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Abstract

Using a theoretical model where students care about achievement rank, I study effort
choices in the classroom and show that rank concerns generate peer effects. The model’s
key empirical prediction is that the effect on own achievement of increasing the dispersion
in peer cost of effort is heterogeneous, depending on a student’s own cost of effort. To
test this, I construct a longitudinal multi-cohort dataset of students, with data on the
geographic propagation of building damages from the Chilean 2010 earthquake. I find
that higher dispersion in home damages among one’s classmates led, on average, to lower
own Mathematics and Spanish test scores. To be able to test the theory, I develop
a novel nonlinear difference-in-differences model that estimates effect heterogeneity and
that relates observed damages to unobserved cost of effort. I find that some students at
the tails of the predicted cost of effort distribution benefit from higher dispersion in peer
cost of effort, as predicted by the theoretical model. This finding suggests that observed
peer effects on test scores are, at least partly, governed by rank concerns.



1 Introduction

Peer effects have been widely studied by economists in many contexts, for example, career
choices, health behaviours, crime and education. Typically, peer effect models describe
an outcome of interest as a function of some feature of a peer group. The simplest model
examines the importance of the mean of peer characteristics in shaping own behaviour.
While this model seems to capture social influences in, for example, crime and drinking,
it is rejected in other contexts.

In education, the linear-in-means model produces ambiguous and sometimes contra-
dictory results: it is not always the case that own outcomes improve when peers are
on average more able. In contrast, a growing body of empirical evidence points to the
nonlinearity and heterogeneity of peer effects on test scores (see the survey by Sacerdote
(2014)). For example, in one recent randomised experiment at the University of Am-
sterdam, low-ability students placed in tutorial groups with other low-ability students
performed better than in groups with more able peers on average (Booij, Leuven, and
Oosterbeek 2016).1 In another randomised experiment among students at the U.S. Air
Force Academy, low-ability students performed worse when placed in groups with other
low-ability peers, but those groups included high-ability peers and no middle-ability peers
(Carrell, Sacerdote, and West 2013). These experimental interventions altered the entire
distribution of peer ability, and generated some results that may appear unrelated.

In this paper, I study the primitives of the student problem to provide a conceptual
framework that can potentially explain disparate findings.2 I propose a theoretical model
of student effort choices in the classroom that has testable implications on the shape
of peer effects. To test them, I exploit a natural experiment and a novel econometric
approach that is closely guided by the theoretical model. An advantage of this method
is that the treatment effect and other aspects of the econometric model have a direct
structural interpretation. I show that all predictions are borne out in an administrative

1In a randomised experiment with Kenyan first-graders, Duflo, Dupas, and Kremer (2011) find positive
effects of ability tracking at all ability levels.

2Other papers examine potential mechanisms behind peer effects. Blume, Brock, Durlauf, and Ja-
yaraman (2014) and Fruehwirth (2013) provide microfoundations to the widely used linear-in-means peer
effect specification, proving that it can be rationalized by a desire to conform. De Giorgi and Pellizzari
(2013) develop and test behavioral models that can rationalize observed outcome clustering within class-
rooms at Bocconi University. Calvó-Armengol, Patacchini, and Zenou (2009) provide microfoundations
to the Katz-Bonacich centrality measure in a network. Using a different approach, Lavy and Schlosser
(2011) and Lavy, Paserman, and Schlosser (2012) use teacher and student surveys to understand why
gender variation and proportion of low-ability students impact class outcomes. This paper differs from
this stream of the literature in its intent to find a mechanism that is consistent with seemingly unrelated
patterns of nonlinear and heterogeneous peer effects observed in the data.
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dataset on Chilean students.
In the model, students care about achievement and achievement rank. Achievement

is produced through costly study effort, and students are heterogeneous in terms of their
cost of effort; that is, in terms of physical and/or psychological characteristics that affect
their ability to study. In this context, how much study effort each student exerts depends,
in equilibrium, on the cost of effort of her peers. For example, a student might “give up”
in a group with considerably better peers, because improving rank is too costly in terms
of effort. Therefore, rank concerns generate peer effects, independently from externalities
in the test score production technology.3

Peer effects generated by rank concerns work through the entire distribution of peer
characteristics. The comparative statics explore one feature of this distribution, its dis-
persion, because this is the empirically relevant margin in my data. The theory predicts
that increasing the dispersion of peer cost of effort has heterogeneous effects on achieve-
ment. Students with a high cost improve their achievement, students with a medium
cost decrease their achievement, and students with a low cost may increase or decrease
their achievement, depending on the relative importance of rank concerns in their prefer-
ences. Intuitively, an important determinant of effort is how close to each other students
are in the cost distribution, because this determines how easy or hard it is to improve
ordinal rank in achievement. Changes in dispersion cause the proximity between stu-
dents to change, and to do so differently on different portions of the cost distribution.
This generates the heterogeneous patterns of response that lay the basis for the empirical
tests.

To test the theoretical predictions, I combine a large administrative dataset on over
350, 000 Chilean students with information on the Chilean 2010 earthquake, which I use
as a natural experiment that generated variation in some peer group attributes.4 In

3The idea that rank concerns could generate peer effects dates back to at least Jencks and Mayer (1990).
However, it has never been formalised before, even though there is evidence suggesting that students care
about their achievement rank even in the absence of specific rank incentives (Tran and Zeckhauser 2012,
Azmat and Iriberri 2010). Rank concerns have been studied also in various fields outside of education,
for example, in the study of well-being at work and job satisfaction (Brown, Gardner, Oswald, and
Qian 2008, Card, Mas, Moretti, and Saez 2012), of sport tournaments (Genakos and Pagliero 2012) and
of personnel (Blanes i Vidal and Nossol 2011), among others.

4Natural disasters have been used before to identify peer effects in education, see, for example, Cipol-
lone and Rosolia (2007), Imberman, Kugler, and Sacerdote (2012) and Sacerdote (2008). In contrast to
some previous studies, this paper does not use forced relocations of students for identification. Rather,
peer effects are identified by comparing peer groups with identical compositions, but that were subject to
different earthquake shocks. This is in contrast also to the experimental and quasi-experimental literatures
that use variation in assignment to peer groups, e.g. dorms (Sacerdote 2001, Zimmerman 2003, Stine-
brickner and Stinebrickner 2006, Kremer and Levy 2008, Garlick 2016) or classrooms (Duflo, Dupas, and
Kremer 2011, Whitmore 2005, Kang 2007).
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terms of data construction, I use four waves of the SIMCE dataset (Sistema de Medición
de la Calidad de la Educación, 2005, 2007, 2009, 2011), with information on students,
teachers, classrooms and schools. The outcomes of interest are standardised test scores
in Mathematics and Spanish in the 8th grade. School and classroom identifiers allow
me to match students to classmates, teachers and schools, making this dataset ideal to
study peer effects at classroom level. I merge this educational data with a measure of
damage to students’ homes caused by the earthquake, which I obtained from the struc-
tural engineering literature. The measure is based on seismic intensity according to the
Medvedev-Sponheuer-Karnik scale. The resulting dataset has three key features: it is
longitudinal (test scores are observed twice for each student), it contains two cohorts (one
affected by the earthquake in the second time period, one never affected), and it contains
geographic variation in the intensity of exposure to the earthquake. Therefore, an appro-
priate tool of analysis is the difference-in-differences (DD) model. The preliminary and
main data analyses use this model and its extensions, including a novel nonlinear one, for
estimation and for tests of identification.

The preliminary data analysis indicates that being exposed to the earthquake reduced
own test scores, on average, by up to 0.04 standard deviations. Students were affected
differently depending on intensity of exposure, with a reduction of approximately 0.02
standard deviations for every additional USD 100 in home damages. Moreover, I find
that peer intensity of exposure matters for own achievement. A linear regression DDD
model with continuous treatment estimates that, keeping classroom composition and other
school and teacher characteristics constant, the average level of damage among a student’s
peers had insignificant or negligible effects, while the dispersion in peer damages had a
significant and sizeable negative effect on own test scores.5

To be useful for testing the theoretical prediction of heterogeneous impacts of cost
dispersion, any empirical model must have two features: it must be able to detect effect
heterogeneity across students (the linear model does not do this); and it must be able to
relate the distribution of observed earthquake damages in the classroom to the distribu-
tion of unobserved students’ cost of effort.6 This allows the researcher to use variation

5Damages to the school are controlled for. This result holds irrespective of how dispersion is mea-
sured, e.g., standard deviation, coefficient of variation and various interquartile ranges. The identifying
assumption for the damage dispersion effects, that is, that the correlation between damage dispersion
and test score growth is constant across cohorts in the absence of treatment, is tested and not rejected
using data on regions not affected by the earthquake.

6In 3, 822 out of the 5, 574 classrooms in earthquake regions there is within-classroom variation in
earthquake intensity, because of a geographically dispersed student body. These are the classrooms that
are used to identify the impact of damage dispersion.
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across classrooms in damage dispersion as a shifter to the cost of effort dispersion, keeping
constant usual confounders such as student composition and characteristics of the school,
classroom and teacher. Guided by the theoretical model, I build a flexible econometric
model that satisfies both conditions. It is a nonlinear matching estimator. In intuitive
terms, rather than estimating a treatment effect parameter, it semiparametrically esti-
mates a treatment effect function. This function traces the impact on achievement of an
increase in the dispersion of cost of effort in the classroom, as a function of a student’s
predicted own cost of effort.7 It is related to the non-linear DD models in, for example,
Athey and Imbens (2006), Abadie (2005), Heckman, Ichimura, Smith, and Todd (1998),
and Blundell, Costa Dias, Meghir, and Van Reenen (2004), but it addresses specific chal-
lenges of this context that those models are not well-suited to address.

Correlated effects may arise because classrooms with larger damage dispersion are also
classrooms with a more geographically dispersed student body. Pre-earthquake data is
used to net out any correlation between geographic dispersion and unobserved classroom
characteristics that affect achievement. The identifying restriction is that the geographic
dispersion of the student body does not determine how a classroom’s unobserved in-
puts change across cohorts, for example, in response to the earthquake. This is a very
weak restriction: unobserved inputs may change as a function of any other classroom
variable, including those correlated with geographic dispersion like variance in household
income. Moreover, the earthquake is allowed to have a direct and heterogeneous impact
on students that is not due to damage to their own or their peers’ homes. I develop an
empirical test of the restriction at the school level, and show that identification is robust
to school×cohort fixed effects. Specifically, while changes to unobserved school character-
istics may have occurred across cohorts and may have affected student outcomes, I show
that they do not bias estimated damage dispersion effects. Moreover, I present additional
empirical evidence suggesting that the latter are not due to changes in observed teacher
productivity in the classroom. Finally, at the estimated parameter values I am able to
rule out some alternative mechanisms, including self-selection into subgroups of friends
within a classroom, a mechanisms proposed by Carrell, Sacerdote, and West (2013) to
explain their experimental findings.

Findings indicate that estimates from the linear model mask considerable heterogene-
ity. In particular, not everyone is hurt by damage dispersion: some students at the tail
of the cost of effort distribution benefit from an increase in damage dispersion. The es-

7Unobserved cost of effort is modelled as a single-index of observed student characteristics, including
home damages. I validate this specification through various post-estimation tests, additional regression
evidence, and survey evidence on elicited effort costs.
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timated treatment effect functions have a direct structural interpretation as the effect
on achievement of an increase in the dispersion of peer effort cost, and they are entirely
consistent with the theoretical predictions, both in terms of point estimates and when
used to statistically test those predictions.8 This indicates that observed peer effects on
test scores are, at least partly, governed by rank concerns.9

This paper is related to a growing literature on the effect of ability rank on achieve-
ment. Using data on primary schools in England and on high-schools in the U.S., Murphy
and Weinhardt (2016), Elsner and Isphording (2016a) and Elsner and Isphording (2016b)
find that a higher ability rank (keeping ability constant) improves academic outcomes and
reduces risky behaviours later on, sometimes even years later. These results are consistent
with the findings reported in Cicala, Fryer, and Spenkuch (2016): higher rank improved
achievement in primary schools in Kenya, and it decreased misbehaviour in middle schools
in the U.S.. Cicala, Fryer, and Spenkuch (2016) propose a theoretical framework and a
field experiment to rationalise these results. This paper differs from this stream of the
literature in a fundamental way. There is an important difference between rank in ability,
a pre-determined student characteristic, and rank in achievement, an outcome. Concerns
over achievement rank are not necessary nor sufficient for observing an impact on student
outcomes of rank in a pre-determined characteristic.10 Therefore, this paper does not
specifically address the findings on the role of ability rank.

More generally, this paper speaks to the literature on nonlinear and heterogeneous peer
effects. For example, one key idea is that proximity of students throughout the ability
distribution matters, because it determines how easy it is to improve ordinal rank. Tincani
(2014) shows that this idea can help understand, simultaneously, the positive effects of
ability tracking in Booij, Leuven, and Oosterbeek (2016), and the (unexpected) findings
in Carrell, Sacerdote, and West (2013), also qualitatively replicated in Booij, Leuven, and

8Moreover, rank concerns appear to be stronger in Mathematics than in Spanish, but this difference
is not statistically significant.

9Finding direct evidence of rank concerns is difficult with available datasets, mainly because preferences
are not observed. For this reason, this analysis cannot quantify what fraction of social influences is due
to rank concerns, rather, it looks for symptoms of rank concerns in the shape of the peer effects, using
an econometric framework that estimates treatment effects and other relations in the data that are fully
interpretable with a structural model. This is the most that can be done with existing data.

10Moreover, depending on model specification, rank concerns may imply a positive or negative impact
of ability rank on achievement. For example, in the randomised experiment in Carrell, Sacerdote, and
West (2013), some low-ability students performed worse, even though the intervention improved their
ability rank. Tincani (2014) shows that this result can be explained by rank concerns if students have a
strong aversion to a low achievement rank, because they decrease their effort when they are moved away
from the bottom of the ability distribution.
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Oosterbeek (2016).11 Proximity seems to be one important margin for policy intervention,
especially when it is known that extrinsic rank incentives are in place. A novel policy
implication, then, is that an educator can optimally exploit such rank concerns to promote
study effort, much like an employer exploits social incentives to motivate workers.

The paper is organised as follows: section 2 introduces the theoretical model and
predictions. Section 3 describes the data and presents preliminary results. Section
4 contains the empirical analysis of spill-overs generated by the earthquake, where the
nonlinear model represents one of the main contributions of the paper. Findings from
this model are presented in section 5. Section 6 addresses robustness of the empirical
results, and it explains the link between the theoretical and the econometric models.12

2 A Theoretical Model of Social Interactions

The model is an application of the theory of conspicuous consumption in Hopkins and
Kornienko (2004). Students choose how much costly effort e to exert, and effort increases
achievement y. Students are heterogeneous in terms of how costly it is for them to exert
effort.13 They belong to a reference group (e.g. classroom, school). The empirical analysis
finds support for and uses the classroom as the relevant reference group, but the theoretical
results do not rely on a specific definition of a group. The main model assumptions are
the following:
A.1 Students’ utility is increasing in own achievement.
A.2 Students’ utility is increasing in achievement rank in their reference group.
A.3 (optional). There are technological spill-overs in the production of achievement
working through peer mean effort cost.

Assumption A.1 is standard.14 Assumption A.2 is novel in the theoretical literature on
educational peer effects. It generates peer effects even when spill-overs are not explicitly
embedded in the achievement production function (A.3). That is, under A.2, own study

11Hoxby and Weingarth (2005) present direct evidence of the importance of proximity in determining
student outcomes.

12There are four Appendices. Appendix A contains technical details on the preliminary data analysis
and on the linear model of peer effects, including identification tests. Appendix B contains technical
details of the nonlinear model, as well as details on robustness checks. Appendix C contains proofs and
details relating to the theoretical model. Appendix D contains additional Tables and Figures.

13This corresponds to income heterogeneity in Hopkins and Kornienko (2004), where individuals choose
how much of their income to spend on a consumption good and how much on a positional good. Here,
achievement is at the same time a consumption good and a positional good, and it can be produced at a
cost.

14For example, Blume, Brock, Durlauf, and Jayaraman (2014), Fruehwirth (2012), and De Giorgi and
Pellizzari (2013) assume that students’ utility is increasing in own achievement
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effort depends on the distribution of peer characteristics, because it is determined by the
equilibrium of a game of status. In the model, the relevant peer characteristic is how costly
it is to produce achievement. For example, a student who finds it hard to exert study
effort because she has low academic skills might “give up” in a classroom where all other
classmates are highly skilled academically. On the other hand, the same student might
instead engage in a healthy competition with her peers when they are similarly skilled
academically. This intuition is explained in more detail in section 2.1. Assumption A.3
is standard and it gives rise to (exogenous) peer effects (Manski 1993).15 It is optional
in the sense that it is not necessary to prove the theoretical results. However, I allow
for this additional kind of peer effect to emphasise that rank concerns generate a type of
non-linear and heterogeneous peer effect that is easily distinguishable from the commonly
assumed peer effects working through the mean of peer characteristics.

Students differ in terms of a type c: those with a higher c incur a larger cost of effort.
This is without loss of generality. For example, students could instead be heterogeneous in
terms of how productive their effort is, and, under minor modifications to the assumptions
on the utility function, the model would have conceptually the same implications. Type c
captures all student characteristics, physical and/or psychological, that affect her ability
to study, such as her cognitive or academic skills, her emotional well-being, access to
a computer or books, availability of an appropriate space for studying, etc. Type c

is distributed in the reference group according to c.d.f. G(·) on [c, c̄]. Each student’s
type c is private information, but the distribution of c in the reference group is common
knowledge. There are no distributional assumptions on G(·).

The cost of effort is determined by an increasing and strictly quasi-convex function in
effort: q(e; c). Higher types c incur higher costs for every level of effort e, i.e. ∂q(e;c)

∂c
> 0

for all e. For this reason, type c is informally referred to as a student’s cost of effort.
15Several papers model technological spill-overs as operating through mean peer characteristics, e.g.

Arnott and Rowse (1987), Epple and Romano (1998), Epple and Romano (2008). In Manski’s terminology,
exogenous peer effects arise when peer characteristics affect own outcomes (e.g. achievement). Rank
concerns generate what Manski would call endogenous peer effects, that is, a response of own outcome
to peer outcomes, which occurs when individuals in a strategic setting best-respond to each other. This
gives rise to a simultaneity problem known as the reflection problem. The goal of this paper is not to
identify the shape of the best response function (i.e., to solve the reflection problem). Rather, it is,
first, to find theoretically the shape of composite peer effects under rank concerns, and, second, to test
whether this shape is borne out in the data. Composite peer effects describe how own outcome changes as
a function of peer characteristics, and they combine exogenous and endogenous peer effects. Until recent
advancements in network econometrics and data (Bramoullé, Djebbari, and Fortin 2009, De Giorgi,
Pellizzari, and Redaelli 2010, Blume, Brock, Durlauf, and Jayaraman 2014), the goal of most empirical
peer effect papers has been to identify composite peer effects (by solving the problem of correlated
unobservables, an important focus of the empirical part of this paper).
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Moreover, at higher types the marginal cost of effort is (weakly) higher: ∂2q(e;c)
∂c∂e

≥ 0.
Effort increases achievement according to the production function y(e) = a(µ)e +

u(µ), with a(µ) > 0, where µ is the mean of c among peers. Parameters a(µ) and u(µ)
capture technological spill-overs working through the mean of peer ability (assumption
A.3). For example, teacher productivity may depend on student’s average skills, or more
academically skilled students (lower µ) may ask relevant questions in class that facilitate
their peers’ learning. These technological spill-overs are allowed to affect both the level
of achievement (u(µ)) and the productivity of effort (a(µ)).

The utility function can be decomposed into two elements: a utility that depends only
on own test score y (in absolute terms) and effort cost q, V (y, q), embedding assumption
A.1; and a utility that depends on rank in terms of achievement, embedding assumption
A.2. The utility from achievement in absolute terms net of effort cost is non-negative,
increasing and linear in achievement, decreasing and linear in q, and it admits an inter-
action between utility from achievement and cost of effort such that at higher costs, the
marginal utility from achievement is (weakly) lower (V12 ≤ 0).16 No specific functional
form assumptions are made on q(·) and on the interaction between y and q, therefore,
results from the model are valid under a broad class of preferences. For example, students
with lower effort cost c may (or may not) have higher marginal utilities from achievement.

