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1. INTRODUCTION

Two-person common interest games are defined as games with a strongly Pareto dominant payoff
vector (Aumann & Sorin, 1989). If the game is repeated infinitdy often, and if the players are patient,
it might be expected that they would be able to coordinate and receive average payoffs close to the
dominant payoff vector. Itis, however, an implication of the Folk theorem for repeated games that
there exist equilibriain which patient players receive payoffs substantidly below the dominant payoff
vector. Moreover, even imposing subgame perfection does not dter this general result (Fudenberg
and Maskin, 1986). That such inefficient equilibria can survive in the long run when players are very
patient seems counter-intuitive, and in this paper we shdl investigate whether perfection, when gpplied
to asmple "reputation” model, can lead to such undesirable equilibria being diminated.

Specificaly, we shall corsider perturbing acommon interest game with (only) the possibility
that one of the players, say player 1, might be a type committed to playing a cooperative action, that
is, the action corresponding to the dominant payoff vector. The other player, player 2, is unsure of
player I'stype. Thiswill dlow the possibility of areputation effect, where player 1 can mimic the
commitment strategy (of always playing the cooperative action) in the hope of convincing player 2 of
her cooperative intentions. The question we addressis: will thisform of incomplete information alow
usto rule out at least the most undesirable equilibria as the players become very patient? If the
equilibrium concept isthat of Nash equilibrium, the answer is negativel. We shal consider whether
reputation arguments might nevertheless have a degree of power when the equilibrium concept is
refined to incorporate some notion of perfectness. Our results will show that the answer to the
question is till negetive, in that asmall perturbetion of the origind common interest game hasllittle

effect on the attainable equilibria, and extremely undesirable equilibria dill exig.

Infact, if attention is restricted to pure strategy equilibria, imposing perfection does lead to
payoffs close to the Pareto dominant pair. If apure srategy equilibrium leads to payoffs subgtantialy
below the Pareto- dominant (' cooperative") payoff pair, then there must be periods in which one or

IEventhe assumption of two-sided uncertainty of the type we assume does not force cooperation in Nash
equilibrium. Aumann & Sorin (1989) construct a mixed-strategy counter example (to their main result, which
assumes pure strategies) in which cooperation is not approximated as the players become patient.



both players do not play the cooperative actions. If, in the first period this occurs, player 1is
supposed to play noncooperatively, then by cooperating instead she will establish a reputation for
being the commitment type, and cooperative payoffs are guaranteed thereafter; hence not cooperating
cannot be an equilibrium strategy. It must therefore be player 2 who isfirst supposed to play
noncooperatively, and in a Nash equillibrium this can be enforced by severe off- the- equilibrium: path
punishments by player 1. But suppose that we impose perfection on the equilibrium. To punish
player 2, player 1 mugt, at some point, play non-cooperatively. By not doing so, however, she will
establish areputation for being the commitment type and hence guarantee herself the cooperative
payoff theresfter. Roughly spesking, player 1 cannot credibly punish because she can aways "hide
behind" the possihility of being the commitment type (and has every incentive to do s0).2 Our reason
for sudying common interest games is that in this class of games this argument seems to be most

powerful, and so reputation has the best opportunity to work effectively.

We show, however, that if mixed strategies are permitted, then credible and severe
punishments are still possble. Our main result, Proposition 3, establishes that in awide class of
repested common interest games, as discounting goes to zero and as the prior probability attached to
the commitment type goesto zero, the norma type of player 1 can be driven close to her minmax
payoff. Hencethisis acontinuity result with the complete information game as the probability of the
perturbation goesto zero. Mixed Strategies play an important role in the construction because a
randomization by the normal type of player 1 between the cooperative and some other action, can
alow her to credibly punish player 2 if the latter deviates. Specificdly, if she randomises and player 2
deviates, thereis a probability that player 2 deviates smultaneoudy with player 1 reveding hersdf to
be the normd type; if this hgppens, the continuation game is a complete information game where
severe punishments are credible. Moreover, an equilibrium in which player 1 puts positive probability
on an action other than the cooperative one, need not imply that she receives a continuation payoff

equd to the cooperation payoff, should she play the cooperative action. In that case, player 2 will

2Formally, it is easy to establish that for afixed probability of the commitment type, and for agivene, thereisa
threshold discount factor above which all pure-strategy perfect Bayesian equilibrium payoffs are within € of the
dominant payoff pair. It should be noted, however, that this depends on the assumption that the perturbation
onlyinvolves the above described automaton.



revise upwards the probability he attaches to facing the commitment type, but not to one, so the
continuation payoff need not equa the cooperation payoff. Consequently punishment can be
threatened by player 1 in away which does not imply cooperation payoffs theresfter.

