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Abstract

Much evidence exists of heterogeneous and non-linear ability peer effects in test
scores. However, little is known about the mechanisms that generate them and
whether this evidence can be used to improve the organization of classrooms. This
paper is the first to study student rank concerns as a mechanism behind ability peer
effects. First, it uses a theoretical model where students care about their achievement
relative to that of their peers to derive predictions on the shape of peer effects. Sec-
ond, it proposes a new method to identify heterogeneous and non-linear peer effects.
Third, it tests the theoretical predictions in a novel empirical setting that uses the
Chilean 2010 earthquake as a natural experiment. The results indicate that rank
concerns generate peer effects among Chilean 8th graders. An important implication
is that educators can exploit the incentives generated by academic competition when
choosing classroom assignment rules.

KEYWORDS: Peer Effects in Education, Model of Social Interactions, Rank Con-
cerns, Testing Theoretical Predictions, Natural Experiment.



1 Introduction

Peers can have very important effects on the development of one’s human capital, and
the study of peer effects is a cornerstone in the Economics of Education literature.
One of the most important goals of peer effect research in education, dating at least
to the Coleman report (Coleman 1966), is to design classroom allocation rules that
improve student outcomes. As a first step towards this goal, most of the existing
research has been concerned with identifying and quantifying peer effects.

Estimates from linear-in-means models of the impact of average peer ability on
student outcomes vary greatly, and many studies find no effects (Angrist 2014). How-
ever, several studies that relax the assumptions of the linear-in-means model, for
example, by allowing higher moments of the peer ability distribution to matter or
by allowing for heterogeneous impacts, find larger and significant peer effects in the
classroom (Sacerdote 2014).1 While this suggests that policies that regroup students
across classrooms may generate social gains, we still lack an understanding of the
mechanisms behind peer effects (Sacerdote 2011, Epple and Romano 2011). As high-
lighted by the work in Carrell, Sacerdote, and West (2013), this limits our ability to
use peer effect estimates to improve the organization of classrooms.

This paper proposes and tests a new mechanism of social interactions in the class-
room that can help us understand some of the existing evidence, as well as serve
as a framework for future research on peer regrouping policies. First, it develops
a theoretical model that has implications for the shape of peer effects. Second, it
proposes a new method to identify heterogeneous and non-linear peer effects. Third,
it tests the theoretical predictions in a new empirical setting that uses the Chilean
2010 earthquake as a natural experiment. In doing so, it empirically distinguishes
the proposed mechanism from alternative ones.

In the model I propose, peer effects arise because of standard technological spill-
overs operating through the mean of peer ability, and because students have rank
concerns. While students in various countries have been found to care about their rank

1For example, in a widely cited work using data from North Carolina, Hoxby and Weingarth
(2005) calculate that increasing by ten percentage points the fraction of low-achievers in a classroom
increases low-achievers’ test scores by 18.5 percent of a standard deviation, while increasing by
the same amount the fraction of high-achievers increases high-achievers’ test scores by a staggering
40 percent of a standard deviation. For comparison, increasing teacher quality by one standard
deviation or reducing class size by ten students increases student test scores by 10 percent of a
standard deviation (Rivkin, Hanushek, and Kain 2005).
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(Tran and Zeckhauser 2012, Azmat and Iriberri 2010), this is the first paper to study
rank concerns as a mechanism underlying peer effects. In the model, achievement
is produced through costly effort. Students are heterogeneous in terms of ability
to study, which reduces the cost of exerting effort. Intuitively, how much effort
students exert to improve their rank depends on the ability composition of their
peers. The model is based on the theory of conspicuous consumption in Hopkins
and Kornienko (2004). The main model prediction is that making peer ability more
dispersed benefits some students and harms others depending on their ability and on
the type of rank preference. The model has also the implication that achievement is
monotone decreasing in cost of effort.

To test the main model prediction, an exogenous change in peer ability variance
is needed. The key identification problem with observational data is that class-
rooms with different student compositions are different also in other unobserved
ways that make it impossible to separate peer effects from other confounding ef-
fects (Manski 1993).2 The key identification idea is that, as I document, the impacts
of the Chilean 2010 earthquake were heterogeneous even across students in the same
classroom, because the earthquake affected households differently depending on their
distance from the rupture. To the extent that damage to a student’s home affects
a student’s ability to study, classrooms that have different distributions of damages
have also different distributions of students’ ability to study. Therefore, the effect of
the variance of ability to study on achievement can be obtained by comparing class-
rooms that are identical except for the variance in damages. Importantly, I show that
these comparisons are free of the typical confounding factors that would arise if we
used variation in any other determinant of a student’s ability to study. For exam-
ple, while in classrooms with different variances in initial achievement teachers may
teach differently (Duflo, Dupas, and Kremer 2011), thus confounding the peer effect
estimates, I do not find evidence that teachers adapt their teaching to the variance

2To overcome the problem of correlated effects, some studies have used data with random allo-
cation of students to dorms. See, for example, Sacerdote (2001), Zimmerman (2003), Stinebrickner
and Stinebrickner (2006), Kremer and Levy (2008), and Garlick (2014). In contrast, as noted in the
survey by Epple and Romano (2011), very few experiments with random or quasi-random allocation
to classrooms exist (Duflo, Dupas, and Kremer 2011, Whitmore 2005, Kang 2007). Notice that to
test the model’s implications it is sufficient to identify contextual/exogenous effects in the terminol-
ogy of Manski (1993), i.e. the effect on own outcomes of pre-determined classmate characteristics
(ability to study). In particular, it is not necessary to identify endogenous peer effects (the effect
of peer outcomes on own outcomes), which generate a simultaneity problem known as the reflection
problem.
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in damages. Natural disasters have been used before to identify peer effects.3 This
study differs from previous work because it uses a continuous rather than a binary
measure of exposure.

In terms of data construction, I use results from the structural engineering lit-
erature to build a measure of damage to each student’s home caused by the 2010
Chilean earthquake. The measure is based on seismic intensity according to the
Medvedev-Sponheuer-Karnik scale. I then merge this dataset with four waves of a
large administrative dataset with information on students, teachers, classrooms and
schools (Sistema de Medición de la Calidad de la Educación, SIMCE 2005, 2007,
2009, 2011). The resulting dataset contains two cohorts, observed before and after
the earthquake, of 110, 822 students divided into 3, 712 classrooms.

I build an econometric model that exploits the natural experiment to estimate
the heterogeneous impact on achievement of the variance in ability to study. For
this purpose, I combine a semiparametric single-index model with a kernel-weighted
difference-in-differences estimator. This model has several desirable features. The
semiparametric approach imposes minimal assumptions on the technology of test
score production. This allows me to test the main model’s prediction (by detecting
any pattern of heterogeneity in the peer effects across students), as well as to test
the additional model prediction of monotonicity of the production technology. More-
over, the difference-in-differences approach accounts for an artifact introduced by the
natural experiment; the variance in damages is determined by the geographic disper-
sion of the students in the class, which could be correlated with unobserved student
and/or classroom characteristics that could confound the peer effect estimates. For
this reason, I use the pre-earthquake cohort of students (2005-2009), who were not af-
fected by the earthquake, to estimate and difference out any potentially confounding
correlation between geographic dispersion and outcomes.

As a preliminary data analysis, I provide the first evaluation of the impact of
the Chilean earthquake on student test scores. Using difference-in-differences value-
added test score regression models, I estimate that being exposed to the earthquake
reduced test scores by 0.05 standard deviations (sd) (p-value< 0.001). Moreover,
every USD 100 in earthquake damages caused a reduction of 0.016 sd in test scores
(p-value< 0.001).

3In the educational peer effects literature see, for example, Cipollone and Rosolia (2007), Imber-
man, Kugler, and Sacerdote (2012), and Sacerdote (2008).
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The main empirical finding is that increasing the variance of peer ability to study
benefits low-ability students, harms middle-ability students, and it harms high-ability
students in Spanish classes while it benefits those in Mathematics classes. While these
rich empirical patterns are hard to rationalize with standard models of peer effects, the
parsimonious theoretical model can explain them in a simple and intuitive way. Low-
ability students exert more effort in classrooms with larger ability variance because
there are more students close to their ability level, therefore, surpassing the student
next up in the ability distribution is less costly. As a consequence, middle-ability
students face stronger competition from below and this gives them an incentive to
exert more effort. However, they also have an incentive to exert less effort, because in
classrooms with larger ability variance there are fewer students close to their ability
level, therefore, surpassing the student next up in the ability distribution is more
costly. The model predicts that the incentive to decrease effort prevails for middle-
ability students, yielding lower test scores as observed in the data. Also high-ability
students face two opposing incentives, and the model predicts that test scores increase
in Mathematics and decrease in Spanish, as observed in the data, whenever the rank
preference is stronger in Mathematics than in Spanish. Statistical tests do not reject
any of the theoretical model’s implications.

The implications for the estimation of peer effects are far-reaching. When there
are rank concerns, peer effects operate through the entire distribution of ability.
Commonly used empirical models that focus on the mean of peer ability may fail
in out of sample predictions, like in Carrell, Sacerdote, and West (2013), and they
may fail to detect peer effects when these are present.4 This is especially relevant
when peer effects are assumed to imply clustering of outcomes around the mean,
an assumption often made in variance contrast methods (Glaeser, Sacerdote, and
Scheinkman 1996, Graham 2008). Rank concerns generate peer effects without nec-
essarily implying outcome clustering.

There are also important implications for ability tracking, the most important peer
regrouping policy. A common concern is that assigning students of similar ability to

4In a related paper, Tincani (2014), I show that all the (puzzling) results of the peer regrouping
experiment in Carrell, Sacerdote, and West (2013) can be rationalized by the model presented in
this paper. The model can also explain similar results from the recent peer regrouping experiment in
Booij, Leuven, and Oosterbeek (2014). To the best of my knowledge, these are the only two studies
with peer regrouping experiments at the classroom/study group level, and that generate peer effects
that are believed to be due to peer-to-peer interactions rather than peer-to-teacher interactions.
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the same classroom harms low-ability students, who are tracked with other low-ability
students, unless teachers teach more productively in more homogeneous classrooms.
This concern is founded when only the mean of peer ability matters for peer-to-
peer interactions, which is not the case if students have rank concerns.5 In fact,
under the type of rank concerns for which I find evidence in the data, students in
tracked classrooms have a stronger incentive to exert effort. Intuitively, competing
is easier amongst equals. Therefore, this paper uncovers a new channel of operation
of tracking policies. The practical implication of this result is that educators can
exploit the student incentives generated by classroom assignment policies to motivate
students. It would be helpful for future research to collect measures of student rank
concerns and use them to investigate the optimal organization of classrooms.6

The rest of the paper is organized as follows. Section 2 reviews the most relevant
literature, section 3 presents the theoretical model, and it is followed by section
4 that describes the data and the context in which the theory is tested. Section
5 introduces the main empirical framework, and section 6 presents the estimation
results and links them to the theoretical predictions. Robustness and alternative
mechanisms are discussed in section 7, and section 8 concludes.

2 Literature Review

This is the first paper to study and find evidence of rank concerns as a mecha-
nism underlying peer effects.7 Relatively few studies explore the mechanisms behind
peer effects. Lavy and Schlosser (2011) and Lavy, Paserman, and Schlosser (2012)

5Duflo, Dupas, and Kremer (2011) run an experiment where Kenyan first-graders are randomly
allocated to tracked and non-tracked classrooms and find beneficial impacts of tracking on students
of all ability levels. They attribute those positive impacts to teachers and find supporting evidence
for this. While rank concerns are unlikely to be driving their results, the linear-in-means model of
peer effects that they adopt rules out ex ante that peer-to-peer interactions can generate positive
effects in the low-ability track.

6Future research could further analyze how the incentives generated by peer composition interact
with those provided through the grading system or through merit fellowships and financial awards.
See Dubey and Geanakoplos (2010) for a theoretical analysis of the grading system incentives. A
large number of studies analyze students’ response to merit and financial incentives (Angrist and
Lavy 2009, Kremer, Miguel, and Thornton 2009, Fryer 2010, Levitt, List, and Sadoff 2011, Cotton,
Hickman, and Price 2014).

7The idea that rank concerns could generate peer effects dates back to at least Jencks and Mayer
(1990) who, however, do not explore it. Related to this idea are the works of Murphy and Weinhardt
(2014) and Elsner and Isphording (2015), who empirically analyze the importance of past class rank
for future performance in school.
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use teacher and student surveys to understand how gender variation and proportion
of low-ability students impact class outcomes. Using a different approach, Blume,
Brock, Durlauf, and Jayaraman (2014) and Fruehwirth (2013) provide microfoun-
dations to the widely used linear-in-means peer effect specification, proving that it
can be rationalized by a desire to conform. De Giorgi and Pellizzari (2013) develop
and test behavioral models that can rationalize observed outcome clustering within
classrooms at Bocconi University.8 This paper uses a different and novel approach:
it first presents a plausible mechanism of interactions in the classroom, and then de-
rives testable implications for the shape of the peer effects. By testing the model and
ruling out alternative mechanisms, this is one of the first papers to investigate how
classroom composition affects student incentives.9 As emphasized in the survey in
Epple and Romano (2011), modeling “the way in which students, teachers, and prin-
cipals are affected by the incentives created by differing administrative assignments
of students to peer groups” is a necessary first step to identify the optimal design of
classrooms.