A student’s classroom rank in terms of achievement is given by the c.d.f. of achieve-
ment computed at her own achievement level, FY (y). This is the fraction of students with
achievement lower than one’s own, and it is a standard way to model rank in theoretical
models of status seeking (Frank 1985). Because achievement is an increasing deterministic
function of effort, rank in achievement is equal to rank in effort: FY (y(e)) = FE(e), where
FE(·) is the c.d.f. of effort. The utility from rank, S(FY (y(e))), is given by FE(e) + φ,
where φ is a positive constant. Overall utility U(y, q; c) is the product of utility from
achievement in absolute and in relative terms: V (y, q; c) (FE(e) + φ).
Each student chooses effort to maximize overall utility. Focusing on symmetric Nash
equilibria in pure strategies, and initially assuming that the equilibrium strategy e(c) is
strictly decreasing and differentiable with inverse function c(e), rank in equilibrium can
be rewritten as 1 − G(c(ei)), and i’s utility as V (y(ei), q(ei, ci))(1 − G(c(ei))).17 The

16All results are valid under an alternative set of assumptions for the utility from achievement. These
are: strictly quasi-concave utility of achievement, decreasing and linear utility from cost of effort (V2 <

0, V22 = 0) with a linear cost function (d
2q
d2e = 0) and additive separability between utility from achievement

and cost of effort (V12 = 0).
17The probability that a student i of type ci with effort choice ei = e(ci) chooses a higher effort than

another arbitrarily chosen individual j is F (ei) = Pr(ei > e(cj)) = Pr(e−1(ei) < cj) = Pr(c(ei) < cj) =
1−G(c(ei)), where c(·) = e−1(·). The function c maps ei into the type ci that chooses effort ei under the
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first-order condition then is:

V1

Mg. increase in achiev.︷︸︸︷
a(µ)︸ ︷︷ ︸

mg. ut. from increased achiev.

+ V (y, q)
1−G(c(ei)) + φ

Mg. increase in rank︷ ︸︸ ︷
g(c(ei))(−c

′
(ei))︸ ︷︷ ︸

mg. ut. from increased rank

= −V2
∂q

∂e︸ ︷︷ ︸
mg. cost

(1)

and it implies the first-order differential equation reported in equation 27 in Appendix
C. The solution to this differential equation is a function e(c) that is a symmetric equilib-
rium of the game. The assumptions on the utility function, on the cost of effort function
and on the achievement production function guarantee that the results in Hopkins and
Kornienko (2004) apply under appropriate proof adaptations.18 In particular, while the
differential equation does not have an explicit closed-form solution, existence and unique-
ness of its solution and comparative statics results concerning the equilibrium strategies
can be proved for any distribution function G(c) twice continuously differentiable and
with a strictly positive density on some interval [c, c̄], with c ≥ 0. This means that it is
possible to trace how the equilibrium distribution of achievement in the reference group
changes as the distribution of peer characteristics changes, without the need to explicitly
solve for the equilibrium effort function e(c). That is, it is possible to derive the shape of
the peer effects.

The first theoretical result is summarized in the following Proposition:

Proposition 2.1 (Adapted from Proposition 1 in Hopkins and Kornienko (2004)). The
unique solution to the differential equation (27) with the boundary condition e(c̄) = enr(c̄),
where enr solves the first order condition in the absence of rank concerns (V1a(µ)|e=enr =
−V2

∂q
∂e
|e=enr), is a unique symmetric Nash equilibrium of the game of status. Equilibrium

effort e(c) and equilibrium achievement y(c) are both continuous and strictly decreasing
in type c.

Proof: see Appendix C.
The empirical analysis tests the monotonicity of the achievement function.19

equilibrium strategy. Strict monotonicity and differentiability of equilibrium e(c) are initially assumed,
and subsequently it is shown that equilibrium strategies must have these characteristics.

18One of the main differences with the model in Hopkins and Kornienko (2004) is that here equilibrium
strategies e(c) are decreasing in c, whereas there they are increasing. See the procurement auctions model
in Hopkins and Kornienko (2007) for another example with decreasing strategies.

19Monotonicity rules out the case in which for large enough values of c students exert more effort, which
would be akin to a backward-bending labor supply curve. For example, suppose that students have high
disutility from very low values of achievement. Then, as the cost of effort increases, the “substitution”
effect would induce individuals to exert less effort, but the “achievement effect” (like an income effect)
would induce them to exert more effort to avoid very low values of achievement. The empirical test
rejects such a scenario.
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Now consider two reference groups, A and B, with two distributions of c, GA(c) and
GB(c), that are such that they have the same mean, but GB has larger dispersion than
GA in the Unimodal Likelihood Ratio sense (GA �ULR GB), defined in Appendix C.
This happens when, for example, GB is a mean-preserving spread of GA. In informal
terms, one can show that the effect on achievement of moving from group A to group
B is heterogenous across individuals, depending on a student’s type c. For a formal
statement of this comparative statics result see Proposition (C.1) in Appendix C. This
result provides the main testable implication of the theoretical model, which concerns the
shape of peer effects generated by rank concerns. It can informally be stated as follows:
Testable Comparative Statics: When the dispersion of c in the reference group in-
creases (keeping the mean constant), middle-c students perform more poorly in terms of
achievement and high-c students perform better, while low-c students may perform better
or worse, depending on the relative strength of the preference for achievement rank in the
utility function. These patterns are represented graphically in Figure 1.

Dy(c)

c0

Dy

Dy(c)

c0

Dy

Figure 1: The function Dy(c) traces the effect on achievement of increasing the dispersion
of c, as a function of student type c. It can cross the x-axis once or twice. If it crosses it
once (upper panel), the sequence of its signs, from low c to large c, is −, +. If it crosses
it twice (lower panel), the sequence of its signs, from low c to large c, is +, −, +.
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2.1 Model Intuition and Discussion of Assumptions

Rank concerns generate peer effects. When students have rank concerns, the entire
distribution of effort cost in the reference group matters in determining the equilibrium
distribution of achievement. For example, suppose that effort cost is entirely determined
by academic skill. How much effort any student in the reference group exerts depends,
among other things, on how much more skilled the person next up in the skill distribution
is. If it is considerably more, she might “give up”, knowing that it would be too costly
to surpass this other student. If it is not, she might instead study hard in an effort to
surpass him or her. This is true for all students in the reference group, therefore, the
entire distribution of peer skills matters. The comparative statics focus on one feature
of this distribution, its dispersion. First, it is convenient to focus on one feature of a
distribution rather than working with an infinite dimensional object. Second, regression
evidence indicates that dispersion is the empirically relevant feature (see section 4.1).
Third, changes in dispersion of cost of effort affect different portions of the cost of effort
distribution differently. As a result, they trigger complex nonlinear patterns of response
in achievement that have empirical content, that is, that can be falsified by the data.
Intuition for the comparative statics results. Figure 2 shows two ability distribu-
tions G(c) with different variances. As the variance increases moving from A to B, the
density increases at the tails and decreases in the centre of the support. High-c students
have an incentive to exert more effort in order to surpass the students with the same
cost of effort as them, who are more numerous in group B. As can be seen from the
first order condition in 1, the marginal utility from increasing one’s own rank depends
positively on the density at one’s own type c, g(c). In the discrete case, the key feature
that corresponds to a change in density is a change in the distance between successive
students.20 High-c students in group B now also have a lower rank in c, because they
face a larger fraction of peers with higher effort cost (1−G(c)), and this decreases their
incentive to exert effort: 1 − G(c) enters at the denominator of the marginal utility of
effort in 1. This is a consequence of the multiplicative nature of preferences, discussed in
the next section, which generates an aversion to a low achievement rank: the lower the
rank in c is, the less desperate a student is to avoid a low achievement rank. The compar-

20For example, if a student is of cost type c1 = 10 and the next more skilled student is of cost type
c2 = 2, the type 10 student might “give up” because surpassing a type 2 could be too costly in terms of
effort. However, if the type 2 student becomes a type 9, the type 10 student has an increased incentive
to exert effort, because surpassing the next student becomes less costly. The comparative statics results
in this paper are proven with a continuum of students. Recent theoretical work shows that, in this class
of models, the equilibrium strategy with a discrete number of players tends to the equilibrium strategy
with a continuum of agents as the number of agents goes to infinity (Bhaskar and Hopkins 2013).
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ative statics results demonstrate that, for high-c students, the incentive to improve their
achievement prevails when moving from A to B. Middle-c students face two incentives:
they face higher competition from the higher-c students, who are exerting more effort,
but they also have an incentive to reduce their effort because of the lower density in their
portion of the cost of effort distribution. The model predicts that the incentive to reduce
effort prevails. Finally, also low-c students face two opposite incentives. First, the fatter
tail at their end of the distribution gives them an incentive to increase their effort because
of the larger density at their c level, and because they have a higher rank in c. Second,
the weaker competition they face from middle-c students means that they can reduce
their effort without reducing their rank. Which effect prevails depends on how strong the
preference for rank is, relative to the utility from achievement in absolute terms net of
the effort cost. This is determined by V (·) and q(·), on which the model does not make
specific functional form assumptions. Intuitively, a stronger preference for rank leads to
an increase in outcomes for low-c students, because the incentive to improve rank prevails
over the incentive to pay a lower effort cost.21

Discussion of assumptions. The assumption that overall utility is multiplicative in
utility in absolute and in relative terms may appear counterintuitive. However, it makes
the problem’s structure similar to that of a first-price sealed-bid auction, where expected
payoff is the product of the value of winning (V ) and the probability of winning (F ). As
noted in Hopkins and Kornienko (2004), “it is this formal resemblance to an auction that
permits clear comparative statics results.” While it would be desirable to analyse more
general preference specifications, such a purely theoretical contribution would go beyond
the scope of this paper. This paper is the first to apply theoretical tools at the frontier
of the rank concerns theoretical literature to the field of peer effects in education, and to
test them empirically in this context. Future extensions could specify different preferences
and resort to numerical rather than analytical model solution tools.

Rank concerns can be modeled in many ways, and the comparative statics results
depend on the assumed preference structure. For example, under the preference structure
in this paper, both rank in and density of effort cost enter the first order condition of
the student’s problem. If, instead, utility were separable in rank and in achievement,
and if rank utility were linear, then rank in effort cost would not be expected to affect
behaviour.22 Therefore, it is reassuring that the multiplicative preferences assumed in

21For example, it can be shown that if overall utility was (y(e) − e)α (F (e) + φ), then low-c students
would increase their effort when rank has a larger weight than achievement net of effort cost (α < 1) and
decrease it otherwise (α ≥ 1).

22If rank utility were convex in rank, those with higher ability rank would be more motivated to exert
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Figure 2: Type distributions in two reference groups, and cutoffs separating low-, middle-
and high-c students.

this paper can explain important and distinct pieces of evidence. For example, in Tincani
(2014) I show that a similar version of this model with a stronger aversion to a low
rank (for laboratory evidence of this aversion see, for example, Kuziemko, Buell, Reich,
and Norton (2014)) can explain all of the (unexpected) results of the randomised peer
regrouping experiment in Carrell, Sacerdote, and West (2013), as well as the more recent
experimental evidence in Booij, Leuven, and Oosterbeek (2016). Hence, the preference
structure presented here does not seem inappropriate to describe rank concerns in various
educational settings.

Finally, the model does not examine selection into a reference group. The empirical
study of endogenous group formation is hard with standard available datasets. Moreover,
understanding group formation is beyond the scope of this paper. Given allocations to
groups, this paper’s innovation is to study how outcomes are expected to vary when the

effort in order to reach the top of the achievement distribution. Conversely, if rank utility embedded a
penalty for a very low achievement rank, those at the bottom of the ability distribution would exert more
effort to improve their rank. Under nonlinear rank utility, both proximity between students and rank in
terms of cost of effort would determine behaviour. These are the same features that matter under the
nonseparable utility structure presented here.
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Figure 3: Data time-line.

features of the group vary exogenously, if there are rank concerns. The empirical part
of the study uses a natural experiment to obtain the exogenous data variation needed to
test the theory.

3 Data, Background and Preliminary Data Analysis

3.1 Data and Earthquake

Data. I use two cohorts of students from the SIMCE dataset (Sistema de Medición
de la Calidad de la Educación), for a total sample size of 385, 294 students in 15, 202
classrooms. For both cohorts I observe administrative records on 8th grade students’
Math and Spanish standardized test scores, father’s and mother’s education, household
income, gender, town of residence, and lagged (4th grade) Math and Spanish test scores.
Classroom level information includes class size and the experience, education, tenure at
the school, gender, and type of contract (permanent or probationary) of both Spanish and
Math teachers. School level information includes rurality and public or private status.

I refer to the two cohorts as pre- and post-earthquake cohorts. One cohort is observed
in the 8th grade in 2009, before the 2010 earthquake, while the other cohort is observed
in the 8th grade in 2011, after the earthquake, as shown in Figure 3. For both cohorts,
identifiers are available at the student, teacher, classroom and school level, allowing me to
identify each student’s classmates, Math and Spanish teachers, and schools. This makes
the dataset ideal to study spillovers down to the classroom level.

Earthquake. Just a few days before the start of the new school year, on February
27th 2010, at 3.34 am local time, Chile was struck by a magnitude 8.8 earthquake, the
fifth-largest ever instrumentally recorded and technically referred to as a mega-earthquake
(Astroza, Ruiz, and Astroza 2012). Shaking was felt strongly throughout 500 km along
the country, covering six regions that together make up about 80 percent of the coun-
try’s population. While the death toll, as tragic as it was, was limited for such a strong
earthquake (525 deaths), damage was widespread; 370, 000 housing units were damaged
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or destroyed. The Government implemented a national reconstruction plan to rebuild or
repair 220, 000 units of low- and middle-income housing. Estimated total costs are around
$2.5 billion. The mega-earthquake had a continued impact on people’s lives during the
period covered by my sample. By the time the 2011 SIMCE sample was collected, i.e.,
20-22 months after the earthquake struck, despite impressive efforts by the Government,
only 24 percent of home reconstructions and repairs had been completed (Comerio 2013).
This led to frustration in the population, as shown in Figure 10 in Appendix D.
Measure of earthquake intensity. I construct a measure of the intensity of shaking
in each town in the sample using the Medvedev Sponheuer Karnik (MSK) scale. An ad-
vantage of this scale is that it can be mapped into a tangible measure of disruption: the
expected level of damage to buildings of each earthquake resistance type in each town.
Because reconstruction expenses were covered by the Government, this measure of dam-
age reflects disruptions rather than shocks to household expenses.
For a given intensity of shaking, the level of damage depends on the construction type. For
example, unreinforced masonries are less resistant than reinforced masonries, therefore,
the same value of MSK-Intensity corresponds to larger damages in unreinforced mason-
ries than in reinforced ones. The type of construction of students’ homes is unobserved
in my dataset, therefore, naive estimates of the impact of damage on achievement that
use MSK-Intensity to measure damage without accounting for building type would be
subject to measurement error. To account for unobserved construction type, the main
empirical analysis restricts the sample to municipal (public) school students, who live in
homes with similar earthquake resistance.23 This sample restriction should eliminate any
potential measurement error deriving from the unobservability of students’ home types.
Non-random location choices of parents are a remaining but separate concern that the
empirical model is specifically designed to address.
To construct MSK-Intensity, I apply the intensity attenuation formula for the Chilean
2010 earthquake (Astroza, Ruiz, and Astroza 2012), which is a function of a town’s dis-
tance from the earthquake’s asperity. Using the geographical coordinates of each town and

23Astroza, Ruiz and Astroza (2012) report that around 60% of the poorest Chileans live in one of
two house types with very similar earthquake resistance: old traditional adobe constructions (6.1%) and
unreinforced masonry houses (51.9%). Given the striking school stratification in Chile, public school
students belong to the poorest 50% of Chilean households. Therefore, it is reasonable to expect that all
public school students live in one of these two building types. Notice that, as a measure of damages,
MSK-Intensity may still contain residual noise because it averages damages within a town and, therefore,
it may be vulnerable to classical measurement error inducing attenuation bias. This is inconsequential
for the purpose of showing the existence of an effect of MSK-Intensity on achievement, because if an
effect is found, one can conservatively conclude that an effect is present. Finally, MSK-Intensity is not
informative on damages caused by the tsunami that afflicted some coastal areas after the earthquake.
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Figure 4: Source: SIMCE dataset and author’s calculations. The right tail is truncated
at USD 100 (∼ 85th percentile of the untruncated distribution) for ease of exposition.

of the asperity, I compute MSK-Intensity I according to: I = 19.781− 5.927 log10(∆A) +
0.00087∆A (R2 = 0.9894), where ∆A is the distance from the main asperity. The formula
is valid only at the town level and only for towns in the six regions affected by the earth-
quake (Astroza, Ruiz, and Astroza 2012). The Online Supplementary Material on the
author’s webpage contains additional technical details on this measure. There are two ad-
vantages to using this measure of shaking intensity as opposed to simple distance from the
asperity of the earthquake. First, shaking intensity is a non-linear function of distance,
therefore, using distance would introduce a non-classical measurement error. Second, the
MSK-Intensity measure, coupled with other formulae borrowed from the structural engi-
neering literature, allows me to express shaking in terms of the dollar amount of damage
extent, which has intuitive meaning.

Distribution of earthquake damages. Figure 4 shows the distribution of earth-
quake intensities among the students in my sample, which, for illustrative purposes, are
expressed in terms of reconstruction expenses in US dollars.24 Intensities in the towns of
the schools are also available and used in the analysis. On average, damages to homes
are large, USD 170, or 24 percent of average household monthly income. The damage

24In the Online Supplementary Material I show the calculations and assumptions needed to map MSK-
Intensity into dollar amounts. For example, one needs to make assumptions on the local reconstruction
costs. The empirical models use the raw MSK-Intensity measure to limit the effect of these assumptions.
However, I also express estimated effects in dollar amounts to give an idea of the magnitude of the effects.
Notice that, unlike the main empirical analysis, Figure 4 includes also students from private schools,
who live in different building types than public school students. Therefore, in this graph the translation
of MSK-Intensity into dollar amounts is used only for illustrative purposes and must be interpreted with
caution. The distribution of damages among Municipal school students alone is very similar.
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distribution is right-skewed, with a median of USD 39, 6 percent of income, and a 90th

percentile of USD 303, 43 percent of income.
3, 822 out of the 5, 574 classrooms in earthquake regions have a geographically dispersed
student body. In those classrooms, not all classmates reside in the same town, and this
generates variation in the measure of MSK-Intensity within the classroom. I use this
variation to identify the effect of damage dispersion in the classroom on achievement.
Figure 5 shows three examples of classrooms with students who do not all reside in the
same town. Because of differences in soil type across towns, even classmates who live
close to each other suffered very different damages. For example, the bottom panel of
the Figure shows that students of the La Florida school who live 5.2 km apart from each
other suffered a damage difference of USD 272, or 39 percent of average income. Large
differences among neighbouring towns are not unusual, especially in areas closer to the
asperity.25 Among classrooms with a geographically dispersed student body, the within
classroom standard deviation in damages is, on average, USD 79. Figure D in Appendix
D shows the location of these classrooms on a map.
No earthquake-induced relocations. Finally, I obtained from the Ministry of Edu-

cation the list of the schools that closed as a consequence of the earthquake, as well as
the list of students at those schools.26 I observe in what schools the displaced students
enroll, and drop both the collapsed and receiving schools from the sample, for a total
of 803 dropped schools, corresponding to 12 percent of the sample. This ensures that
in my sample there are no earthquake-induced relocations of students across schools.27

Such relocations could have both direct impacts on the relocated students, and spill-over
impacts on the incumbent students in receiving schools. These effects would confound
estimation of the effects of interest. In the preliminary data analysis, the effect of interest
is the impact of own earthquake exposure on own achievement, controlling for classroom
composition. In the main analysis, the effect of interest is the spill-over impact of the
mean and dispersion of earthquake intensity among one’s classmates on own achievement,
controlling for classroom composition.

25Damage dispersion effects are calculated controlling for damage in the school town and average
damages in the classroom, to account for correlation between these two variables and dispersion in
damages. I also show results using the coefficient of variation, for the same purpose.

26They closed either because the buildings became unsafe, or because most of the students’ homes were
so badly damaged, that students had to relocate, reducing attendance below the minimum acceptable for
a school to operate.

27Imberman, Kugler, and Sacerdote (2012) use the influx of Katrina evacuees in a school as an exogenous
source of change to classroom composition. In Chile evacuees were spread across such a large number of
schools that the influxes in each school are too small to detect any statistically significant impact.
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Figure 5: Examples of three schools where not all students are residents in the school town. At the top
left is Colegio Santa Ines in the town of San Vicente, at the top right is Liceo Maria Auxiliadora in Santa
Cruz, and at the bottom is Escuela La Florida in Talca. The squares represents the school town location
relative to the earthquake asperity (star). In the square are the number of classmates residing in the
town, and the distance from the asperity. The circles represent towns of residence of x classmates, where
x is the number in the circle. The lines indicate the distance to school of each town, and the difference
in damages suffered by an unreinforced masonry construction, the vastly most common type.

3.2 Balancing Tests and Preliminary Data Analysis

As a preliminary data analysis I estimate the impact of own exposure to the earthquake
on own achievement, using both binary and continuous measures of exposure. To do so, I
exploit: i. the longitudinal nature of the dataset (test scores are observed twice for each
student), ii. the fact that different geographic locations were affected differently by the
earthquake, and iii. the existence of two cohorts (one affected by the earthquake in the
second time period, one never affected).