Although thisresult is, in the context of the reputetion literature, a negetive one, we seeit
additiondlly asafirst step towards investigating perfect equilibriain generd incomplete information
games. Thisisof interest because, to our knowledge, nothing is known about generd properties of
the equilibrium payoff set (Nash or perfect) of generd discounted incomplete information games as
discounting becomessmdl.3  Thisisin contrast to the undiscounted case where complete

characterizations exigt, although only for Nash equilibria (see Forges, 1992).

2. THE MODEL AND RESULTS

We begin by describing a broad class of common interest games. When these games are infinitey
repested, with both players discounting the future with the same factor d (0<d<1), thereisalarge set
of possible equilibrium outcomes. In particular, given any pair (g;,g,) of feasiblestrictly individually
rationd payoffs, thereis adiscount factor d such that for dl d>d there exists a subgame perfect
equilibrium with the payoffs (g;,g,). The repeated common interest games we consider are then
perturbed s0 that player 1 iseither a"normd” type, or acommitment type, hereafter "automaton”, that
aways plays the Pareto optimd action. Player 2 has prior bdiefsthat attach a probability mto player
1 being the automaton and a probability 1-mto her being anorma type. In our main resuilt,
Proposition 3, we show that givenany w>0, there exists ad (0<d<1) and n»0 such that for any d>d
and n<mthereis a parfect Bayesian equilibrium in which the normd type receives a payoff within w of
her minmax payoff.

2.1. A Class of Common Interest Games

s Bergin (1989) shows that sequential equilibria have a Markov property; unfortunately this result does not
directly have bearing upon the set of payoffswhich can be realised in equilibrium. The same can be said for the
results of Kalai and Lehrer (1993) and Jordan (1995) who have studied the long-run properties of equilibrium play
in contexts more general than the current one.



In this subsection we shal describe the class of common interest games that are studied in this paper.

Firgt we define some notation. A finite 2-player gamein drategic form is denoted by
9=(9.9) : A XA, ER?,

where A, is player i'sfinite action space (we assume#A; =2, i=1, 2) and g is player i's payoff function,
i=1,2. Let a=(a,a,) denote an action profile for the two players and A:=A XA, be the st of all
action profiles. The convex hull of al payoffsisthe st G:=co{ (g;(a).3,(a)) | &dA} .4 LetM bea
positive number that bounds the payoffs of the players: M=|g ()| for al @ A, i=1,2. Also let the pair
(9,,9,) denote the players minmax payoffs:

g - mnmaxE, , g(a,a), i i=12,

i'_ aj ai

where a; isamixed action for player i. Definethe set of feasible and gtrictly individualy ratioral
payoffsto be G* := G« { (9,,9,)a4R2|9,>9,, 9,>9,}.

We consider aclass of common interest games, that is a class of gameswith a strongly Pareto
dominant payoff pair (Aumann and Sorin (1989)), dthough we shdl redtrict attention to gamesin
which the payoff vector to one pair of actions dtrictly Pareto dominates dl others. Let (a,*,a,*)a A
denote the action pair corresponding to the Pareto dominant pair, that is g,*:=g,(a;* ,&*) > g,(a) and
9,*=0,(a1*,&*)>0,(a) for al a3 A where &(a,*,a,*). We make three assumptions about the
sructure of the payoffs. These assumptions place some limits on the generdity of our results but

samplify the arguments congiderably.5

(i) Let KZA A, bethe set of actions for player 2 that give player 1 no more than @1 if she plays her
Pareto optima action: ﬂz:z {a,8A, | g(a* &)= Gl }. (By the definition of Gl the set 7&2 isnon-
empty.) Thesst A2 could be interpreted as the set of possible punishments for player 1if sheis
playing a*. Thefirst assumption we makeisthat action a;* is not dways the unigque best response to

anactionin ;0\\2; that is, for some ézéﬂg, there exigts él?al* such that

4 co(X) denotes the convex hull of the set X.

5 Assumption (ii) can be relaxed at the cost of some additional complications and an appropriate reformulation of
Proposition 3. Assumption (iii) is also not essential; the case where the feasible set is one-dimensional was
treated in an earlier version, although some of the constructions needed differ. We conjecture that assumption
(i) islikewise inessential, although we have not proved this.



D) o(8a)=g(aa). fordlaaA,.

A sufficient (though by no means necessary) condition for thisisif action a;* does not ensure player 1
her minmax payoff in the game, that isif ™ad Acq (a*,a,)<0,. Henceforth (&, 4,) will refer toa
fixed action pair, with & ?a* and ézéf&z, which satisfies (1). The payoffs when actions (3,,&,) are
taken will be denoted ;=g (& &), 3,-=0,(8,,3,).