This paper focuses on the dispersion of ability in the classroom. Previous research
has found that ability dispersion plays an important role in determining student
achievement. See, for example, Carrell, Sacerdote, and West (2013), Booij, Leuven,
and Oosterbeek (2014), Lyle (2009), Duflo, Dupas, and Kremer (2011), Ding and
Lehrer (2007), Hoxby and Weingarth (2005), Vigdor and Nechyba (2007).10 Inter-
estingly, linear-in-means models appear better suited to capture peer effects in social
behaviors such as crime and smoking (Sacerdote 2014). Through the lens of this
paper’s finding, this can indicate that a desire to conform might be a more plausible
explanation for this kind of social behaviors than for test scores.

By uncovering a new possible channel of operation of tracking policies, this paper
is related to the literature on ability tracking. With the exception of Garlick (2014),
who studies tracking in university dorms, all studies of ability tracking that use ran-

8See also Calvó-Armengol, Patacchini, and Zenou (2009), who provide microfoundations to the
Katz-Bonacich centrality measure in a network.

9To the best of my knowledge, only Todd and Wolpin (2014) analyze how student incentives
are affected by the ability composition of one’s peers without requiring that the resulting reduced-
form peer-effect specification be linear-in-means. Fu and Mehta (2015) analyze how parental effort
decisions are affected by tracking, and assume that peer spill-overs are of the linear-in-means type.
The structural models in these papers, however, are not tested, rather, they are estimated.

10See also Bénabou (1996) for a theoretical analysis of the role of the variance of the peer ability
distribution, and Lavy, Silva, and Weinhardt (2012) for a recent analysis of nonlinear peer effects.
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domized experiments find that they are beneficial to students. While Duflo, Dupas,
and Kremer (2011) attribute this positive impact to teachers in Kenyan schools, ben-
eficial impacts of tracking due to peer-to-peer interactions have been found among
low- and middle-ability students at the University of Amsterdam (Booij, Leuven, and
Oosterbeek 2014), and among middle-ability students at the U.S. Air Force Academy,
who were the only ones to be effectively tracked by the authors’ intervention (Carrell,
Sacerdote, and West 2013).11

3 A Theoretical Model of Social Interactions

I propose a simple theory of social interactions in the classroom and derive implica-
tions that can be tested empirically. The main implication is a comparative statics
result on the effect of changing the ability variance in the classroom while keeping the
ability range constant, which is the type of data variation generated by the natural
experiment. Tracking changes classroom ability variance by reducing the classroom
ability range instead. An advantage of my research approach is that I can investigate
tracking even though I do not observe data variation akin to tracking. To do so, I
first identify what type of rank preferences my data are compatible with. I then use
the theoretical model under those preferences to infer how student incentives would
be affected by tracking.

The model is an application of the theory of conspicuous consumption in Hopkins
and Kornienko (2004), where individuals choose how much of their income to spend
on a consumption good and how much on a positional good. Here, achievement is at
the same time a consumption good and a positional good, and it can be produced at
a cost. Specifically, students in a classroom choose how much costly effort e to exert,
and effort increases achievement/test score y. Students are heterogeneous in terms of
ability, i.e., how costly it is for them to exert effort.12 The main model assumptions
are the following:
A.1 Students’ utility is increasing in own achievement.

11Using non-experimental approaches, Betts and Shkolnik (2000) and Lefgren (2004) find little
evidence of benefits from tacking, while Lavy, Paserman, and Schlosser (2012) find that high-ability
students benefit from other high-ability students and do not help average students.

12This corresponds to income heterogeneity in Hopkins and Kornienko (2004). Alternatively,
students can be assumed to be heterogeneous in terms of how productive their effort is, and, under
minor modifications to the assumptions on the utility function, the model would have the same
implications.
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A.2 There are technological spill-overs in the production of achievement, i.e., mean
peer ability directly affects own achievement.
A.3 Students’ utility is increasing in rank in terms of achievement.

Assumptions A.1 and A.2 are standard.13 Assumption A.2 gives rise to exogenous
peer effects (Manski 1993). Assumption A.3 is novel in the theoretical literature
on educational peer effects. It introduces a competitive motive and it gives rise to
endogenous peer effects (Manski 1993), because how much effort each student exerts
is determined endogenously by the equilibrium of a game of status between students.

Students differ in terms of a type c: those with a higher c incur a larger cost of
effort. Type c captures any student characteristics, physical or psychological, that
affect her ability to study, such as cognitive skills, access to a computer or books,
availability of an appropriate space for studying, parental help, etc. Notice that
ability reduces c. Type c is distributed in the classroom according to c.d.f. G(·) on
[c, c̄]. Each student’s type c is private information, but the distribution of c in the
classroom is common knowledge.

An appeal of the model is that it does not make distributional assumptions and,
whenever feasible, functional form assumptions. However, some plausible shape re-
strictions are imposed to prove the results. The cost of effort is determined by an
increasing and strictly quasi-convex function in effort q(e; c). Higher types c incur
higher costs for every level of effort e, i.e. ∂q(e;c)

∂c
> 0 for all e. Moreover, at higher

types the marginal cost of effort is (weakly) higher: ∂2q(e;c)
∂c∂e

≥ 0.
Effort determines achievement according to the production function y(e) = a(µ)e+

u(µ), where µ is the classroom mean of c. Parameters a(µ) and u(µ) capture techno-
logical spill-overs working through the mean of peer ability (assumption A.2). These
can be indirect, i.e., working through the productivity of classroom specific factors,
or direct, i.e. due to peer-to-peer contacts. An example of an indirect spill-over is
teacher productivity depending on students’ average abilities. An example of a direct
spill-over is more able peers (lower µ) asking relevant questions in class and, in so
doing, facilitating their classmates’ learning. Notice that the model is flexible in that
it allows these technological spill-overs to affect both the level of achievement (u) and
the productivity of effort (a).

13For example, Blume, Brock, Durlauf, and Jayaraman (2014), Fruehwirth (2012), and De Giorgi
and Pellizzari (2013) assume that student’s utility is increasing in own achievement. Several papers
model technological spill-overs as operating through mean peer characteristics, e.g. Arnott and
Rowse (1987), Epple and Romano (1998), Epple and Romano (2008).
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The utility function can be decomposed into two elements: a utility that depends
only on own test score y and effort cost q, V (y, q), embedding assumption A.1; and
a utility that depends on rank in terms of achievement, embedding assumption A.3.
The utility from achievement is non-negative, increasing and linear in achievement,
decreasing and linear in q, and it admits an interaction between utility from achieve-
ment and cost of effort such that at higher costs, the marginal utility from achievement
is (weakly) lower (V12 ≤ 0).14 No specific functional form assumptions are made on
q(·) and on the interaction between y and q, therefore, results from the model are
valid under a broad class of preferences. For example, more able peers (lower c) may
(or may not) have higher marginal utilities from achievement.

The student’s classroom rank in terms of achievement is given by the c.d.f. of
achievement computed at a student’s own achievement level, FY (y). This is the
fraction of students with achievement lower than one’s own, and it is a standard
way to model rank in theoretical models of status seeking (Frank 1985). Because
achievement is an increasing and deterministic function of effort, rank in achievement
is equal to rank in effort: FY (y) = FE(e). The utility from rank, S(FY (y)), is equal
to FE(e) + φ, where φ is a non-negative constant.

Overall utility U(y, q; c) is the product of utility from own achievement V (y, q; c)
and utility from rank S(FY (y)): V (y, q; c) (FE(e) + φ). The parameter φ determines
the type of rank concerns that students have. When φ > 0, students have a minimum
guaranteed level of utility even if they rank last (FE(e) = 0). On the other hand,
when φ = 0 ranking low has dire consequences, and this will generate that students
close to the bottom of the ability distribution will be desperate to avoid a low-rank.
Because the two cases (φ = 0 and φ > 0) yield different testable implications, to the
extent that I do not reject the model, I can identify which type of rank concerns is
compatible with the data.
Each student chooses effort to maximize overall utility. Focusing on symmetric Nash
equilibria in pure strategies, and assuming that the equilibrium strategy e(c) is strictly
decreasing and differentiable with inverse function c(e), rank in equilibrium can be
rewritten as 1 − G(c(ei)), and i’s utility as V (y(ei), q(ei, ci))(1 − G(c(ei))).15 The

14All results are valid under an alternative set of assumptions for the utility from achievement.
These are: strictly quasi-concave utility of achievement, decreasing and linear utility from cost of
effort (V2 < 0, V22 = 0) with a linear cost function (d

2q
d2e = 0) and additive separability between

utility from achievement and cost of effort (V12 = 0).
15The probability that a student i of type ci with effort choice ei = e(ci) chooses a higher effort
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first-order condition then is:

V1

Mg. increase in achiev.︷︸︸︷
a(µ)︸ ︷︷ ︸

mg. ut. from increased achiev.

+ V (y, q)
1−G(c(ei)) + φ

Mg. increase in rank︷ ︸︸ ︷
g(c(ei))(−c

′
(ei))︸ ︷︷ ︸

mg. ut. from increased rank

= −V2
∂q

∂e︸ ︷︷ ︸
mg. cost

(1)

and it implies the first-order differential equation reported in equation 7 in Online
Appendix A.1. The solution to this differential equation is a function e(c) that is
a symmetric equilibrium of the game. The assumptions on the utility function, on
the cost of effort function and on the achievement production function guarantee
that the results in Hopkins and Kornienko (2004) apply under appropriate proof
adaptations.16 In particular, while the differential equation does not have an explicit
solution, existence and uniqueness of its solution and comparative statics results
concerning the equilibrium strategies can be proved for any distribution function
G(c) twice continuously differentiable and with a strictly positive density on some
interval [c, c̄], with c ≥ 0. The first theoretical result is summarized in the following
Proposition:

Proposition 3.1 (Adapted from Proposition 1 in Hopkins and Kornienko (2004)).
The unique solution to the differential equation (7) with the boundary conditions
e(c̄) = 1

c̄
for φ = 0 and e(c̄) = enr(c̄) for φ > 0, where enr solves the first order condi-

tion in the absence of rank concerns (V1a(µ)|e=enr = −V2
∂q
∂e
|e=enr), is an (essentially)

unique symmetric Nash equilibrium of the game of status. Equilibrium effort e(c) is
continuous and strictly decreasing in type c.17

than another arbitrarily chosen individual j is F (ei) = Pr(ei > e(cj)) = Pr(e−1(ei) < cj) =
Pr(c(ei) < cj) = 1 − G(c(ei)), where c(·) = e−1(·). The function c maps ei into the type ci
that chooses effort ei under the equilibrium strategy. Strict monotonicity and differentiability of
equilibrium e(c) are initially assumed, and subsequently it is shown that equilibrium strategies must
have these characteristics.

16To guarantee existence of an equilibrium when φ = 0, one additional assumption must be made:
each student has an upper bound on achievable test score, and students with higher ability (lower
c) have a higher upper bound. For example, a student of type c can never achieve more than
ȳ = a(µ) 1

c + u(µ). Under this technological constraint, no student of type c will exert more effort
than 1

c , because any unit of effort above this level does not increase achievement, but it is costly.
Footnote 17 explains how this guarantees existence. One of the main differences with the model in
Hopkins and Kornienko (2004) is that here equilibrium strategies e(c) are decreasing in c, whereas
there they are increasing. See the procurement auctions model in Hopkins and Kornienko (2007) for
another example of decreasing strategies.

17The equilibrium is essentially unique, in the sense that the only source of multiplicity is at the
point c̄ when φ = 0. In a symmetric equilibrium, the student with the highest cost, c̄, has rank 0
when φ = 0. Her equilibrium utility is 0, and the only way she can increase it is by increasing her
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Proof: see Online Appendix A.1.
Notice that Proposition (3.1) rules out the case in which for large enough values
of c students exert more effort. This would be akin to a backward-bending labor
supply curve.18 Because this result may appear restrictive, I empirically test it. The
implication can be rephrased in terms of achievement, given that achievement is an
increasing function of effort, to obtain the first testable implication:
Testable Implication 1: Achievement is decreasing in type c.

Now consider two distributions, GA(c) and GB(c), that are such that they have
the same mean, and GB has larger dispersion than GA in the Unimodal Likelihood
Ratio sense (GA �ULR GB), defined in Online Appendix A.1. This happens when,
for example, GB is a mean-preserving spread of GA. In informal terms, one can
show that the effect of moving from GA to GB is heterogenous across individuals,
depending on a student’s rank in terms of c, and it depends on φ, i.e., on the type of
rank concerns.19 This result provides the second testable implication of the model:
Testable Implication 2: If students are averse to a low rank (φ = 0), then when
the dispersion of c increases, either all students perform more poorly, or all students
except low-c (high-ability) students do more poorly. If students are not averse to a low
rank (φ > 0), then when the variance of c increases, middle-c students perform more
poorly and high-c (low-ability) students perform better, while low-c (high-ability)
students may perform better or worse. These patterns are represented graphically in
Figure 1.

rank above 0. Therefore, for a strategy profile to be an equilibrium, it must be that the student
with a slightly lower cost c exerts an amount of effort that is such that the least able student, c̄,
is unable to increase her rank by exerting more effort. Therefore, in equilibrium limc→c̄− e(c) = 1

c̄ ,
where 1

c̄ is the maximum effort that student c̄ can exert (see footnote 16), and the least able student
has rank 0 and is indifferent between any level of effort between 0 and 1

c̄ .
18For example, if the marginal utility from achievement tends to infinity as achievement approaches

its lower bound, then it is not necessarily the case that students with a larger cost of effort exert less
effort than those with a lower cost of effort. This is because for students with achievement close to
the lower bound, decreasing effort would have a large cost in terms of utility. This is akin to income
and substitution effects in labor supply: as the cost of effort increases, the substitution effect would
induce individuals to exert less effort, but the income (in this case, achievement) effect would induce
them to exert more effort to distance themselves from the achievement lower bound.

