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Abstract

This paper flexibly estimates peer effects in the classroom using a large administrative
dataset of Chilean eighth graders, augmented with data from the propagation of the
Chilean 2010 earthquake. It combines this natural experiment, that generated student-
level shocks, with semi-parametric econometrics. Peer effects are identified from variation,
across peer groups, in within-group shock realizations, keeping peer characteristics such
as socio-economic status and lagged test scores constant. No restrictions on the shape
of peer effects are imposed. The econometric model can be adapted to estimate the
heterogeneous impacts of any moment of the distribution of peer characteristics. I use it
to estimate the heterogeneous effects of changing the variance of peer characteristics, and
show that an effort game in the classroom, in which achievement rank enters students’
payoffs, can explain the estimated patterns.



1 Introduction

Peer effects have been widely studied by economists in many contexts, for example, career
choices, health behaviors, crime and education. Typically, peer effect models describe an
outcome of interest as a function of some feature of a peer group. The simplest model
examines the importance of the mean of peer characteristics in shaping own behaviour.
While this model seems to capture social influences in, for example, crime and risky health
behaviors, it is not appropriate in other contexts.

In education, a growing body of empirical evidence points to the nonlinearity and
heterogeneity of peer effects on test scores. Other moments beyond the mean of peer
characteristics matter, and they do so differently for different students (see the surveys in
Epple and Romano (2011) and Sacerdote (2014)). However, the empirical literature relies
on parametric models that implicitly impose restrictions on the shape of peer effects.
These restrictions may make it difficult to uncover the true shape of peer effects and,
ultimately, the mechanisms that drive them.

This paper uses an econometric model for the estimation of peer effects that imposes
fewer restrictions on the shape of peer effects than existing methods. It can detect any
pattern of heterogeneity of peer effects across students. For identification, it does not rely
on variation in peer characteristics such as the lagged test scores and socioeconomic status
of peers. This is helpful, because it avoids the usual confounding influences that co-vary
with these peer characteristics, and that have been the focus of much of the empirical
literature on peer effects in education (for studies that use “natural exogenous” variation
in peer characteristics, see, for example, Hoxby (2000), Angrist and Lang (2004), Hoxby
and Weingarth (2005), Lavy, Paserman, and Schlosser (2012), Imberman, Kugler, and
Sacerdote (2012); for studies that use controlled assignment to groups, see, for exam-
ple, Sacerdote (2001), Zimmerman (2003), Duflo, Dupas, and Kremer (2011), Carrell,
Sacerdote, and West (2013), Booij, Leuven, and Oosterbeek (2016) ).1

1There are at least three well understood challenges in the identification of peer effects. When the
object of interest is, like in this paper, the effect of peer characteristics on own outcomes, also known
as social contextual effects, there are two potential confounders. The first one are group level unob-
servables that co-vary with the characteristics of the group members. For example, in a school setting,
different teachers may be assigned to classrooms with different kinds of students, and not all teacher
characteristics are observed. The second one concerns self-selection of individuals into peer groups based
on own unobservables and on the characteristics of the group members. These two challenges generate
correlation between observable group members’ characteristics and unobservable group or group mem-
bers’ characteristics that affect outcomes. In the terminology of Manski (1993), these two challenges are
grouped into the term “correlated effects”. Random or quasi-random assignment to peer groups helps in
the identification of social contextual effects. The third identification challenge concerns the estimation
of endogenous peer effects according to the terminology in Manski (1993), that is, the impact of peer
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The econometric model has two key features. First, it characterises each student with
a type that is a single index of a vector of characteristics which includes an “excluded
element”. That is, the self-selection of individuals into peer groups and unobserved peer
group characteristics, such as teacher quality, do not depend on how this element is
distributed in the peer group (or, at least, on the moment of this distribution that is of
interest to the researcher). This means that varying the peer distribution (or the moment
of interest) of this element does not give rise to correlated effects (Manski 1993). I use
the local intensity of the Chilean 2010 earthquake at a student’s home, which I can map
into an expected level of structural damage to the home, as an excluded element.2

Second, the model uses semi-parametric techniques that allow me to be ex-ante ag-
nostic about the shape of peer effects. In particular, it uses semi-parametric single-index
models (Ichimura 1993) to flexibly estimate achievement as a function of student type in
each peer group separately. It then preforms point-by-point comparisons of the estimated
functions across peer groups that differ only in terms of the realizations of the excluded
element of the vector of student characteristics. As a result, peer effects can be estimated
as non-parametric functions of student characteristics.