(if) Our second assumption isthet there exists feasible and individualy rationd payoffs that hold both

players down to their minmax levels. That is,

@ s @jGaGschtha @ Gi=g,  (b) §i=9,i=12,j?i

(iii) Our third assumption is thet the st G* has a non-empty interior.
[Figure 1 about here]

Given the second and third assumptions above, the set G has the form shown in Figure 1. The dashed
line between (@ 11,@21) (see (2)) and (g,*,g,*) will be used in the construction of an equilibrium. This
line will be described by the equetion g, = a +b g;, where p>0.

2.2. The Repeated Game of Complete Information

The game in strategic form described above is played in the periods t=0,1,2,... . In each period,
players are aware of dl (pure) actions taken in previous periods. Player i's payoff in thisinfinitely
repeated game is given by the expected discounted sum of its normalized stage- game payoffs, E(1-
d)St=0 dtg(@,3) (i=1,2), where a:=(&,8)&A isthe players action profilein period t, d istheir
common discount factor (O<d<1), and E denotes expectations. We will let G(d) denote the infinitely
repeated game of complete information. Given our assumptions on the structure of payoffsin the
stage game, the Perfect Folk Theorem appliesto G(d) provided d issufficiently closeto one. By
Fudenberg & Maskin (1991) the following result holds for the repeated game of complete information

G(d) when only pure gtrategies are observed and there is no public randomisation.



Result 1 (Fudenberg & Maskin (1991)) : For any (g;,6,)a G* there exists d<1 such
that for all 1>d>d thereis a subgame perfect equilibrium of G(d) in which player i's average

payoff is g.

In generd, the lower bound d in Result 1 will vary with the point (g;,3,)4G* that is being sustained as
the equilibrium payoff vector. Thisis because the threshold d varies with the threet point
(91,9,)<(9;,9) used in the proof. By considering those payoff pairs (g,,9,)aG* that can be
supported asequilibrium payoffs using a fixed threat point (g,',g,), the following corollary to Result 1

isimmediate

Corollary :Let e>0begiven, and define G =G« { (9;,8)4R2 | g;=9;+e, g=9,+be };
then provided G¢* is non-empty,thereisa d.<1 such that for all d<d<1 and any
(0,9)aG¢" thereisa subgame perfect equilibrium of G(d) in which player i's average payoff

is g;.

(Recdll that the parameter b>0 isthe dope of the dashed linein Figure 1.)

2.3. The Perturbed Repeated Game

We now introduce a perturbation of the repeated game of common interests G(d) described above.
Before the play commences there is amove of nature, the outcome of which is not observed by player
2. With probability 1- m nature sdects player 1 to be atype with payoffs as described above, and
with probability m nature selects a player 1 to be atype that always plays action a;* independently of
hisory. Wewill cdl thefirgt type of player 1 "the normd type" and the second type of player 1 "the
automaton”. As player 2 does not observe nature's move, this gives arepested game of one-sided
incomplete informetion which we will denote G(m d) and we will study the perfect Bayesian equilibria
(PBE's) of thisgame.6

6 The automaton can also be thought of as atype with a standard payoff matrix in which the payoffsin the
row corresponding to ap* areall equal and strictly greater than all other payoffs. At aPBE thistype will play

a1* after every history, including those off the equilibrium path.



We adopt the definition of perfect Bayesian equilibrium given by Fudenberg & Tirole
(19914), which in this context amounts to the following. If ht isany history of actions taken by both
players up to and including period t, then given player 2's bdliefs about facing the automaton, say
n{H), at the start of period t+1, Srategies must yield a Bayesian Nash equilibrium for the continuation
game’ Moreover Bayes ruleis used to update beliefs whenever possible, that is, n{ht+1) is derived
from n{t) by Bayes rule whenever player 1 plays an action at period t which player 2 had expected
to be played with positive probahility.

Propogition 1 exploits the naturd recursive structure of the repeated games of incomplete
information G(m d) to determine a relationship between a PBE of G(m d) and aPBE of G(pm d)
where p<1. The principal idea of the proof isvery smple. It takes as given a PBE of G(m d) with
payoffs (g, gp) to the normal type and player 2 respectively, and uses this PBE to construct a PBE of
G(pm d). Inthefirst period of play in G(pm d) the normd type of player 1 randomises, playing a*
with probability g = p(1- n)/(1- pm and &, with probability 1-q (where &, is defined below (1)).
Player 2 plays & in the first period. Conditional upon observing a.* inthefirst period, player 2 will
revise his priors (about player 1 being an automaton) by Bayess Theorem to precisely p (given our
choice of g). Thusif (ay*, &) isplayed in thefirst period, we specify thet the PBE of G(m d) isthen
played out subsequently, with payoffs (g1, ¢p). In this case the expected payoff to the normal typeis
(1-d)o1(a1*, &)+dg;. Inorder for randomization for the normal type to be optima in the first period,
she must be indifferent between this payoff and whet she would receive from playing & in the first
period. After thefirst period history (&, &), however, she reveds hersdf to be the normal type, so
the players are in the complete information game G(d). Thusit is necessary that an equilibrium of
G(d) can be chosen which makes player 1 indifferent (this equilibrium can dso be used asthe
continuation after dl actions of player 1 other than &* since & is abest response to &, o the normal

type will not wish to deviate). In addition, the continuation equilibrium must be selected so thet it is

