplicity of asymmetric

equilibria that we have found for symmetric players. It may also allow us to investi-

gate the question as to with whom a given agent would choose to play the strategic

experimentation game.

More generally, we hope that exponential bandits will prove useful as building blocks

for models with a richer structure. Interesting extensions in this direction could include

rewards that depend on action profiles, unobservable outcomes, or costly communica-

tion.
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Appendix

Before proving Proposition 6.1 we have two preliminary lemmas.

Let v and f satisfy equation (8) (pioneer, with K =1) and equation (10) (free-rider, with

K = 1) respectively, with v(p∗1) = f(p∗1) = s. Let p̄v be the belief where v meets D1, and let

p̄f be the belief where f meets D1. In Lemma A.1 we show first that there is a region of the

(p, u)-plane that is bounded below by v between p∗1 and p̄v, bounded above by f between p∗1 and

p̄f , and bounded on the right by D1. Next, we show that any solution to either equation (8)

(pioneer, with K =1) or equation (10) (free-rider, with K =1) that starts somewhere in that

region can exit only through D1. Then in Lemma A.2 we show that any solution to equation (8)

(both experimenting, K = 2) that starts on D1 at a belief between p̄f and p̄v never hits D1

again. (Note that in each case, what is claimed and proved is a little stronger than necessary.)

Lemma A.1 On (p∗1, p
m], v < f , v is strictly convex, f is strictly concave, and both are strictly

increasing.

Further, any function uv which satisfies equation (8) (pioneer, with K = 1) on [p`, pr] ⊆
[p∗1, p

m] with v(p`) < uv(p`) ≤ f(p`) is strictly convex and strictly increasing, with v(p) <

uv(p) < f(p) for p` < p ≤ pr; and any function uf which satisfies equation (10) (free-rider,

with K = 1) on [p`, pr] ⊆ [p∗1, p
m] with v(p`) ≤ uf (p`) < f(p`) is strictly concave and strictly

increasing, with v(p) < uf (p) < f(p) for p` < p ≤ pr.

Proof: Whenever v(p) = f(p), v′(p) < f ′(p) if p < pm, and v′(p) > f ′(p) if p > pm, so v and

f can cross at most twice, once on either side of pm, and, in between, v < f .

A calculation shows that the second derivative of the functions v and f has the same sign as

the constant of integration. The boundary condition v(p∗1) = s implies a positive constant and

therefore strict convexity of v, whereas the boundary condition f(p∗1) = s implies a negative

constant and therefore strict concavity of f .

Evaluating, v′(p∗1) = 0 and so v is strictly increasing on [p∗1, p
m].

To show that f is strictly increasing, we first define

Zv(p) =
(r + λ)gp

r + λp
, Zf (p) =

rs + λgp

r + λp
, and L(p) = s +

g − s

1− p∗1
(p− p∗1).

Zv has the property that if uv satisfies equation (8) (pioneer, with K = 1), then whenever

uv(p) = Zv(p) we have u′v(p) = 0 (for p 6= 1), and whenever uv(p) < Zv(p) we have u′v(p) > 0.

Similarly, Zf has the property that if uf satisfies equation (10) (free-rider, with K =1), then
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whenever uf (p) = Zf (p) we have u′f (p) = 0 (for p 6= 1), and whenever uf (p) < Zf (p) we

have u′f (p) > 0. Finally, L is the linearization of f at (p∗1, s), i.e. L(p∗1) = f(p∗1) = s, and

L′(p∗1) = f ′(p∗1) = g−s
1−p∗1

, so L(p) > f(p) for p 6= p∗1.

Zf (p) > Zv(p) whenever p < pm. Zv is strictly concave, with Zv(p∗1) = s and Zv(1) = g, so

Zv and L coincide at (p∗1, s) and (1, g), and since L is linear we have Zv(p) > L(p) on (p∗1, 1).

Thus we have the string of inequalities Zf (p) > Zv(p) > L(p) > f(p) whenever p∗1 < p < pm,

showing that f is strictly increasing there.

Since uv and v both satisfy equation (8) (pioneer, with K =1) on [p`, pr] with v(p`) < uv(p`),

the constant of integration for v is strictly less than that for uv; it follows from the strict

convexity of v that both constants are positive and hence that uv is strictly convex. Also, uv

and v cannot cross, so uv remains above v. If uv(p`) < f(p`), then uv remains below f on

[p`, pr] since it can only cross from below to the right of pm; if uv(p`) = f(p`), then uv falls

below f immediately to the right of p`. Consequently, uv < f on (p`, pr], and since f < Zv

there, it follows that uv is strictly increasing.