19The formal statement of the comparative statics result can be found in Proposition (A.1) in
Online Appendix A.1.
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Figure 1: The function Dy(c) traces the effect on achievement of increasing the
variance of c, as a function of student type c. In the φ > 0 case, it can cross the
x-axis once or twice. If it crosses it once (upper panel a), the sequence of its signs,
from low c to large c, is −, +. If it crosses it twice (lower panel a), the sequence of
its signs, from low c to large c, is +, −, +. In the φ = 0 case, it can cross the x-axis
at most once. If it does not cross it (upper panel b), it must lie below it. If it crosses
it (lower panel b), the sequence of its signs, from low c to large c, is +, −.
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3.1 Model Intuition and Discussion of Assumptions

Intuition. Rank preferences imply that each student’s incentives are affected by the
fraction of peers below her ability, at her ability, and above her ability. First, as can
be seen from the first order condition in 1, the marginal utility from increasing one’s
own rank depends positively on the density at one’s own type c, g(c). Intuitively, the
more students there are of a similar type c to one’s own (i.e., the larger this density),
the more students can be surpassed in rank by exerting effort. Conversely, when fewer
students can be surpassed for the same amount of effort, students have an incentive
to “give up.”

Second, the first order condition in 1 shows also that the marginal utility from
increasing one’s own rank increases when the fraction of less able students (i.e., 1 −
G(c)) decreases, and the extent of this increase depends on φ. This derives from the
multiplicative specification of preferences, which implies that not only the utility from
rank, but also the enjoyment of one’s own absolute level of achievement is lower at
lower ranks. The closer the students are to the bottom of the ability distribution (i.e.,
to c̄), the fewer classmates there are with whom they can make favorable comparisons,
and the stronger their incentive to exert effort to avoid a low achievement rank is.
The comparative statics result indicates that this incentive is strongest when φ = 0.
For this reason, I call φ = 0 the case of aversion to a low rank.

The comparative statics result is the net effect of these two incentives, which varies
with a student’s ability c and with the type of rank concerns (φ = 0 or φ > 0). Fig-
ure 2 shows two ability distributions G(c) with different variances. As the variance
increases, the density increases at the tails and decreases in the middle, therefore,
irrespective of the value of φ, low- and high-c students have an increased incentive
to exert effort and middle-c students have a lower incentive to exert effort. However,
high-c students now face a larger fraction of less able students (1−G(c)), which de-
creases their incentive to exert effort to avoid a low rank. Hence, high-c students face
two opposite incentives. The model predicts that they reduce their effort when φ = 0
and increase it when φ > 0. Middle-c students have an incentive to lower their effort
under both φ = 0 and φ > 0. This is because when φ = 0 they face less competition
from the less able students, while when φ > 0 they face more competition from the
less able students, but the model predicts that the incentive to reduce effort due to
the lower density at their c level prevails. Under both φ = 0 and φ > 0, low-c stu-
dents face two opposite incentives: the incentive to increase their effort due to the
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fatter tail at their end of the distribution, and the incentive to decrease their effort,
because they face less competition from middle-c students and, therefore, they can
reduce their effort cost without reducing their rank. Which effect prevails depends
on how strong the preference for status is relative to the utility from achievement
net of the effort cost. This is determined by V (·) and q(·), on which the model does
not make specific functional form assumptions. Intuitively, a stronger preference for
status leads to an increase in outcomes for low-c students, because the incentive to
improve their rank prevails over the incentive to pay a lower effort cost.20

Discussion of assumptions. The assumption that overall utility is multiplicative in
private utility V and social utility S may appear counterintuitive. However, this
assumption makes the problem’s structure similar to that of a first-price sealed-bid
auction, where expected payoff is the product of the value of winning (V ) and the
probability of winning (F ). As noted in Hopkins and Kornienko (2004), “it is this for-
mal resemblance to an auction that permits clear comparative statics results.” While
it would be desirable to relax this assumption in favor of more general preference
specifications, such a purely theoretical contribution would go beyond the scope of
this paper. This paper is the first to apply existing theoretical tools in the rank con-
cerns theoretical literature to the field of peer effects in education, and to test them
in this context. Future extensions could specify less restrictive preferences and resort
to numerical rather than analytical model solution tools.

Rank concerns can be modeled in many ways. As in Hopkins and Kornienko
(2004), I consider only two (φ > 0 and φ = 0). While this is restrictive, these two cases
alone can explain important and diverse evidence. Recent laboratory experiments
show that individuals are averse to a low-rank, as predicted by the model when
φ = 0 (Kuziemko, Buell, Reich, and Norton 2014). Moreover, Tincani (2014) shows
that the model with φ = 0 can explain all of the (unexpected) results of the peer
regrouping experiment in Carrell, Sacerdote, and West (2013), as well as more recent
experimental evidence (Booij, Leuven, and Oosterbeek 2014). The case of φ > 0, on
the other hand, can explain this paper’s empirical evidence.

20For example, it can be shown that if overall utility was (y(e)−e)α (F (e) + φ), then low-c students
would increase their effort when status has a larger weight than achievement net of effort cost (α < 1)
and decrease it otherwise (α ≥ 1).
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Figure 2: Type distributions in two classrooms, and cutoffs separating low-, middle-
and high-c students.
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Figure 3: Data time-line.

4 Data and Earthquake

Data. I use two cohorts of students from the SIMCE dataset (Sistema de Medición
de la Calidad de la Educación). For both cohorts I observe the universe of 8th grade
students, for whom I have information on current and 4th grade Math and Spanish
standardized test scores, father’s and mother’s education, household income, gender,
and town of residence. Classroom level information includes class size, and the expe-
rience, education, tenure at the school, gender, and type of contract of both Spanish
and Math teachers.

One cohort is observed in the 8th grade in 2009, before the 2010 earthquake, while
the other cohort is observed in the 8th grade in 2011, after the earthquake, as shown in
Figure 3. For both cohorts, identifiers are available at the student, teacher, classroom
and school level. This makes this dataset ideal for the study of social interactions,
because each student’s classmates, as well as their school and Math and Spanish
teachers, can be identified.

Finally, I obtained from the Chilean Ministry of Education a list of schools that
closed as a consequence of the earthquake.21 I use this list to identify evacuees (i.e.,
the students who attended the schools that closed), as well as the schools that they
moved to. I drop from the sample the 5, 988 evacuees thus identified, and the 803
schools receiving at least one of them, to rid my estimates of any peer effect arising
from changes to classroom composition induced by the arrival of evacuees.22

Earthquake. Just a few days before the start of the new school year, on February 27th

21They closed either because their buildings became unsafe, or because most of the students’ homes
were so badly damaged, that students had to relocate and the schools had too low attendance.

22This distinguishes the identification strategy in this paper from that in Imberman, Kugler, and
Sacerdote (2012), where the influx of Katrina evacuees is used as an exogenous source of change
to classroom composition. Unlike the case of Katrina, evacuees in Chile were spread across a large
number of schools. Therefore, each receiving school received only a small influx of evacuees, too
small to detect any statistically significant impact.

16



Figure 4: Source: Comerio (2013). Handmade sign found in Cauquenes, Chile, on
February 2, 2012. Translation: “Reconstruction is like God. Everyone knows it exists,
but nobody has seen it.”

2010, at 3.34 am local time, Chile was struck by a magnitude 8.8 earthquake, the fifth-
largest ever instrumentally recorded (Astroza, Ruiz, and Astroza 2012). Shaking was
felt strongly throughout 500 km along the country, covering six regions that together
make up about 80 percent of the country’s population. The damage was widespread;
370, 000 housing units were damaged or destroyed. The government implemented a
national reconstruction plan to rebuild or repair 220, 000 units of low- and middle-
income housing. Estimated total costs are around $2.5 billion. By the time the
SIMCE 2011 sample was collected, i.e., 20-22 months after the earthquake struck,
despite impressive efforts by the Government, only 24 percent of home reconstruction
had been completed (Comerio 2013). This led to frustration in the population, as
shown in Figure 4.

To explore how damages are distributed in my sample, I use the geographical
coordinates of the town of the school and of the town of the home of each student to
build a measure of local earthquake intensity at each school and student’s home. To
do so, I apply the intensity propagation formula (Astroza, Ruiz, and Astroza 2012),
which yields seismic intensity on the Medvedev-Sponheuer-Karnik (MSK) scale as a
function of a town’s distance from the earthquake’s main asperity, i.e., the point on
the fault where the rupture starts.23 MSK intensity indicates the extent of damage

23How earthquake damage propagates depends on the geological features of the affected area,
therefore, structural engineers estimate this formula for each earthquake separately. First, they
observe damages in a sample of towns, then, they estimate the parameters of a non-linear regression
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observed in the buildings of a given town. The same MSK intensity corresponds to
different levels of damage depending on the type of construction. However, conditional
on a construction type, intensity can be mapped back into a specific level of damage.
For example, in towns with low MSK intensity, 5, adobe constructions suffered on
average damages for $20, while at the strongest intensity, 9, damages per adobe
construction were on average $13, 800.24 House type is not observed in my dataset.
However, Astroza, Ruiz, and Astroza (2012) report that the ∼ 60% poorest Chileans
live in one of two house types with very similar earthquake resistance: old traditional
adobe constructions (6.1%) and unreinforced masonry houses (51.9%). Given the
striking school stratification in Chile, with public school students belonging to the
poorest ∼ 50% of Chilean households, it is reasonable to expect that all public school
students live in one of these two building types. To avoid measurement error due to
house type unobservability, I restrict my sample to public school students. Finally,
the main empirical analysis includes only students in the regions affected by the
earthquake. The resulting sample contains observations on 110, 822 students, 2, 579
schools and 3, 712 classrooms.

Astroza, Ruiz, and Astroza (2012) report that even towns that are close to each
other were subject to very different levels of seismic intensity. For example, Las
Cabras and Pichidegua are only 4.87 miles apart. In Las Cabras, the worst damage
suffered by adobe houses has been moderate, ranging from fine cracks in the walls
to the sliding of roof tiles, whereas in Pichidegua some adobe houses were destroyed.
This suggests that in classrooms with students from different towns, we may observe
that students’ homes suffered different levels of damages, even though students in the
same school tend to live in towns that are close to each other. In fact, in classrooms
where not all student reside in the same town, the average standard deviation in dam-
ages is approximately USD 350, corresponding to 92 percent of the average monthly
income. Of all classrooms in the regions affected by the earthquake, 48 percent are
not composed of students who all reside in the same town. The map in Figure 4

of damage on distance from the asperity. For the 2010 Chilean earthquake, the estimated formula
is I(∆A) = 19.781− 5.927 log10(∆A) + 0.00087∆A, where I is MSK intensity and ∆A is distance in
kilometers from the main asperity. The R2 is 0.9894. Refer to the Online Supplementary Material
for an explanation of how each sampled town is assigned an MSK intensity.

24See the Online Supplementary material on the author’s website for details on how the recon-
struction costs are calculated. Table 4 in Online Appendix A.2 shows reconstruction costs for
adobe structures by MSK intensity, and Figure A.2 reports pictures of adobe houses that suffered
different grades of damage.

18



Figure 5: Schools that attract students from different towns, and within school stan-
dard deviation in damages.

plots these schools, and it indicates the standard deviation of damages within each
school. As can be seen, there is considerable variation within and across schools. This
valuable variation provides the basis for testing the model.

4.1 Descriptive Statistics and Preliminary Data Analysis

The modal damage in the sample is USD 365, with a mean of USD 950 and a standard
deviation of USD 1, 480. Table 1 presents other sample descriptive statistics. The
regions affected by the earthquake are poorer than those not affected. The main
empirical analysis uses only earthquake regions. While one may worry that seismic
intensity is correlated with student unobservable characteristics affecting outcomes,
I show below that conditional on student observable characteristics, seismic intensity
is uncorrelated with student outcomes.

I present the first evaluation of the effect of the 2010 Chilean earthquake on
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Table 1: Sample descriptive statistics

Earthquake Regions Non-Earthquake Regions
Mean St Dev Mean St Dev

Baseline Math Score -0.095 0.949 -0.114 0.910
Baseline Spanish Score -0.092 0.943 -0.087 0.810
Father’s Education (years) 9.646 3.338 9.892 3.289
Mother’s Education (years) 9.651 3.183 9.741 3.205
Monthly Household Income (USD) 363 341 430 408
Class size 26.7 10.8 25.7 12.2
% Classmates from same town 0.92 0.16 0.96 0.10
% Classmates from same town | < 1 0.83 0.20 0.88 0.13
% Classrooms with not all
students residing in same town 0.48 0.38
Math Teachers

% Female 0.55 0.52
% Postgraduate Degree 0.56 0.53
Teaching Experience (years) 22.0 13.5 22.8 13.2
Tenure at school (years) 12.3 11.5 11.9 11.0

Spanish Teachers
% Female 0.81 0.78
% Postgraduate Degree 0.56 0.49
Teaching Experience (years) 21.2 13.5 21.5 13.5
Tenure at school (years) 12.0 11.4 11.3 10.8
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student test scores. I exploit the fact that the pre- and post-earthquake cohorts
are observed both in regions affected and not affected by the earthquake, and that
students are observed at two points in time, to estimate a difference-in-differences test
score value-added regression. Table 5 in Online Appendix A.3 presents estimates for
all schools and by school type (municipal, private subsidized, private unsubsidized).
Being exposed to the earthquake reduced test score growth, on average, by 0.05
standard deviations (columns 4 and 8). This estimate is net of any individual, regional
and/or cohort effects.