" The reader isreferred to Fudenberg and Tirole (1991a, 1991b) for formal definitions of all equilibrium concepts
used here. For the purpose of the definitions, the automaton should be interpreted as a payoff -matrix type as
described in footnote 6; the strategy of such atypein a PBE must beidentical to the automaton strategy. Thisis
in contrast to a Nash equilibrium where the payoff-matrix type need only follow the commitment strategy on the
equilibrium path. In the equilibriawe construct, beliefs off -the-equilibrium path put probability zero on the
automaton if player 1 has deviated from a1* in the past, which is consistent with the idea of an automaton which
cannot deviate.



optima for player 2 to choose &,in thefirst period; this requires that another equilibrium of G(d) can
be chosen asthe continuation after (&, ag) where ag?é\2 , which is sufficiently severe to prevent

player 2 from deviating. Provided these two equilibria can be constructed, a PBE of G(pm d) has
been found with the payoff (1- d)g;(&*, &)+dg to the normal type. Since by construction

q@*, &) = @1, it follows thet the equilibrium of G(pmd) has alower payoff for the normd type than
the equilibrium of G(md), a property that will, by repeated gpplication of Proposition 1, permit the
congruction of a PBE with payoffs for the normd type arbitrary close to her minmax payoff.

Define g > 0 to be such that G.* is nonempty. Then we can state:

Proposition 1. Let e 0<e<e,and d>dcbegiven. Alsolet (g;,0p) be the expected

payoffs to the normal type of player 1 and to player 2 at a PBE for G(md). Then G(pmd) has
a PBE where the normal type of player 1 receives the expected payoff (1-d)gy(a*, &) +dg;

provided p (with 0<p<1) and g, satisfy
(3) g = 9 + (I-d)d1(9;- gy (&*, &)+2M) + e,

p & datbgiG-be)- (1d)g-GotblGi-gi(an* 3
@ 1-p (1-d)(02*-Gx(ar*, B))

Proof: See Appendix.

The above proposition alows us to generate an equilibrium for G(pm d) using an equilibrium
of G(m d), provided the bounds (3) and (4) on g, and p are satisfied. Proposition 2 below
repeatedly applies Proposition 1. Thefirst step isto describe aPBE for G(1, d), whichisthe
complete information game between player 2 and the automaton. Player 2's best response to the
automaton isto play the action & * in every period, so in G(1, d) thereis a PBE where the players
play (a;*,&*) in every period. This equilibrium is used as a starting point for repeated gpplications of
Proposition 1. The next step is to gpply Proposition 1 to this PBE to find a PBE for G(p1, d) (where
p1<1); at this PBE player 2 plays &, for one period and then G(1, d) isplayed if a?:ai*. Thewhole

process can be repested by applying Proposition 1 to the PBE of G(p1, d) to find anew PBE for
G(p1p2, d) (where p2<1); at this PBE §, is played for two periods before play settles on (a,*,&*) in



G(1, d). Proposition 2 repestedly applies Proposition 1 in this fashion until some step N(d)+1 where
the condrraint (3) isfindly violated. At thislast equilibrium &, is played N(d)+1 periods againgt the
automaton, and in period N(d)+2 play findly settleson (ay* ,&*). The process described above thus
generates afinite family of equilibria for the sequence of games G(m d) with priorspF1EplEp2..pn-
1Epn, n=0,1,0°, N(d)+1.

The PBE desribed in Proposition 2 is parameterised by three sequences. {gw} E=(O(IJ) : {pn} wé%)
and {n‘ﬂ} Eég) . Thetermsof al of these sequences depend on d, dthough this dependenceis
suppressed in the notation. The sequences will be defined inductively, because Proposition 1
describes a relationship between their adjacent terms.  Suppose we have found an equilibrium for the
game G(m,d), where player 1's norma type has an expected payoff of ¢n; then Proposition 1
determines an equilibrium for the game G(ni+1,d) (where niv1=nmp n+1) where player 1's normd
type gets the payoff g+1=(1-d)g,(a,*,&,) + dg. Thus given the pair (g,n®), Proposition 1
determines the parameters (gn+1,n+1,pn+1). Theinitial values of these sequences are determined so

P isplayer 1's equilibrium payoff at the equilibrium of G(1.,d) described above: n¥=1, g=g,*. The

following recursion describes how the successve terms (gn+1,n+1,p n+1) are generated:

©) gl = (--d)gy(a* &) +dgn,
(6) m+l = mpnt+l

ol _ d(a+bg"Gp-be) - (1-d)gp*-Go+b(Gr-gu(ar*. Bo))
7 1-p™ (1-d)(92*-9a(a1*, %))

Proposition 2; Let e 0<e<e,and d>d begivenandlet N(d) bethe largest positive

integer (if one exists) such that
®) (1- dNG)g,(a* &) +dNDg* = T, + (1-d)d-1(T, - g (a* &) + e.