Local earthquake intensity at a student’s home plays the role of the excluded element
of the vector of student characteristics. The self-selection of students into classrooms
and the assignment of teachers and other resources to classrooms occurred before the
earthquake struck and, therefore, cannot depend on the local intensity of the earthquake
at students’ homes. However, a different challenge to identification arises, because local
earthquake intensity depends on the location of a student’s home, which could correlate
with unobserved student characteristics. Using a cohort of students that is observed before
the earthquake struck and, therefore, was not affected by it, I find that there is a pre-
existing correlation between geographic location of classmates and achievement. In the
cohort that was affected by the earthquake, geographic location of classmates mechanically

actions on own actions. This is a simultaneous equations issue, akin to the identification of best response
functions in games or to demand and supply functions when only market equilibria are observed. Random
assignment to groups does not necessarily solve this issue, which can instead be addressed through exclu-
sion restrictions coming through network structures (see, for example, Bramoullé, Djebbari, and Fortin
(2009)). Blume, Brock, Durlauf, and Jayaraman (2015) provide a systematic analysis of identification of
both types of peer effects in linear social interaction models.

2Natural disasters have been used before to identify peer effects in education, see, for example,
Cipollone and Rosolia (2007), Imberman, Kugler, and Sacerdote (2012) and Sacerdote (2008). In
contrast to previous studies, this paper does not use forced relocations of students for identification.
This distinguishes this paper also from the experimental and quasi-experimental literatures that use
variation in assignment to peer groups, e.g. dorms (Sacerdote 2001, Zimmerman 2003, Stinebrick-
ner and Stinebrickner 2006, Kremer and Levy 2008, Garlick 2016) or classrooms (Duflo, Dupas, and
Kremer 2011, Whitmore 2005, Kang 2007).
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co-varies with their local earthquake intensities. Therefore, naive cross-sectional compar-
isons between post-earthquake classrooms that have different distributions of earthquake
intensities would give rise to correlated effects (Manski 1993). To address this, I embed
the semi-parametric method described above within a difference-in-differences framework.
The resulting model is related to the nonlinear difference-in-differences models in, for ex-
ample, Athey and Imbens (2006), Abadie (2005), Heckman, Ichimura, Smith, and Todd
(1998), and Blundell, Costa Dias, Meghir, and Van Reenen (2004), but it addresses specific
challenges of this context that those models are not well-suited to address.

Intuitively, I use a pre-earthquake cohort of students as a control group where corre-
lated effects arise but effects due to damage to peers’ homes do not. I measure correlated
effects on this control group, and nett them out of the effects calculated on the treat-
ment group, i.e., on the post-earthquake cohort of students. In practice, this adjustment
means that I must perform double differences rather than single differences of functions:
one within cohorts and one across cohorts. Intuitively, the identifying assumption of this
differences-in-differences adjustment is that the correlation between geographic location
of the student body and achievement is constant across cohorts in the absence of an earth-
quake. Using data not used in estimation on regions never affected by the earthquake, I
test and do not reject this identifying assumption.