To estimate the impact of the continuous measure of seismic intensity at a stu-
dent’s home, Ii, I calculate MSK intensity for all students (in earthquake regions) in
both cohorts. I then estimate the following regression of test scores y of student i in
classroom l in school s and in grade g = 8 on past test score, individual characteristics
xi, and dummies for belonging to the post-earthquake cohort, Pi = 1, and living in
an earthquake region, Ei = 1 (estimation results can be found in Tables 6 and 7 in
the Online Supplementary Material):

yilsg = α+ λs + yils(g−4)δ + x′iγ + PiθP +EiθE + (1− Pi)Iiθpre + PiIiθpost + εilsg. (2)

The effect of earthquake intensity on test score growth is θpost − θpre.25 I find that
increasing earthquake intensity by one category in the MSK-scale reduces test score
growth by 0.008∗∗∗ standard deviations (sd) in all schools, and by 0.005∗∗∗ and 0.006∗∗∗

sd in municipal schools for Math and Spanish, respectively. This corresponds approx-
imately to a reduction of 0.016 sd in test scores for every USD 100 in damages.

Finally, I find that seismic intensity at the individual student level is uncorrelated
with unobservable student characteristics affecting outcomes. Using the unaffected
pre-earthquake cohort, I estimate a value-added regression of test scores on student
characteristics, classroom characteristics and on own seismic intensity, and I find
that the coefficient on the latter is not statistically different from zero (see Table 6
in Online Appendix A.3).26 This indicates that, conditional on student observables,

25This technique is similar in spirit to Card (1992), with the difference that, in this context, I am
able to construct treatment intensity also for the untreated pre-earthquake cohort. This allows me to
make a weaker identifying assumption than in Card (1992). In fact, the estimated treatment effect
here is consistent even if treatment intensity is correlated with unobserved student characteristics
affecting outcomes, as long as this correlation is the same in the pre- and post-earthquake cohorts.
The sample in this paper satisfies also the stronger assumption made in Card (1992), i.e. that
treatment intensity is uncorrelated with student unobservables, as explained below.

26Not surprisingly, θpre in equation 2 is also not significantly different from zero. Moreover, I
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seismic intensity is uncorrelated with student unobservables.

5 An Empirical Model of Social Interactions

Achievement Production Function with Peer Spill-overs. I assume that a student’s
achievement depends on her own characteristics and on classroom characteristics.
There are peer effects because two students with identical characteristics may ob-
tain different test scores in two classrooms that are identical except for the ability
composition of peers.

I broadly define a student’s ability to study as being determined by all individual
level inputs into the production of achievement. I assume that it is a scalar obtained
as a single index of a vector of student characteristics. I refer to this scalar as
the student’s type, and denote it by ci. Type ci, therefore, is the linear function
ci = α1xi, where xi contains student initial ability (as measured by lagged test scores),
father’s and mother’s education, household income, and gender. Changes in classroom
composition can be represented as changes in the classroom distribution of type c,
Gl(c). The achievement production function of student i in classroom l is:

yil = ml(ci) + εil = e(ci;Gl(c)) + ul(ci) + νil = el(ci) + ul(ci) + νil (3)

where yil is test score of student i in classroom l. The function el(·) maps individual
type ci into achievement, and it is indexed by l because of peer effects: it depends
on the distribution of c in classroom l, Gl(c). The function ul(ci) captures the (het-
erogeneous) impact on test scores of all observable classroom characteristics. These
are characteristics that are shared by all students in the classroom, and their effect
may vary by student’s type ci. Specifically, ul(ci) = u(ci, zl, Fl(xi)) where zl contains
teacher experience, teacher gender, whether the school is urban or rural, and class
size; and Fl(xi) is the classroom distribution of student characteristics. The depen-
dence on Fl(xi) captures the fact that teachers may teach differently depending on
the characteristics of the students in the classroom, an indirect peer effect. Finally,
there may be correlated effects (Manski 1993), as E[νil|l, ci] 6= 0. In particular, this
conditional expectation is described by a function of type that depends on classroom

estimate a value-added regression similar to 2, without the regressor (1 − Pi)Ii, and I obtain a
coefficient on PiIi that is very close to θpost − θpre in equation 2. See the Online Supplementary
Material, where the results from these regressions are presented.
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characteristics, ψl(ci) = ψ(ci, zl, Fl(xi)), so that νil = ψl(ci) + εil with E(εil|l, ci) = 0.
The shock εil is a measurement error. Correlated effects may arise because, for exam-
ple, more motivated students are found in classrooms with better characteristics zl,
or because certain types of teachers are assigned to classrooms with certain student
compositions Fl(xi). In a similar spirit to ul(ci), the function ψl(ci) captures the
heterogeneous impact on students of unobserved classroom characteristics. I do not
make any functional form assumptions on the functions el(·), ul(·) and ψl(·), and any
distributional assumptions on εil.

Equation 3 is a semiparametric single-index model (Hall 1989, Ichimura 1993,
Horowitz 2010). I jointly estimate the ml(ci) function in each classroom l, using
kernel methods, and the α parameters.27 The estimation algorithm is presented in
Online Appendix A.4, where the details for the calculation of the standard errors
are also presented. Notice that el(ci) is not separately identified from ul(ci) + ψl(ci).
Therefore, at this stage peer effects cannot be separately identified from the effect of
observed and unobserved classroom characteristics, or, in other words, from indirect
peer effects (ul) and correlated effects (ψl).

Seismic Intensity as a Source of Identifying Variation. The ideal setting to evaluate
the direct effect of peers on test scores is one where student allocation to classrooms is
random or experimentally controlled, so that el(ci) can be independently varied from
ul(ci) + ψl(ci). While college administrators sometimes adopt random assignment of
peers to dorms, random assignment of peers to classrooms is rarely adopted in schools
or colleges.28 Moreover, as noted in the survey by Epple and Romano (2011), exper-
iments with random assignment to classrooms are rare, especially beyond primary
school.29

Given the limited availability of this kind of data, I adopt a different approach.
The goal is to vary moments of the distribution of student types in the classroom,

27I impose the restriction that ci does not depend on unobservable student characteristics, because
allowing for an unobserved shock to affect ci would require to assume that the m(ci) function is
monotonic. I do not impose shape restrictions on m(·) because I want to test for its monotonicity,
to test the first theoretical model’s implication.

28Random assignment to dorms has been used by, for example, Sacerdote (2001), Zimmerman
(2003), Stinebrickner and Stinebrickner (2006), Kremer and Levy (2008), and Garlick (2014).

29One such experiment was conducted among Kenyan first graders and studied by Duflo, Dupas,
and Kremer (2011). Whitmore (2005) studies peer effects among kindergartners using data from
the project STAR experiment in Tennessee. See also Kang (2007), who studies peer effects among
7th and 8th graders in Korea using a quasi-randomization.
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Gl(c), and quantify how el(ci) is affected, net of any change in ul(ci)+ψl(ci). Varying
the distribution of student types could be achieved by comparing classrooms with
different distributions of student characteristics xi. However, as ul(·) and ψl(·) depend
on Fl(xi), the effect on el(ci), i.e., the peer effect of interest, would not be separately
identified from correlated effects and from indirect peer effects. To overcome this
obstacle, I consider a shock to each student’s type ci that is such that its distribution
in the classroom, or at least a moment of this distribution, is not systematically
related to unobserved classroom characteristics or to the productivity of teachers.

The shock is seismic intensity at a student’s home for students who were affected
by the 2010 Chilean earthquake, Ii. To the extent that Ii affects a student’s ability
to learn, ci, classrooms with different distributions of seismic intensity have different
distributions of student types, even if the distributions of all other student charac-
teristics, Fl(xi), are identical. This holds true independently of the channel through
which seismic intensity affects a student’s ability to study. One possible channel is the
disruption to the home environment. It may increase the opportunity cost of time,
because students may be required to spend time helping their parents with home re-
pairs.30 Additionally, students may not have access anymore to the areas of the home
that they used for doing their homework. Another possible channel involves psycho-
logical well-being. The medical literature finds that earthquake exposure affects brain
function and that it can cause Post Traumatic Stress Disorder (PTSD).31 Moreover,
the severity of PTSD increases with seismic intensity (Groome and Soureti 2004).

Survey evidence suggests that seismic intensity at a student’s home did in fact
affect a student’s ability to study. First, conditional on student initial ability and on
parental education and income, students more affected by the earthquake report that
it is more costly for them to study, as shown in Table A.3 in Online Appendix A.3.32

30This is particularly likely to have occurred among the low-income Chilean families that my
sample focuses on, because most of the government subsidies were in the form of vouchers for
purchasing the materials needed for the repairs, and families were expected to perform the repairs
themselves (Comerio 2013).

31This may last for several months after the earthquake. See, for example, Altindag, Ozen, et al.
(2005), Lui, Huang, Chen, Tang, Zhang, Li, Li, Kuang, Chan, Mechelli, et al. (2009), Giannopoulou,
Strouthos, Smith, Dikaiakou, Galanopoulou, and Yule (2006).

32As shown earlier, conditional on these student observables, seismic intensity is not correlated
with unobservables affecting test scores. Therefore, I am confident that this effect can be interpreted
as causal. Students were asked to rate how much they agree with sentences such as “It costs me
to concentrate and pay attention in class” and “Studying Mathematics costs me more than it costs
my classmates”. I combine the answers to these questions into a single factor using factor modeling,
and I estimate the impact of seismic intensity at a student’s home on this elicited measure of cost.
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Second, I find that the negative impact of seismic intensity on test scores (see section
4.1) is larger in classrooms in which the teacher assigns homework more frequently.
This suggests that home damage affected the productivity of study time at home.33

Third, using a dataset collected only a few months after the earthquake, I find that
students affected more badly by the earthquake report reading less books.34

In the empirical model, I assume that the ability to study for the 2011 cohort of
students affected by the earthquake is: ci = α1xi +α2Ii+α3Iixi. The interaction term
Iixi captures individual heterogeneity in how seismic intensity affects a student’s type
ci. For example, wealthier parents may try to attenuate the impact of the earthquake
by providing a new study environment for their child.35 As I show in detail below,
I find that the variance of seismic intensity in the classroom satisfies an exclusion
restriction that allows me to use it in a similar fashion to an Instrumental Variable
(IV) for variance of student types. However, unlike in the case of IV, the observ-
ability of ci (and of its variance) is not required in this framework; the single-index
model estimates ci. Given that a student’s ability to study is not directly observed, a
standard IV approach would not be feasible here because the instrumented variable
would not be observed.

Differencing out the confounding effect of geographic dispersion. Seismic intensity is
based on a student’s home location. Therefore, seismic intensity variance is posi-
tively related to the geographic dispersion of the students in a classroom. Using the
cohort of students that was not affected by the earthquake, I construct future seismic
intensity for each student in the sample, and I find that the coefficient on seismic in-
tensity variance in a test score value-added regression is large and positive, as shown
in Table 6 in Online Appendix A.3. This indicates that geographic dispersion of
the students in the classroom is (positively) correlated with student outcomes. This
could be because classrooms that attract students from further away have some desir-

33The additional effect is −.0173614, p-value 0.049, see Table 9 in the Online Supplementary
Material. The amount of homework assigned is observed only for Math classrooms in the cohort of
students affected by the earthquake, therefore, a difference-in-differences strategy that accounts for
cohort effects cannot be adopted here.

34See Figure 4 in the Online Supplementary Material. This is compatible with an increase in cost
of effort/decrease in the ability to study, that was followed by a reduction in effort. This evidence
is only suggestive as it comes from a cross-section.

35The medical literature reports that the psychological impact of earthquake exposure is stronger
on girls, and my parameter estimates find support for this.
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able characteristics unobserved to the econometrician, and/or because the students
in those classrooms are different in unobserved ways such as their motivation. Re-
gardless of the nature of this correlation, if not accounted for it could confound the
estimate of the peer effect of interest, i.e., of the effect of the variance of peer ability
(“instrumented” by variance of seismic intensity) on own test scores.

To account for this correlation, I let the functions ul(·) and ψl(·) depend on the
variance of seismic intensity in the classroom, σ2

Il. As a result, when we compare class-
rooms in the post-earthquake cohort that, ceteris paribus, suffered different levels of
variance of seismic intensity, student outcomes are different for two reasons: direct
peer effects, i.e., the variance of ci is different in these classrooms and, as a result, el(ci)
is different; and geographic dispersion effects due to the fact that those classrooms are
different in unobserved ways (different ψl(·)) and/or their observed classroom char-
acteristics have different productivities (different ul(·)). However, when we compare
classrooms in the pre-earthquake cohort that, ceteris paribus, have different levels
of variance of seismic intensity, student outcomes are different only for one reason:
geographic dispersion. This is because in the pre-earthquake cohort, student ability
to study, ci, has not been affected by seismic intensity yet, therefore, variance of seis-
mic intensity in the classroom is not related to variance of student ability, but only
to geographic dispersion. This suggests an identification strategy: the geographic
dispersion effects can be computed in both cohorts of students, and differenced out
from the post-earthquake cohort.