Similarly, since uf and f both satisfy equation (10) (free-rider, with K =1) on [p`, pr] with

f(p`) > uf (p`), the constant of integration for f is strictly greater than that for uf ; it follows

from the strict concavity of f that both constants are negative and hence that uf is strictly

concave. Also, uf and f cannot cross, so uf remains below f . Moreover, since f < Zf on

(p∗1, p
m), it follows that uf is strictly increasing. If uf (p`) > v(p`), then uf remains above v on

[p`, pr] since it can only cross from above to the right of pm; if uf (p`) = v(p`), then uf rises

above v immediately to the right of p`. Consequently, uf > v on (p`, pr]. Q.E.D.

Let u satisfy equation (8) (both experimenting, K =2) on [p̄, 1] for p∗1 ≤ p̄ ≤ pm and with

v(p̄) ≤ u(p̄) ≤ f(p̄).

Lemma A.2 u is strictly convex and strictly increasing.

Proof: Let uv satisfy equation (8) (pioneer, with K = 1) on [p̄, pm] with uv(p̄) = u(p̄).

Inspection of equations (8) (pioneer, with K = 1) and (8) (both experimenting, K = 2) shows

that the constant of integration for u has the same sign as that for uv, namely it is positive

(by the previous lemma). As above, the second derivative of the function u has the same sign

as the constant of integration, hence u is strictly convex.

Since (p̄, u(p̄)) is above and to the left of the myopic payoff we have u′(p̄) > u′v(p̄), and also

u′v(p̄) ≥ 0 (by the previous lemma), hence u is strictly increasing. Q.E.D.

Thus, we have the following result.

Fix some p̄ between p̄f and p̄v. Let U be the continuous function on [p∗1, 1] with U(p∗1) = s

that satisfies equation (10) (free-rider, with K = 1) on some finite subpartition of [p∗1, p̄] and

equation (8) (pioneer, with K =1) on its finite complement, such that U meets D1 at p̄; further,

U satisfies equation (8) (both experimenting, K = 2) on [p̄, 1]. Then U lies between v and f
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below and to the left of D1 and is strictly concave where it satisfies equation (10) (free-rider,

with K =1), strictly convex elsewhere, and strictly increasing.

Proof of Proposition 6.1

Let p̄2 denote the smallest belief where each player’s continuation payoff is (weakly) above D1,

and let p̄s denote the largest belief where each player’s continuation payoff is (weakly) below

D1; by Lemma A.1, p∗1 < p̄s ≤ p̄2 < pm.

For a belief in a neighborhood of 1, specifically p ∈ (p̄2, 1], R is the dominant strategy; and

for a belief in a neighborhood of 0, specifically p ∈ [0, p∗1], S is the dominant strategy. (We know

that un(0) = s, and so S is a dominant response on any interval [0, pc] ⊆ [0, p∗1]). For beliefs

p ∈ (p∗1, p̄s], the best response to S is to play R (act unilaterally), and the best response to R is

to play S (free-ride). Now consider beliefs p ∈ (p̄s, p̄2]; let A be the player whose continuation

payoff crosses D1 at p̄s and let B be the player whose continuation payoff crosses D1 at p̄2. If

B plays S, then A’s best response is to play R (“go it alone”), and if B plays R, then A’s best

response is to play R (“join in”); thus R is the dominant response for A. So, given A plays R,

B’s best response is to play S (free-ride). To summarize:

Belief p 0 p∗1 p̄s p̄2 1

A’s strategy S S/R R R

B’s strategy S R/S S R

A’s continuation payoff s F1,A/V1,A V1,A V2,A

B’s continuation payoff s V1,B/F1,B F1,B V2,B

and the strategies on (p∗1, p̄s] determine p̄s endogenously, which player plays R and which

player plays S on (p̄s, p̄2], and p̄2 endogenously. If the players have the above continuation

payoffs, then the above strategies are best responses to each other; and if the players are using

the above strategies, then the continuation payoffs are indeed those given above. Thus the

above strategies constitute an equilibrium with the equilibrium value functions given by the

continuation payoffs.

The most inequitable equilibrium is where one player, say player 1, plays R on (p∗1, p̂s], and

the other player, player 2, plays S on this interval.5 Then player 1’s value function V1 satisfies

equation (8), and player 2’s value function F1 satisfies equation (10) with V1(p∗1) = F1(p∗1) = s.