Like in many papers in the literature on peer effects in education, this paper has no
ambition to separate endogenous and contextual/exogenous peer effects in the terminol-
ogy of Manski (1993). The estimated peer effect functions are composite estimates that
incorporate both. When interpreting the estimates, I allow for both types of peer effects.
For example, I consider a reaction of teacher effort to changes in peer characteristics,
which could be interpreted as a contextual peer effect, whereby peer characteristics (in-
directly) affect own outcomes through the teacher’s response. I also consider an effort
game in the classroom. Comparative statics from the model compare the equilibrium
distribution of achievement under different group configurations. The estimated patterns
are interpreted as the outcome of student effort choices: changing the characteristics of
peers has an effect on own effort choices through its effect on peers’ effort choices.3

In terms of data construction, I combine a large administrative dataset on over 350, 000
Chilean students with information on the Chilean 2010 earthquake. I use four waves of the
SIMCE dataset (Sistema de Medición de la Calidad de la Educación, 2005, 2007, 2009,

3Notice that, even if this were the only source of peer effects in the data generating process, the
empirical model would not identify the endogenous peer effect, that is, the best response function. Rather,
it would trace how the equilibrium achievement function varies under different configurations of peer
characteristics.
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2011), with information on students, teachers, classrooms and schools. The outcomes
of interest are standardised test scores in Mathematics and Spanish in the 8th grade.
School and classroom identifiers allow me to match students to classmates, teachers and
schools, making this dataset useful to study peer effects at classroom level. I merge this
educational data with a measure of local earthquake intensity at students’ homes, which
I obtained from the structural engineering literature. The measure is based on seismic
intensity according to the Medvedev-Sponheuer-Karnik scale, and it can be mapped into
a measure of damage to student’s homes caused by the earthquake. The resulting dataset
has three key features: it is longitudinal (test scores are observed twice for each student),
it contains two cohorts (one, the post-earthquake cohort, affected by the earthquake in the
second time period; and one, the pre-earthquake cohort, never affected), and it contains
geographic variation in the intensity of exposure to the earthquake of each student.

Preliminary data analysis indicates that test score growth between the 4th and the
8th grade was 0.02 to 0.04 standard deviations lower for students affected by the earth-
quake compared to those who were not.4 Additionally, students’ test scores were affected
differently depending on intensity of exposure. Moreover, the intensity of exposure to
the earthquake of peers matters for own achievement. Exploiting variation in test score
growth across cohorts and across geographic locations of classmates, I find that, keeping
peer characteristics and other school and teacher characteristics constant, the average
level of damages among a student’s peers had insignificant or negligible effects, while
the dispersion in peer damages had a significant and sizeable negative effect on own test
scores.5 Therefore, dispersion in classmates’ damages is an empirically relevant margin in
the context of my data. I exploit this margin to estimate the heterogeneous impacts of
dispersion in peer characteristics.

Empirical findings indicate that student type is decreasing in lagged test score, parental
education and parental income, its relationship with gender depends on the subject, and
it is increasing in earthquake intensity at the point estimates, more so for females and
low income students. Moreover, a post-estimation test cannot reject that achievement is
monotonically decreasing in type. This first set of findings points to the interpretation of
student type as a factor that decreases student productivity, like, for example, the cost
of study effort. However, the analysis of treatment effects does not rely on a specific
interpretation of student type.

4This is an estimate from a difference-in-difference regression model that compares trends in test score
growth across cohorts between regions affected and not affected by the earthquake.

5This result holds irrespective of how dispersion is measured, e.g., standard deviation, coefficient of
variation and various interquartile ranges.
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The variance of peer types has heterogeneous impacts on student achievement. In
particular, while the descriptive results based on linear models suggested a negative im-
pact, the semi-parametric approach reveals that not everyone is hurt by dispersion in peer
types. Some students at the tails of the type distribution benefit from an increase in the
variance of peer types.6 Moreover, who benefits varies across subjects.

I consider a number of mechanisms. First, I test whether the empirical findings can be
explained by unobserved school level inputs. To do so, I derive a sufficient condition for
the findings to not be driven by unobserved school inputs, and present evidence suggesting
that this condition is satisfied. Intuitively, I show that school fixed effects did not react
to variance in earthquake damages. Second, I measure teachers’ effort in class through
the fraction of the curriculum that the teacher was able to cover during the year, and,
similarly, find no evidence that it reacted to the variance in earthquake damages in the
classroom. While this analysis does not definitely rule out teacher effort as one of the
drivers of impact, it suggests that other channels should be explored as well.