Specifically, I model classroom effects in both cohorts as u(ci, zl, Fl(xi), Il, Īl, σ2
Il)

and ψ(ci, zl, Fl(xi), Il, Īl, σ2
Il), where Il is seismic intensity in the school’s town, Īl is

the average and σ2
Il is the variance of seismic intensity suffered by the students in

classroom l. I let ul(·) and ψl(·) depend on Il and Īl, and not just on σ2
Il, for two

reasons: first, to allow for the fact that actual seismic intensity at the school and
average intensity of the students in the classroom can directly impact the outcomes
of the student in the post-earthquake cohort (e.g. through the damage to school
facilities); second, to allow for the fact that, in both cohorts of students, geographic
location as captured by these variables may be spuriously related to student test
scores if, for example, schools affected more strongly are in poorer/wealthier areas.
In estimation, I compare only classrooms with the same values of Il and Īl. Therefore,
my approach is robust to the earthquake affecting student outcomes through multiple
channels, and it is robust to spurious effects related to the geographic location of the
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school.
Suppose that there are two classrooms in the pre-earthquake cohort, l and l′ , that

are identical in everything, except in the variance of seismic intensity. Specifically,
zl = zl′ , Il = Il′ , Īl = Īl′ and Fl(xi) = Fl′(xi), but σ2

Il 6= σ2
Il′ . Assume w.l.o.g. that

l has a smaller variance: σ2
Il − σ2

Il′ = ∆σ2
Ill′ < 0. Because the distribution of c is

the same in the two classrooms, el(c) = el′(c) for every c. The function el(c) is not
identifiable, but the function ml(c) is. Letting φl(c) = ul(c) + ψl(c) and taking the
difference between the m functions in these two classrooms at a given point c = α1xi

gives:

ml(c)−ml′(c) = ∆mpre
ll′ (c) = el(c) + φprel (c) + εil

−el′(c)− φprel′ (c)− εil′

= φprel (c)− φprel′ (c) + εil − εil′

= ∆φprell′ (c) + ξill′ (4)

where pre indicates that the sample is the pre-earthquake cohort. ∆φprell′ (c) is the
geographic dispersion effect. Consider now the post-earthquake cohort. Type ci for
these students is affected also by the earthquake intensity. Consider two classrooms,
s and s

′ , that, as before, share the same characteristics, but where the variances of
seismic intensity differ, i.e. σ2

Is 6= σ2
Is′ . W.l.o.g., σ2

Is − σ2
Is′ = ∆σ2

Iss′ < 0. Because in
the post-earthquake cohort seismic intensity affects ci, the difference in the intensity
variances in the two classrooms causes a difference in the variance of c. As a result,
if there are peer effects, they will cause a difference between the e(·) functions in the
two classrooms, i.e., es(c) 6= es′(c) for at least some c. Taking the difference of the m
functions in these two classrooms, at a given point c = α1xi + α2Ii + α3Iixi, gives:

ms(ci)−ms′(c) = ∆mpost
ss′ (c) = es(c) + φposts (c) + εis

−es′(c)− φposts′ (c)− εis′

= es(c)− es′(c) + φposts (c)− φposts′ (c) + εis − εis′

= ∆ess′(c) + ∆φpostss′ (c) + ξiss′ (5)

Consider now the four classrooms l, l′, s and s′ simultaneously. Suppose that ∆σ2
Ill′ =

∆σ2
Iss′ < 0, i.e. the difference in intensity variances within the pre-earthquake pair

ll′ is identical to the difference in intensity variances within the post-earthquake pair
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ss′. If these four classrooms share all other observed classroom characteristics (i.e.
zl, Il, Īl and the classroom distribution of xi), then the difference between the ∆m
functions is:

∆mpost
ss′ (c)−∆mpre

ll′ (c) = ∆ess′(c) + ∆φpostss′ (c) + ξiss′ −∆φprell′ (c)− ξill′

= ∆ess′(c) + ∆φpostss′ (c)−∆φprell′ (c) + ∆ξill′ss′

where E(∆ξill′ss′|xi, zl, Il, Īl) = 0. If ∆φpostss′ (c) = ∆φprell′ (c), then the geographic dis-
persion effects cancel out,

∆mpost
ss′ (c)−∆mpre

ll′ (c) = ∆ess′(c) + ∆ξill′ss′ , (6)

and the difference between the ∆m functions in the post- and pre-earthquake samples
identifies the effect on a student of type c of increasing the variance of student types,
i.e., the peer effect of interest, ∆ess′(c). See Figures 10 and 11 in Online Appendix
A.5 for a graphical representation of this differencing technique.

An important feature of this technique is that the difference in the differences
is computed for every point c, i.e., for every student type, and student types are
determined differently in the two cohorts of data. Therefore, if two students i = pre

and i = post from the two separate cohorts are of the same type ci, then they must
have different characteristics xi, specifically: xpre = α1+α3Ipost

α1
xpost + α2

α1
Ipost. For

example, to be of the same type, the student affected by the earthquake must have a
larger initial ability (lagged test score) than the student unaffected by the earthquake,
to compensate for the fact that seismic intensity reduced her ability to study. By how
much it must be larger depends on the value of α. It is the fact that I jointly estimate
the m(·) functions and the α parameters that allows me to make the appropriate
comparisons between pre- and post-earthquake students.36

To implement the differencing technique, a large number of pair-wise comparisons
between classrooms must be performed. This is because the treatment (increasing

36Because student types are a function of different covariates in the pre- and post-earthquake
cohorts, the standard quantile difference-in-differences (QDID) framework cannot be adopted here
(Athey and Imbens 2006). The QDID approach can potentially be extended to allow for different
covariates in the treated and untreated sub-populations. However, if feasible, such an extension
would require a stronger assumption on the error term than the conditional mean independence
assumed in equation 3, a full independence assumption would be needed.
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variance of student types) is defined only in relative terms: if classroom A has a
larger variance than classroom B, but a lower variance than classroom C, then it
is the treated classroom when compared to B, while it is the untreated classroom
when compared to C. I perform all possible pair-wise comparisons, and consider
the classroom with the larger variance in each pair as the treated classroom. The
treatment effect is then estimated by averaging over these pair-wise comparisons.
Notice that I average over various treatment intensities, so that the definition of
treatment is an increase - of no specific value - in the variance of students’ ability
to study. This is all that is needed to test the second implication of the theoretical
model.

A second key aspect of the method is that these pair-wise comparisons must be
made among pairs of classrooms that are identical in terms of all characteristics,
except for the variance of seismic intensity. As one of the characteristics is the dis-
tribution of students’ xi variables, a high-dimensional object, only a limited number
of classrooms are exactly identical. Therefore, I use kernel weighting, where pairs of
classrooms that are very similar obtain higher weights than pairs of classrooms that
are less similar, in the spirit of Powell (1987) and Ahn and Powell (1993). Moreover,
when conditioning on the distribution of student characteristics, I consider only the
mean, the variance, the skewness and the kurtosis of this distribution, to reduce the
dimensionality of the matching. Online Appendix A.5 presents the details of the
method’s implementation, as well as the technical assumptions that must be made to
introduce kernel weighting and dimensionality reduction.

I estimate ∆ess′(c) on a fine grid of values for c. To test the second theoretical
model’s prediction, it is sufficient to trace the sign of this function over its domain.
This reveals how the effect of increasing the variance of student types varies across
students.

Identifying assumption. In the model, the geographic dispersion effects (∆φ(c)) are
additively separable from the peer effects (∆e(c)). This is in line with most of the
peer effect literature, where confounding effects like correlated effects are typically
additive. Given additivity, these potentially confounding effects cancel out if they are
identical in the pre- and post-earthquake cohorts. Therefore, the main identifying
assumption is:
IA. Constancy of geographic dispersion effects, i.e. ∀ c, ∆φprell′ (c) = ∆φpostss′ (c) ∀l, l′, s, s′
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s.t. σ2
Il − σ2

Il′ = σ2
Is − σ2

Is′ .
This assumption would not be met if the relationship between student geographic dis-
persion and unobserved classroom characteristics (i.e., ψl(·, σ2

Il)) changed between the
two cohorts. This would happen if, for example, schools assigned more experienced
teachers or more resources to classrooms that suffered larger variance in damages, or
if motivated parents systematically avoided classrooms that suffered larger variance
in damages. Table 8 in Online Appendix A.6 examines parental sorting. It presents
results from difference-in-differences regressions similar to 2, where the unit of obser-
vation is the classroom rather than the student, and where the dependent variables are
mean student characteristics in the classroom. As can be seen, the estimated effect of
classroom intensity variance is never statistically different from zero. This means that
the relationship between intensity variance (i.e., geographic dispersion) and student
characteristics is the same in the pre- and post-earthquake cohorts, suggesting that
parents did not reallocate across schools as a reaction to intensity variance.37

Using the same difference-in-differences framework, Tables 9 and 10 show that
also the relationship between observed classroom quality and geographic dispersion
did not change after the earthquake; none of the estimates of the effect of classroom
intensity variance is significantly different from zero.

The identifying assumption would not be met also if the relationship between stu-
dent geographic dispersion and the productivity of observed classroom characteristics
(i.e., ul(·, σ2

Il)) changed before and after the earthquake. The main threat to iden-
tification in this case would be a reaction of teachers to the variance of damages in
the classroom. For example, teachers in classrooms where some students were badly
affected while others were not could have changed their focus on instruction. This
is an indirect (peer-to-teacher) peer effect that, without data on teacher’s practices,
usually challenges the identification of direct (peer-to-peer) peer effects. Using survey
data on the amount of curriculum covered by Spanish teachers in the pre- and in the
post-earthquake cohort, and using the same difference-in-differences framework de-
scribed above, I evaluate whether the relationship between geographic dispersion (as
measured by seismic intensity variance) and amount of curriculum covered changed
before and after the earthquake. As can be seen in Table 11, this relationship did

37This is not surprising, considering that the sample does not include the students who were forced
to relocate because their school closed as an effect of the earthquake, nor does it include the schools
that received these evacuees.
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Table 2: Parameter Estimates (bootstrapped standard errors in parentheses)
Parameter Coefficient on Math Spanish
α12 Parental Education −0.01162∗∗∗ −0.02116∗∗∗

(0.00516) (0.00446)
α13 High Income Dummy −0.05596∗∗∗ −0.03560∗∗

(0.01620) (0.01749)
α14 Female 0.129037∗∗∗ −0.23034∗∗∗

(0.01953) (0.03504)
α2 Seismic Intensity 0.032588 0.09463

(0.05962) (0.14377)
α3 Seismic Intensity*High Income −0.00037∗∗∗ -0.00037

(0.0000) (0.00271)
α4 Seismic Intensity*Female -0.00313 0.05500∗

(0.028773) (0.03341)
* p < 0.10, ** p < 0.05, *** p < 0.01

not change.38

Together, these pieces of evidence give me confidence in the plausibility of the
identifying assumption.

6 Estimation Results and Statistical Tests of the
Theoretical Model’s Predictions

Table 2 presents the parameter estimates. The coefficient on lagged test score is
normalized to −1, because only the ratios among the α parameters are identified.
Under this normalization, student type ci can be interpreted as a cost of exerting
effort, because a lower lagged test score is expected to increase the cost of effort. As
expected, earthquake intensity is estimated to increase student type. The model fit
is very good, as can be seen in Table 3.

38Teachers were given a list of topics, and had to indicate in how much detail they covered each
topic. I aggregated the answer into a percentage. While the amount of curriculum covered is not
a fine measure of teachers’ practice, focus of instruction, and/or effort, it is the only one available.
Most studies of peer effects do not have measures of teacher effort. There is strong reason to believe
that a change in teachers’ focus of instruction in the classroom would be reflected in the speed at
which they teach and, therefore, in the percentage of curriculum covered.
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Table 3: Model Fit, Test Scores

Mathematics Spanish
Actual Model Actual Model

Pre-Earthquake Cohort
Overall -.185 -.189 -.121 -.123
Female -.304 -.283 -.050 -.063
Male -.058 -.089 -.196 -.186
Female

Urban -.300 -.279 -.052 -.064
Rural -.322 -.302 -.043 -.056

Male
Urban -.035 -.066 -.180 -.172
Rural -.159 -.188 -.262 -.249

Female
Lower Income -.414 -.387 -.148 -.155
Higher Income -.130 -.120 .104 .083

Male
Lower Income -.222 -.246 -.348 -.328
Higher Income .155 .116 .001 -.003

Post-Earthquake Cohort
Overall -.222 -.228 -.153 -.156
Female -.307 -.292 -.058 -.078
Male -.132 -.159 -.254 -.239
Female

Urban -.302 -.287 -.071 -.086
Rural -.329 -.315 .001 -.039

Male
Urban -.120 -.148 -.257 -.246
Rural -.180 -.205 -.242 -.209

Female
Lower Income -.414 -.388 -.146 -.160
Higher Income -.151 -.151 .071 .042

Male
Lower Income -.237 -.262 -.351 -.322
Higher Income -.0004 -.0304 -.133 -.136
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Figure 6: Examples of estimated m(c) functions in two classrooms.