Lemma A.1 shows that V1 meets D1 at a larger belief than does F1, and that V1 < F1 on

(p∗1, p̂s]; that is, player 1 must be B and switch from playing S on (p̂s, p̂2], and player 2 must

5p̂s is the same belief as p̄f used in Lemma A.1.
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be A and switch from playing R on (p̂s, p̂2]. This equilibrium is thus given by:

Belief p 0 p∗1 p̂s p̂2 1

A’s strategy S S R R

B’s strategy S R S R

A’s value function s F1,A V1,A V2,A

B’s value function s V1,B F1,B V2,B

and the components of the value functions, plus the switch-point and cut-off, are determined

as follows: (1) C in F1,A from F1,A(p∗1) = s; (2) C in V1,B from V1,B(p∗1) = s; (3) p̂s from

F1,A(p̂s) = s + c(p̂s); (4) C in V1,A from V1,A(p̂s) = F1,A(p̂s) = s + c(p̂s); (5) C in F1,B from

F1,B(p̂s) = V1,B(p̂s); (6) p̂2 from F1,B(p̂2) = s + c(p̂2); (7) C in V2,A from V2,A(p̂2) = V1,A(p̂2);

(8) C in V2,B from V2,B(p̂2) = F1,B(p̂2) = s + c(p̂2). Note that the boundary condition at

p = 1 is automatically satisfied because V2,A(1) = V2,B(1) = g regardless of the constants of

integration.

Noting that when V2(p) = V1(p) = u, say, V ′
2(p) > V ′

1(p) if and only if u > gp (the payoff

from always playing R), we see that 0 < F ′
1,A(p∗1), F ′

1,A(p̂s) > V ′
1,A(p̂s) and V ′

1,A(p̂2) < V ′
2,A(p̂2),

whereas 0 = V ′
1,B(p∗1), V ′

1,B(p̂s) < F ′
1,B(p̂s) and F ′

1,B(p̂2) = V ′
2,B(p̂2). Thus, as the common

belief decays, B changes smoothly from R to S against R at p̂2 (where A has a kink), A and

B switch actions at p̂s (each with a kink), and B changes smoothly again from R to S against

S at p∗1 (where A again has a kink).

Other equilibria for the two-player experimentation game

Take any finite partition of (p∗1, p
m] and divide this into two subsets In, n = 1, 2. Build the

continuous functions Xn on [p∗1, p
m] as follows: Xn(p∗1) = s, Xn satisfies equation (10) on In

(free-rider), Xn satisfies equation (8) on I¬n (pioneer).

Define p̄s = min {p ∈ [p∗1, p
m] : X1(p) ∨X2(p) = s + c(p)}. If X1(p̄s) ≥ X2(p̄s) then A =

1, B = 2, else A = 2, B = 1. Let uf satisfy equation (10) (free-rider) with uf (p̄s) = XB(p̄s),

and define p̄2 by uf (p̄2) = s + c(p̄2), so p̄2 ≥ p̄s.

Now take the partition J1∪J2 of (p∗1, p̄s], where Jn = {p ≤ p̄s : p ∈ In}, i.e. Jn and In agree

on (p∗1, p̄s]. Let A’s strategy be as follows: play S on [0, p∗1]; play S on JA and R on JB; play

R on (p̄s, p̄2]; play R on (p̄2, 1]. Let B’s strategy be as follows: play S on [0, p∗1]; play R on JA

and S on JB; play S on (p̄s, p̄2]; play R on (p̄2, 1].

Build the continuous functions Yn on [0, 1] as follows: YA(p) = s on [0, p∗1]; YA satisfies equa-

tion (10) on JA (free-rider) and satisfies equation (8) on JB (pioneer); YA satisfies equation (8)

on (p̄s, p̄2] (pioneer); YA satisfies equation (8) on (p̄2, 1] (both experimenting). YB(p) = s on

[0, p∗1]; YB satisfies equation (8) on JA (pioneer) and satisfies equation (10) on JB (free-rider);

YB satisfies equation (10) on (p̄s, p̄2] (free-rider); YB satisfies equation (8) on (p̄2, 1] (both

experimenting).

If the continuation payoffs are given by Yn, then the above strategies are best responses to
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each other; and if the players are using the above strategies, then the continuation payoffs are

indeed given by Yn. Thus the above strategies constitute an equilibrium with the equilibrium

value functions given by Yn.