The third channel I explore is student effort. Following the approach adopted in
Blume, Brock, Durlauf, and Jayaraman (2015), I propose a theoretical framework that
micro-founds peer effects through an effort game in the classroom. Specifically, I show
that a model in which students have rank concerns, that is, they derive direct utility
from rank in terms of achievement, can explain the heterogeneous peer effects across
students and subjects in a simple and intuitive way.7 This is useful, because the patterns
uncovered by the econometric model are hard to rationalize with existing models of peer
effects. Moreover, this exercise demonstrates that flexibly estimated peer effects can
inform theories on the mechanisms behind them.

The paper is organised as follows: section 2 presents the data and background, and
section 3 describes the sample and the relationship between the earthquake and student
test scores. Section 4 presents the econometric model. Section 5 explains identification,
and sections 6 and 7 present the empirical findings, followed by a discussion of model fit

6Under the interpretation of a student’s type as cost of effort (or, with the appropriate change of sign,
ability), this result helps reconcile average treatment effect estimates of different signs in the literature.
For example, using randomised allocation of cadets to companies in a military academy, Lyle (2009) finds
that peer ability heterogeneity has, on average, positive effects on achievement. On the other hand, by
manipulating the ability composition of tutorial groups among undergraduate students, Booij, Leuven,
and Oosterbeek (2016) find that, on average, the standard deviation of peer ability has a negative effect
on achievement. Both papers report heterogeneity of these effects. Other studies exploring the impact
of the heterogeneity of peer ability include Ding and Lehrer (2007), Vigdor and Nechyba (2007), Hoxby
and Weingarth (2005).

7See Mierendorff and Tincani (2018) for an analysis of the implications of rank concerns for ability
peer effects. They test a theoretical model of rank concerns in education against experimental data and
use an estimated structural model to quantify the role of rank concerns in generating peer effects.
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Figure 1: Data time-line.

in section 8. Section 9 discusses how the econometric model relates to existing nonlinear
difference in difference models. Section 10 discusses candidate mechanisms behind the
estimated impacts. Section 11 concludes.

2 Data and Background

2.1 Data

I use two cohorts of students from the SIMCE dataset (Sistema de Medición de la Cal-
idad de la Educación), for a total sample size of 385, 294 students in 15, 202 classrooms.
For both cohorts I observe administrative records on 8th grade students’ Mathematics and
Spanish standardized test scores, father’s and mother’s education, household income, gen-
der, town of residence, and lagged (4th grade) Mathematics and Spanish standardized test
scores. Classroom level information includes class size and characteristics of the Spanish
and Mathematics teachers, specifically, experience, education, tenure at the school, gen-
der, and type of contract (permanent or probationary). School level information includes
rurality, public or private status and town.

I refer to the two cohorts as pre- and post-earthquake cohorts. One cohort is observed
in the 8th grade in 2009, before the 2010 earthquake, while the other cohort is observed
in the 8th grade in 2011, after the earthquake, as shown in Figure 1. For both cohorts,
identifiers are available at the student, teacher, classroom and school level, allowing me
to match students to classrooms, classmates, Mathematics and Spanish teachers, and
schools. Therefore, the dataset can be used to study spillovers at classroom level.