Table 1 presents sample descriptive statistics and balancing tests for four relevant sub-
samples in the data: the pre- and post- earthquake cohorts of students in regions affected

18



Table 1: Descriptive statistics and balancing tests

Pre-earthquake Cohort Earthquake Regions
(1) (2) (3) (4)
NER Difference Pre Difference

(ER-NER) (Post-Pre)
Lagged Math Score 0.128 0.082∗∗∗ 0.210 -0.013∗∗∗

(0.922) (0.948)
Lagged Spanish Score 0.127 0.086∗∗∗ 0.213 -0.024∗∗∗

(0.912) (0.941)
Father’s Education (years) 11.19 0.23∗∗∗ 11.43 -0.166∗∗∗

(3.76) (3.890)
Mother’s Education (years) 10.90 0.34∗∗∗ 11.24 -0.105∗∗∗

(3.56) (3.60)
Monthly Household Income (USD) 637 48∗∗∗ 685 17∗∗∗

(713) (834)
Math Teachers

% Female 0.582 0.02 0.590 -0.012
(0.493) (0.492)

% Postgraduate Degree 0.433 0.03∗∗ 0.464 0.047∗∗∗
(0.496 ) (0.499)

Teaching Experience (years) 19.09 -0.36 18.72 -0.820∗∗
(12.89 ) (12.57)

Tenure at school (years) 9.92 0.510∗ 10.42 -0.253
(9.73 ) (10.16)

Spanish Teachers
% Female 0.803 0.03∗∗ 0.813 0.006

(0.398) (0.390)
% Postgraduate Degree 0.414 0.06∗∗∗ 0.471 0.037∗∗∗

(0.492) (0.499)
Teaching Experience (years) 18.35 -0.461 18.08 -0.546∗∗

(12.75) (12.66)
Tenure at school (years) 9.53 0.85 10.46 -0.316

(9.74) (10.04)
Sample Size Non-Earthquake Regions Earthquake Regions

Pre Post Pre Post
Students 45,715 46,424 147,097 146,058
Classrooms 1,954 1,967 5,707 5,574
*** p < 0.001, ** p < 0.05, * p < 0.10 for a two-sided test of difference in means. Standard deviation in parenthesis.
ER: Earthquake Region. NER: Non-Earthquake Region. Pre: Pre-earthquake cohort. Post: Post-Earthquake Cohort.
Income measured in 8th grade, therefore, post-earthquake income in ER includes earthquake subsidies.
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and not affected by the earthquake. As is evident in column 1, students in earthquake
regions (ER) have significantly higher lagged test scores and SES than students in re-
gions not affected by the earthquake (NER, non-earthquake regions). The column shows
pre-earthquake cohort data, but similar patterns across regions are present in the post-
earthquake cohort. This unbalance implies that a simple DD model that compares test
score growth of post-earthquake students in earthquake regions to that of post-earthquake
students in non-earthquake regions may fail to identify the impact of being exposed to
the earthquake if more highly skilled and higher SES students experience different trends
in (unobserved) temporary shocks to test scores. To test the identifying assumption of
such a DD model, I estimate the model on the pre-earthquake cohort sample of students.
Because these students never experience treatment, a significant earthquake “effect” is an
indication that the identifying assumption is violated. As shown in Appendix A.1.2, I
find evidence of violation, with a positive and significant “effect”. This could be due to
non-random location choices of parents, that is, the choice of living in an earthquake or
non-earthquake region is correlated with unobserved household characteristics affecting
individual student trends in test scores.
DDD model to estimate effect of earthquake exposure (binary treatment). To
overcome this, I estimate the effect of being exposed to the earthquake using a difference-
in-difference-in-differences (DDD) approach that allows unobserved trends in temporary
shocks to differ across regions. This is in the spirit of the differential-trend-adjusted
estimator proposed by Bell, Blundell, and Van Reenen (1999) (see also Blundell and
Costa Dias (2000) for a precise description of this estimator). Details of this model are
in Appendix A.1.2. Intuitively, the “effect” of future treatment on test score growth
in the pre-earthquake cohort is used to net out biases from the post-earthquake cohort
effect. The identifying assumption is that the difference in (unobserved) trends across
region types (ER and NER) must be constant across cohorts. The model allows also for
cohort effects, which can either directly affect test scores, or affect parameters of the test
score production function. Estimates from the DDD model are reported in Table 2 and
they indicate that being exposed to the earthquake (binary variable) had a negative and
statistically significant impact on test scores ranging from −0.02 to −0.04 standard devi-
ations (see the coefficient on Tr×Ei ·dg). The first row of the Table shows the correlation
between the earthquake region dummy and test score growth due to non-random location
choices, while the second row shows cohort effects on test scores.28

28Estimates for public (municipal) schools are reported in Table 13 in Appendix D.
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Table 2: Effect of being exposed to the earthquake (binary variable) on Math and Spanish
test scores (TS). DDD model.

(1) (2) (3) (4)
Math TS Math TS Spanish TS Spanish TS

Ei · dg 0.153∗∗∗ 0.067∗∗∗ 0.101∗∗∗ 0.022∗∗∗
(0.005) (0.005) (0.005) (0.005)

Ti 0.024∗∗∗ 0.007 0.038∗∗∗ 0.025∗∗∗
(0.007) (0.006) (0.007) (0.006)

Ti × Ei · dg -0.024∗∗ -0.027∗∗∗ -0.040∗∗∗ -0.027∗∗∗
(0.007) (0.007) (0.008) (0.007)

Lagged TS 0.689∗∗∗ 0.676∗∗∗
(0.002) (0.002)

Controls No Yes No Yes
Observations 365,328 206,666 365,239 202,365
Standard errors in parentheses. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Controls: whether the student lives in the same town where the school is, gender, mother’s education,
father’s education, household income, class size, whether the Math or Spanish teacher is female,
has a postgraduate degree, has a permanent contract, her tenure at the school,
her teaching experience, and whether the school is public. A constant is always included.

DD model to estimate effect of earthquake exposure (continuous treatment).
A limitation of this DDD model is that the identifying assumption of a constant dif-
ference in region effects across cohorts cannot be tested. To overcome this limitation I
exploit an additional margin of variation: variation in earthquake intensity. Specifically,
I estimate the impact of earthquake intensity using a DD model whose identifying as-
sumption is testable. First, I restrict attention to earthquake regions, where variation
in earthquake intensity is observed ( Astroza, Ruiz, and Astroza (2012) caution that the
MSK-Intensity measure is valid only in these regions). Second, I estimate a test score
value added DD model with continuous treatment, similar to the model in Card (1992),
on post-earthquake cohort data. Third, I use pre-earthquake cohort data to perform a
placebo test of the identifying assumption. Results from the test are reported in the first
row, columns 3 and 4 of Table 3. Conditional on student, teacher and school characteris-
tics, the measure of intensity of the (future) earthquake is not correlated with individual
unobserved trends in test scores in the absence of treatment, satisfying the identifying
assumption of this DD model with continuous treatment. Formal details of the model
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and of the placebo test can be found in Appendix A.1.3.
The first row in columns 1 and 2 in Table 3 show that the point estimate of the impact of
earthquake intensity on test scores is around −0.040 in both Mathematics and Spanish,
corresponding to a decrease in 0.02 standard deviations for every additional USD 100 in
damages. The estimate is significant only for Mathematics.29 Estimation is performed
only on municipal schools to minimise measurement error due to house type unobserv-
ability, as explained in section 3.1.

Table 3: Effect of earthquake intensity on Math and Spanish test scores (TS) in Municipal
Schools.

Post-earthquake data Pre-earthquake data (placebo test)
(1) (2) (3) (4)

Math TS Spanish TS Math TS Spanish TS
Ii · dg -0.049∗ -0.037 -0.083 -0.021

(0.028) (0.030) (0.051) (0.054)

Lagged TS 0.658∗∗∗ 0.671∗∗∗ 0.672∗∗∗ 0.699∗∗∗
(0.004) (0.004) (0.004) (0.005)

Controls Yes Yes Yes Yes
Observations 32,519 31,072 26,146 24,619
Standard errors in parentheses. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Controls: whether the student lives in the same town where the school is, gender, mother’s education,
father’s education, household income, class size, whether the Math or Spanish teacher is female,
has a postgraduate degree, has a permanent contract, her tenure at the school, her teaching
experience, average MSK-Intensity among classmates, MSK-Intensity in the school town,
and whether the school is rural.

Direct effect of own earthquake exposure on own achievement. The DDD model
with binary treatment and the DD model with continuous treatment control for teacher
and school characteristics, suggesting that the estimated effects are, at least in part, due
to a direct impact of the earthquake on a student’s individual determinants of achieve-
ment rather than being entirely mediated by teachers and schools. While evidence of a
direct impact is difficult to obtain with available data (because of potentially unobserved
teacher and classroom characteristics), there are a number of reasons why it may occur.
First, there is established evidence in the medical literature that earthquake exposure

29In fact, estimation of a DDD model that nets out pre-earthquake cohort trends from post-earthquake
effects yields a statistically significant and negative earthquake intensity effect in Spanish (−0.120). Full
regression Tables for the DDD model are available upon request.
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affects brain function and that it can cause Post Traumatic Stress Disorder (PTSD), and
this may last for several months after the earthquake.30 Moreover, the severity of PTSD
has been found to increase with seismic intensity (Groome and Soureti 2004), and not just
with a binary exposure measure. Second, the disruption to the home environment may
increase the opportunity cost of time, because students may need to spend their free time
helping their parents with home repairs.31 Additionally, students may not have access
anymore to the areas of the home that they used for doing their homework. The findings
in this paper are independent of the channel through which earthquake exposure directly
affects a student’s ability to produce achievement, but rely on the existence of such an
effect. Importantly, this effect is not imposed in the main nonlinear analysis, rather, it is
identified. Moreover, there is no restriction that this be the only channel through which
the earthquake affects achievement. Sections 6.1 and 6.2 discuss robustness of the main
findings to school and teacher effects, while section 6.3 presents further evidence in favour
of a direct effect on a student’s individual ability to produce achievement.

4 Main Empirical Analysis: Earthquake Spill-overs

The preliminary analysis suggests that own earthquake exposure is bad for own achieve-
ment. The main empirical analysis examines if there are spill-overs: keeping classroom
composition constant, does peer earthquake exposure affect own achievement? Because
students in the same classroom are either all affected if the classroom is in an earthquake
region, or all not affected otherwise, the necessary data variation must come from varia-
tion in classmates’ intensity of exposure in earthquake regions (“peers” and “classmates”
are used interchangeably). I study the effect of two peer variables: mean and (various
measures of) dispersion of intensity of exposure in the classroom. First, I use a linear
model to examine average spill-over effects. Second, guided by the theoretical model,
I build a nonlinear empirical model that allows me to detect effect heterogeneity across
students and to test if the theoretical predictions are borne out in the data. The nonlinear
analysis is one of the main contributions of the paper.

30See, for example, Altindag, Ozen, et al. (2005), Lui, Huang, Chen, Tang, Zhang, Li, Li, Kuang, Chan,
Mechelli, et al. (2009), Giannopoulou, Strouthos, Smith, Dikaiakou, Galanopoulou, and Yule (2006).

31This is particularly likely to have occurred among the low-income Chilean families that my sample
focuses on, because most of the government subsidies were in the form of vouchers for purchasing the
materials needed for the repairs, and families were expected to perform the repairs themselves (Comerio
2013). In the main semi-parametric empirical model, I allow for heterogeneous impacts of exposure
depending on household characteristics.
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4.1 Estimating Average Spill-over Effects with a Linear Model

The mean and the dispersion in peer intensity of exposure are continuous treatment vari-
ables. Therefore, a model in the spirit of the regression DD with continuous treatment in
Card (1992) could be adopted again.32 However, a placebo test reveals that the identify-
ing assumption for the DD model of spill-overs is not satisfied in my data. Specifically,
using location information, I build the classroom mean and dispersion in (future) MSK-
Intensity in the pre-earthquake cohort of students in earthquake regions. Because the
earthquake never affects this cohort of students, any “effect” of these variables would cap-
ture a correlation between the treatment variables and unobserved trends in test scores
between 4th and 8th grade. As shown in Table 7 in Appendix A.2, the coefficient on mean
MSK-Intensity is small and insignificant, but the coefficient on its dispersion is positive
and statistically significant. Therefore, there are confounding effects associated with the
dispersion in MSK-Intensity treatment variable.
This is not surprising: classrooms with higher dispersion in MSK-Intensity, mechanically,
have a more geographically dispersed student body. In my data, geographic dispersion is
positively correlated with unobserved classroom characteristics that increase test scores.
For example, classrooms that attract students from further away could do so because they
are of better unobserved quality, or the student body in those classroom could itself be
of better unobserved quality. Regardless of its cause, this correlation implies that the
treatment variable “dispersion in earthquake exposure among one’s peers” violates the
assumptions of a standard continuous treatment DD model.
To address this, I extend the model in Card (1992) to allow for correlation between the
treatment variables and test score trends between grades. Appendix A.2 formally intro-
duces the model and a test of its identifying assumption. Here, I explain its intuition. I
set up a continuous treatment regression DDD model that uses the pre-earthquake cohort
of students to net out any potential biases due to a correlation between treatment and
unobserved test score trends. The main difference with a discrete DDD model is that the
second difference is a derivative due to the continuous nature of treatment. The model
allows also for cohort effects, accounting for any nation-wide policies which may have
affected the two cohorts differently, such as the 2008 voucher reform (Neilson 2013).
The identifying assumption is that any correlation, in the absence of treatment, between
the treatment variables (MSK-Intensity mean and dispersion) and trends in unobserved

32This would amount to estimating equation (17) in Appendix A.2 on the post-earthquake cohort data,
comparing test score growth over time across classrooms with different mean and variance in earthquake
intensity.
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shocks between 4th and 8th grade is constant across cohorts. In practice, the placebo test
indicates that the only treatment variable correlated with unobserved trends is disper-
sion. Therefore, to test the identifying assumption, I verify that the correlation between
dispersion and unobserved trends is constant across cohorts in the absence of treatment.
To do so, I use classroom geographic dispersion as the treatment variable, and I estimate
a DDD model on the sample of non-earthquake regions, which are not used in estimation
and are never subject to treatment. Any “effect” of geographic dispersion would indicate
that the triple difference technique does not effectively net out bias. Reassuringly, no
“effects” are found, therefore, the test does not reject the identifying assumption.
Table 4 reports estimation results from this DDD model for the (preferred) sample of
Municipal schools, using four different measures of dispersion.33 All specifications control
for school and individual MSK-Intensity, and the even numbered columns include addi-
tional regressors. There are two main results. First, the first line in each panel shows
that mean damages in the classroom almost never have a statistically significant impact
on test scores. When the estimate of the coefficient on the triple interaction (Īr · dg)Tr is
significant (mostly in specifications without the additional controls), it is very small. Sec-
ond, the dispersion of peer damages has a significant and sizeable negative effect on test
scores, regardless of what measure of dispersion is used, as can be seen from the third row
of each panel. Unsurprisingly, the magnitude of this effect depends on the definition of
dispersion, but it is always sizeable and negative. Notice that the second row of each panel
shows the pre-existing positive correlation between geographic dispersion and unobserved
test score trends, which would bias effect estimates in a simpler DD model. Measuring
damage dispersion through the standard deviation of MSK-Intensity yields the most con-
servative estimates, with effect estimates ranging from −0.17 to −0.26. Assigning a dollar
amount to damage dispersion in each classroom, effects range from −1.2 percent to −7.6
percent of a standard deviation of test scores when moving up one standard deviation in
this distribution.
These findings are robust to controlling for various student composition variables that
could be correlated with mean and dispersion of MSK-Intensity in the classroom like,
for example, mean and dispersion in income. Moreover, classroom level damage disper-
sion matters even after controlling for school level damage dispersion, indicating that the

33Results for the sample of all schools are available upon request. In general, the coefficient signs are
the same, while the magnitudes are lower in absolute values in the sample of all schools. The caveat in the
sample of all schools is unobserved variation in the earthquake resistance of students’ homes, introducing
measurement error on the variables constructed from MSK-Intensity. For this reason, the sample of
Municipal school students is preferred.
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classroom is a relevant unit of analysis. Focusing on the classroom has the additional
advantage that it allows me to examine the model’s robustness to the inclusion of school
fixed effects. See Appendix A.2.1 for these robustness checks.

4.2 A Novel Nonlinear Model to Estimate Spill-over Hetero-
geneity

The linear model of spill-overs has several limitations that make it unfit to test the theo-
retical predictions. To overcome them, I develop an econometric approach that combines
semi-parametric difference-in-differences with matching. The model has three key fea-
tures. First, it can detect heterogeneity of the dispersion effect across students. To
obtain interpretable results, it aggregates each student’s vector of characteristics - includ-
ing earthquake intensity at her home - into a single scalar capturing all the student-level
determinants of achievement. It then expresses effect heterogeneity with respect to this
scalar. Second, this scalar provides an empirical counterpart to the theoretical model’s
cost of effort, which is not directly observed in the data (see section 6.3). This allows
me to use earthquake shocks as shifters to the predicted cost of effort distribution, a vari-
ation needed for testing. Third, it can accommodate the unbalance in observed student
and school characteristics between the untreated pre-earthquake cohort and the treated
post-earthquake cohort, as shown in column 4 of Table 1.34 The econometric model
is related to the nonlinear difference-in-differences models in Athey and Imbens (2006),
Abadie (2005), Heckman, Ichimura, Smith, and Todd (1998), and Blundell, Costa Dias,
Meghir, and Van Reenen (2004). However, it is designed to address specific challenges of
this context that those models are not well-suited to address, as discussed in more detail
in section 6.4.

4.2.1 The Model

Damage dispersion as measured by variance in MSK-Intensity is a continuous variable.
Existing non-linear difference-in-differences models cannot be used in this context because
they do not accommodate continuous treatment.35 Two notables exceptions are the mod-

34While the Table shows unbalance for students of all schools, similar unbalance across cohorts is found
when restricting the sample to Municipal schools, which is the sample used in the non-linear analysis.
This could reflect movements of students across public and private schools occurring in between the two
cohorts, for example, as an effect of the voucher reform analysed in Neilson (2013). The model fully
accounts for this unbalance using high-dimensional matching.

35For example, the changes-in-changes and quantile-difference-in-differences models in Athey and Im-
bens (2006) compare outcome distributions across multiple groups and time periods, however, treat-
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Table 4: Linear model of spill-overs, sample of Municipal schools in earthquake regions.
(1) (2) (3) (4)

Math TS Math TS Spanish TS Spanish TS
Dispersion measured by standard deviation
(Īr · dg)× Ti 0.012+ -0.004 0.010 -0.011

(0.007) (0.007) (0.007) (0.007)

(DIr · dg) 0.366∗∗∗ 0.180∗∗∗ 0.468∗∗∗ 0.211∗∗∗
(0.037) (0.042) (0.039) (0.045)

(DIr · dg)× Ti -0.259∗∗∗ -0.138∗∗ -0.319∗∗∗ -0.174∗∗
(0.047) (0.049) (0.050) (0.053)

Dispersion measured by coefficient of variation
(Īr · dg)× Ti 0.010 -0.005 0.008 -0.013+

(0.007) (0.007) (0.007) (0.007)

(DIr · dg) 1.776∗∗∗ 0.187∗∗∗ 2.354∗∗∗ 1.339∗∗∗
(0.207) (0.255) (0.219) (0.272)

(DIr · dg)× Ti -1.249∗∗∗ -0.906∗∗ -1.692∗∗∗ -1.119∗∗∗
(0.259) (0.296) (0.273) (0.321)

Dispersion measured by interquartile range
(Īr · dg)× Ti 0.013+ -0.006 0.011 -0.012+

(0.007) (0.007) (0.007) (0.007)

(DIr · dg) 1.132∗∗∗ 0.388∗∗∗ 1.120∗∗∗ 0.373∗∗∗
(0.069) (0.072) (0.073) (0.077)

(DIr · dg)× Ti -0.898∗∗∗ -0.383∗∗∗ -0.854∗∗∗ -0.102
(0.098) (0.097) (0.104) (0.104)

Dispersion measured by range between 90th and 10th percentiles
(Īr · dg)× Ti 0.023∗∗∗ 0.003 0.021∗∗∗ -0.003

(0.006) (0.006) (0.006) (0.006)

(DIr · dg) 0.959∗∗∗ 0.347∗∗∗ 0.890∗∗∗ 0.280∗∗∗
(0.028) (0.032) (0.029) (0.033)

(DIr · dg)× Ti -0.874∗∗∗ -0.312∗∗∗ -0.820∗∗∗ -0.287∗∗∗
(0.035) (0.038) (0.037) (0.039)

Controls No Yes No Yes
Observations 110075 58661 110500 56687
Standard errors in parentheses. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Controls: whether the student lives in the same town where the school is, mother’s education,
father’s education, household income, intensity of earthquake in hometown and in school town,
gender, lagged test score in Math or Spanish, class size, the teaching experience of the
Math or Spanish teacher, whether he/she is female, has a postgraduate degree, has a permanent
contract, her tenure at the school, average MSK-intensities among classmates, cohort dummy.
A constant is always included.
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els in Abadie (2005) and D’Haultfoeuille, Hoderlein, and Sasaki (2015) that, however,
are not well-suited to accommodate other features of this context, as detailed in section
6.4. To deal with a continuous treatment variable in a non-linear DD model, my analysis
starts from the observation that, to test the theoretical model, it is sufficient to estimate
the effect of an increase of any amount in the treatment variable (damage dispersion).
The continuous dispersion measure provides rich data variation for this purpose: it al-
lows me to make all possible pair-wise comparisons between classrooms, and consider
the classroom with the larger variance within the pair as the treated classroom. This
approach avoids making arbitrary assumptions to categorise classrooms into “high-” or
“low-variance” classrooms, it uses the data more efficiently than under such a categori-
sation, and it is fully coherent with the theoretical model, where the comparative statics
results are obtained from the pair-wise comparison of a classroom with a relatively higher
variance in cost of effort to one with a relatively lower variance. The large number of
classrooms in the data afford me the opportunity to perform a very large number of such
comparisons, and average the results across classroom pairs. This simple idea is embed-
ded into a more sophisticated weighting scheme that accounts for potentially unbalanced
confounding factors, as explained in more detail below.