Lemmas A.1 and A.2 show that YA and YB lie between F1,A and V1,B ∪ F1,B below and to

the left of D1. Thus p̂s ≤ p̄s ≤ p̄2 ≤ p̂2 (at least one inequality being strict), and so the most

inequitable equilibrium exhibits the slowest experimentation. Q.E.D.

Proof of Proposition 6.2

We first note that when everyone is playing either R or S exclusively, the average payoff satisfies

u(p) = s + Kb(p, u)− K
N c(p)(A.1)

whenever K players are experimenting and the remaining N −K players are free-riding. (This

corresponds to exactly K members of an N -player cooperative experimenting, and so (A.1)

follows directly from the developments in Section 3.) Consequently, u satisfies a convex combi-

nation of (7) and (9) with weightings K/N and (N−K)/N , and the solution is the corresponding

combination of (8) and (10).

Consider a simple MPE with cut-offs {p̄K}N
K=1. For K = 1, . . . , N let uN,K denote the

solution to the ODE (A.1) whenever we are in case (K), with uN,1(p̄1) = s and uN,K(p̄K) =

uN,K−1(p̄K) for K = 2, . . . , N .

The players’ average payoff function is uN,K−1 just to the left of p̄K ; to the right of p̄K it is

uN,K . It is straightforward to verify that u′N,K(p) > u′N,J(p) whenever uN,K(p) = uN,J(p) > s

and K > J , which in turn implies that if we increase p̄K to p̄′K < p̄K+1, then the average payoff

on [p̄K , p̄′K ] is now only uN,K−1 whereas it was uN,K , and to the right of p̄′K it is still of the

form uN,K but now lower since its value at p̄′K has decreased. To the left of p̄K , if the cut-offs

are unchanged then so is the average payoff. Q.E.D.

Proof of Proposition 6.3

Consider a simple MPE with cut-offs {p̄K}N
K=1. Let uN,K denote the solution to the ODE (A.1)

whenever we are in case (K), with uN,1(p̄1) = s and uN,K(p̄K) = uN,K−1(p̄K) for K = 2, . . . , N .

The continuous function thus constructed is the average payoff.

Define a related function uN |1 which equals uN,1 to the left of p̄2, but carries on as uN,1

to the right, i.e. uN |1 is continuous and solves (A.1) on [p̄1, 1], not just on [p̄1, p̄2]. Since

u′N,K(p) > u′N,J(p) whenever uN,K(p) = uN,J(p) > s and K > J , it is the case that uN |1 < uN,K

to the right of p̄2. Thus if we can show that even uN |1 does better than the common payoff in

the symmetric MPE, we are done.

To simplify notation define R(p) = (Ω(p)/Ω(p∗1))
µ, which is decreasing in p and less than 1
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for p > p∗1. Using a combination of equations (8) and (10), uN |1 satisfies

N
uN |1(p)− s

s(1− p)
=

µ(µ + N)
(µ + 1)2

R(p)−1/µ +
1− (N − 2)µ

(µ + 1)2
R(p)− 1

where we have used the fact that Ω(pm)/Ω(p∗1) = µ/(µ + 1). The common payoff in the

symmetric equilibrium is given by the function W † on [p∗1, p
†
N ]. Using equation (14), this

function satisfies
W †(p)− s

s(1− p)
= µR(p)−1/µ + lnR(p)− µ.

A simple calculation now gives

N
uN |1 −W †

s(1− p)
= −µ2(Nµ + 2N − 1)

(µ + 1)2
R−1/µ +

1− (N − 2)µ
(µ + 1)2)

R−N lnR + Nµ− 1,

where we have suppressed the dependence of uN |1, W † and R on p. We want to show that the

right-hand side is positive on the interval (p∗1, p
m]. To this end, we consider the right-hand side

as a function h(R;N) on the interval [R(pm), 1]. As h(1;N) = 0, h′(1;N) = −(N−1)/(µ+1) <

0 and h′′(R;N) = R−2{N − [(Nµ + 2N − 1)/(µ + 1)]R−1/µ} < 0 on this interval, it suffices to

show that h(R(pm);N) > 0. Now R(pm) = [µ/(µ + 1)]µ, so

h(R(pm);N) = −Nµ + 1
µ + 1

+
1− (N − 2)µ

(µ + 1)2

(
µ

µ + 1

)µ

−Nµ ln
µ

µ + 1
.