2.2 Earthquake

On February 27th 2010, at 3.34 am local time, Chile was struck by a magnitude 8.8
earthquake, the fifth-largest ever instrumentally recorded and technically referred to as a
mega-earthquake (Astroza, Ruiz, and Astroza 2012). Shaking was felt strongly throughout
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500 km along the country, covering six regions that together make up about 80 percent
of the country’s population. While the death toll, as tragic as it was, was limited for
such a strong earthquake (525 deaths), damage was widespread; 370, 000 housing units
were damaged or destroyed. The Government implemented a national reconstruction plan
to rebuild or repair 220, 000 units of low- and middle-income housing. Estimated total
costs are around $2.5 billion. The mega-earthquake had a continued impact on people’s
lives during the period covered by my sample. By the time the 2011 SIMCE sample was
collected, i.e., 20-22 months after the earthquake struck, despite impressive efforts by the
Government, only 24 percent of home reconstructions and repairs had been completed
(Comerio 2013). This led to frustration in the population, as shown in Figure 11 in
Appendix B.

2.3 Measure of Local Earthquake Intensity

I construct a measure of the intensity of shaking in each town in the sample using the
Medvedev Sponheuer Karnik (MSK) scale. An advantage of this scale is that it can be
mapped into a tangible measure of disruption: the average level of damage to buildings by
earthquake resistance type in each town. Because reconstruction expenses were covered
by the Government, this measure of damage reflects disruptions rather than shocks to
household expenses.
For a given intensity of shaking, the level of damage depends on the construction type.
For example, unreinforced masonries are less resistant than reinforced masonries, there-
fore, the same value of MSK-Intensity corresponds to larger damages in unreinforced
masonries than in reinforced ones. The type of construction of students’ homes is not
directly observed in my dataset. However, Astroza, Ruiz, and Astroza (2012) report
that 60% of the poorest Chileans live in one of two house types with similar earthquake
resistance: old traditional adobe constructions (6.1%) and unreinforced masonry houses
(51.9%). Given the striking school stratification in Chile, public school students belong
to the poorest 50% of Chilean households. Therefore, it is reasonable to expect that all
public school students live in one of these two building types. To account for unobserved
construction type, the empirical analysis restricts the sample to municipal (public) school
students.8 This sample restriction addresses potential measurement error deriving from
the unobservability of students’ home types. Non-random location choices of parents are

8As a measure of damages to individual buildings, MSK-Intensity may still contain residual noise
because it averages damages across buildings within a town and, therefore, it may be vulnerable to
classical measurement error inducing attenuation bias.
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Figure 2: Source: SIMCE dataset and author’s calculations. The right tail is truncated
at USD 100 (∼ 85th percentile of the untruncated distribution) for ease of exposition.

a remaining but separate concern that the empirical model is specifically designed to
address.

To construct MSK-Intensity, I apply the intensity attenuation formula for the Chilean
2010 earthquake, which is a function of a town’s distance from the earthquake’s asperity.
Using the geographic coordinates of each town and of the asperity, I compute MSK-
Intensity I according to: I = 19.781 − 5.927 log10(∆A) + 0.00087∆A (R2 = 0.9894),
where ∆A is the distance from the main asperity. The formula is valid only at the
town level and only for towns in the six regions affected by the earthquake (Astroza,
Ruiz, and Astroza 2012). There are two advantages to using this measure of shaking
intensity as opposed to simple distance from the asperity. First, shaking intensity is a
non-linear function of distance, therefore, using distance would introduce a non-classical
measurement error. Second, the MSK-Intensity measure, coupled with other formulae
borrowed from the structural engineering literature, allows me to express shaking in terms
of the dollar amount of damage, which has an intuitive interpretation.