Testing the first theoretical model’s implication. The identifiable function ml(c) is the
sum of two functions: el(c) + φl(c). The function el(c) is the empirical counterpart
of the theoretical’s model equilibrium effort function. The first theoretical model’s
prediction is that this function is decreasing. I cannot directly test the monotonicity
of el(c), however, I can test the monotonicity of ml(c). If φl(c) is constant, then
a decreasing ml(c) implies that el(c) is decreasing. If φl(c) is not constant, then a
decreasing ml(c) implies that it is not true that el(c) and φl(c) are both increasing.
In either case, an increasing ml(c) would be reason for concern, while a decreasing
ml(c) would be compatible with the theoretical model’s prediction.

Figure 6 shows an example of the function ml(ci) estimated in two classrooms.
The higher a student’s type ci is, the lower achievement is. I formally test monotonic-
ity of m̂(ĉi) using the method developed in Chetverikov (2013). For all classrooms,
the null hypothesis that the m function is decreasing is not rejected at the α = 0.10
significance level. Details of the method can be found in Online Appendix A.7. The
values of the test statistics and critical values can be found in the online supplemen-
tary material, where plots of the m̂ functions in a large number of classrooms are also
presented.

Testing the second theoretical model’s implication. The effect of increasing the vari-
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Figure 7: Estimated ∆̂e(c) for Spanish test scores. One-sided 90 percent confidence
interval reported.

ance of c on student test scores is heterogeneous depending on a student’s type.
Figures 7 and 8 report the estimates and one-sided point-by-point 90 percent con-
fidence intervals for ∆̂e(c) for Mathematics and Spanish test scores, over a grid of
values for c. Going from low to high c, this function is negative and then positive
for Spanish test scores, while it is positive, then negative and then positive for Math
test scores. This means that increasing the variance of c has a negative impact on
the test scores of middle-cost (middle-ability) students, and a positive impact on the
test scores of high-cost (low-ability) students, while it has a negative impact on low-
cost (high-ability) Spanish students, and a positive impact on low-cost (high-ability)
Mathematics students.

The patterns observed in the data are consistent with the model’s comparative
statics result when φ > 0, i.e., when students have a minimum guaranteed level of
utility. The one-sided point-by-point 90 percent confidence intervals indicate that the
function ∆̂e(c) for Spanish test scores is statistically negative and then statistically
positive, moving from low to high c.39 This corresponds to the upper-left panel of

39While ∆̂e(c) is not statistically different from zero in the neighborhood of c = 1, the p-value for
the alternative hypothesis that it is greater than zero is 0.84, indicating that this alternative would
be rejected at all reasonable significance levels. Therefore, the behavior of the function near c = 1
does not reject the model’s implication, because the model allows this function to become arbitrarily
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Figure 8: Estimated ∆̂e(c) for Math test scores. One-sided 90 percent confidence
interval reported.

Figure 3 in the theory section. As typically occurs with non-parametric estimators,
the variance is larger near the boundaries, where the data density is smaller. This
affects inference for the case of Mathematics. As the confidence intervals indicate, for
very small values of c, the null that ∆̂e(c) = 0 cannot be rejected at the 10 percent
significance level. This does not reject the model’s implication under φ > 0, which
allows this function to be either positive or negative for low values of c.40 While the
point estimate of ∆̂e(c) for Math corresponds to the lower-left panel of Figure 3, a
pattern like the one in the upper-left panel cannot be excluded.

The model can easily explain the difference in the patterns of ∆̂e(c) for Spanish
and Math test scores, as discussed in the model intuition section. Whether low-cost
(high-ability) students increase or decrease their effort as the variance of student
types increases depends on the relative importance that they give to rank versus
achievement in the utility. The point estimates suggest higher levels of competition
for grades in Math, but the case in which Math and Spanish patterns are similar
cannot be rejected statistically. It is possible, however, to reject the model with

close to zero.
40This could potentially be problematic if the true function crossed the x-axis multiple times

near the boundary. To rule out this occurrence, in ongoing work I am bootstrapping the estimated
function.
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φ = 0, indicating that aversion to a low rank is not a feature of the data.
While I do find evidence of rank concerns in my data, I am not able to iden-

tify whether they are intrinsic or extrinsic. There is anecdotal evidence indicating
that Chilean public school 8th graders face extrinsic incentives to care about their
achievement rank.41 However, intrinsic rather than extrinsic rank concerns may be
generating the observed patterns.

Implications for Ability Tracking. The two cases φ > 0 and φ = 0 have very different
implications for tracking. Under φ = 0, the case of aversion to a low rank, students
who have a low ability rank but who become the best in their class once they are
tracked may have an incentive to lower their effort, because, being a “big fish in a small
pond”, they do not face anymore the risk of ranking low in achievement. When φ > 0,
this incentive is not present. All students in tracked classrooms have an incentive
to exert more effort. This is because tracking, by partitioning the domain of the
ability distribution, increases for all students the fraction of peers of a similar ability.
Therefore, the marginal utility of effort increases for all under φ > 0, regardless of a
student’s position in the ability distribution. The type of rank concerns for which I
find evidence in the data (φ > 0) imply that tracking students by ability would give
an incentive to all students to increase their effort, and compete more fiercely among
equals.

7 Robustness and Alternative Mechanisms

First, I estimate the impact of seismic intensity variance on test scores using the
parametric difference-in-differences approach with continuous treatment outlined in
equation 2. As can be seen in Table 12 in Online Appendix A.8, the estimated
impact is not significantly different from zero for Mathematics, and it is −0.25 sd for
Spanish test scores. These results are both qualitatively and quantitatively compati-
ble with the results from the semi-parametric approach. Moreover, they underline the

41Chilean parents are more likely to choose a private (subsidized) school in high-school rather
than primary school (which runs from 1st to 8th grade). Therefore, at the end of the 8th grade many
public school students apply for admission to private (subsidized) schools. At the same time, they
are required to take a national exam, and many private schools select their students also on the
basis of past grades in primary school and on the national exam. This gives an extrinsic incentive
to students in the 8th grade to compete for grades.
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importance of adopting an approach that can detect the heterogeneity of the impact
across students, because the mean treatment effects mask considerable heterogeneity.

Second, I ask whether the observed patterns of heterogeneity can be explained
by alternative mechanisms. As a first mechanism I consider the teacher channel.
This channel can be excluded for two reasons. First, as outlined in section 5, I do
not find evidence of teachers changing their teaching practices as a reaction to the
classroom variance in damages. Second, for this channel to explain the empirical
results, one must assume that Math and Spanish teachers reacted differently to a
change in intensity variance, with Spanish teachers focusing only on the high-cost
individuals, and Mathematics teachers focusing on the high- and on the low-cost
individuals. No previous study provides support for such ad hoc theories.

As a second alternative mechanism I consider the theory of social cognitive learn-
ing, which posits that students learn from similar classmates (Bandura 1986, Schunk
1996). This theory is rejected by my data, because it would require that low-cost
students in both Mathematics and Spanish classes increase their test scores when the
variance increases, because of the larger density at their ability level. However, I find
that low-cost students in Spanish classes obtain lower test scores.

Related to this mechanism is the mechanism of self-selection into peer subgroups
formed mainly of peers with a similar ability, a mechanism proposed by Carrell,
Sacerdote, and West (2013) to explain their experimental findings. If only mean peer
ability matters and if students choose more often to become friends with similarly able
peers when their availability increases, then we should see a worsening of the outcomes
of low-ability students when there are more low-ability students in the classroom. In
this context, this mechanism can be excluded because low-ability students in both
Math and Spanish classes increase their test scores when the number of low-ability
students in the classroom increases following a variance increase.

A final mechanism I consider is cooperative behavior between students affected
by the earthquake. I call this mechanism the “good samaritan”: if students who
were less affected by the earthquake helped the more affected ones, for example by
offering them to study with them at their less affected homes, then the estimation
of the impact of damage at a student’s home on a student’s type would be biased.
As a result, the variance of seismic intensity would provide a biased measure of the
variance of student types. A key implication of the good samaritan mechanism is that
if such a mechanism were present, then the econometric model would systematically
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underestimate the variance in student types, because this mechanism would work
as an insurance between students that lowers the heterogeneity of the earthquake
impacts on students’ ability to study. Identification relies on contrasting classrooms
with different variances in seismic intensity, and on considering the classroom with the
larger variance as the treated classroom. As long as the systematic under-estimation
of student type variance preserves the relative ordering of classrooms in terms of true
student type variance, the paper’s conclusions are not affected. For example, if the
bias is the same in all classrooms, then the relative ordering is preserved and the
study’s conclusions do not change. It would be worrisome if classrooms with a larger
variance in seismic intensity variance had a larger degrees of insurance. A symptom
of this would be that in classrooms with larger variance in seismic intensity, seismic
intensity at a student’s home is a bad predictor of a student’s test scores. However, I
find that seismic intensity always decreases in a statistically significant way students’
test scores. Therefore, I am confident that the good samaritan mechanism, if present,
does not pose a threat to the validity of this paper’s empirical findings.

8 Conclusions

This paper is the first to study rank concerns as a mechanism underlying peer effects
in education. There is mounting evidence that the standard linear-in-means model
of peer effects is not an appropriate model to describe peer effects in test scores
(Sacerdote 2014). Yet, there is still no consensus on what constitutes a plausible
model.

The theoretical framework that I propose generates non-linear peer effects that can
help us understand some of the existing evidence, and it does so by introducing rea-
sonable assumptions on the primitives, i.e., on student preferences. There is evidence
that in many contexts students have intrinsic (Tran and Zeckhauser 2012, Azmat and
Iriberri 2010) and extrinsic (Cotton, Hickman, and Price 2014) reasons to care about
classroom rank. However, the existing literature has so far ignored the implications
that these preferences have for peer effects. I find that they generate an interac-
tion between academic competition and classroom ability composition that can be
exploited by policymakers in the design of classroom allocation rules.

In light of the encouraging new results of this paper, it appears worthwhile to
further explore the role of rank concerns in determining peer effects. There are at
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least two possible directions for future research. First, the theoretical model in this
paper shows that the impact of changing peer group composition depends on the
strength of rank concerns. Therefore, it would be very useful to collect data that allow
researchers to credibly measure student rank concerns, either through the elicitation
of preferences with surveys, or through laboratory experiments. This knowledge could
then be used to study optimal peer allocation.

Second, there currently exist two separate strands in the experimental literature
in Education: studies that randomly vary the incentives for students to compete,
for example, through merit fellowships, affirmative action programs, and financial
awards, and studies that randomly vary student composition. This paper’s findings
indicate that it would be useful to consider both variations simultaneously, because of
potential complementarities between the two types of interventions. Results from such
experiments would inform policy makers on the optimal combination of competition
incentives and peer group composition.
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A Online Appendix - NOT FOR PUBLICATION

A.1 Model Details and Proofs

A.1.1 Differential Equation

The first-order differential equation characterizing equilibrium strategies is obtained
by rearranging the first order condition in 1, and substituting c′(e) = 1

e′ (c) :

e
′(ci) =

(
g(ci)

1−G(ci) + φ

)(
V (y(e), q(e, c))
a(µ)V1 + V2

∂q
∂e

)
. (7)

= g(ci)
1−G(ci) + φ

ψ(ei, ci).

A.1.2 Proof of Proposition 3.1

The proof is an adaptation of the proof in Hopkins and Kornienko (2004), where equi-
librium strategies are strictly increasing and where the consumption and positional
goods are two separate goods. Here I report the proof that if the strategy e∗(c) is a
best response to other students’ effort choices, then it is decreasing.42 I also provide
an intuition for why the strategy is continuous and unique.

It is easy to show that the boundary conditions in the statement of the Proposition
are optimal for the student with the highest cost, c̄. For the case φ > 0, the student
with the highest type, c̄, chooses the effort function that maxims utility V in the
absence of rank concerns, as specified by the boundary condition in the statement of
the Proposition. To see why, notice that in equilibrium her utility from rank is zero,
therefore, she maximizes V because V ×F +φ×V = V ×0 +φ×V = φ×V . For the
case φ = 0, footnote 17 explains why the student at c̄ is indifferent between exerting
any level of effort in [0, 1

c̄
]. I assume the boundary condition e(c̄) = 1

c̄
because it

preserves continuity of the equilibrium effort function (because limc→c̄− = 1
c̄
).

Proof If a student i of type ci exerts effort ei = e∗(ci) and this is a best response
to the efforts of the other students as summarized by the effort distribution FE(·),
then it must be that ei ≥ enr(ci), where enr(ci) solves the first-order condition in the

42The remaining part of the proof, showing that the equilibrium strategy is strictly decreasing,
continuous and differentiable is a lengthy adaptation of the proofs in Hopkins and Kornienko (2004),
and it is available from the author upon request.
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absence of rank concerns, i.e., V1a(µ)|e=enr = −V2
∂q
∂e
|enr . This is because if e < enr(ci),

then FE(e) + φ < FE(en) + φ and V (y(e(c)), q(e(c), c)) < V (y(enr(c)), q(enr(c), c)).
Therefore, V (y(e), q(e, c)) (FE(e) + φ) < V (y(enr), q(enr(c), c)) (FE(enr) + φ), i.e.,
any level of effort below the no-rank-concerns level is strictly dominated by the no-
rank-concerns level. Suppose that equality holds, so ei = enr(ci). Then e∗(·) is
decreasing because en(ci) is decreasing. This follows from the assumptions on utility
that V11 = 0, V22 = 0, Vij ≤ 0 for i 6= j, and from the assumptions on the cost
of effort function that ∂q

∂c
> 0, ∂q

∂e
> 0, ∂2q

∂2e
> 0 and ∂2q

∂e∂c
≥ 0. To see why, let

FOC(e, c) = V1a(µ) + V2q1 and notice that by the Implicit Function Theorem:

denr
dc

= −∂FOC/∂c
∂FOC/∂e

.