Then for n=1,2,...,N(d)+1, if n¥nhthereexists a PBE of G(m d) where the normal type of

player 1's payoff is gn.
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Proof: Wehave shown that go=g,* isaPBE payoff for the norma type of player 1in G(1, d). Itis
asotruethat g,* isaPBE payoff for the norma type of player 1in G(m d) for dl m Thusthe

proposition is true when n=0. Now suppose the proposition is true for n=n" where n'=N(d). Asthe
proposition is true for n=n', the game G(", d) has a PBE where the norma type of player 1 receives
the payoff gn'=(1- dn)g,(a;* ,&,)+dn'g,*. Apply Proposition 1 to this equilibrium; gn* satisfies (3)
because n'=N(d). Set g;=gn'in (4). Thelargest valuefor p thet satisfies (4) will solve (4) with
equality. Thisdefines pn+lasin (7). Hencefrom Propostion 1, if nEn'+1=pn+1m’ the game

G(m d) has a PBE where the normal type's payoff is gn'+1=(1-d)g,(a,* ,a,)+dgn" Q.E.D.

Proposition 2 goes along way towards achieving the result described in the introduction,
because it shows that for any d we can find amsuch that the game G(m d) has a PBE where the
normal type gets approximately §1+(1-d)d-l(§1-gl(a1* ,&,))+e. As d becomescloseto unity,
therefore, the normd type's payoff can be made within e of her minmax levd @1. We want a stronger
result, however, so that given e, there are threshold values for d and for msuch that for all d bigger
then itsthreshold vadlue and all mlessthan its (Strictly positive) threshold value, equilibrium payoffs
within e of Qlexist. It is therefore necessary that we consider how the family of equilibria described in
Proposition 2 varies as d approaches unity for aglven vaue e>0. The equilibrium payoffsin
Propostlon 2 define a piecewise continuous function Ca(rﬁ where Cq(rﬁ gn for m+1<pFmn. The

function gd(n“) describes how the payoffs at the PBE we construct are related to the priors. The

N(d)
sequence {mh, g =0 determines the properties of the function gd(n) and these are both shown in

Figure 2. (Theline labelled gy is referred to in the proof of Lemmal.) We are particularly interested
in how Elo(n) behaves as d A1, and as this happens the figure changes in two ways. First, N(d)
becomes arbitrarily large and each individud line segment becomes arbitrarily short. Secondly, the
points (nm,gn) become closer together, with ||(md,gn) - (n+1,gn+1)|| A0, and so the step sizes shrink.
The following technica lemma shows that on the interva (0,1] the step function in the picture
converges uniformly to a continuous function ¢t (m). Moreover, thislimiting function g* () is

continuoudy differentiable for dl but one vaue of m

[Figure 2 about here]
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Lemmal: If8 e?(a/bﬁgl(ai*,éz)—(ﬁzlb), then as d41 the function IQ\ld(rr) converges

uniformly to a continuous decreasing function ¢*(m on (0,1], where

© g(m = maf Grre , ouert o) + [AfKlar ot B) |
0*-01 (ar*, 20)

_ a+bg (ag*, &)-0-be (
andA =\ &*-0-be

k —
02*-0o(an™, ap)

Proof: See Appendix.

Lemma 1 describes the properties of the equilibriaasd £1. We have shown that as d /L the
function g* (m) is agood approximation for the payoffs at aPBE of G(md). Moreover, the function
g* (m can be made arbitrarily closeto @1 (by varying e) a some gtrictly postivevdueof m Thisis
now used to prove the main result: there exists an equilibrium where the norma type gets a payoff
arbitrarily close to Ql for dl games where the players are sufficiently patient and the probability of the

autometon issmdl.

Proposition 3: For any w>0 thereexistsa d,>0 and a m,>0suchthat for any d, m
satisfying 1>d>d,, and ny,>n>0, the game G(m d) has a PBE where the normal type of player
1 receives an expected payoff g, within w of her minmax payoff, that is, satisfying
9;<gy<9+w.

Proof:; Letw>0 be given and choose e=w/2 (without loss of generdity assume
be?a+bg,(a* &,)-9,); then, since w>e and using Lemma 1, g*(m)=9,+w is equivaent to

Ank
1-Abn¥

§+2%= g,(a* ) + k(9" -94(ar* &)).