2.4 Distribution of Earthquake Damages

Figure 2 shows the distribution of earthquake intensities among the students in my
sample, which, for illustrative purposes, are expressed in terms of reconstruction expenses
in US dollars. Intensities in the towns of the schools are also available and used in the
analysis. On average, damages to homes are large, USD 170, equivalent to 24 percent
of average household monthly income. The damage distribution is right-skewed, with a
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median of USD 39, 6 percent of income, and a 90th percentile of USD 303, 43 percent of
income.
3, 822 out of the 5, 574 classrooms in earthquake regions have a geographically dispersed
student body. In those classrooms, not all classmates reside in the same town, and this
generates variation in the measure of MSK-Intensity within the classroom. I use this
variation to identify the effect of damage dispersion in the classroom on achievement.
Figure 3 shows three examples of classrooms with students who do not all reside in the
same town. Because of differences in soil type across towns, even classmates who live
close to each other suffered different levels of damage. For example, the bottom panel of
the Figure shows that students of the La Florida school who live 5.2 km apart from each
other suffered a damage difference of USD 272, or 39 percent of average income. Large
differences among neighbouring towns are not unusual, especially in areas closer to the
asperity.9 Among classrooms with a geographically dispersed student body, the within
classroom standard deviation in damages is, on average, USD 79. Figure B in Appendix
B shows the location of these classrooms on a map. The map displays three important
features: first, there are many data points (represented by dots) on the map, i.e. many
schools have a geographically dispersed student body; second, dots have different sizes,
i.e. there is across school variation in within school damage dispersion; third, even schools
close to each other suffered different damage dispersions. These are all features that will
be exploited in identification.

2.5 Sample Restriction: No Earthquake-induced Displacements

I obtained from the Ministry of Education the list of the schools that closed as a con-
sequence of the earthquake, as well as the list of students at those schools.10 I observe
in what schools the evacuated students enroll, and drop both the collapsed and receiving
schools from the sample, for a total of 803 dropped schools, corresponding to 12 percent of
the sample. This ensures that in my sample there are no earthquake-induced relocations
of evacuated students across schools.11 Such relocations could have large direct impacts on

9Damage dispersion effects are calculated controlling for damage in the school town and average
damages in the classroom, to account for correlation between these two variables and dispersion in
damages.

10They closed either because the buildings became unsafe, or because most of the students’ homes were
so badly damaged, that students had to relocate, reducing attendance below the operational minimum.

11These schools are dropped from both the pre- and the post-earthquake cohorts. Imberman, Kugler,
and Sacerdote (2012) use the influx of Katrina evacuees in a school as an exogenous source of change
to classroom composition. In Chile evacuees were spread across such a large number of schools that the
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Figure 3: Examples of three schools where not all students are residents in the school town. At the
top left is Colegio Santa Ines in the town of San Vicente, at the top right is Liceo Maria Auxiliadora in
Santa Cruz, and at the bottom is Escuela La Florida in Talca. The squares represents the school town
location relative to the earthquake asperity (star). In the square there are the number of classmates
residing in the school town, and its distance from the asperity. The circles represent towns of residence
of x classmates, where x is the number in the circle. The lines indicate the distance to school of each
town, and the difference in damages suffered by an unreinforced masonry construction.

the evacuated students, and they could have spillover impacts on the incumbent students
in receiving schools.

3 Data Description

Table 1 presents country-wide descriptive statistics for the samples of public school stu-
dents and teachers in the pre- and in the post-earthquake cohorts. Student characteristics
are fairly similar across cohorts. One of the main differences is a 5.8% increase in aver-

influxes in each school are too small to detect any statistically significant impact.
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age income, which is in line with the countrywide +5.5% increase in GDP per capita
for the same period (2009-2011). Another difference is a decrease in lagged test scores,
which may indicate movement of students across school sectors. Teacher characteristics
are fairly stable across cohorts, except for an increase in the proportion of teachers with
post-graduate degrees.

Table 1: Summary statistics, public schools, all regions
Pre-earthquake cohort Post-earthquake cohort
mean sd mean sd

Math Test Score -0.32 0.91 -0.32 0.90
Spanish Test Score -0.25 0.95 -0.25 0.95
Lagged Math Test Score -0.08 0.93 -0.13 0.92
Lagged Spanish Test Score -0.08 0.92 -0.10 0.92
Father’s Education (years) 9.68 3.42 9.65 3.15
Mother’s Education (years) 9.64 3.27 9.63 3.12
Monthly Household Income (USD) 348.49 336.94 367.33 347.11
% Female Math Teachers 0.58 0.49 0.56 0.50
% Postgraduate Degree Math Teachers 0.53 0.50 0.64 0.48
Teaching Experience (years) Math Teachers 22.48 12.96 22.16 13.77
Tenure at school (years) Math Teachers 12.17 11.24 12.17 11.48
% Female Spanish Teachers 0.82 0.38 0.83 0.37
% Postgraduate Degree Spanish Teachers 0.51 0.50 0.59 0.49
Teaching Experience (years) Spanish Teachers 21.48 13.32 21.33 13.55
Tenure at school (years) Spanish Teachers 11.95 11.22 12.01 11.25