As a function of µ on the positive half-axis, this is quasi-concave with a limit of zero as µ tends

to 0 or +∞ for any N > 1, hence positive throughout. Q.E.D.

Proof of Proposition 6.4

Given p‡∞ with p∗N < p‡∞ < p∗1, consider an arbitrary strictly decreasing sequence {p‡i}∞i=1 with

p‡1 ≤ p∗1 and limi→∞ p‡i = p‡∞. Let player n = 1, . . . , N play R at beliefs in the intervals

(p‡n+jN+1, p
‡
n+jN ] (j = 0, 1, . . .) and S at all other beliefs below p‡1.

For arbitrary i, consider the player who embarks on her round of single-handed experimen-

tation at p‡i , that is, who plays R on (p‡i+1, p
‡
i ] and S on (p‡i+N , p‡i+1]. Her payoff function u

satisfies equation (8) (pioneer, with K =1) on the former interval, and equation (10) (free-rider,

with K =1) on the latter. Imposing the conditions u(p‡i ) = u(p‡i+N ) = s, we can solve for the

respective constants of integration. This yields two equations for u(p‡i+1):

u(p‡i+1) = gp‡i+1 + (s− gp‡i )
1− p‡i+1

1− p‡i

(
Ω(p‡i+1)

Ω(p‡i )

)µ

,

u(p‡i+1) = s +
g − s

µ + 1
p‡i+1 −

g − s

µ + 1
p‡i+N

1− p‡i+1

1− p‡i+N

(
Ω(p‡i+1)

Ω(p‡i+N )

)µ

.
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After eliminating u(p‡i+1) from these equations, we change variables to xi = Ω(p‡i )/Ω(pm),

noting that Ω(pm) = (g − s)/s and

s− gp‡i

(1− p‡i )s
= 1− 1

xi
.

This leads to the Nth order difference equation

1
µ + 1

x−µ−1
i+N =

[
1− µ

µ + 1
1

xi+1

]
x−µ

i+1 −
[
1− 1

xi

]
x−µ

i .

Introducing the variables

yi,n =
xi+n − xi+n−1

xi+n−1
(n = 1, . . . , N − 1),

we obtain the N -dimensional first-order system

xi+1 = xi (1 + yi,1),

yi+1,n = yi,n+1 (n = 1, . . . , N − 2),

yi+1,N−1 =

(
N−1∏
n=2

(1 + yi,n)

)−1[
(µ + 1)xi(1 + yi,1)− (µ + 1)(xi − 1)(1 + yi,1)µ+1 − µ

]− 1
µ+1 − 1.

Writing x∞ = Ω(p‡∞)/Ω(pm), we clearly have a steady state of this system at (x∞, 0, . . . , 0).

The Jacobian at this steady state is



1 x∞ 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1

0 ξ −1 −1 . . . −1


with ξ = µx∞ − µ− 1. Since the characteristic polynomial is (−1)N−1(1− η)h(η) with h(η) =

ηN−1 + ηN−2 + . . . + η2 + η − ξ, the eigenvalues are 1 and the zeroes of h. As p∗N < p‡∞ < p∗1,

we have (µ + 1)/µ < x∞ < (µ + N)/µ and so 0 < ξ < N − 1. Thus, h(0) = −ξ < 0 and

h(1) = N − 1 − ξ > 0, implying the existence of an eigenvalue η∗ strictly between 0 and 1.

A corresponding eigenvector is (−x∞/(1− η∗), 1, η∗, η
2
∗, . . . , η

N−2
∗ ). This shows that under the

linearized dynamics, (x∞, 0, . . . , 0) can be approached in such a way that the sequence {xi}
is strictly increasing. By standard results from the theory of dynamical systems, the same is

possible under the original nonlinear dynamics if we start from a suitable initial point in a

neighborhood of the steady state; see for example Wiggins (1990, Section 1.1C).

Starting appropriately close to the steady state, we can ensure in particular that the strate-
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gies we obtain for the corresponding sequence of beliefs {p‡i}∞i=1 are mutual best responses at

all beliefs below p‡1 (all we need for this is that (p‡1, uN ) be below D1, where uN is the contin-

uation payoff of player N when the common belief is p‡1 – see Lemma 6.1). To complete the

construction of the equilibrium, we now only have to move back from p‡1 to higher beliefs and

assign actions to the players in the way we did for the simple equilibria with a finite number

of switches (see the outline after Lemma 6.1). Q.E.D.
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Figure 2: Action profiles in the most inequitable three-player asymmetric equilibrium
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