After some rearrangement this implies the unique solution for mto ¢ (nj=§1+w sidfies

8 This condition is merely to rule out k=0, which would change the method of solving the differential equation
studied below (but not the conclusion). Note that k can be negative.



Abrk = 1 . 2TP91(@, &)-gz-be

a +b§1 -@2"‘ be

The quatient isless than unity if and only if k>0, so for al k?0 there is O<ni <1 that stisfiesthis
equation with equdity and nxni if and only if g*(rr)<§1+w. The funciionsad(rr) are nontdecreasing
and converge uniformly to g* (m) so there exists n,<n¥ and ad,, such that provided n<n, and d>d,,,
/(:: 0(n~)<§l+w_ Q.ED.

Remark: Although Proposition 3 establishes that player 1 can be held close to her worst payoff, it
is easy to show under the same assumptions that equilibria can be constructed in which she receives
(approximately) any payoffs between ﬁl and g;*: in Proposition 1, in addition to constructing an
equilibrium with payoffslessthan g;, an equilibrium with payoffsequal to g, can be constructed.
Using this repeatedly, as d goesto onein Proposition 3, al pointsto the "left” (see Figure 2) of the
limiting function, g* (1), can be approximated by equilibria

3. CONCLUDING COMMENTS

We have shown that smdl perturbations of alarge class of common interest games, in which one of
the players might be a type committed to playing in a cooperdtive fashion, do not rule out low payoffs,
even when sequentid rationdity isimposed on the equilibrium concept. In abroader context, these
results aso have implications for the reputation literature following Fudenberg and Levine (1989),
which congders games between along-run and a sequence of short-run players, perturbed with the
possibility thet the long-run player might be committed to some fixed action. Their results were
extended to games with two long-run players by Schmidt (1993) for "conflicting interest games', and,
for generd stage games, by Cripps et al. (1996). The latter paper develops alower bound on the
Nash equilibrium payoffs of the informed player which is gpplicable to the class of games sudied here,
but the result applies only if the informed player is arbitrarily patient relative to the uninformed
player. Itiscertainly the casethat in some common interest games stisfying our conditions, this

lower bound is above the informed player's minmax payoff. Hence our resultsimply that with
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symmetric discounting no such lower bound exigtsin this class of common interest games, even

when perfectionisimposed.®
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APPENDIX

Proof of Proposition 1: The players equilibrium strategies for the game G(np, d) are described

below.

Payer 1.

Payer 2:

Play a,* with probability q and &, with probability (1-q) in period zero, where
G=p(1- M/(L- pn). i
If player 1's period zero action (&1) was a*, then from period one play the PBE that
gives the payoffs (g,.0,) (i.e deviations by player 2in period zero are ignored when

0
a,=g*%).
If (&,8,) isplayed in period zero then from period one play a subgame perfect
equilibrium for G(q) to achieve the payoffs (x,y)a G.* (where (x,y) is described below).
If @'=3, and 8?4, then play out asubgame perfect equilibrium for G(d) thet gives
player 2 apayoff 9,+be.

Play &, in period zero.
If 8'=a,*, then play the PBE that gives the payoffs (gy.g,)
0 0
If & ?a* (and @,=4,), then play the subgame perfect equilibrium for G(d) to achieve
the payoffs (x,y) 4 G.*.

By the corallary to Result 1 we can specify an equilibrium for the game G(d) that gives any payoffs
(xy)aG . Below we will place some further redtrictions on (x,y), but at the moment we will note thet

the pair (x,y) is aways retricted to be on theline g,=a +b g; shown in Figure 1.

The players strategies are optimal after period zero: The Strategy for player 1 requires
her to randomize in period zero; therefore, at a PBE, player 2's priors conditiona on ay =a,* will be
revised upwards. The choice of q above ensures that his revised priors attach probability mto the
automaton type. Thus conditiona on a, =a*, the game G(m d) is played from period one onwards.
Since (g;,¢p) are by assumption payoffs at aPBE of G(m d), the strategies described above certainly
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congitute an equilibrium given any history with 38=a1*. Moreover, after any history with %’?al*, the
continuation payoffs correspond to equilibriain G(d).10

The players strategies are optimal in period zero: Player 1's Strategy for period zero is
optima provided she is indifferent between the actions a.* and &, and provided dl other actionsin
period zero give her asmaller payoff. Sheisindifferent between a* and &, if (1—d)§1+dx:(1—
d)gy(a*.&)+dg. Anactiona,?a* ,&; gives her apayoff (1-d)g,(ay, &) +dx, and, by the definition
of &, (1—d)§1+dx = (1-d)g,(ay,&)+dx for dl 8 3A . Indifference between a,* and &, implies

(A) x=g;- (1-d)dL(T;- g(a*a)).