The numerator is:

∂FOC

∂c
= a(µ)V12

∂q

∂c
+ V22

∂q

∂e

∂q

∂c
+ V2

∂2q

∂e∂c
≤ 0.

The denominator is:

∂FOC

∂e
= a(µ)2V11 + a(µ)V12

∂q

∂e
+
(
a(µ)V21 + V22

∂q

∂e

)
∂q

∂e
+ V2

∂2q

∂2e
≤ 0.

As a result, e∗(·) is decreasing in c when it is equal to optimally chosen effort in the
absence of rank concerns, because denr

dc
≤ 0.

If equality does not hold, we want to show that if ei is a best-response and ei >

enr(ci), then it is still the case that ei is decreasing in ci. First, I show that for any
other choice ẽi ∈ (enr(ci), ei),

∂V

∂ci
(y(ei), q(ei, ci)) (FE(ei) + φ) < ∂V

∂ci
(y(ẽi), q(ẽi, ci)) (FE(ẽi) + φ) . (8)

Rewrite the left-hand side as:

∂V

∂ci
(y(ei), q(ei, ci)) (FE(ẽi) + φ) + ∂V

∂ci
(y(ei), q(ei, ci)) (FE(ei)− FE(ẽi)) .

The first term is smaller or equal to the right-hand side of equation 8, because ∂V
∂c

is decreasing in e by the assumptions that V21 ≤ 0, V22 = 0, ∂q
∂c

> 0, V2 < 0, and
∂2q
∂c∂e
≥ 0. To see why, notice that ∂2V

∂c∂e
=
(
V21a(µ) + V22

∂q
∂e

)
∂q
∂c

+ V2
∂q
∂c∂e
≤ 0. The
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second term is strictly negative, because first, ∂V
∂ci

is strictly negative by virtue of the
assumptions that V2 < 0 and ∂q

∂c
> 0, and second, (FE(ei)− FE(ẽi)) > 0. To see why

the latter is true, notice that for e > enr, V (y(e), q(e, c)) is decreasing in e. Therefore,
if e is a best-response, it must be the case that FE(ei) > FE(ẽi), otherwise a student
could lower effort and obtain a higher utility, while not lowering her status. This
establishes the inequality in 8, so that at ei, the overall marginal utility with respect
to c ( ∂

∂c
(V (y, q)(FE(e) + φ))) is strictly decreasing in e. This implies that an increase

in type c leads to a decrease in the marginal return to e, therefore, the optimal choice
of effort e must decrease. Q.E.D.

To show that if an effort function is an equilibrium strategy, then it must be contin-
uous, suppose not. That is, suppose that that there was a jump downwards in the
equilibrium effort function e∗(c) at c̃, so that limc→c̃+ e

∗(c) = ẽ < e∗(c̃). Then, there
would exist an ε > 0 small enough, such that the student of type c̃− ε can reduce her
effort to ẽ, which is below e∗(c̃− ε), and obtain a discrete increase in utility because
of the lower effort, while her rank would decrease by less, by continuity of the rank
function S(·) at c̃. Therefore, there exists a student with an incentive to deviate, and
such discontinuous e∗(c) function cannot be an equilibrium strategy.

Uniqueness of the solution to the differential equation in 7, and therefore unique-
ness of the equilibrium, follows from the Lipschitz continuity of the equilibrium effort
function. This could potentially not be satisfied in the case φ = 0 at the boundary
condition e(c̄) = 1

c̄
, because the denominator on the right hand side of the differential

equation in 7 is zero in this case. However, it can be shown that the assumptions
on the second and cross derivatives of V guarantee uniqueness of the solution also in
this case, refer to Hopkins and Kornienko (2004) for more details.
Intuition for equilibrium uniqueness. Intuitively, uniqueness of the equilibrium
in the case φ > 0 follows from two key assumptions: achievement gives utility per
se, i.e., irrespective of the status it provides, and individuals have different costs
of producing achievement. A common type of multiplicity in this class of games is
when all individuals exert the same amount of effort. If this were an equilibrium,
there would be an infinite number of equilibria. However, all students playing the
same level of effort e∗ is not an equilibrium, because students with a high enough
cost (i.e., with a cost above a certain cutoff that depends on e∗, c > cutoff(e∗)),
have an incentive to reduce effort, obtain zero rank, and enjoy their private utility
from achievement. Therefore, the classical problem of multiplicity of equilibria in
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coordination games does not arise. In the case φ = 0, this problem could in principle
arise, as noted in Hopkins and Kornienko (2004). Suppose that all students play effort
e∗, then, all students have the highest status, because F (e∗) = 1. In this scenario, no
student has an incentive to decrease effort, because she would obtain a rank of 0 and,
therefore, a utility of 0. However, no student has an incentive to increase effort either,
because each student carries a weight equal to zero, therefore, she would not increase
her status but her cost of effort would increase. As a result, all students exerting
effort e∗ could be an equilibrium, and this is true for multiple values of e, yielding
multiple equilibria. Following Hopkins and Kornienko (2004), I rule out this case by
assuming that individuals have a dislike for ties, so that rank can in fact be written
as γF (y) + (1− γ)F−(x), where γ ∈ [0, 1) and F−(y) = limy→y− F (y) is the mass of
individuals with consumption strictly less than x. As a result, when all students exert
the same level of effort e∗, each student has an individual incentive to deviate and
exert more effort, because this would increase her utility from rank by eliminating
her tie with the other students. Therefore, I assume that F (y) in the body of the
paper in fact corresponds to γF (y) + (1− γ)F−(x), and uniqueness follows.

A.1.3 Comparative Statics

Definition Two distributions GA, GB with support on [c, c̄] satisfy the Unimodal
Likelihood Ratio (ULR) order, GA �ULR GB, if the ratio of their densities L(c) =
gA(c)/gB(c) is strictly increasing for c < c̃ and strictly decreasing for c > c̃ for some
c̃ ∈ [c, c̄) and if µA ≥ µB.

In particular, if B has the same mean but higher variance than A, then GA �ULR
GB. Define the cutoffs ĉ− and ĉ+ as the extremal points of the ratio (1 − GA(c) +
φ)/(1 − GB(c) + φ) when GA �ULR GB. It can be shown that these cutoffs are
such that c < ĉ− < ĉ+ ≤ c̄, and they can be conveniently interpreted as cutoffs
that separate type categories.43 Low c students are those with c ∈ [c, ĉ−), middle c
students as those with c ∈ (ĉ−, ĉ+), and high c students as those with c ∈ (ĉ+, c̄]. The
model has the following prediction:

43The proof is available upon request from the author. It is a modification of the proof in Hopkins
and Kornienko (2004), there the c.d.f. functions and not their complement appear in the ratio.
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Proposition A.1 (Adapted from Proposition 4 in Hopkins and Kornienko (2004)).
Suppose eA(c) and eB(c) are the equilibrium choices of effort for distributions GA and
GB. If GA �ULR GB and µA = µB, then:

• If φ = 0: y (eA(c)) crosses y (eB(c)) at most once. Moreover, y (eA(c)) >

y (eB(c)) for all c ∈ [ĉ−, c̄) with a possible crossing on [c, ĉ−).

• If φ > 0: y (eA(c)) crosses y (eB(c)) at most twice. Moreover, y (eA(c)) <

y (eB(c)) for all c ∈ [ĉ+, c̄) with a crossing in (c̃, ĉ+) so that y (eA(c)) > y (eB(c))
for all c ∈ [ĉ−, c̃], with a possible crossing on [c, ĉ−).

Proof The proof is a lengthy adaptation of the proof in Hopkins and Kornienko
(2004). It is available from the author upon request.
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Table 4: Estimated reconstruction costs by MSK-intensity category (Adobe construc-
tions)

MSK Expected cost Expected cost (USD) over
Intensity (USD) average household monthly income
V 20 0.04
V1

2 120 0.26
VI 220 0.49
VI 1

2 950 2.10
VII 1,680 3.72
VII 1

2 4,210 9.32
VIII 6,740 14.92
VIII 1

2 10,270 22.73
IX 13,800 30.54

A.2 Earthquake Damages

A.3 Effect of Earthquake on Test Scores
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Figure 9: Typical damages to adobe structures and their corresponding grades of
damage. (a) Vertical cracks at wall corner, G3; (b) diagonal crack in wall, G3; (c)
wall collapse through out-of-plane, G4; (d) collapse of the roof, G5. Source: The
picture and damage descriptions are reported from Astroza, Rui and Astroza (2012).
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Table 6: Pre-Earthquake Cohort, dependent variables Spanish and Math test scores
in eighth grade

(1) (2)
Spanish Math

Spanish test score in fourth grade 0.676***
(0.00408)

Math test score in fourth grade 0.638***
(0.00383)

Household income (CLP) 2.99e-08 9.66e-08***
(1.82e-08) (1.73e-08)

Father’s education (yrs) 0.00874*** 0.00584***
(0.00126) (0.00118)

Mother’s education (yrs) 0.00731*** 0.00559***
(0.00130) (0.00122)

Female 0.138*** -0.109***
(0.00715) (0.00674)

Own Intensity 0.0149 0.0146
(0.0129) (0.0120)

Classroom Intensity 0.00943 0.0580
Mean (0.0688) (0.0648)

Classroom Intensity 0.223+ 0.319**
Variance (0.128) (0.120)

Constant -0.472 -0.681+
(0.425) (0.400)

School Fixed Effects yes yes
Observations 35175 35302
Standard errors in parentheses
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001
Only municipal schools are in the estimation sample.
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Table 7: Probit regression, marginal probability estimates reported. Dependent vari-
ables: being a at top or bottom third of the distribution of elicited cost of effort

top 33 percent bottom 33 percent

Mother’s education .0007012 .0020148∗
(.0007415 ) (.0008893)

Father’s education -.0007132 .0013843
(.0007134) (.0008544)

Household income 1.76e− 08+ −2.32e− 08+

(1.02e-08) (1.23e-08)

Math test score t-1 −.0549353∗∗∗ .1004088∗∗∗
(.0019868) (.0023838)

Seismic intensity .0128674∗∗∗ −.0105234∗∗∗
at student’s home (.0022842) (.002741)
Observations 46059 46059
Standard errors in parentheses
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001
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A.4 Algorithm for the Estimation of the Semiparametric Single-
Index Model

1. Normalize to a constant one of the elements of α1, because only the ratios among
the components of α are identified. I normalize to -1 the coefficient on initial
ability (lagged test score).

2. Make an initial guess for all the other elements of α.

3. Form ci ∀i according to ci = α1xi if i belongs to the pre-earthquake cohort,
and ci = α1xi + α2Ii + α3Iixi if i belongs to the post-earthquake cohort. Ii is
interacted with household income and student gender.

4. Estimate E(yi|c, l;α) ∀l by Nadaraya-Watson kernel regression with weights wi:

m̂l(c;α) =
∑
i∈l wiK

(
ci−c
h

)
yi∑

i∈l wiK
(
ci−c
h

)
with a standard normal Kernel: K(ψ) = (2π)− 1

2 exp(−0.5ψ2) and optimal band-
width h = 1.06σ̂cn−1/5, minimizing the Approximated Mean Integrated Squared
Error (AMISE).44 The weights wi are such that only observations i where the
p.d.f. of c at ci exceeds a small positive number are used (see Ichimura (1993)
and Horowitz (2010)). Observation i is excluded from the calculation of m̂ at
ci.

5. Compute the sum of squared residuals in each l at the current guess for α:
SSRl(α) = ∑

i∈l wi(yi − m̂l(ci;α))2. The weights are the same as those used in
the kernel estimator of m.

6. Update guess for α using Generating Set Search algorithm (HOPSPACK).

7. Repeat steps 1-6 until convergence to the minimizer of ∑l SSRl(α).

Notice that unlike in the standard semiparametric single-index model, here the SSR(α)
is computed in each classroom l, and its sum over classrooms is minimized. The

44The MISE is equal to E{
∫

[m̂(c)−m(c)]2dx} =
∫ [

(Biasm̂)2 + V (m̂)
]
dc, and AMISE substitutes

the expressions for the bias and variance of m̂ with approximations. See Pagan and Ullah (1999),
p. 24.
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dataset is clustered at the classroom level. While the functions m are allowed to
differ by classrooms, the parameter α is restricted to be identical in all classrooms.
To account for the clustered sample design in the estimation of the standard errors
of the α parameters, I bootstrap 100 samples stratified at the classroom level, and I
estimate α in each bootstrapped sample to obtain the standard errors.