A semi-parametric DD model. Define treatment as an increase in damage dispersion
in the classroom. Consider a pair of classrooms, {r, r′}, with variances in damages equal
to σ2

H and σ2
L, with σ2

H − σ2
L = δ > 0. Treatment is the additional damage dispersion

δ. The observed outcome (achievement) of student i in classroom r is Yir, and let Y 1
ir

denote the potential outcome for student i if that student receives treatment δ, and Y 0
ir

if she does not receive the treatment. Damage dispersion is measured by the variance in
MSK-Intensity in the post-earthquake cohort. In the pre-earthquake cohort, variance in
MSK-Intensity reflects only the geographic dispersion of the student body, because the
earthquake has not occurred yet. Let the indicator Gr,r′ be equal to 1 if classroom r has
the higher MSK-Intensity variance within the pair (r, r′), i.e., σ2

r = σ2
H , and 0 otherwise,

and let Tr = 1 indicate the post-earthquake cohort (the treatment group) and Tr = 0 the
pre-earthquake cohort (the control group). I assume that potential outcomes satisfy:

ment status is a binary variable. Similarly, Heckman, Ichimura, Smith, and Todd (1998) and Blundell,
Costa Dias, Meghir, and Van Reenen (2004) develop semi-parametric difference-in-differences models
based on propensity score matching, where the propensity score is based on a treatment dummy.
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Y 0
ir = h0(cTr(Xi),Wr, Tr, σ

2
r) + ε0

ir

= φ(ci,Wr) + λGD(ci,Wr, σ
2
L) + Tr ·

[
λE(ci,Wr) + λDD(ci,Wr, σ

2
L)
]

+

+Gr,r′ · λGD(ci,Wr, δ) + ε0
ir (2)

Y 1
ir = h1(cTr(Xi),Wr, Tr, σ

2
r) + ε1

ir

= φ(ci,Wr) + λGD(ci,Wr, σ
2
L) + Tr ·

[
λE(ci,Wr) + λDD(ci,Wr, σ

2
L)
]

+

+Gr,r′ · λGD(ci,Wr, δ) + λDD(ci,Wr, δ) + ε1
ir (3)

where φ(·), λGD(·), λDD and λE(·) are semi-parametric functions. φ(ci,Wr) captures the
amount of achievement that is produced independently of the variance in MSK-Intensity,
and net of any cohort effects. It transforms student type ci = cTr(Xi) (described in detail
below) and classroom, school and teacher characteristics Wr into achievement Yi.36 Vector
Wir contains class-size, teacher characteristics including experience, location as measured
by MSK-Intensity in the school town, and classroom student composition described by
various moments of the distribution of student characteristics within the classroom.37

This function allows for any kind of interaction between classroom, school, teacher, peer
and student characteristics in the production of achievement.
λE(ci,Wr) are cohort effects, capturing any policy change across cohorts as well as the
direct effect of the earthquake on achievement. Being modeled semi-parametrically, they
are very flexible. For example, they allow the direct impact of the earthquake to be differ-
ent for higher and lower SES students, and/or for more or less affluent schools. They also
allow for policies like the 2008 voucher reform to have a different impact across different
classrooms and students.
λGD(ci,Wr, σ

2
r) are geographic dispersion effects, and they are assumed to be linear in

σ2
r .38 Estimates from the linear model indicate that classrooms with higher geographic

dispersion have on average higher test scores. The function λGD(·) captures these effects
36With an abuse of notation, I do not add the r index to ci. Type ci depends on r only through cohort

Tr.
37W includes: mean, variance, skewness and kurtosis of the classroom distribution of the elements of

X (including mean, skewness and kurtosis - but not variance - of MSK-Intensity), MSK-Intensity in the
school’s town (to account for school damage post-earthquake and school location pre-earthquake), class
size, and all observed teacher characteristics. X includes measures of student ability, gender and SES.

38This assumption allows me to substitute the sum λGD(ci,Wr, σ
2
L) + Gr,r′λGD(ci,Wr, δ) for

λGD(ci,Wr, σ
2
r) in 2 and 3.
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and allows them to vary arbitrarily with student and school type, generalising the linear
model. The identifying assumption is similar to the linear model’s one: conditional on
classroom, teacher and school characteristics Wr and on student’s type ci, geographic
dispersion effects do not depend on cohort Tr.39

λDD(ci,Wr, σ
2
r) are damage dispersion effects, also assumed to be linear in σ2

r . In the
post-earthquake cohort, this variance reflects not only geographic dispersion, but also the
variance in damages. Function λDD(ci,Wr, δ) traces how a δ increase in damage disper-
sion affects student achievement as a function of student and classroom characteristics.
The assumption of linearity in σ2

r of λGD and λDD does not restrict their arguments to
interact arbitrarily. Any kind of heterogeneity of these dispersion effects along student
and classroom characteristics is allowed. For example, damage dispersion effects may be
stronger in classrooms with less experienced teachers or, as implied by the theoretical
model, they may vary with student ability. Estimating the latter type of heterogeneity is
the central focus of this non-linear analysis.

Let τirr′ be an indicator for treatment. The realised (observed) outcome for individual
i in classroom r is:

Yir = τrr′Y
1
ir + (1− τrr′)Y 0

ir.

We have that τrr′ = Tr×Gr,r′ , i.e., given a pair of classrooms r and r′, a student is treated
if she is in the classroom with the higher MSK-Intensity dispersion in the post-earthquake
cohort, untreated otherwise. The realised outcome can be expressed as:

Yir = h(cTr(Xi),Wr, Tr, σ
2
r) + εir

= φ(ci,Wr) + λGD(ci,Wr, σ
2
L) + Tr ·

[
λE(ci,Wr) + λDD(ci,Wr, σ

2
L)
]

+

+Gr,r′ · λGD(ci,Wr, δ) + Tr ·Grr′ · λDD(ci,Wr, δ) + εir (4)

where the error term is assumed to be mean-independent, i.e. E[εir|cTr(Xi),Wr, Tr, Grr′ , σ
2
r ] =

0.40 Notice the similarity of this equation with a standard linear difference-in-differences
model.41 The main differences are that the regression coefficients are replaced by semi-

39Notice, however, that the identifying assumption does not require geographic dispersion effects to be
independent of the cohort Tr conditional on the vector of student characteristics Xi, rather, independence
is required only conditional on ci, a weaker assumption.

40This is a weaker assumption than the full-independence assumptions imposed in the nonlinear DD
models in Athey and Imbens (2006).

41The cohort here represents a group (treatment or control), while the low or high variance status plays
the role that is typically played by time, with geographic dispersion effects corresponding to time trends

30



parametric functions of student type and classroom characteristics, and that the treatment
indicator has a double index rr′, because treatment status is determined within each pair
of classrooms. Like in standard difference-in-differences, the estimand of interest can be
obtained through double differences, however, in this non-linear model the differences are
taken between functions, point-by-point. Before describing what is identifiable, I discuss
student types, which are an important feature of the model.

Student types. Scalar ci is an unobserved student type, and I assume that it is a cohort-
specific index function cTr(Xi) = θTrXi of the vector of observed student characteristics
Xi. Aggregating multiple student characteristics into a single scalar accomplishes four
goals. First, it reduces the curse of dimensionality when the difference-in-differences es-
timator is computed conditional on the scalar ci rather than the vector Xi, improving
precision of the estimator (Abadie 2005, Horowitz 2010). Second, it allows me to obtain
interpretable results, because heterogeneity of the treatment effect can be graphed simply
with respect to a single scalar. Third, it provides a natural empirical counterpart to the
theoretical cost of effort. In the theoretical model, students are allowed only one dimen-
sion of heterogeneity for tractability (game of status models like the one proposed here
have never been analytically solved with more than one level of heterogeneity). Section
6.3 discusses and provides evidence for the interpretation of ci as the theoretical cost of
effort. Fourth, and perhaps most importantly, letting the index function be cohort spe-
cific addresses a key feature of the data, that is, post-earthquake (treated) students have
all been affected by the earthquake, which may have increased their unobserved cost of
effort, while pre-earthquake (control) students have not. Therefore, a post-earthquake
student may have a different (unobserved) effort cost from a pre-earthquake student with
the same observed characteristics Xi. Modelling student type as an unobserved scalar
which is a cohort specific function of student characteristics allows me to correctly match
control and treated students on cost of effort, rather than on Xi. This would be precluded
in, for example, a quantile DD approach (see Appendix B.5).

Formally, the index function varies with cohort Tr to let earthquake damage at a stu-
dent’s home, measured by MSK-Intensity Ii at her home, affect ci in the post-earthquake

in the typical DD application.
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cohort, but not in the pre-earthquake cohort:

ci = cTr(Xi; θ) =

θ1yi,t−1 + θ2parental educi + θ3incomei + θ4genderi, if Tr = 0

cTr=0(Xi) + θ5Ii + θ6IiX
−
i , if Tr = 1

where yi,t−1 is lagged achievement, capturing academic skills, X−i is a vector grouping
together student’s skills, parental education (i.e., the average between mother’s and fa-
ther’s), household income and gender, with Xi = [X−i , Ii], and where IiX−i is an interac-
tion term capturing individual heterogeneity in how damage affects a student’s unobserved
type ci.42 Parameters θ5 and θ6 capture the direct effect of earthquake exposure on a stu-
dent’s type.

Identifiable classroom specific functions. Consider a classroom r. Conditional on
Wr, Tr, and σ2

r , under regularity conditions set out in Ichimura (1993), the mapping from
ci to achievement (h(ci, ·) as a function of ci in equation 4) and the parameters of the
index cTr(Xi) = θTrXi are identifiable:43

Yir = h(ci;Wr, Tr, σ
2
r) + εir ci = cTr(Xi) = θTrXi E[εir|ci,Wr, Tr, σ

2
r ] = 0. (5)

Conditional double difference of functions. Just like in a standard linear DD model,
within each classroom r the different components of h(·) as described in equation 4 are not
separately identified. However, the treatment effect of interest, which is the function pre-
multiplied by TrGrr′ in equation 4, is identified through a double difference. In contrast to
the standard linear model, the double difference is now performed between four classroom
specific functions, point-by-point. Consider two pairs of classrooms: one pair in the post-
earthquake cohort, r and r′ , and one pair in the pre-earthquake cohort, s and s′ . Assume
that Grr′ = 1 and Gss′ = 1, that is, r and s are the classrooms with the relatively higher
variance in MSK-Intensity within the pair. Moreover, assume that δrr′ = δss′ = δ, that is,
the treatment intensity within pair is the same across pairs. Finally, assume that, except

42For example, wealthier parents may try to attenuate the impact of the earthquake by providing more
resources to an affected child, or the psychological impact of Ii may vary by gender. In fact, I find that the
positive impact of Ii on ci is significantly stronger for female students, and this is compatible with findings
in the medical literature. For example, on a sample of young adults who survived the L’Aquila 2009
earthquake, females were significantly more likely to suffer from PTSD (Dell’Osso, Carmassi, Massimetti,
Daneluzzo, Di Tommaso, and Rossi 2011).

43The θ parameters are identified up to a normalisation (here, I set the coefficient on yi,t−1 to −1,
assuming that higher academic skills reduce cost of effort). The regularity conditions include assuming
that Xi has at least one continuously distributed component whose θ coefficient is nonzero, and h is
differentiable and nonconstant in ci (Ichimura 1993).
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for the variance in MSK-Intensity, these four classrooms share all other characteristics,
that is Wr = Wr′ = Ws = Ws′ = W . W is high-dimensional, this means not only that
the four classrooms share teacher and school characteristics, but also that the student
composition in terms of the distribution of X within the classroom is the same across
classrooms. Conditional on W and δ, the damage dispersion effect can be obtained as a
function of ci through the following double difference (which is visualised in Figures 6
and 7):

λDD(ci;W, δ) =
(
hr(ci)− hr′(ci)

)
−
(
hs(ci)− hs′(ci)

)
=

(
λGD(ci;W, δ) + λDD(ci;W, δ)

)
− λGD(ci;W, δ). (6)

hs(c;W, δ)

hs′ (c;W, δ)

c0

λGD
∆prehss′ (c;W, δ)

c0

PRE-EARTHQUAKE
V ars(I)− V ars′ (I) = δ > 0

hr(c;W, δ)

hr′ (c;W, δ)

c0

λGD + λDD

∆posthrr′ (c;W, δ)

c0

POST-EARTHQUAKE
V ar(I)r − V ar(I)r′ = δ > 0

Figure 6: Classrooms r, r′ , s, and s
′ have identical W and within-pair δ. λGD is the geo-

graphic dispersion effect function, λDD is the effect on achievement of increasing damage
dispersion by δ, as a function of student type c, conditional on W .

The differences are taken point-by-point, that is, for all values of ci. The fact that the
index function cTr(Xi; θ) is cohort specific is what permits correct comparisons between
pre- and post-earthquake students in this point-by-point differencing.44

44For example, suppose that we estimate that pre-earthquake ci = 1 · yi,t−1 and post-earthquake
ci = 1 · yi,t−1 − 2 · Ii. Then a pre-earthquake student of academic skill yi,t−1 = 10 is the appropriate
control for a post-earthquake (treated) student of higher academic skill yi,t−1 = 12, but who is hit by an
earthquake shock of 1 (12− 2 · 1 = 10), rather than for a post-earthquake student of the same academic
skill yi,t−1 = 10 who is hit by the same shock (10−2·1 = 8 6= 10). The fact that I estimate the parameters
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λGD + λDDλGD
∆prehss′ (c;W, δ)

∆posthrr′ (c;W, δ)

c0

λDD

∆posthrr′ (c)−∆prehss′ (c)

c0

Figure 7: Netting out the geographic dispersion effects. Notice that the difference between
the ∆h functions can be taken only over the overlapping portion of the two domains.
The domain of ∆posthrr′ is shifted to the right with respect to the domain of ∆prehss′
because all students in the post-earthquake cohort have been affected by the earthquake
and their cost of effort c is expected (and estimated) to be larger than for pre-earthquake
students. This plays the same role as, for example, the support restriction in the nonlinear
difference-in-differences models in Athey and Imbens (2006).

Matching and integration to obtain unconditional treatment effects under un-
balanced covariates. For each pair of pairs of classrooms in the data that are matched
on W and δ, the effect of damage dispersion on achievement as a function of student’s
type ci is identified through the conditional double difference in 6. Like with other
matching DD estimators, matching on W addresses the unbalance in the distribution of
covariates W between the control (pre-earthquake) and the treatment (post-earthquake)
groups (Smith and Todd 2005), shown in Table 1.
In principle, because in the data there are multiple quadruplets of classrooms that share
different values of W and δ, it is possible to identify non-parametrically how this function
varies with W and δ.45 However, to test the theoretical model it is sufficient to trace
how the damage dispersion effect varies with student type ci, regardless of the value of
treatment intensity δ (as long as δ > 0) and characteristics W . Therefore, classroom char-

of the cTr (Xi, θ) function allows me to make the correct comparisons between pre-earthquake control and
post-earthquake treated students when taking the point-by-point differences.

45While there is non-parametric identification, the standard error of an estimator that traced hetero-
geneity of the treatment effect by W and δ would be large, with poor power properties.
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acteristics and treatment intensities are integrated out using their empirical distribution.
First, I match classroom quadruplets in terms of W and δ and perform the conditional
double difference in 6. Second, let f(W, δ) indicate the empirical distribution of quadru-
plets of classrooms with the same W and δ. The effect of increasing damage dispersion,
unconditional on W and δ, is obtained by averaging the treatment effect over W and δ,
with δ > 0:

TE(ci) = E[λDD(ci;W, δ)] =
∫
λDD(ci;W, δ)I[δ > 0]f(W, δ)dWdδ (7)

where TE(ci) is the treatment effect of interest, and I[·] is an indicator function equal to
1 if its argument is true. In practice, matching quadruplets of classrooms with respect
to W and δ is performed by kernel weighting, in the spirit of Ahn and Powell (1993).
Because of the high-dimensionality of W , it would be difficult to find a quadruplet of
classrooms that are exactly identical in all elements of W ; nearest neighbour matching
is preferable.46 Weights are built with multivariate standard normal kernel functions.
Details of the weighting procedure can be found in Appendix B.1.2. Appendix B.1.1
presents the algorithm for the estimation of the semiparametric single-index model.
Implementation. Given estimated hr(·) functions for all classrooms in the sample, and
given kernel weights ωrr′ss′ for each quadruplet of classrooms in the sample (two from
each cohort), at each candidate value of c the estimate of the treatment effect TE(c) is
obtained through the following sample mean:

ˆTE(c) =
∑Npre−1
s=1

∑Npre

s′=s+1
∑Npost−1
r=1

∑Npost

r′=r+1 ωrr′ss′(∆postĥrr′(c;W, δ)−∆preĥss′(c;W, δ))∑Npre−1
s=1

∑Npre

s′=s+1
∑Npost−1
r=1

∑Npost

r′=r+1 ωrr′ss′
(8)

where Npost and Npre are the sample number of classrooms in the post- and pre-earthquake
cohorts, and the double difference at point c is at the numerator. Estimating ˆTE(c) over
a grid of values for c allows me to trace the treatment effect TE(c) as a function of student
types. Computing ˆTE(c) at each grid point requires a number of calculations of the order
of 1012, therefore, parallel processing is required. Using ∼ 2, 000 nodes on the UCL Legion
cluster, estimation is completed in around 70 hours.

46One additional regularity condition is required to apply kernel matching: the functions φ(cTr (Xi),Wr)
and λE(cTr (Xi),Wr) must be continuous in Wr, and the functions λGD(cTr (Xi),Wr, σ

2
r) and

λDD(cTr (Xi),Wr, σ
2
r) must be continuous in Wr and σ2

r . In Ahn and Powell (1993), this assumptions
corresponds to the continuity of the selection function (see page 9 of their paper). This guarantees that
there are no jumps when we compare pairs of classrooms that are similar but not identical in W and δ.
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5 Findings from the Nonlinear Empirical Model

Table 5 presents the parameter estimates. As expected, earthquake intensity is estimated
to increase student type and there are interactions with income and gender. The model
fit is very good, as can be seen in Table 6.

Table 5: Parameter Estimates (bootstrapped standard errors in parentheses)
Parameter Coefficient on Math Spanish
θ2 Parental Education −0.0116∗∗∗ −0.0212∗∗∗

(0.0052) (0.0045)
θ3 High Income Dummy −0.0560∗∗∗ −0.0356∗∗

(0.0162) (0.0175)
θ4 Female 0.1290∗∗∗ −0.2303∗∗∗

(0.0195) (0.0350)
θ5 MSK-Intensity 0.0326 0.0946

(0.0596) (0.1438)
θ61 MSK-Intensity*High Income −0.0004∗∗∗ -0.0004

(0.0000) (0.0027)
θ62 MSK-Intensity*Female -0.0031 0.0550∗

(0.0288) (0.0334)
* p < 0.10, ** p < 0.05, *** p < 0.01

The estimates of the treatment effect functions TE(ci) for Spanish and Mathematics
are reported in Figure 8. The effect of increasing damage dispersion on student test
scores is heterogeneous depending on a student’s type ci. It is worth noting that some
students benefit from an increase in damage dispersion, indicating that results from the
linear model mask considerable heterogeneity. Going from low to high c, the function̂TE(c) is negative and then positive for Spanish test scores, while it is positive, then
negative and then positive for Math test scores. This means that increasing the variance
of damage dispersion has a negative impact on the test scores of middle-c students, and
a positive impact on the test scores of high-c students, while it has a negative impact
on low-c Spanish students, and a positive impact on low-c Mathematics students. These
patterns are identical to those predicted by the comparative statics results reported in
Figure 1, with Mathematics following the lower panel pattern and Spanish the upper
panel pattern. They are consistent with stronger rank concerns in Mathematics than in
Spanish.