But ﬁlzgl(al* &) and g;=0y*, 0 (3) and (A1) imply together xa [§1+e,gl*]. Thusitispossbleto
find (xy) & G.* so that y=a +bX, and hence the above srategy for player 1 isoptimal.

Player 2's strategy in period zero is optima provided his expected payoff from playing &,
exceeds that from any other action. He attaches probability pmt(1-pmq = p to player 1 playing
action ap* and probability 1-p to her playing &, and therefore if he plays an action a(z)?él2 his payoff is
bounded above by (1-d)g,* +d{ pg,+(1-p)(9,+be)}, wheress his payoff from the action &, is (1-
df pg(@*.a)+(1-p)9d, H+d{ pgpt(1-p)y }. Thushisperiod zero strategy is optimal provided

(A2) d(y-9,-be)- (1-d)(g*-0) = p{d(y-Tybe)- (1-d)(gy* -T+(1-d)(g -Gyl By)}

Next, we shdl show that the RHS of (A2) is drictly positive, and the LHS is weskly positive and
smdler than the term in braces on the RHS. It is sufficient that d(y-9,-be)- (1-d)(g,*-9,)=0 for this

to betrue. Sncey=a+bx and thevalue of x is determined by (A1), some subgtitution and
rearranging of this latter condition gives

a+bg = 9, + be+ (1-d)d-Y b(@l- g@*.8))+ (gz*-ﬁz) }.
Make the fallowing subgitutions: Gzza +p x (for some i:gl)’ 92* =a+b gl*’ and 62:a+b§ (for some
§<gl*). Since b>0, by common interests, the above expression now becomes
(A3 g =X+ e+ (Ld)dy (4, -ga*a))+ (@R}

Condition (3) is sufficient for (A3), since 2M>g,* -X, and therefore the RHS of (A2) is strictly positive
(9, >0,(a*,&,)) and the LHS is weskly positive and smaller than the term in braces on the RHS.

Using thisfinding, (A2) isthusequivaent to

0
10 ¢ a1 ?a1*, &1, then Bayes' rule does not tie down beliefs, and in this case we assume that probability oneis

put on the normal type; given that the automaton can be thought of as atype for whom it is a dominant strategy
to play a1*, thisisanatural assumption.
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p_ & d(y-0p-be) - (1-d)(9>*-0p)
(A4 1-p (1-d)(@*- % (a*, %))

Agan, subgtitute y=a +bx and for x from (A1), and this gives the condition (4). We have established
thet the Strategies outlined above condtitute an equilibrium for the game G(pmd). Q.E.D.

Proof of Lemma 1: If the pairs (mp,gn) n=0,1,...,N(d)+1 are joined with line ssgments and the
find pair (M@+1,gN(9+1) isjoined to (0,gN(d+1) with aline segment, this gives a piecewise lineer
function g plotted in (mg)-space (shown in Figure 2). The dope of the line ssgmentsis given by
the ratio (gn-g™1)/(n-nirt1)= (gnM)-gm+1))/(m-ni+1). From (5),(6) and (7) the ratio can be
re-written as follows:

_ g(mMA@-d)gy(ar, ) +dgy(nt)

(A5) gy(n?)-gy(ni™t) = rf-pnd
-t

y(M)-g1(ar*, B) | d(@+bgy(n?)-Go-be) - (1-d)ga(ar*, )-Go+b(G1-g1(a*, )
nf ) (0% -02(a*, )

Now restrict the function g(m) totheinterva [h,1]. Onthisinterva the RHS of (A5) has afinite
upper bound which gives us

G(M)-Gy(M) & (01-gu(ar* 2)lgy*-Gorbel
nf-nir hlg2*- g2(a1*,2))

Thus the piecewise linear functionsg(m) satisfy a Lipschitz condition and by the Ascoli Theorem

converge uniformly to a continuous limit asd Z&1. If we let g*(m) denote thislimit, then thiswill dso
be the limit of the step functions described by Proposition 2.