The standard errors of ∆̂e(·), which are needed to test the comparative statics
result, cannot be easily bootstrapped for computational reasons.45 Instead, I use the
result in Ichimura (1993), who proves that the asymptotic variance of m̂l(c) in the
appropriately weighted semiparametric single-index model above is identical to the
asymptotic variance of a non-parametric conditional mean estimator. The variance of
such estimator is V (m̂l(c)) = σ2

l

nlhlfl(c)
∫
K2(ψ)dψ+o(n−1h−1), where σ2 is the variance

of εil, hl is the bandwidth, nl is the size of classroom l (on average this is almost 30),
and fl(c) is the density at c in classroom l. The kernel K(·) is the normal kernel,
resulting in

∫
K2(ψ)dψ = 0.2821. I estimate the asymptotic variance of m̂l(c) ∀l on

a fine grid for c. I substitute f(c) with its kernel estimator, and σ2
l with its estimator

obtained by averaging the squared residuals in each classroom: σ̂2
l =

∑
i∈l(yi−ŷi)

2

nl−1 . I
assume that the covariances between the m̂l(c) belonging to different classrooms l are
zero ∀c, and I obtain the following expression for the variance of ∆̂e(c):

V
(

∆̂e(c)
)

=
Npre−1∑
l=1

Npre∑
l′=l+1

Npost−1∑
s=1

Npost∑
s′=s+1

κ2
ll′ss′

(
V
(
m̂post
s (c)

)
+ V

(
m̂post
s′ (c)

)
+ V (m̂pre

l (c)) + V (m̂pre
l′ (c))

)
.

The weights κll′ss′ are given by:

κll′ss′ = ωll′ss′∑Npre−1
l=1

∑Npre

l′=l+1
∑Npost−1
s=1

∑Npost

s′=s+1 ωll′ss′

where ωll′ss′ is defined in equation 9.

45This would require submitting around 4,000 jobs of duration 72 hours each.
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pre

l′
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c0

G.D.E. ∆mpre

ll′
(c)

c0

σ2
Il
− σ2

Il′ = ∆ > 0

m
post
s (c)

m
post

s′
(c)

c0

G.D.E.+P.E.

∆mpost

ss′
(c)

c0

σ2
Is − σ

2
Is′ = ∆ > 0

Figure 10: Classrooms l, l′ , s, and s
′ are identical in terms of classroom and student

characteristics. G.D.E. is the effect of geographic dispersion, P.E. is the peer effect of
interest.

A.5 Differencing technique
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G.D.E.+P.E.G.D.E.
∆mpre

ll′
(c)

∆mpost

ss′
(c)

c0

P.E.

∆mpost(c)−∆mpre(c)

c0

Figure 11: Differencing out the geographic dispersion effects. Notice that the differ-
ence between the ∆mpost and ∆mpre functions can be taken only over the overlapping
portion of the two domains. The domain of ∆mpost is shifted to the right with respect
to the domain of ∆mpre, because all students have been affected by the earthquake
and, therefore, their cost of effort is larger than for pre-earthquake students.
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Intuitively, for the kernel weighting method and dimensionality reduction to de-
liver the desired result, two sets of conditions must be met. First, ψl(·) and ul(·)
must vary smoothly with zl, Fl(xi), Il, Īl. This guarantees that there are no jumps in
these functions when two classrooms that are similar, but not identical, in these vari-
ables are compared. Similarly, when two classrooms are similar but not identical in
these variables, the distributions of c are similar but not identical. To avoid jumps in
the e(c;Gl(c)) function, one needs to assume that this function varies smoothly with
Gl(c).46 Second, it must be innocuous to consider only a finite number of moments
rather than the entire distribution of student characteristics. Formally, I make the
following additional assumptions:
DA.1 u(ci, zl, Fl(xi), Il, Īl, σ2

Il) and ψ(ci, zl, Fl(xi), Il, Īl, σ2
Il) are continuous in zl, Fl(xi), Il, Īl.

DA.2 φ(ci, zl, Fl(xi), Il, Īl, σ2
Il) (where φ(·) = u(·)+ψ(·)) is similar to φ̃(ci, zl,Wl, Il, Īl, σ

2
Il)

∀(c, zl,Wl, σ
2
Il), where Wl is a vector containing the mean, variance, skewness and

kurtosis of the elements of xi.47.
DA.3 φ̃(·) is continuous in zl, Il, Īl and Wl.
DA.4 If two classrooms in the pre-earthquake cohort are such that Wl ∼= Wl′ , then
el(c) ∼= el′(c) ∀c. If two classrooms in the post-earthquake cohort are such that
[Ws, Īs, Is, σ

2
Is] ∼= [Ws′ , Īs′ , Is′ , σ

2
Is′ ], then es(c) ∼= es′(c) ∀c.

These assumptions allow me to build an approximated counterpart to equation 6.
Assumption DA.1 implies that if two classrooms are similar, then the classroom effects
are also similar for every student type c. Assumptions DA.2 and DA.3 together mean
that if two classrooms are similar, then φ̃(ci, zl,Wl, Il, Īl, σ

2
Il)−φ̃(ci, zl′ ,Wl′ , Il′ , Īl′ , σ

2
Il′) ∼=

∆φll′(c). That is, the difference between the φ̃ functions computed in classrooms with
similar vectors W and z is a good approximation to the spurious effect in equations
4 and 5. Finally, assumption DA.4 means that when the distribution of c varies in a
classroom, if this affects el(c) because there are peer effects, then el(c) varies smoothly
with the change in the distribution of c. As a result of these four assumptions, for any
two classrooms l, l′ in the pre-earthquake cohort with Wl ∼= Wl′ , zl ∼= zl′ , Il ∼= Il′ ,
Īl ∼= Īl′ and σ2

Il − σ2
Il′ = ∆σ2

Ill′ < 0, I can build the approximated counterpart to
∆mpre

ll′ (c), ∆̃mpre
ll′ (c). Similarly, for two similar classrooms in the post-earthquake

cohort, I can build the approximated counterpart to ∆mpost
ss′ (c), ∆̃mpost

ss′ (c). If four
46In Ahn and Powell (1993), this assumption corresponds to continuity of the selection function

(see page 9 in their paper).
47I ignore the cross-moments of xi to make the numerical implementation tractable.
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classrooms, l, l′ from the pre-earthquake cohort and s, s′ from the post-earthquake
cohort, are such that Wl ∼= Wl′ ∼= Ws ∼= Ws′ , zl ∼= zl′ ∼= zs ∼= zs′ , Il ∼= Il′ ∼= Is ∼= Is′ ,
Īl ∼= Īl′ ∼= Īs ∼= Īs′ and 0 > ∆σ2

Ill′
∼= ∆σ2

Iss′ < 0, then subtracting ∆̃mpre
ll′ (c) from

∆̃mpost
ll′ (c) yields an approximation to ∆ess′(c) + ∆ξill′ss′ , the quantity of interest.
To ensure that the classrooms are similar, I assign increasing weights to quadruples

that are more similar in terms of W, z, I, Ī and ∆σ2
I . I construct weights using mul-

tivariate standard normal kernel functions. As before, let ll′ index a pre-earthquake
classroom pair, and ss′ a post-earthquake classroom pair. Letting Zt = [Wt, zt, It, Īt]
for t = l, l′, s, s′, I assign the weight 1

h
k
(
Zt−Zt′

h

)
to each of the pairs tt′ ∈ {ll′, ss′, sl}.

This ensures that the pairs within the pre- and post-earthquake cohorts are composed
of classrooms that are similar to each other in terms of W and z (tt′ = ll′, ss′), and
also that across cohorts the two pairs of classrooms are similar (tt′ = sl).48 Finally,
I build a weight that is declining in |∆σ2

Ill′ −∆σ2
Iss′|, to guarantee that the pre- and

post-earthquake pairs differ in terms of σ2
I in a similar way, i.e., that the intensities of

treatment in the two pairs of classrooms are very similar: 1
h∆σ

k
(

∆σ2
Ill′−∆σ2

Iss′
h

)
. The

weight for the quadruple, ωll′ss′ , is the product of these four kernel weights:

ωll′ss′ = dll′ss′
1
h∆σ

k

(
∆σ2

Ill′ −∆σ2
Iss′

h

) ∏
tt′∈{ll′,ss′,sl}

1
h
k
(
Zt − Zt′

h

)
(9)

where dll′ss′ is a dummy variable equal to one if ∆σ2
Ill′ < 0 and ∆σ2

Iss′ < 0. For
each value of c, the estimator of ∆ess′(c) is obtained by estimating γ in the following
weighted regression on a constant:

( ̂∆mpost
ss′ − ̂∆mpre

ll′ ) = ωll′ss′γ + ξll′ss′

with E[ξll′ss′ ] = 0. The OLS estimator of γ is the following weighted sample mean:

γ̂ = ∆̂e(c) =
∑Npre−1
l=1

∑Npre

l′=l+1
∑Npost−1
s=1

∑Npost

s′=s+1 ωll′ss′(
̂∆mpost
ss′ (c)− ̂∆mpre

ll′ (c))∑Npre−1
l=1

∑Npre

l′=l+1
∑Npost−1
s=1

∑Npost

s′=s+1 ωll′ss′
. (10)

The parameter γ computed at a value for c yields the value of the ∆e(·) function at
one point. Estimating γ over a grid of values for c allows me to trace the behavior of

48Notice that I use a unique bandwidth. Following Pagan and Ullah (1999), I normalize the
variables Zt so that they all have the same standard deviation, and using a unique bandwidth is
admissible.
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this function over its domain, and to detect how the effects of changing the variance
of student types (peer effects) vary across student types. Computing γ̂ at each grid
point requires doing a number of calculations of the order of 1012, therefore, parallel
processing is required.

A.6 Identifying Assumption
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A.7 Testing Monotonicity of m(c)

The procedure that I use is an application of Chetverikov (2013). It would be com-
putationally unfeasible to perform the test in all classrooms. Therefore, I create 72
categories of classrooms that have similar distributions of c, and test monotonic-
ity within each category. Consider classroom categories containing approximately 60
classrooms each. Classrooms in the same category share similar mean and variance of
c. Therefore, the theoretical model predicts that the equilibrium e functions should
be very similar across classrooms within each category. The monotonicity of m is
tested within each one of these categories. Separating the sample in categories makes
this procedure feasible from a computational point of view. In all categories, the
null hypothesis that the m function is decreasing is not rejected at the α = 0.10
significance level.

Details of the simulations can be found in the Online Supplementary Material on
the author’s webpage. I follow the choice of bandwidth recommended in Ghosal, Sen,
and Van Der Vaart (2000), and I adopt the plug-in approach to simulate the critical
values.

An important distinction with Chetverikov (2013) is that the ci values in my
sample are estimated (and not observed); ĉi = α̂1xi + α̂2IiPi + α̂3IiPixi. However,
this additional noise is asymptotically negligible because the bandwidth used in the
kernel weighting functions goes to zero as the sample size increases, and because α̂
is root-n consistent (as shown in Ichimura (1993)), therefore, it is faster than the
nonparametric rates appearing in the derivations in Chetverikov (2013).

A.8 Robustness
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Table 11: Difference-in-differences evaluation of the effect of the seismic intensity
mean and variance on coverage of the Spanish curriculum

% of Spanish
curriculum covered

Spanish teacher experience -0.000137
(0.000211)

School is in earthquake region (E) -0.000161
(0.0151)

Cohort 2007-2011, affected by earthquake (P) 0.0283***
(0.00675)

(1-P)*Classroom Intensity Mean -0.00149
(0.00248)

P*Classroom Intensity Mean -0.00110
(0.00246)

Effect of Earthquake Intensity Mean 0.0003955
(0.0013076)

(1-P)*Classroom Intensity Variance 0.0192
(0.0574)

P*Classroom Intensity Variance 0.0415
(0.0346)

Effect of Earthquake Intensity Variance 0.0222701
(0.0670429)

Constant 0.661***
(0.00874)

Observations 6438
Standard errors in parentheses
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001
Other included regressors: Spanish teacher characteristics (tenure at school,
type of contract, possession of postgraduate degree, gender), classroom characteristics (class size, and mean
and variance of lagged test scores in Math and Spanish).
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Table 12: Difference-in-Differences Evaluation of the Effect of Seismic Intensity Vari-
ance on Test Scores. Dependent variables Spanish and Math test scores in eighth
grade.

(1) (2)
Math Spanish

Math test score in 4th 0.638***
grade (0.00254)

Spanish test score in 4th 0.657***
grade (0.00272)
[1em] Household lives 0.338* 0.0874
in earthquake region (E) (0.133) (0.143)

Cohort 2007-2011, affected 0.0371*** 0.0528***
by the earthquake (P) (0.00936) (0.00997)

(1-P)*Classroom 0.0753 -0.193+
Intensity Mean (0.102) (0.111)

P*Classroom 0.0676 -0.191+
Intensity Mean (0.102) (0.111)

Effect of -0.0076943 0.0020984
Intensity Mean (0.0158669) (0.0169411)

(1-P)*Classroom -0.113 0.238*
Intensity Variance (0.101) (0.108)

P*Classroom -0.0243 -0.0171
Intensity Variance (0.0633) (0.0719)

Effect of 0.0885604 −0.2549768∗

Intensity Variance (0.1149763) (0.124782)

Constant -0.675 0.331
(0.449) (0.484)

Observations 83295 81307
Standard errors in parentheses
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001
Other included regressors: household income, seismic intensity at home interacted with cohort dummy,
father’s education, mother’s education, student gender, teacher gender, teacher experience, class size.
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