Figure 8 reports also bounds useful for testing the sign of TE(c) over its domain.
The statistical tests support the consistency of the empirical patterns with the theoretical
predictions: TE(c) is statistically negative for middle-c students and statistically positive
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Table 6: Model Fit, Test Scores

Mathematics Spanish
Actual Model Actual Model

Pre-Earthquake Cohort
Overall -.185 -.189 -.121 -.123
Female -.304 -.283 -.050 -.063
Male -.058 -.089 -.196 -.186
Female

Urban -.300 -.279 -.052 -.064
Rural -.322 -.302 -.043 -.056

Male
Urban -.035 -.066 -.180 -.172
Rural -.159 -.188 -.262 -.249

Female
Lower Income -.414 -.387 -.148 -.155
Higher Income -.130 -.120 .104 .083

Male
Lower Income -.222 -.246 -.348 -.328
Higher Income .155 .116 .001 -.003

Post-Earthquake Cohort
Overall -.222 -.228 -.153 -.156
Female -.307 -.292 -.058 -.078
Male -.132 -.159 -.254 -.239
Female

Urban -.302 -.287 -.071 -.086
Rural -.329 -.315 .001 -.039

Male
Urban -.120 -.148 -.257 -.246
Rural -.180 -.205 -.242 -.209

Female
Lower Income -.414 -.388 -.146 -.160
Higher Income -.151 -.151 .071 .042

Male
Lower Income -.237 -.262 -.351 -.322
Higher Income -.0004 -.0304 -.133 -.136
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for high-c students, while for low-c students it is statistically negative in Spanish, and
ambiguous in Mathematics. This is consistent with the model, which allows TE(c) to
take on any sign for low-c students. However, the statistical tests do not support a
difference in signs between Mathematics and Spanish for lower-c students.

In sum, the statistical test results support the model predictions, and indicate that
Spanish follows the patterns that the theory predicts under weaker rank preferences (top
panel of Figure 1). Moreover, the point estimates indicate a stronger rank preference in
Mathematics than in Spanish, however, identical patterns between Spanish and Mathe-
matics cannot be ruled out statistically. 47

6 Discussion and Robustness

6.1 Identification and Robustness to Fixed Effects

An earthquake is a complex disruption affecting not only students and households, but also
teachers and schools. Moreover, not all teacher and school characteristics are observed.
Therefore, the effect of damage dispersion may be entirely due to an endogenous response
of unobserved teacher and/or school inputs. If this was the case, the interpretation of
the empirical findings through the game of status model would be problematic. Here I
show, theoretically and empirically, that the results are not driven by the reaction to the
earthquake of unobserved school-level characteristics. Specifically, I exploit the fact that
some of the schools in the data have multiple classrooms for the same grade. I consider
school×cohort fixed effects that account for any change across cohorts of unobserved
school inputs, including changes due to an endogenous response to the earthquake (or to
any policy introduced in between cohorts).

Identification requires robustness to classroom level unobservables. Proposition 6.1
formalises robustness in terms of a restriction on the fixed effects. However, this restric-
tion cannot be tested directly on classroom fixed effects because the treatment effect of
interest is at classroom level. For this reason, I formalize and test the identifying re-
striction at school level. Additionally, in section 6.2 I provide evidence that classroom
level characteristics that were not used in estimation (the productivity of the Spanish and

47The magnitudes of the effects cannot be directly compared to the magnitudes of the effects from
the linear model. The nonlinear model’s effects are averages over the empirical distribution of treatment
intensities δ, while the coefficient in the linear model represents the effect of a marginal increase in δ.
Because the nonlinear model imposes fewer restrictions, it is more data-demanding, therefore, conditioning
on treatment intensity δ would generate power issues. Moreover, conditioning on δ is not needed to test
the comparative statics results.
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Figure 8: Estimated ̂TE(ci) for Spanish (top) and Mathematics (bottom) test scores.
Bounds for one-sided significance tests at the 10 percent significance level are reported.
When the lower bound is above 0, we accept the hypothesis that TE(c) > 0, when the
upper bound is below 0, we accept TE(c) < 0.

Mathematics teachers) satisfy this restriction.

First, I show theoretically that the nonlinear model is robust to the presence of
school×cohort fixed effects in the Data Generating Process (DGP), subject to a (weak)
restriction on the distribution of the fixed effects.
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Proposition 6.1 Robustness of the non-linear model to fixed effects. If the DGP
presents school×cohort fixed effects, the treatment effect TE(c) in 7 is identified in the
nonlinear model defined in 4 and 5 if

[
E[αMT |TM = 1, GMM ′ = 1, c,W, δ]− E[αMT |TM = 1, GMM ′ = 0, c,W, δ]

]
=

=
[
E[αMT |TM = 0, GMM ′ = 1, c,W, δ]− E[αMT |TM = 0, GMM ′ = 0, c,W, δ]

]
∀δ, c,W,(9)

where αMT is the fixed effect.
Under this condition ( 9), in the presence of school×cohort fixed effects in the DGP, the
point estimator of the treatment effect ˆTE(c) (equation 8) is unbiased at all points c.
The estimate converges in probability to the true treatment effect as the number of schools
in the sample goes to infinity.

Proof: see Appendix B.2.

First, an advantage of this result is that the number of classrooms per school, which is
typically finite in the population and small in my sample, does not need to go to infinity
for consistency. Second, the fairly weak restriction in Proposition 6.1 allows for a flexible
distribution of school×cohort fixed effects and, as shown in the proof, the fixed effects may
even have heterogeneous impacts across students (αMT (c)). Specifically, the expectation
of the fixed effect conditional on observed student, classroom, teacher and school charac-
teristics (c,W ) can be an arbitrary function, and it is allowed to change across cohorts to
capture a response to the earthquake of unobserved school inputs. Schools with different
observables can change their unobserved inputs differently in response to the earthquake.
Moreover, this change may have heterogeneous impacts on students. For example, schools
with better resources or schools subject to a stronger earthquake intensity may increase
the instructional hours by more than other schools, and they may increase their focus on
the most vulnerable students. What is not allowed is for the geographic dispersion of the
student body to determine how a school reacts to the earthquake in terms of unobserved
school inputs.48 This is not especially restrictive, because schools are allowed to respond

48To see this, notice that GMM ′ = 1 means that σ2
M = σ2

H and σ2
M ′ = σ2

L, with σ2
H − σ2

L = δ. Using
this result and rearranging, condition 9 becomes:[

E[αMT |TM = 1, σ2
H , c,W ]− E[αMT |TM = 0, σ2

H , c,W ]
]

=
=

[
E[αMT |TM = 1, σ2

L, c,W ]− E[αMT |TM = 0, σ2
L, c,W ]

]
∀σ2

H , σ
2
L, c,W.

The change in the mean of the fixed effect across cohorts must be the same for the high (σ2
H) and for the

low (σ2
L) geographic dispersion classroom, and this must be true ∀σ2

H , σ
2
L in the data.
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differently depending on their students’ composition, including variables that are corre-
lated with geographic dispersion like income variance.

Second, I propose an empirical test for this restriction.

Proposition 6.2 Identification test of the non-linear model in the presence of
fixed effects. If the conditional expectation of the school×cohort fixed effect is a linear
function of σ2

m and TM , with W and c entering in an additively separable way, then a
sufficient condition for identification of the treatment effect TE(c) in the nonlinear model
defined in 4 and 5 is that β3 = 0 in the following equation:

αMT = β0 + β1σ
2
m + β2TM + β3σ

2
mTM + g(Wm, ci; β4) + εmM ∀m ∈M. (10)

Proof: see Appendix B.2.
To verify if this condition is satisfied in the data, I estimate the linear model of spill-

overs in 18 in Appendix A.2 with the addition of school fixed effects, and compute
predicted fixed effects α̂MT using the estimated parameters. While the fixed effects are
identified also in the semiparametric model, those predicted from the linear model have
lower variance.49 I then verify if the condition for identification under linearity of the
fixed effects in 10 is rejected in the data by estimating the following linear model:

α̂RT = β0 + β1σ
2
r + β2TR + β3σ

2
rTR + β4WR + β5c̃R + εR (11)

where, for simplicity, I have replaced g(W, c; β4) with a linear function, and where c̃R are
student characteristics aggregated at the school level like, for example, average income and
average parental education.50 A t-test on the significance of the β̂3 estimated coefficient

49However, in the linear model only the average fixed effect across students in the same school can be
estimated. That is, the heterogeneity of the school effect across students cannot be captured in the linear
model. Therefore, the empirical application of the identification test that I present here tests robustness
of ˆTE(c) to a standard kind of school fixed effects (that is, a constant school effect for all students in
the same school). If the heterogeneity of the school effects could be estimated precisely, robustness of
ˆTE(c) to these more general effects could be tested. In the data only 37 percent of schools have multiple

classrooms, making precise estimation of the heterogeneous school effects difficult.
To keep a close correspondence between the semiparametric and the parametric model, the linear

regression used to compute the fixed effects contains the same set of W and X characteristics as the
non-linear model.

50For each school there are as many equations as there are classrooms, because σ2
r is classroom specific.

Therefore, the most appropriate model is a seemingly unrelated regression (SUR). However, given the
high correlation in σ2

r across classrooms within the same school, for simplicity, I compute overall school
level σ2

R, and estimate the regression in 11 using σ2
R in place of σ2

r . Because the SUR estimator is expected
to have a higher variance, ceteris paribus, it would reject β3 = 0 less often than the simpler model that I
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cannot reject β3 = 0, for both Mathematics and Spanish (p-values: 0.171 and 0.682
respectively). Estimation results are reported in Table 11 in Appendix B.2.2. Therefore,
the identifying assumption under fixed effects is not rejected.

6.2 Teachers

One important alternative channel that could generate the treatment effect is a response
to the earthquake of unobserved teacher inputs. The damage dispersion effect patterns
ˆTE(c) have been shown to be identified and estimated unbiasedly even in the presence

of school×cohort fixed effects. Therefore, all changes to unobserved teacher inputs at the
school level are accounted for.51

However, robustness to school×cohort fixed effects cannot account for changes in unob-
served teacher inputs at the classroom level. To rule out this channel, one approach would
be to include classroom×cohort fixed effects, which would capture any change across co-
horts in unobserved classroom inputs. However, the treatment variable is at the classroom
level, therefore, the treatment effect would not be identified. Instead, to verify empirically
whether teacher inputs could explain the treatment effect patterns, I use a measure of
teacher productivity in the classroom that is available both before and after the earth-
quake: the fraction of the national curriculum covered in class during the year by the
Spanish and Mathematics teachers in the sample. This is a unique feature of the dataset
because measures of teachers’ effort/productivity in the classroom are typically unavail-
able in large administrative datasets like the SIMCE. However, there are three caveats
to the use of this variable. First, it is subject to considerable non-response (35 percent
for Math and 30 percent for Spanish teachers) and this non-response is non-random (for
example, the mean of Math test scores when the variable is non-missing is 0.035 and it is
−0.066 when it is missing). Second, it is self-reported, and there may be legitimate con-
cerns of mis-reporting. Third, the survey question in the questionnaire for Math teachers
changed slightly in between cohorts. In spite of these caveats, it would still cause concern
if this (imperfect) productivity measure did not pass the empirical tests presented here.
First, I use this variable to run a similar identification test to that presented in Proposi-
tion 6.2. Intuitively, for teacher productivity to explain any part of the damage dispersion
effect, its response to the earthquake must vary with the geographic dispersion of the stu-

estimate, which has higher power. Because it is desirable to detect a wrong null with high probability if
β3 6= 0, the single regression model that I estimate ( 11) is preferable to SUR.

51For example, the treatment effect patterns are identified in the nonlinear model even if, in some or
all schools, all teachers were required to teach more hours because of the earthquake.
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dents in class.52 Finding that its response (if any) is independent of student geographic
dispersion is evidence against a contribution of teacher productivity to the damage dis-
persion effect, for the same logic presented in Proposition 6.1. Formally, I test for β3 = 0
in a regression like 11, where the dependent variable is the productivity of the teacher in
classroom. Regression results are reported in the first two columns of Table 14. β3 = 0
cannot be rejected at any conventional significance level for both Mathematics and Span-
ish, suggesting that the estimated treatment effects ˆTE(c) are not due to a change in
teacher productivity.
Second, I use teacher productivity as an additional regressor in the linear model of
spillovers in equation (18), to verify if it explains away average damage dispersion effects.
Results in the third row, columns 3 and 4 of Table 14 in Appendix D show that not
only the average damage dispersion effects are not explained away, but also that their
point estimates are very similar to those from the model that does not include teacher
productivity as regressors (compare with third row, columns 2 and 3 of Table 4). There-
fore, consistently with the previous result, this suggests that also the estimated average
treatment effects are not due to a change in teacher productivity.

While it is not possible to draw definitive conclusions from these results, they are
consistent with teacher productivity at the classroom level not entirely explaining the
damage dispersion effects and their patterns across students.

6.3 Linking the Empirical and the Theoretical Models

Discussion. In the theoretical model, students differ in terms of c, that summarises all
individual level determinants of achievement like, for example, academic skills, home en-
vironment, and any other factor that affects the ability to study. c increases cost of study
effort, and is informally referred to as cost of effort. To test the theoretical predictions, an
exogenous shock to the classroom variance of this cost is needed. For this to happen, indi-
viduals in the same classroom must be subject to different shocks. Such shocks are rare in
observational data, and they are difficult to generate within a randomised controlled trial
for ethical reasons. However, they were generated by the earthquake, which offers a unique
opportunity for testing. Any empirical model wanting to exploit this within-classroom
variation must posses a specific feature: it must capture how earthquake intensity at a
student’s home affects her unobserved cost of effort. Only in this scenario can variation
in earthquake exposure across classmates generate the variation to the classroom variance

52An equivalent way to phrase this condition is that the correlation between geographic dispersion of
the students and teacher productivity must change after the earthquake.
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of cost of effort that is needed to test the theory.
The empirical model estimates how own intensity of earthquake exposure affects a stu-
dent’s unobserved type ci through the function cTr(Xi; θ). This section provides evidence
in support of the interpretation of type ci as the theoretical cost of effort. Notice that the
empirical model does not restrict the impact of own earthquake exposure on achievement
to work only through ci: λE(·) in 4 captures cohort effects, including the effect of being
subject to the earthquake (dummy exposure measure), and it lets them depend arbitrar-
ily on student, classroom, school and teacher characteristics. Therefore, the empirical
model allows for multiple channels through which own earthquake exposure impacts own
achievement. Any impact on the student type ci is only one of them.
Post-estimation: parameter signs. Under the (necessary) normalisation that past
achievement decreases unobserved type ci (θ1 = −1), the other estimated θ parameters
have signs that are consistent with an interpretation of ci as cost of effort. For example,
higher household income is estimated to decrease ci, and earthquake intensity to increase
it, and to increase it by more for poorer families. Moreover, in Spanish there is a significant
positive interaction between MSK-Intensity and gender, which is consistent with the med-
ical finding of higher incidence of PTSD among female earthquake survivors (Dell’Osso,
Carmassi, Massimetti, Daneluzzo, Di Tommaso, and Rossi 2011). Additionally, at the
estimated parameter values the classroom variance of predicted ci (ĉi = cTr(Xi; θ̂)) is in-
creasing in the classroom variance of MSK-Intensity. Therefore, under the interpretation
of type ci as cost of effort, variation across classrooms in damage dispersion generates the
necessary variation in cost of effort dispersion.
Post-estimation: monotonicity test and why ci does not depend on an unob-
servable. One of the theoretical model’s implications is that, under the interpretation of
ci as cost of effort, achievement is monotonically decreasing in ci (see Proposition 2.1).
To verify this, in estimation I do not impose monotonicity of hr(ci) ∀r, the empirical
counterpart of the theoretical model’s achievement function y(c). Rather, monotonicity
is formally tested for. If the function that defines ci, cTr(Xi; θ̂), included an unobservable
argument, monotonicity of hr(ci) would have to be imposed for identification. By not let-
ting ci depend on an unobservable and, therefore, not imposing monotonicity, I can test
for it. Figure 12 in Appendix D shows an example of two estimated classroom-specific
functions ĥr(ĉi). As can be seen, the higher a student’s type ĉi is, the lower achievement
is. I formally test monotonicity of hr(ci) in ci using the method developed in Chetverikov
(2013). For all classrooms, the null hypothesis that the h function is monotonically de-
creasing in ci is not rejected at the α = 0.10 significance level (see Appendix B.3). This
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supports the interpretation of ci as cost of effort.
Survey evidence. Survey evidence suggests that seismic intensity at a student’s home
affected a student’s self-reported cost of exerting study effort.53 Conditional on student
academic skills and on parental education and income, post-earthquake students affected
by higher earthquake intensity report that it is more costly for them to study, as shown
in Table 15 in Appendix D. This is consistent with the interpretation of ci as cost of
effort.
Additional regression evidence. Type ci is increasing in earthquake intensity and
decreasing in academic skills. Therefore, if it is indeed cost of effort, we would expect
to see that it matters for achievement if it is the high- or the low-skill students in the
classroom who are more or less affected by the earthquake. Moreover, these effects should
be consistent with the theory.

Using a linear DDD model similar to 18, I find that, in Mathematics, it is worse for
achievement when it is the high skill rather than the low skill students who are affected
more harshly by the earthquake. In the main sample of Municipal schools, this effect is
driven entirely by a reduction in test scores of the most academically skilled students,
as can be seen in the second to fifth columns of Table (12) in Appendix B.4, where
model details can also be found. That is, conditional on own damage and on the skill
composition in the class, a high-skill student performs worse in a classroom where high-
skill students are hit more harshly than in one where low-skill students are hit more
harshly. This is consistent with the theoretical model. The empirically relevant prediction
for Mathematics is that low-cost students do worse when there are fewer other low-cost
students (lower panel of Figure 1). Therefore, conditional on own damage, high-skill
(low-cost) students are expected to perform worse in Mathematics when the proportion of
other low-cost students in the classroom has been decreased by the earthquake because the
other high-skill students have been hit more harshly. This is precisely what this additional
regression analysis finds, corroborating the specification for ci and its interpretation as
cost of effort.

6.4 Relationship to Other Nonlinear DD Models

Like the semiparametric model presented here, other nonlinear difference-in-differences
models estimate heterogeneity of the effects. The closest models to the one presented here

53Students were asked to rate how much they agree with sentences such as “It costs me to concentrate
and pay attention in class” and “Studying Mathematics costs me more than it costs my classmates”. I
combine the answers to these questions into a single factor.
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are the quantile Difference-in-Differences (QDID) and Changes-in-Changes (CIC) models
in Athey and Imbens (2006), and the nonlinear difference in differences models in Blundell
and Costa Dias (2000), Bell, Blundell, and Van Reenen (1999), Blundell, Costa Dias,
Meghir, and Van Reenen (2004), Smith and Todd (2005), Heckman, Ichimura, Smith,
and Todd (1998), Abadie (2005) and D’Haultfoeuille, Hoderlein, and Sasaki (2015).
However, three features set the model in this paper aside: nonseparability inX, continuous
treatment, and collapsing of the covariates in X into a single scalar. These three features
are necessary for testing the theoretical predictions, however, no existing method possesses
all three, as discussed in detail in Appendix B.5.

6.5 Self-selection into Subgroups of Friends

I have presented arguments and evidence against unobservables at the school level (fixed
effects) and teaching in the classroom driving the results. Here, I discuss another po-
tential alternative mechanism: self-selection into peer subgroups formed mainly of peers
with a similar ability (cost of effort), a mechanism proposed by Carrell, Sacerdote, and
West (2013) to explain their experimental findings.54 If only mean peer ability mat-
ters and if students choose more often to become friends with similarly able peers when
their availability increases, then we should observe a worsening of the outcomes of high-
cost (low-ability) students whenever there are more high-cost (low-ability) classmates.
This mechanism cannot explain my data, because high-cost (low-ability) students in both
Mathematics and Spanish classes increase their test scores when the proportion of high-
cost (low-ability) classmates increases following a variance increase.