_Eq. (8) dsoimpliesthat the function g* () is continuoudly differentiable, provided
g (m>9,+e. The RHSof (A5) convergesto acontinuousfinite limit asd /1, whilst the LHS of (A5)

convergesto dg*/dm Thusletting d A1 we have the differential equation

dg _ ‘G‘(”)'gl(al*,az)h::a+bg*(n)-§2-bek .
dan "0 m (g gs@tB)

Given e is chosen so that a +bg,(&*,8,)-9,?be, this can be solved asfollows

dc* _ dn
(g (M-01(a*, D)) a+bg* (M)-Gp-bd  Ma*-go(a*, 2)




17

which can be rewritten as

dgr _ bdg _ drla+hgy(ay* 2)Gobel
(g (M-gu(@* %) (a+bg*(m)-Gy-bel mMgz*-ga(a* &)
Integrating,
ogl S (M-01(ar B)) _ (arbanar ) Gobe| oy
a+bg*(rr)—§2—be’ 0*-go(a* %) |

By congtruction g*(1)=g;* and this allows usto determine the arbitrary condtant K. Given the
assumption a+bg,(a;* ,éz)-ﬁz?be it is now possible to solve the above for g* (im), which gives

AnK
1-Abn¥

(A6) g m = g(a*&) + k(G- (" &),

where

andA =\ O*-Gxbe

a+bg; (a*, &)-0-be

k = —
92" -O(a9*, @)

>0.

Again the assumption a +b g, (as* ,éz)—ﬁz?be is necessary and sufficient for k0 and since
(1-bA)(@,*-9,-be)=k(g,*-g,(&*,&,), it isaso necessary and sufficient for 1-b A?0. In (A6) if k>0
then as mZEO SO g* (MAEG; (* ,&,)=9,, whilst if k<Othen g (m)/Ex+e, wherea +hx=9, and x=9,
Thus the condtraint (8) is binding on the sequence (mh,gn). From (8) as d 4L, so the difference
IgN(d) - §1+(1-d)d-1( @1- ¢ (a1*,&)) + e]A0 and hence the limit of the points (n,gn) is the graph of
the function described in the Lemma restricted to the domain [h,1].

Thelimiting function g (m) does not depend on h, o as h gpproaches zero the argument still
gpplies, but for h=0 it is possble thet there is alimiting discontinuity. Q.E.D.
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FOOTNOTES

We would like to express our gratitude to Klaus Schmidt, an associate editor and an anonymous
referee for useful comments. Our thanks are dso due to seminar participants at Bonn, Edinburgh,
Erasmus, Exeter and Tilburg for comments. All remaining errors are our responsibility.

1. Even the assumption of two -sided uncertainty of the type we assume does not force
cooperation in Nash equilibrium. Aumann & Sorin (1989) congtruct a mixed-strategy counter
example (to their main result, which assumes pure strategies) in which cooperdtion is not
gpproximated as the players become patient.

2. Formdly, it is easy to establish that for afixed probability of the commitment type, and for a
givene, thereis athreshold discount factor above which al pure strategy perfect Bayesian
equilibrium payoffs are within e of the dominant payoff pair. It should be noted, however, thet this
depends on the assumption that the perturbation only involves the above described automaton.

3. Bergin (1989) shows that sequentia equilibria have aMarkov property; unfortunately this result
does not directly have bearing upon the st of payoffs which can beredlised in equilibrium. The
same can be said for the results of Kaai and Lehrer (1993) and Jordan (1995) who have studied
the long-run properties of equilibrium play in contexts more generd than the current one.

4. co(X) denotesthe convex hull of the set X.

5. Assumption (ii) can be rlaxed at the cost of some additional complications and an appropriate
reformulation of Proposition 3. Assumption (iii) isaso not essentid; the case where the feasible st
isone-dimensiona was tregted in an earlier version, athough some of the constructions needed
differ. We conjecture that assumption (i) is likewise inessentid, dthough we have not proved this.

6. The automaton can aso be thought of as atype with a sandard payoff matrix in which the
payoffsin the row corresponding to a1* areal equa and strictly greater than al other payoffs.
At aPBE thistype will play a1* after every history, including those off the equilibrium path.

7. Thereader isreferred to Fudenberg and Tirole (1991a, 1991b) for forma definitions of al
equilibrium concepts used here. For the purpose of the definitions, the automaton should be
interpreted as a payoff-matrix type as described in footnote 6; the strategy of such atypein a PBE
must beidentica to the automaton strategy. Thisisin contrast to a Nash equilibrium where the
payoff- matrix type need only follow the commitment strategy on the equiilibrium path. Inthe
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equilibria we congruct, beliefs off- the- equilibrium path put probability zero on the automeaton if
player 1 has deviated from ag* in the past, which is congstent with the idea of an automaton which

cannot deviate.

8. Thiscondition is merdly to rule out k=0, which would change the method of solving the
differentid equation studied below (but not the conclusion). Notethat k can be negative.

9 Anexampleiscondructed in Ceentani et al. (1996) which is smilar to the type of congtruction
we use, and which establishes that payoffs below the Stackelberg payoff can be sustained in a PBE.
For their game, however, the Cripps et al. (1996) bound isjust the minmax payoff.

10. If & ?a,*, &, then Bayes rule does not tie down bdliefs, and in this case we assume that

probability oneis put on the normd type; given that the automaton can be thought of as atype for
whom it isadominant strategy to play a*, thisisanaturd assumption.