7 Conclusions

Drawing on the theoretical literature on rank preferences, I propose a theory of peer
effects based on rank concerns. When it is not just an interest in learning, but also rank
concerns that motivate students to study, their effort choices are an equilibrium outcome.
They depend on the distribution of peer characteristics because, intuitively, how easy or
hard it is to obtain a good achievement rank depends on how able the other students are.
An important implication is that peer effects are heterogeneous and nonlinear.

My empirical findings show that the model predictions on the shape of peer effects
are borne out in a large dataset on Chilean 8th graders. I use an empirical strategy that

54Appendix B.6 discusses additional alternative mechanisms.
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combines a novel nonlinear DD model with data variation from a natural experiment
used for identification. The Chilean 2010 earthquake did not always affect students in
the same classroom equally, generating useful variation in the distribution of peer group
attributes. The empirical model is specifically designed to exploit this variation, and it
is carefully informed by the theoretical model. As a result, the treatment effects have a
direct structural interpretation.

Together with the fact that the theory of rank concerns seems to be useful to under-
stand other pieces of evidence in the literature, this finding indicates that rank concerns
are one possible channel generating peer effects. This has important implications for the
estimation of peer effects and for policy. First, rank concerns do not necessarily generate
outcome clustering around the mean of a reference group. Therefore, techniques that
look for evidence of clustering may yield false negatives on the existence of peer effects.55

Second, a normative implication of the paper is that rank concerns could be exploited by
policy-makers to increase study effort. To do so, it may be possible to optimally design
classroom allocations while simultaneously intervening on rank incentives. While rank
incentives in education have typically been the domain of affirmative action studies, and
classroom allocation rules of peer effect studies, this paper demonstrates that there could
be combined benefits from these two types of policies - and literatures - that have not
been explored yet.56
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A Appendix: Preliminary Analysis and Linear Model
of Peer Effects. FOR ONLINE PUBLICATION
ONLY

A.1 Effect of Own Earthquake Exposure

A.1.1 Test score value added model as a panel data model in weighted first
differences

The test score value added model is commonly used to account for unobserved student
characteristics when longitudinal data on student test scores are available, but only con-
temporary inputs (or proxies of inputs) are available. Following Todd and Wolpin (2003),
I show under what assumptions this model yields consistent estimates of the test score
production function.
In each cohort, each student’s test scores are observed twice: in 4th grade and in 8th

grade. I use index g for the 8th grade and g − 1 for the 4th grade. The test score value
added model nets out individual unobserved heterogeneity in a similar fashion to the fixed
effect model in first differences. The main difference is that in order for the value added
specification to yield consistent estimates, it must be that the individual’s permanent
unobserved heterogeneity impacts test scores at a geometrically declining rate over time.
Formally, assume that the production function of the test score of student i in classroom
r and grade g is the following (ignoring, for the moment, the earthquake treatment):

yirg = α1Xig + α2Zrg + α̃1Xi,g−1 + α̃2Zr,g−1 + α3gφi + λg + εirg (12)

where φi captures individual’s unobserved heterogeneity and λg captures grade effects
affecting all students in the grade equally. Vectors X and Z contain student and classroom
characteristics, respectively. The latter include average peer characteristics (e.g. average
income, average parental education). The following transformation takes first differences
where past test scores are weighed by γ:

yirg − γyir,g−1 = α1Xig + α2Zrg + (α̃1 − γα1)Xi,g−1 + (α̃2 − γα2)Zr,g−1 +

(α3g − γα3,g−1)φi + (λg − γλg−1) + εirg − γεir,g−1.
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When the effect of student and classroom characteristics and of permanent unobserved
heterogeneity decline geometrically over time, the coefficients on Xi,g−1, Zr,g−1, and φi are
zero, and this first difference model is equivalent to a test score value added model:

yirg = γyir,g−1 + α1Xig + α2Zrg + ∆λ+ ∆εir E[∆εir|yir,g−1, Xig, Zrg] = 0 (13)

where ∆ is an operator performing the weighted first difference (∆ωi = ωig − γωi,g−1).
∆λ is now the constant, capturing the value added by 8th grade with respect to 4th

grade. Under the identifying assumptions that observed inputs and unobserved student
characteristics have geometrically declining effects over time, and that trends in temporary
shocks (∆εir) are uncorrelated with lagged test scores and observed contemporary inputs,
estimation of 13 by OLS yields consistent estimates of the test score production function
parameters.

A.1.2 Effect of earthquake dummy: a DDD model

Consider the post-earthquake cohort of students. Test scores are observed at two points in
time, and treatment occurs only in the second period. Moreover, only students in earth-
quake regions are affected (Ei = 1), those in non-earthquake regions are never affected
(Ei = 0). In principle one could use a panel data difference-in-differences model (DD) in
first differences to net out individual specific fixed effects and compare test score growth
in Ei = 1 to test score growth in Ei = 0. Rather than a model in first differences, I use
a test-score value added model because it is more in line with the literature on test score
production functions. Section A.1.1 shows that this can be interpreted as a panel data
model in weighted first differences. The test score value added model with earthquake
treatment becomes:

yirg = γyir,g−1 +α1Xig+α2Zrg+δ(Ei ·dg)+∆λ+∆εir E[∆εir|yir,g−1, Xig, Zrg, Ei ·dg] = 0
(14)

where dg = 1 for students in the second period (8th grade), 0 otherwise. The vector of
classroom and school characteristics, Zrg, contains also MSK-Intensity in the school town.
For δ to identify the causal impact of being in an earthquake region on test scores, being
in an earthquake region is allowed to be correlated with permanent unobserved student
characteristics (φi in 12), but it must be uncorrelated with unobserved individual trends
in test scores (∆εir). In particular, there cannot be any differential trends in earthquake
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and non-earthquake regions.
Estimation of 14 on the pre-earthquake cohort yields a statistically significant and pos-
itive coefficient on the earthquake dummy: 0.064 for Math and 0.020 for Spanish.57

Because the earthquake never happens in the pre-earthquake cohort, this is an indi-
cation that the earthquake region dummy is correlated with unobserved trends in test
scores, violating the identifying assumption for the panel data DD model. Formally,
δpre = E[∆εpreir |yir,g−1, Xig, Zrg, Ei · dg = 1]− E[∆εpreir |yir,g−1, Xig, Zrg, Ei · dg = 0], that is,
δ in the pre-earthquake cohort captures the difference across regions in expected shock
trends. This could be due to non-random locations of households, that is, the choice of
living in an earthquake region or in a non-earthquake region is correlated with unobserved
household characteristics affecting individual student trends in test scores.
To net out this potential bias, I use a panel data difference-in-differences-in-differences
model (DDD), where the additional difference is across cohorts. Under the assumption
that the difference in trends between regions is constant across cohorts, any earthquake
region effect δ in the pre-earthquake cohort captures the bias that must be netted out
from the earthquake region effects estimated on the post-earthquake cohort. This is in the
spirit of the differentially adjusted estimator proposed by Bell, Blundell, and Van Reenen
(1999). Formally, letting Ti = 1 if a student is in the post-earthquake cohort and Ti = 0
if she is in the pre-earthquake cohort, and allowing the parameters of the test score pro-
duction function in 14 to change across cohorts, I estimate the following regression DDD
model:

yirg = γyir,g−1+θ0+θ1Ti+θ2Xig+θ3XigTi+θ4Zrg+θ5ZrgTi+θ6(Ei ·dg)+θ7(Ei ·dg ·Ti)+ζir,
(15)

where θ0 = ∆λpre is the effect of 8th grade on test score growth in the pre-earthquake
cohort, and θ1 are cohort effects on grade effects, i.e. θ1 = ∆λpost − ∆λpre. The model
allows also for cohort effects on the coefficients of the test score production function:
θ3 = αpost1 −αpre1 and θ5 = αpost2 −αpre2 . Parameter θ6 captures the correlation due to non-
random location choices: θ6 = δpre. The coefficient of interest is θ7, equal to δpost − δpre,

57These are from regressions with the full set of controls listed in the caption of Table 13. The p-value
is 0.000. Full regression Tables available upon request. Notice that the coefficients on Ei in Table 13,
columns (2) and (4), are very similar. This is expected, because, as shown below, they estimate the
same object: the “effect” of the earthquake on test scores in the pre-earthquake cohort, δpre, due to
non-random location choices.
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which identifies the causal impact of the earthquake on test scores.58 The identifying
assumption is that residence in an earthquake region can be correlated with unobserved
individual test score trends, however, the difference between regions in unobserved shock
trends must be constant across cohorts:

E[∆εpreir |yir,g−1, Xig, Zrg, Ei · dg = 1]− E[∆εpreir |yir,g−1, Xig, Zrg, Ei · dg = 0]

= E[∆εpostir |yir,g−1, Xig, Zrg, Ei · dg = 1]− E[∆εpostir |yir,g−1, Xig, Zrg, Ei · dg = 0].

A.1.3 Effect of earthquake intensity: an application of Card (1992) and a
placebo test of the identifying assumption

Card (1992) proposes a difference-in-differences estimator with continuous treatment,
based on a fixed effect panel data model. The key identifying assumption is that treat-
ment intensity can be correlated with individual permanent fixed effects, but not with
individual unobserved trends.

In this context, consider data from the post-earthquake cohort. Moreover, restrict the
sample to earthquake regions because the measure of treatment intensity (MSK-Intensity)
is available only for those regions. Treatment occurs only in the second period (dg = 1,
i.e. 8th grade), where all students are affected, but there is variation in the intensity of
treatment, Ii.59 The test score value added model becomes:

yirg = γyir,g−1 + α1Xig + α2Zrg + δ(Ii · dg) + ∆λ+ ∆εir. (16)

where ∆ is the operator performing weighted first differences defined in A.1.1. Notice
that Ii · dg is an interaction term, like Ei · dg, but here the interaction terms takes on a
distinct value for each individual. Like in Card (1992), the identifying assumption is that
E[∆εir|yir,g−1, Xig, Zrg, Ii · dg] = 0. That is, the differenced error term ∆εir, capturing an
individual trend in transitory shocks, must be uncorrelated with the intensity of treat-

58θ7 can be expressed as [
E[∆y|E = 1, T = 1, ·]− E[∆y|E = 0, T = 1, ·]

]
−

[
E[∆y|E = 1, T = 0, ·]− E[∆y|E = 0, T = 0, ·]

]
.

59This variable plays the role of the fraction of teenagers in a state likely to be affected by the minimum
wage increase in Card (1992), where the unit of observation is the state rather than the individual.
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ment in 8th grade, Ii ·dg, conditional on lagged test score and on individual and classroom
characteristics X and Z. Intensity Ii · dg can be correlated with permanent unobserved
heterogeneity, φi, but it cannot be correlated with individual specific unobserved trends
in test scores, ∆εir. Results are reported in the main text, in columns 1 and 2 in Table
3.
I perform a placebo test of the identifying assumption. I build a measure of future earth-
quake intensity in the pre-earthquake cohort of students, using the MSK formula based
on location. I then estimate 16 in the pre-earthquake cohort of students. Because these
students are never subject to the earthquake, the δ coefficient captures a correlation be-
tween household locations and unobserved test score trends, conditional on the other
student and classroom characteristics. Simple descriptive statistics show that there is a
correlation between earthquake intensity and student characteristics, with the intensity
of shaking stronger in poorer areas.60 However, the placebo test yields an insignificant
δ̂ coefficient. Therefore, after conditioning on student observable characteristics such as
parental income, a household’s location has no residual predictive power on test score
growth in a DD model like 16. This can be seen in columns 3 and 4 in Table 3, where I
report results for the restricted sample of public school students to control for house type,
as explained in section 3.1. This placebo test gives me confidence that the identifying
assumption of the regression DD model with continuous treatment in 16 identifies the
causal impact of earthquake intensity.

A.2 Effect of Peer Earthquake Exposure: Extending Card (1992)
to Estimate Spill-overs in a Linear Model

First, I perform a placebo test that shows that identification would not be satisfied in
a DD model like the one in the previous section, but where the treatment variables are
now peer rather than individual intensity variables. Formally, I estimate the following
regression on the pre-earthquake cohort of students:

yirg = γyir,g−1 + θ0 + θ1Xig + θ2Zrg + θ3(Īr · dg) + θ4(DIr · dg) + ζirg (17)

where Īr is average damage in classroom r, DIr is dispersion in damage in classroom r,
and where the classroom characteristics vector Zrg contains also MSK-Intensity in the

60For example, the correlation between MSK-Intensity and household income is −0.0201 and it is
significant at the 0.001 level.
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town of the school and, in some specifications, classroom composition variables such as
mean and variance of income. There are two possible types of violations to the identify-
ing assumption of the DD model: a statistically significant θ̂3 would indicate correlation
between average intensity and test score growth, while a statistically significant θ̂4 would
indicate correlation between dispersion in intensity and test score growth. Both types
of violations would generate inconsistent estimates of the effects of interest if 17 was
estimated on the post-earthquake cohort. Using standard deviation in MSK-Intensity as
a measure of dispersion, Table 7 shows that θ̂3 is statistically insignificant, while θ̂4 is
positive and statistically significant under all specifications.61 Therefore, the ideal model
should account for correlation between dispersion of MSK-Intensity in the classroom and
trends in unobserved test score shocks.

Table 7: Placebo test: estimating the impact of mean and variance of future earthquake
intensity in the pre-earthquake cohort. (Municipal schools sample)

(1) (2) (3) (4)
Math TS Math TS Spanish TS Spanish TS

(Īr · dg) 0.002 -0.103 -0.012∗∗ -0.109
(0.004) (0.108) (0.004) (0.178)

(DIr · dg) 0.232∗∗∗ 0.137∗∗∗ 0.271∗∗∗ 0.178∗∗∗
(0.030) (0.041) (0.032) (0.044)

Lagged TS 0.694∗∗∗ 0.672∗∗∗ 0.713∗∗∗ 0.699∗∗∗
(0.003) (0.004) (0.003) (0.005)

Controls No Yes No Yes
Observations 45,814 26,145 46,127 25,628
Standard errors in parentheses. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Controls: whether the student lives in the same town where the school is, gender, mother’s education,
father’s education, household income, intensity of earthquake in home town and in school town,
class size, whether the Math or Spanish teacher is female, has a postgraduate degree, has a
permanent contract, her tenure at the school, her teaching experience. A constant is always included.

Like in the model presented in A.1.2 to estimate the effect of the earthquake dummy,
in this DDD model the last difference refers to the test score value added, a weighted
first difference, and the first difference is across cohorts. Unlike that model, the second

61θ̂3 is statistically significant but small only for Spanish test scores and only when no controls are
used.
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difference here is a derivative, because of the continuous nature of treatment. Specifically,
I estimate the following regression model:

yirg = γyir,g−1 + θ0 + θ1Ti + θ2Xig + θ3XigTi + θ4Zrg + θ5ZrgTi +

θ6(Īr · dg) + θ7(Īr · dg)Ti + θ8(DIr · dg) + θ9(DIr · dg)Ti + ζirg (18)

Parameter θ1 captures direct cohort effects on test score growth, and θ3 and θ5 capture
cohort effects on the coefficients of the test score production function. Together, they
capture any change in the test score production function that occurred across cohorts, for
example, induced by nation-wide policies such as the 2008 reform to the voucher system.
The parameters of interest are the coefficients on the triple interactions: θ7, the effect on
own test score of a marginal increase in average earthquake intensity in the classroom,
and θ9, the effect on own test score of a marginal increase in intensity dispersion in the
classroom.
The identifying assumption is that E[ζirg|Ti, Xig, Zrg, Īr · dg, DIr · dg] = 0, which is equiv-
alent to E[∆εpostir |Īr · dg, DIr · dg, Xig, Zrg] = E[∆εpreir |Īr · dg, DIr · dg, Xig, Zrg], where ∆
is an operator performing weighted first differences as explained above. In particular,
average and dispersion in damages in the classroom are allowed to be correlated with
trends in temporary shocks, but this correlation must be constant across cohorts. Under
this identifying assumption, θ7 and θ9 identify the causal impacts of the peer variables.
They can be expressed as follows:

θ7 = ∂E[yir|Ti = 1, DIr · dg, Īr · dg, Xig, Zrg]
∂Īr · dg

− ∂E[yir|Ti = 0, DIr · dg, Īr · dg, Xig, Zrg]
∂Īr · dg

θ9 = ∂E[yir|Ti = 1, Īr · dg, DIr · dg, Xig, Zrg]
∂DIr · dg

− ∂E[yir|Ti = 0, Īr · dg, DIr · dg, Xig, Zrg]
∂DIr · dg

where it is clear that potential biases are netted out.

A.2.1 Robustness of the findings from the linear model of spill-overs

Controlling for distribution of student characteristics in the classroom. Table
8 shows results from the linear model of spill-overs when student composition controls
are included. Dispersion is measured by the standard deviation in MSK-Intensity. The
first and third row in each panel demonstrate that the main results hold: dispersion in
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intensity has a large and negative impact on test scores even after controlling for variables
that could be correlated with geographic dispersion in the classroom, such as standard
deviation of parental incomes, parental education, and student academic ability. More-
over, the estimated effect of mean intensity is always insignificant in the preferred sample
of Municipal schools. It is significant only in the sample of all schools, as seen in the
fourth column, where, however, the point estimate is very small. Finally, the second row
of each panel shows the pre-existing correlation between geographic dispersion and trends
in temporary shocks, which is always positive, as discussed in the main text.

Controlling for school level dispersion in MSK-Intensity. To verify that the
classroom is the relevant level of analysis rather than the school, I add to the model
in 18 two regressors: variance of MSK-Intensity at the school level, and this variance
interacted with the treatment indicator (Tr · dg). If the impact of the damage dispersion
in the classroom is in fact due to damage dispersion at the school level, introducing these
additional regressors should drive the coefficient θ9 (effect of classroom damage dispersion)
to zero. As shown in Table 9, while variance at the school level has a separate, imprecisely
estimated and often insignificant effect, the damage dispersion effect at the classroom
level remains highly significant and similar in magnitude to the model without controls for
school-wide variance in damages, for all specifications.62 Therefore, the classroom damage
dispersion effect is not explained away by school level damage dispersion, indicating that
the classroom is a relevant level of analysis.

A.2.2 Testing the identifying assumption of the linear model of spill-overs
using data from regions not affected by the earthquake

The linear model finds an intensity dispersion effect on test scores. Identification hinges
on the key assumption that the correlation between students’ geographic dispersion and
unobserved test score trends would be constant across cohorts in the absence of treat-
ment, that is, if the earthquake did not happen. To test this assumption, I must be able
to estimate in both cohorts the effect of geographic dispersion in the absence of damage
dispersion. This is possible using data from the regions which were not affected by the

62First, compare the first row of the second panel in table 9, to the third row of the first panel of Table
4 in the main text. These estimates are the effect of damage standard deviation at the classroom level in
the preferred sample of Municipal school, with and without controlling for the effect of damage standard
deviation at the school level. They are very similar. Second, when controlling for school level damage
dispersion, the effect of classroom level dispersion remains significant always except in the specifications
with controls in the (least preferred) sample of all schools. Given that the main nonlinear analysis is
performed on the sample of Municipal schools, this is not a concern.

61



Table 8: Linear model of spill-overs, controlling for student composition variables.
(1) (2) (3) (4)

Math TS Math TS Spanish TS Spanish TS
Sample of all schools
(Īr · dg)× Ti 0.004 -0.008 0.002 -0.016∗∗

(0.005) (0.005) (0.005) (0.005)

(DIr · dg) (st. dev.) 0.086∗∗∗ 0.0803∗∗ 0.141∗∗∗ 0.127∗∗∗
(0.024) (0.025) (0.025) (0.027)

(DIr · dg)× Ti (st. dev) -0.113∗∗∗ -0.072∗ -0.140∗∗∗ -0.089∗∗
(0.030) (0.031) (0.032) (0.034)

Observations 263,723 156,851 263,655 153,390
Sample of Municipal schools
(Īr · dg)× Ti 0.008 -0.004 0.011 -0.008

(0.006) (0.007) (0.007) (0.007)

(DIr · dg) (st. dev.) 0.103∗∗ 0.125∗∗ 0.223∗∗∗ 0.190∗∗∗
(0.035) (0.041) (0.034) (0.045)

(DIr · dg)× Ti (st. dev) -0.101∗ -0.110∗ -0.209∗∗∗ -0.171∗∗
(0.044) (0.049) (0.047) (0.053)

Observations 105,646 58,615 105,819 56,643
Composition controls Yes Yes Yes Yes
Additional controls No Yes No Yes
Standard errors in parentheses. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Composition controls: classroom average and standard deviation of: father’s education, mother’s education,
household income, lagged Math test scores and lagged Spanish test scores.
Additional controls: whether the student lives in the same town where the school is, mother’s education,
father’s education, household income, intensity of earthquake in hometown and in school town,
gender, lagged test score in Math or Spanish, class size, the teaching experience of the
Math or Spanish teacher, whether he/she is female, has a postgraduate degree, has a permanent
contract, her tenure at the school, average MSK-intensities among classmates, cohort dummy,
and, for the sample of all schools, whether the school is public. A constant is always included.

earthquake. Ideally, one would estimate the same linear spill-over model from the main
analysis using non-earthquake regions only. Evidence in favour of the identifying assump-
tion would be a zero coefficient on the triple interaction (DIr · dg) × Ti. However, the
measure of dispersion DIr used in the main analysis is based on MSK-Intensity, which is
not available for non-earthquake regions (Astroza, Ruiz, and Astroza 2012). Therefore,
I need to find a measure of dispersion that is valid across both earthquake and non-
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Table 9: Linear model of spill-overs, controlling for damage dispersion effects at the school
level.

(1) (2) (3) (4)
Math TS Math TS Spanish TS Spanish TS

Sample of all schools
(DIr · dg)× Ti (st. dev) -0.212∗∗∗ -0.104∗∗ -0.228∗∗∗ -0.037

(0.042) (0.037) (0.042) (0.039)

(DIR · dg)× Ti (st. dev. school) 0.015 0.104∗ 0.001 -0.121∗
(0.057) (0.049) (0.057) (0.053)

Observations 275,319 156,937 275,590 153,477
Sample of Municipal schools
(DIr · dg)× Ti (st. dev) -0.219∗∗∗ -0.184∗∗∗ -0.273∗∗∗ -0.182∗∗

(0.054) (0.055) (0.057) (0.059)

(DIR · dg)× Ti (st. dev. school) -0.133 + 0.115 -0.181∗ -0.006
(0.075) (0.074) (0.079) (0.079)

Observations 110,075 58,661 110,500 56,687
Controls for school-wide damage variance Yes Yes Yes Yes
Additional controls No Yes No Yes
Standard errors in parentheses. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
School damage variance controls: school variance of MSK-Intensity, alone and interacted with treatment
indicator dg · Ti.
Additional controls: same as in Table 8.

earthquake regions.
I define a classroom as geographically homogeneous if all students reside in the same
town, and geographically dispersed if at least one student comes from a different town.
In the entire sample, 55 percent of schools are geographically dispersed according to this
measure. This figure is 58 percent for schools in earthquake regions, and 42 percent for
schools in non-earthquake regions. To ensure that the choice of measure does not drive
the results, I first repeat the main analysis on earthquake regions with a linear spill-
over model that uses this new dispersion measure. The main difference with the main
DDD model is that now dispersion is a discrete variable. Letting Gr indicate the discrete
geographic dispersion measure, I estimate the following regression DDD model:

yir = γyir,g−1 + θ0 + θ1Ti + θ2Xig + θ3XigTi + θ4Zig + θ5ZrgTi +

θ6(Gr · dg) + θ7(Gr · dg)× Ti + ζirg. (19)
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The results are qualitatively similar to the continuous treatment DDD model used
in the main text, as can be seen in the bottom panel of Table 10. Unsurprisingly, the
magnitudes of are different because of the different definition of geographic dispersion. In
earthquake regions, a larger geographic dispersion is estimated to have a negative impact
on test scores (the estimate is significant in all but one specifications). Because these
regions are affected by the earthquake, this could reasonably be due to dispersion in
damages within the classroom.
This is reassuring, because it indicates that the discrete measure of geographic dispersion
is capable of detecting changes across cohorts in dispersion effects, if they are present.
Therefore, if no effects are found in non-earthquake regions, there were no changes across
cohorts in dispersion effects. Results from estimation on non-earthquake regions are in
the top panel of Table 10. Reassuringly, the third row shows that the estimate of θ7

is always small and always statistically insignificant in models with covariates (it is only
significant in the model without covariates in columns 3). This indicates that in the richer
models the identifying assumption of common correlation between geographic dispersion
and test score trends across cohorts is justified.

B Appendix: Nonlinear Model. FOR ONLINE PUB-
LICATION ONLY

B.1 Estimation of the Semi-parametric Model

B.1.1 Algorithm for the Estimation of the Semi-parametric Single-Index
Model (Notice: notation must be changed for consistency with main
text)

1. Normalize to a constant one of the elements of θ, because only the ratios among the
components of θ are identified. I normalize to -1 the coefficient on lagged test score
(θ1).

2. Make an initial guess for all the other elements of θ.

3. Form ci ∀i according to ci = −yi,t−1 + θ2parental educi + θ3incomei + θ4genderi

if i belongs to the pre-earthquake cohort, and ci = −yi,t−1 + θ2parental duci +
θ3incomei + θ4genderi + θ5Ii + θ6IiX

−
i if i belongs to the post-earthquake cohort.

X−i includes household income and student gender.
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Table 10: Testing the linear model of spill-overs using non-earthquake regions. Sample of
Municipal schools.

(1) (2) (3) (4)
Math TS Math TS Spanish TS Spanish TS

Non-earthquake regions
(DIr · dg) 0.015 -0.038∗∗ 0.031∗ -0.010

(0.012) (0.015) (0.013) (0.015)

Ti 0.025∗ 0.002 0.053∗∗∗ 0.006
(0.011) (0.011) (0.011) (0.012)

(DIr · dg)× Ti -0.014 0.013 -0.030+ -0.010
(0.017) (0.018) (0.018) (0.019)

Lagged TS 0.664∗∗∗ 0.679∗∗∗
(0.005) (0.005)

Female -0.084∗∗∗ 0.143∗∗∗
(0.008) (0.009)

Mother’s Education 0.008∗∗∗ 0.010∗∗∗
(0.002) (0.002)

Observations 47,396 23,473 47,253 23,298
Earthquake regions

(DIr · dg) 0.145∗∗∗ 0.027∗∗ 0.125∗∗∗ 0.010
(0.008) (0.008) (0.008) (0.009)

Ti 0.027∗∗∗ 0.008 0.031∗∗∗ -0.009
(0.008) (0.008) (0.009) (0.008)

(DIr · dg)× Ti -0.088∗∗∗ -0.034∗∗ -0.094∗∗∗ -0.017
(0.011) (0.011) (0.012) (0.012)

Lagged TS 0.666∗∗∗ 0.684∗∗∗
(0.003) (0.003)

Female -0.096∗∗∗ 0.142∗∗∗
(0.005) (0.006)

Mother’s Education 0.010∗∗∗ 0.012∗∗∗
(0.001) (0.001)

Observations 110,320 58,783 110,748 56,805
Controls No Yes No Yes
Standard errors in parentheses. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Dispersion DIr is a dummy variable equal to 1 if at least one student in the class comes from a different town.
Controls: whether the student lives in the same town of the school, father’s education, household income,
class size, the teaching experience and tenure at the school of of (resp.) the Math and Spanish teacher,
whether he/she is female, has a postgraduate degree, has a permanent contract. A constant is included.
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4. Estimate E(yi|c, l; θ) ∀l by Nadaraya-Watson kernel regression with weights wi:

ĥr(c; θ) =
∑
i∈r wiK

(
ci−c
b

)
yi∑

i∈r wiK
(
ci−c
b

)
with a standard normal Kernel: K(ψ) = (2π)− 1

2 exp(−0.5ψ2) and optimal band-
width b = 1.06σ̂cn−1/5, minimizing the Approximated Mean Integrated Squared
Error (AMISE).63 The weights wi are such that only observations i where the p.d.f.
of c at ci exceeds a small positive number are used (see Ichimura (1993) and Horowitz
(2010)). Observation i is excluded from the calculation of ĥ at ci.

5. Compute the sum of squared residuals in each r at the current guess for θ: SSRr(θ) =∑
i∈r wi(yi − ĥr(ci; θ))2. The weights are the same as those used in the kernel esti-

mator of h.

6. Update guess for θ using Generating Set Search algorithm (HOPSPACK).

7. Repeat steps 1-6 until convergence to the minimizer of ∑r SSRr(θ).

Notice that unlike the standard semiparametric single-index model, here the SSR(θ) is
computed in each classroom r, and its sum over classrooms is minimized. The dataset is
clustered at the classroom level. While the functions h are allowed to differ by classrooms,
the parameter θ is restricted to be identical in all classrooms. This assumption improves
efficiency of the estimator of θ. To account for the clustered sample design in the esti-
mation of the standard errors of the θ parameters, I bootstrap 100 samples stratified at
the classroom level, and I estimate θ in each bootstrapped sample to obtain the standard
errors.

The standard errors of ̂TE(c), which are needed to test the comparative statics result,
cannot be easily bootstrapped for computational reasons.64 Instead, I use the result in
Ichimura (1993), who proves that the asymptotic variance of ĥr(c) in the appropriately
weighted semiparametric single-index model above is identical to the asymptotic vari-
ance of a non-parametric conditional mean estimator. The variance of such estimator is
V (ĥr(c)) = σ2

r

nrhrfr(c)
∫
K2(ψ)dψ+o(n−1b−1

r ), where σ2 is the variance of εir, br is the band-
width, nr is the size of classroom r (on average this is around 30), and fr(c) is the density

63The MISE is equal to E{
∫

[ĥ(c) − h(c)]2dx} =
∫ [

(Biasĥ)2 + V (ĥ)
]
dc, and AMISE substitutes the

expressions for the bias and variance of ĥ with approximations. See Pagan and Ullah (1999), p. 24.
64This would require submitting around 4,000 jobs of duration 72 hours each.
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at c in classroom r. The kernel K(·) is the normal kernel, resulting in
∫
K2(ψ)dψ = 0.2821.

I estimate the asymptotic variance of ĥr(c) ∀r on a fine grid for c. I substitute f(c) with
its kernel estimator, and σ2

r with its estimator obtained by averaging the squared residuals
in each classroom: σ̂2

r =
∑

i∈r(yi−ŷi)2

nr−1 . I assume that the covariances between the ĥr(c)
belonging to different classrooms r are zero ∀c, and I obtain the following expression for
the variance of ̂TE(c):

V
( ̂TE(c)

)
=
Npre−1∑
r=1

Npre∑
r′=l+1

Npost−1∑
s=1

Npost∑
s′=s+1

κ2
rr′ss′

(
V
(
ĥposts (c)

)
+ V

(
ĥposts′ (c)

)
+ V

(
ĥprer (c)

)
+ V

(
ĥprer′ (c)

))
.

The weights κrr′ss′ are given by:

κrr′ss′ = ωrr′ss′∑Npre−1
r=1

∑Npre

r′=r+1
∑Npost−1
s=1

∑Npost

s′=s+1 ωrr′ss′

where ωrr′ss′ is defined in equation 20 below.

B.1.2 Kernel Weighting

To ensure that the classrooms are similar, I assign increasing weights to quadruplets that
are more similar in terms of W and δ. I construct weights using multivariate standard
normal kernel functions. As in the main text, let ss′ index a pre-earthquake classroom
pair, and rr′ a post-earthquake classroom pair. Letting t = r, r′, s, s′ I assign the weight
1
b
k
(
Wt−Wt′

b

)
to each of the pairs tt′ ∈ {rr′, ss′, rs}. This ensures similarity between pairs

within (tt′ = rr′, ss′) and across (tt′ = rs) cohorts.65 Finally, I build a weight that is
declining in |δss′ − δrr′ |, to guarantee that the pre- and post-earthquake pairs differ in
terms of geographic dispersion δ in a similar way: 1

bδ
k
(
δss′−δrr′

bδ

)
. The weight for the

quadruple, ωrr′ss′ , is the product of these four kernel weights:

ωrr′ss′ = drr′ss′
1
bδ
k

(
δss′ − δrr′

bδ

) ∏
tt′∈{rr′,ss′,sr}

1
b
k
(
Wt −Wt′

b

)
(20)

where drr′ss′ is a dummy variable equal to one if δrr′ > 0 and δss′ > 0, zero otherwise.
65I use a unique bandwidth b. Following Pagan and Ullah (1999), I normalize the elements in Wt so

that they all have the same standard deviation and using a unique bandwidth is admissible.
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B.2 Robustness to Fixed Effects

B.2.1 Robustness to Fixed Effects: Proofs

Proof of Proposition 6.1.
Suppose that the true Data Generating Process is the nonlinear model in 4, augmented
with unobserved school×cohort effects αRT :

YirR = H(cTr(Xi),Wr, Tr, σ
2
r , R) + εirR

= h(cTr(Xi),Wr, Tr, σ
2
r) + αRT + εirR

= φ(ci,Wr) + λGD(ci,Wr, σ
2
L) + Tr ·

[
λE(ci,Wr) + λDD(ci,Wr, σ

2
L)
]

+

+Gr,r′ · λGD(ci,Wr, δ) + Tr ·Grr′ · λDD(ci,Wr, δ) + αRT + εirR (21)

To keep track of the school each classroom is in, I use an upper case letter for the school,
so, for example, classroom r is in school R, classroom r′ is in school R′, et cetera. The
fixed effect αRT is identified from the distribution of achievement Y conditional on stu-
dent characteristics X in schools with multiple classrooms that are identical in terms of
Wr, Tr, σ

2
r ,∀r ∈ R. Consider one quadruplet of classrooms, r, r′ from the pre-earthquake

cohort, l, l′ from the post-earthquake cohort, sharing the same W and with Grr′ = 1,
Gss′ = 1, and δrr′ = δss′ = δ. I drop the T subscript from the fixed effect because the
school index now also uniquely identifies the cohort. Conditional on a point c, on W and
on δ, the double difference now yields:

(
Hr(ci)−Hr′(ci)

)
−
(
Hs(ci)−Hs′(ci)

)
=

(
λGD(ci;W, δ) + λDD(ci;W, δ)

)
− λGD(ci;W, δ) +

+(αR − αR′)− (αS − αS′)

= λDD(ci;W, δ) + (αR − αR′)− (αS − αS′) + ζiRR′SS′ .(22)

There are two cases two consider. First, when R = R′ and S = S ′, that is, when within
cohorts the pairs of classrooms are in the same school, school×cohort fixed effects would
not affect the unbiasedness of the nonlinear estimator, nor its efficiency, because the fixed
effects cancel out. No restrictions on the fixed effects would have to be imposed. However,
only 37 percent of schools in the sample have more than one classroom, hence, it is rea-
sonable to expect that there is only a small number of within cohort matched classroom
pairs that belong to the same school. Therefore, I consider the properties of the nonlinear
model in the more empirically relevant case that R 6= R′ or S 6= S ′ or both.
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In this case, it is easy to see that the conditional expectation of the double difference in
22, E

[(
Hr(ci)−Hr′(ci)

)
−
(
Hs(ci)−Hs′(ci)

)
|c,W, δ

]
, is equal to the conditional damage

dispersion effect, λDD(ci;W, δ), if and only if

E
[
(αR − αR′)− (αS − αS′)|c,W, δ

]
= 0 ∀c,W, δ, (23)

where the expectation is taken with respect to the distribution of school×cohort fixed
effects. In turn, when the condition in 23 is true, equation 7 identifies the treatment
effect of interest, TE(c), and the expectation of the sample mean in 8 is equal to TE(c)
for all values of c. That is, the nonlinear estimator is unbiased. To see why, notice that
when the true DGP includes fixed effects, equation 8 is equivalent to:

ˆTE(c) =
∑Npre−1
s=1

∑Npre

s′=s+1
∑Npost−1
r=1

∑Npost

r′=r+1 ωrr′ss′(∆postĥrr′(c;W, δ)−∆preĥss′(c;W, δ))∑Npre−1
s=1

∑Npre

s′=s+1
∑Npost−1
r=1

∑Npost

r′=r+1 ωrr′ss′
+

+
∑Npre−1
s=1

∑Npre

s′=s+1
∑Npost−1
r=1

∑Npost

r′=r+1 ωrr′ss′(α̂R − α̂R′)− (α̂S − α̂S′)∑Npre−1
s=1

∑Npre

s′=s+1
∑Npost−1
r=1

∑Npost

r′=r+1 ωrr′ss′
.

The second line is the empirical counterpart of E
[
E
[
(αR − αR′) − (αS − αS′)|c,W, δ

]]
,

and, under condition 23, its expectation is equal to 0 by the central limit theorem.
Additionally, as the number of schools goes to infinity, the second line of the expression
above converges to zero (its population counterpart under 23) by the weak law of large
numbers for independent and not identically distributed random variables.66 Therefore,
when there are school×cohort fixed effects in the DGP, condition 23 is a necessary and
sufficient condition for the identification of the conditional treatment effect λDD(ci;W, δ),
and it is sufficient for the identification of the unconditional treatment effect of interest,
TE(c). Finally, using the definitions of R,R′, S and S ′, condition 23 can be rewritten as
it appears in the main text:

[
E[αMT |Tm = 1, GMM ′ = 1, c,W, δ]− E[αMT |TM = 1, GMM ′ = 0, c,W, δ]

]
=

=
[
E[αMT |Tm = 0, GMM ′ = 1, c,W, δ]− E[αMT |TM = 0, GMM ′ = 0, c,W, δ]

]
∀c,W, δ.

66The elements of the average in the second line of the expression above are not identically distributed
because the sampling variance of each element depends on the school size, that is, on the sample size on
which the fixed effects that enter the double difference are calculated. It is the number of schools that
must go to infinity for convergence because the expectation in 23 is taken with respect to the school
fixed effect distribution.
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In addition, notice that the school effects may have heterogeneous impacts on students.
To see why, replace αRT with a function αRT (c) and all derivations above hold true.

Proof of Proposition 6.2.
The sufficient condition for identification with fixed effects in 9 must be true for every
δ. In particular, it must necessarily be true for δ → 0, in which case, if the conditional
expectation of the fixed effect is differentiable in σ2

m, it must be that

∂E[αM |TM = 1, c,W, σ2
m]

∂σ2
m

= ∂E[αM |TM = 0, c,W, σ2
m]

∂σ2
m

∀m ∈M,∀σ2
m, c,W. (24)

A specification for the conditional expectation of the fixed effects that is useful for testing
is the special case in which this expectation is linear in σ2 and T . In this case, condition
24 is also sufficient for identification of TE(c) when there are school×cohort fixed effects
in the DGP.67 A further simplifying (but not necessary) assumption is that W and c

enter in an additively separable way. Condition 24 under this model of fixed effects is
equivalent to β3 = 0 in:

αMT = β0 + β1σ
2
m + β2TM + β3σ

2
mTM + g(W, c; β4) + εmM . (25)

Therefore, β3 = 0 is a sufficient condition for identification in the presence of fixed effects,
when the fixed effects follow the specification in 25.

B.2.2 Robustness to Fixed Effects: Empirical Test

See Table 11.

B.3 Testing Monotonicity of h(c)

The procedure that I use is an application of Chetverikov (2013). It would be computa-
tionally unfeasible to perform the test in all classrooms. Therefore, I create 72 categories
of classrooms that have similar distributions of ci, and test monotonicity within each
category. I consider classroom categories containing approximately 60 classrooms each.
Classrooms in the same category share similar mean and variance of ci. Therefore, the
theoretical model predicts that the equilibrium achievement functions y(c) should be very
similar across classrooms within each category. The monotonicity of h(c), the empirical

67To see why, notice that if E[αM |TM , c,W, σ2
m] is linear in σ2

m and it has the same slope under TM = 1
and TM = 0, then condition 9 is satisfied for all values of δ and not only for δ → 0.
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Table 11: Empirical test of identification in the presence of school×cohort fixed effects
(1) (2)

Maths Predicted Fixed Effects Spanish Predicted Fixed Effects
β1 -0.310 0.348

(0.276) (0.277)

β2 1.428∗∗∗ -0.352∗∗∗
(0.0475) (0.0485)

β3 0.471 -0.143
(0.344) (0.348)

Constant β0 -2.284∗∗∗ -1.269∗∗∗
(0.173) (0.179)

School and student controls Yes Yes
Observations 1,810 1,778
Standard errors in parentheses. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Controls: school level averages of father’s education and income, teaching experience
of (resp.) Math and Spanish teacher, and MSK-Intensity at the school.
β3 in equation 11 is not statistically different from zero, therefore, the identifying
condition under school×cohort fixed effects is not rejected by the data.
β3 is insignificant even in the absence of controls (tables available upon request).

counterpart of y(c), is tested within each one of these categories. Separating the sample
in categories makes this procedure feasible from a computational point of view. In all
categories, the null hypothesis that the h function is decreasing is not rejected at the
α = 0.10 significance level.

Technical details on the test’s implementation and formulae can be found in the Online
Supplementary Material on the author’s webpage. I follow the choice of bandwidth rec-
ommended in Ghosal, Sen, and Van Der Vaart (2000), and I adopt the plug-in approach
to simulate the critical values.

An important distinction with Chetverikov (2013) is that the ci values in my sample are
estimated (and not observed); ĉi = θ̂TrXi. However, this additional noise is asymptotically
negligible because the bandwidth used in the kernel weighting functions goes to zero
as the sample size increases, and because θ̂ is root-n consistent (as shown in Ichimura
(1993)), therefore, it is faster than the nonparametric rates appearing in the derivations
in Chetverikov (2013).
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B.4 Correlation between Earthquake Damage and Academic
Skills

Figure 9: Distribution of the within classroom correlation between lagged Mathematics
test scores and MSK-Intensity at the student’s home. There is considerable sampling
variation due to the finite size of classrooms. The distribution for the case of lagged
Spanish test scores is very similar.

In the population, there is only a small correlation between a student’s academic skills
(as measured by lagged test scores) and the intensity of the earthquake in her home town.
However, because of sampling variation, within many classrooms this correlation takes on
larger values, as can be seen in Figure (9). I use this sampling variation to estimate the
(causal) impact on achievement of the classroom correlation between earthquake damage
and student academic skills. I estimate regressions of this form:

yir = β0 + β1(Cr · dg) + β2Ti + β3(Cr · dg)Ti + α1Xi + α2Zir + α3Ii + εir (26)

where Cr is the correlation in classroom r between MSK-Intensity and student academic
skills, as measured by lagged test scores. MSK-Intensity is available only in earthquake
regions so this estimation is performed on those regions only. A positive correlation means
that it is the more academically skilled students who sustain larger damages, while a neg-
ative correlation means that it is the least academically skilled ones who do so. The
parameter of interest is β3, the causal impact of larger correlation on achievement, which
can be expressed as: β3 = ∂E[y|C,T,X,Z]

∂C·d |T=1 − ∂E[y|C,T,X,Z]
∂C·d |T=0. Like in the linear model in

A.2, the common location effects assumption is invoked for identification. Here, location
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effects are defined as the (spurious) effect of Cr on test scores due solely to the location
of students.
Table (12) reports various estimates for β3 under different specifications of (26), and
using different sub-samples of the data. While for Spanish test scores no patterns are
detectable, for Mathematics an interesting pattern emerges. When it is the more highly
skilled students who are affected more harshly by the earthquake, students do on average
worse, conditional on the level of damage at a student’s own home, on a student’s aca-
demic skill and on the skill composition in the classroom.

Table 12: Effect on Math (Spanish) test scores of the correlation in the classroom between
ability in Math (Spanish) and MSK-intensity.

(1) (2) (3) (4) (5)
All sample Quartile 1 Quartile 2 Quartile 3 Quartile 4

Mathematics
Municipal Schools
Fewer Controls -0.0687∗ 0.0488 -0.0515 -0.0555 -0.2664∗∗∗

(0.0230) (0.0491) (0.0546) (0.0646) (0.0793)
More Controls -0.0743∗ 0.0185 -0.0510 -0.0615 -0.2297∗∗

(0.0336) (0.0568) (0.0613) (0.0718) (0.0851)

Spanish
Municipal Schools
Fewer Controls 0.0032 0.0474 0.0219 0.0275 -0.1184

(0.0311) (0.0524) (0.0582) (0.0655) (0.0710)
More Controls -0.0189 0.0389 -0.0482 0.0062 -0.0789

(0.0354) (0.0612) (0.0666) (0.0735) (0.0877)
Standard errors in parentheses. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Only earthquake regions included in the samples as MSK-Intensity is available
only in these regions. The first line of each panel shows coefficient estimates from
regressions where the only individual controls are lagged Mathematics (top) or Spanish
(bottom) test score and MSK-intensity at the student’s home. The second line refers to
regressions with additional individual controls. The quartile columns refer to regressions
on sub-samples defined by the quartiles of the lagged Math (top panels) or Spanish
(bottom panels) test scores distribution in the sample regions. Adding student
composition controls to these tables (mean and variance of lagged test scores, etc.) does
not change the results. Full regression Tables available upon request.
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B.5 Relationship with Nonlinear Difference in Differences Mod-
els

Nonseparability in X is due to the fact that student type ci is determined differently
in the pre- and post-earthquake cohort. As a result, the outcome function cannot be
expressed as a component that only depends on damage dispersion status (high or low)
and one that only depends on cohort, conditional on X. This is shown in subsection
B.5.1 below. As described in footnote 44 in the main text, this feature of the model
is important to make the correct comparisons between treated, post-earthquake students
and control, pre-earthquake students. Separability is assumed in the QDID model, as well
as in the models that, like the model in this paper, combine matching with differences
in differences, that is, Blundell and Costa Dias (2000), Bell, Blundell, and Van Reenen
(1999), Blundell, Costa Dias, Meghir, and Van Reenen (2004), Smith and Todd (2005),
Heckman, Ichimura, Smith, and Todd (1998), and Abadie (2005). These models, there-
fore, are not well-suited in this context.
As described in section 4.2.1, the model in this paper accommodates the continuity of the
treatment variable. This is not done within the frameworks of the Changes-in-Changes
and quantile difference-in-differences models (Athey and Imbens 2006) nor within the
framework of the propensity score matching models in Blundell and Costa Dias (2000),
Bell, Blundell, and Van Reenen (1999), Blundell, Costa Dias, Meghir, and Van Reenen
(2004), Smith and Todd (2005), and Heckman, Ichimura, Smith, and Todd (1998).
On the other hand, the multi-level treatment case in Abadie (2005) and the model in
D’Haultfoeuille, Hoderlein, and Sasaki (2015) accommodate continuous treatment. How-
ever, these last two models, like all other models, do not allow the researcher to collapse
the student covariates in Xi into a single scalar, ci. As explained in 6.3, this is an
important feature of the model for testing the theoretical predictions.

B.5.1 Nonseparability

To exemplify non-separability, I describe it in the context of a QDID model applied to
the context of this paper. Such a model would assume additive separability of the out-
come function. Specifically, the outcome function in the absence of treatment (which is
used to build the distribution of counterfactual outcomes for treated individuals) would
be assumed to be: Y N = h(U,G, T,X) = hG(U,G,X) + hT (U, T,X) where G indicates
dispersion (high or low) and T indicates cohort, U is an individual’s unobservable, and
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X is a vector of individual characteristics.68 That is, function h would be composed
of an outcome function that only depends on dispersion status hG and one that only
depends on cohort hT , conditional on X. In the context of this paper this assumption
is not satisfied if the vector X enters the outcome function as an index ci and if the
same vector X contributes to generate a student’s type ci differently in the pre- and
post-earthquake cohort. This is the case when damage to a student’s home has no ef-
fect on students’ cost of effort before the earthquake (because damage has not occurred
yet), but it does after the earthquake. Formally, the identifying assumption for QDID
fails if what enters the outcome function is an index c which is a cohort-specific func-
tion of X. The data generating process in the absence of treatment would then be
Y N = h(U,G, T, cT (X)) = hG(U,G, cT (X)) + hT (U, T, cT (X)), where it is clear that the
first function depends on both G and T and, therefore, QDID would be misspecified,
because additive separability would not be satisfied. The model presented in this paper
relaxes the assumption of additive separability conditional on X. Additive separability
holds only conditional on a value for the index c.

B.6 Additional Alternative Mechanisms

First, I consider the theory of social cognitive learning, which posits that students learn
from similar classmates (Bandura 1986, Schunk 1996). Rank concerns, too, imply that
students benefit from having similarly able classmates, because this triggers a healthy
competition. However, the two theories can be distinguished. Specifically, social cog-
nitive learning would require that low-cost students in both Mathematics and Spanish
classes increase their test scores when damage dispersion increases, because of the larger
proportion of low-cost classmates. However, I find that low-cost students in Spanish
classes obtain lower test scores, as predicted by the rank concerns channel.

Second, I consider cooperative behavior between students affected by the earthquake.
If students who were less affected by the earthquake helped the more affected ones, for
example by hosting them at their less affected homes, then it could be possible that to
classrooms with a larger variance in damages do not correspond classrooms with a larger
variance in cost of effort. In spite of this potential attenuation mechanism, estimation

68I am switching the notation with respect to, for example, the notation in Athey and Imbens (2006).
In particular, the control group here is T = 0, the pre-earthquake cohort, rather than G = 0. All
results in Athey and Imbens (2006) are unchanged, one must only keep in mind that the time-trend there
corresponds to the geographic dispersion effect here.

75



results do detect a worsening of student type and of achievement at higher earthquake
intensity levels, and the variance in predicted cost of effort is increasing in the variance in
MSK-Intensity at the estimated parameter values. Therefore, if such an insurance mech-
anism took place, the empirical findings can be thought of as lower-bounds in absolute
value.

C Theoretical Appendix. FOR ONLINE PUBLICA-
TION ONLY

C.1 Differential Equation

The first-order differential equation characterizing equilibrium strategies is obtained by
rearranging the first order condition in 1, and substituting c′(e) = 1

e′ (c) :

e
′(ci) =

(
g(ci)

1−G(ci) + φ

)(
V (y(e), q(e, c))
a(µ)V1 + V2

∂q
∂e

)
. (27)

= g(ci)
1−G(ci) + φ

ψ(ei, ci).

C.2 Proof of Proposition 2.1

The proof is an adaptation of the proof in Hopkins and Kornienko (2004), where equilib-
rium strategies are strictly increasing and where the consumption and positional goods
are two separate goods.

First, it is easy to show that the boundary conditions in the statement of the Propo-
sition are optimal for the student with the highest cost, c̄. The student with the highest
type, c̄, chooses the effort function that maxims utility V in the absence of rank con-
cerns, as specified by the boundary condition in the statement of the Proposition. To see
why, notice that in equilibrium her utility from rank is zero, therefore, she maximizes V
because V × F + φ× V = V × 0 + φ× V = φ× V .

Next, I show that if the strategy e∗(c) is a best response to other students’ effort
choices, then it is decreasing.If a student i of type ci exerts effort ei = e∗(ci) and this is a
best response to the efforts of the other students as summarized by the effort distribution
FE(·), then it must be that ei ≥ enr(ci), where enr(ci) solves the first-order condition
in the absence of rank concerns, i.e., V1a(µ)|e=enr = −V2

∂q
∂e
|enr . This is because if e <
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enr(ci), then FE(e)+φ < FE(en)+φ and V (y(e(c)), q(e(c), c)) < V (y(enr(c)), q(enr(c), c)).
Therefore, V (y(e), q(e, c)) (FE(e) + φ) < V (y(enr), q(enr(c), c)) (FE(enr) + φ), i.e., any
level of effort below the no-rank-concerns level is strictly dominated by the no-rank-
concerns level. Suppose that equality holds, so ei = enr(ci). Then e∗(·) is decreasing
because enr(ci) is decreasing. This follows from the assumptions on V (·) that V11 = 0,
V22 = 0, Vij ≤ 0 for i 6= j, and from the assumptions on the cost of effort function that
∂q
∂c
> 0, ∂q

∂e
> 0, ∂2q

∂2e
> 0 and ∂2q

∂e∂c
≥ 0. To see why, let FOC(e, c) = V1a(µ) + V2q1 and

notice that by the Implicit Function Theorem:

denr
dc

= −∂FOC/∂c
∂FOC/∂e

.

The numerator is:

∂FOC

∂c
= a(µ)V12

∂q

∂c
+ V22

∂q

∂e

∂q

∂c
+ V2

∂2q

∂e∂c
≤ 0.

The denominator is:

∂FOC

∂e
= a(µ)2V11 + a(µ)V12

∂q

∂e
+
(
a(µ)V21 + V22

∂q

∂e

)
∂q

∂e
+ V2

∂2q

∂2e
≤ 0.

As a result, e∗(·) is decreasing in c when it is equal to optimally chosen effort in the
absence of rank concerns, because denr

dc
≤ 0.

If equality does not hold, we want to show that if ei is a best-response and ei > enr(ci),
then it is still the case that ei is decreasing in ci. First, I show that for any other choice
ẽi ∈ (enr(ci), ei),

∂V

∂ci
(y(ei), q(ei, ci)) (FE(ei) + φ) < ∂V

∂ci
(y(ẽi), q(ẽi, ci)) (FE(ẽi) + φ) . (28)

Rewrite the left-hand side as:

∂V

∂ci
(y(ei), q(ei, ci)) (FE(ẽi) + φ) + ∂V

∂ci
(y(ei), q(ei, ci)) (FE(ei)− FE(ẽi)) .

The first term is smaller or equal to the right-hand side of equation 28, because ∂V
∂c

is
decreasing in e by the assumptions that V21 ≤ 0, V22 = 0, ∂q

∂c
> 0, V2 < 0, and ∂2q

∂c∂e
≥ 0. To

see why, notice that ∂2V
∂c∂e

=
(
V21a(µ) + V22

∂q
∂e

)
∂q
∂c

+V2
∂q
∂c∂e
≤ 0. The second term is strictly

negative, because first, ∂V
∂ci

is strictly negative by virtue of the assumptions that V2 < 0
and ∂q

∂c
> 0, and second, (FE(ei)− FE(ẽi)) > 0. To see why the latter is true, notice that
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for e > enr, V (y(e), q(e, c)) is decreasing in e. Therefore, if e is a best-response, it must
be the case that FE(ei) > FE(ẽi), otherwise a student could lower effort and obtain a
higher utility, while not lowering her status. This establishes the inequality in 28, so that
at ei, the overall marginal utility with respect to c ( ∂

∂c
(V (y, q)(FE(e) + φ))) is strictly

decreasing in e. This implies that an increase in type c leads to a decrease in the marginal
return to e, therefore, the optimal choice of effort e must decrease.

To show that if an effort function is an equilibrium strategy, then it must be continuous,
suppose not. That is, suppose that that there was a jump downwards in the equilibrium
effort function e∗(c) at c̃, so that limc→c̃+ e

∗(c) = ẽ < e∗(c̃). Then, there would exist an
ε > 0 small enough, such that the student of type c̃− ε can reduce her effort to ẽ, which is
below e∗(c̃− ε), and obtain a discrete increase in utility because of the lower effort, while
her rank would decrease by less, by continuity of the rank function S(·) at c̃. Therefore,
there exists a student with an incentive to deviate, and such discontinuous e∗(c) function
cannot be an equilibrium strategy.69

Uniqueness of the solution to the differential equation in 27, and therefore uniqueness
of the equilibrium, follows from the fundamental theorem of differential equations. The
boundary condition pins down the unique solution.
Intuition for equilibrium uniqueness. Intuitively, uniqueness of the equilibrium fol-
lows from two key assumptions: achievement gives utility per se, i.e., irrespectively of
the status (rank utility) it provides, and individuals have different costs of producing
achievement. A common type of multiplicity of equilibria in this class of games is when
all individuals exert the same amount of effort. If this were an equilibrium, there would
be an infinite number of equilibria. However, all students playing the same level of effort
e∗ is not an equilibrium, because students with a high enough cost (i.e., with a cost above
a certain cutoff that depends on e∗, i.e., c > cutoff(e∗)), have an incentive to reduce
effort, obtain zero rank, and enjoy their private utility from achievement. Therefore, the
classical problem of multiplicity of equilibria in coordination games does not arise.

C.3 Comparative Statics

Definition Two distributions GA, GB with support on [c, c̄] satisfy the Unimodal Likeli-
hood Ratio (ULR) order, GA �ULR GB, if the ratio of their densities L(c) = gA(c)/gB(c)
is strictly increasing for c < c̃ and strictly decreasing for c > c̃ for some c̃ ∈ [c, c̄) and if

69The remaining part of the proof, showing that the equilibrium strategy is strictly decreasing and
differentiable, is a straightforward adaptation of the lengthy proofs in Hopkins and Kornienko (2004),
and it is available from the author upon request.
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µA ≥ µB.

In particular, if B has the same mean but higher variance than A, then GA �ULR GB.
Define the cutoffs ĉ− and ĉ+ as the extremal points of the ratio (1−GA(c)+φ)/(1−GB(c)+
φ) when GA �ULR GB. It can be shown that these cutoffs are such that c < ĉ− < ĉ+ ≤ c̄,
and they can be conveniently interpreted as cutoffs that separate type categories.70 Low
c students are those with c ∈ [c, ĉ−), middle c students as those with c ∈ (ĉ−, ĉ+), and
high c students as those with c ∈ (ĉ+, c̄]. The model has the following prediction:

Proposition C.1 (Adapted from Proposition 4 in Hopkins and Kornienko (2004)). Sup-
pose eA(c) and eB(c) are the equilibrium choices of effort for distributions GA and GB. If
GA �ULR GB and µA = µB, then:

• y (eA(c)) crosses y (eB(c)) at most twice. Moreover, y (eA(c)) < y (eB(c)) for all
c ∈ [ĉ+, c̄) with a crossing in (c̃, ĉ+) so that y (eA(c)) > y (eB(c)) for all c ∈ [ĉ−, c̃],
with a possible crossing on [c, ĉ−).

Proof The proof is a straightforward adaptation of the lengthy proof in Hopkins and
Kornienko (2004). It is available from the author upon request.

D Appendix: Additional Tables and Figures. FOR
ONLINE PUBLICATION ONLY

70The proof is available upon request from the author. It is a modification of the lengthy proof in
Hopkins and Kornienko (2004), there the c.d.f. functions, rather than their complement, appear in the
ratio.
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Figure 10: Source: Comerio (2013). Handmade sign found in Cauquenes, Chile, on
February 2, 2012. Translation: “Reconstruction is like God. Everyone knows it exists,
but nobody has seen it.”

Figure 11: Schools where not all students are affected equally by the earthquake, and within school
standard deviation in damages. There are three important features: 1. there are many dots on the map,
i.e. many schools have a geographically dispersed student body; 2. dots have different sizes, i.e. there is
across school variation in within school damage dispersion; 3. even schools close to each other suffered
different damage dispersions.
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Table 13: Effect of being exposed to the earthquake (binary variable) on Math and Spanish
test scores (Municipal schools). DDD model.

(1) (2) (3) (4)
Math TS Math TS Spanish TS Spanish TS

Ei · dg 0.078∗∗∗ 0.084∗∗∗ 0.031∗∗∗ 0.028∗∗
(0.007) (0.008) (0.007) (0.009)

Ti 0.025∗∗ 0.007 0.042∗∗∗ -0.002
(0.008) (0.008) (0.009) (0.009)

Ti × Ei · dg -0.029∗∗ -0.021∗ -0.048∗∗∗ -0.018+

(0.010) (0.010) (0.011) (0.011)

Lagged TS 0.667∗∗∗ 0.684∗∗∗
(0.003) (0.003)

Controls No Yes No Yes
Observations 156506 81635 156801 79458
Standard errors in parentheses. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Controls: whether the student lives in the same town where the school is, gender, mother’s education,
father’s education, household income, class size, whether the Math or Spanish teacher is female,
has a postgraduate degree, has a permanent contract, her tenure at the school,
and her teaching experience. A constant is always included.

Figure 12: Examples of estimated h(c) functions in two classrooms.
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Table 14: Robustness to teacher productivity in the classroom.

Dependent Variable: Curriculum Covered Test Score
Mathematics Spanish Mathematics Spanish

(1) (2) (3) (4)
β1 (st. dev.) -0.00246 0.00525 0.151∗∗∗ 0.217∗∗∗

(0.0412) (0.0355) (0.0454) (0.0483)

β2 (cohort) -0.0105 0.0191 0.0454 0.0643
(0.0439) (0.0357) (0.0460) (0.0479)

β3 (st. dev.× treatm. dummy) 0.0364 0.0264 -0.164∗∗ -0.154∗∗
(0.0513) (0.0435) (0.0553) (0.0586)

Curriculum Covered 0.276∗∗∗ 0.135∗∗∗
(0.0181) (0.0223)

Constant β0 0.555∗∗∗ 0.638∗∗∗ -0.486∗∗∗ -0.423∗∗∗
(0.0430) (0.0337) (0.0412) (0.0435)

Controls Yes Yes Yes Yes
Observations 2,902 3,187 41,737 45,319
Standard errors in parentheses. + p < 0.105, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Notes. The sample is the same as the sample in the main analyses: Municipal schools.
Models (1) and (2) are regression 11. The unit of observation is the classroom. Included regressors are
the classroom means of: MSK-intensity, also interacted with the cohort dummy, lagged Math and Spanish test
scores, mother’s and father’s education, income; and the rich set of teacher and classroom characteristics
as in the main linear model of spillovers.
In models (3) and (4) the unit of observation is the student. Included regressors are mean of MSK-intensity
in the classroom, also interacted with the cohort dummy, damage at the student’s home and the same rich set
of student, teacher and classroom controls as in the main linear model of spillovers (see caption of Table 4).
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Table 15: Probit regression, marginal probability estimates reported. Dependent vari-
ables: being at the top (1) or bottom (2) third of the distribution of elicited cost of
effort.

top 33 percent bottom 33 percent
(1) (2)

Lagged Math TS −0.055∗∗∗ 0.100∗∗∗
(0.002) (0.002)

Seismic intensity 0.013∗∗∗ −0.011∗∗∗
at student’s home (0.002) (0.003)

SES Controls Yes Yes
Observations 46,059 46,059
Standard errors in parentheses. + p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001.
SES controls: father’s and mother’s education, household income.
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