3.1 Earthquake and Test Scores

Preliminary data analysis suggest two patterns. First, earthquake exposure appears to
be detrimental to test scores. Figure 4 visualizes results from a difference-in-difference
regression model that indicate that the counterfactual test score growth between 4th and
8th grade would have been higher in earthquake regions had there not been an earth-
quake. Specifically, being exposed to the earthquake is estimated to have decreased test
score growth by 0.026 (p-value 0.004) standard deviations in Spanish and by 0.037 (p-
value 0.000) in Mathematics. Moreover, additional regressions that exploit variation in
earthquake intensity within earthquake regions indicate that every 100 USD in damages
to a student’s home are associated with a reduction of 0.02 standard deviations in test
scores (p < 0.05 for Mathematics, p > 0.10 for Spanish).12 These findings are compatible

12Full regression Tables are available upon request.
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with results from the medical literature, that indicate that earthquake survivors suffer
from Post Traumatic Stress Disorder (PTSD) which may last for several months,13 and
that PTSD is more severe for individuals who live closer to the epicenter (Groome and
Soureti 2004).

Test score growth between 4th and 8th grade.

Figure 4: The y-axis shows average growth between 4th and 8th grade standardized test scores, while
the x-axis and the colors define sub-samples over which these trends are calculated. There are only two
data points on the x-axis: pre-earthquake cohort (left-most point) and post-earthquake cohort (right-
most point). The lines connect them for visual clarity only. The sample is restricted to public school
students. Under the identifying assumption that differences in test score trends across cohorts do not
vary by region type (earthquake and non-earthquake), a counterfactual test score trend can be calculated
for earthquake regions in the absence of an earthquake. The dashed line indicates that test score trends
would have been higher in earthquake regions in the absence of the earthquake.

The second pattern indicates that, keeping fixed own exposure to the earthquake, the
exposure of classmates may matter for own achievement. Because everyone in a classroom
is either exposed or not exposed, the variation needed to identify spillovers must come
from variation in intensity among classmates. Specifically, I examine two peer variables:
the average and the dispersion in intensity of exposure. Using a difference-in-difference-in-
differences model with continuous treatment that exploits variation across grades, cohorts,
and geographic locations within earthquake regions, I obtain the estimated impacts re-
ported in Figure 5.14 This preliminary analysis suggests that, first, the impact of average
exposure of classmates on own test scores is a precisely estimated zero. Second, disper-
sion in earthquake exposure among classmates appears to be detrimental to own learning,

13See, for example, Altindag, Ozen, et al. (2005) Lui, Huang, Chen, Tang, Zhang, Li, Li, Kuang, Chan,
Mechelli, et al. (2009), Giannopoulou, Strouthos, Smith, Dikaiakou, Galanopoulou, and Yule (2006).

14Regression Tables and details of the estimation models are available upon request.
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but these estimates are marginally significant or insignificant depending on model and
outcome (Spanish or Mathematics). To interpret the magnitudes of the point estimates
reported in Figure 5, back-of-the-envelope calculations indicate that moving up one stan-
dard deviation in the distribution of dispersion in model 4 decreases test scores by 0.01
to 0.08 standard deviations (depending on specification).

Impact on test scores of the mean and of various measures of dispersion of
peer earthquake exposure
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Figure 5: Estimated impacts of the mean and of the dispersion in peer earthquake exposure from four
models that use different measures of dispersion: coefficient of variation (1), range between the 90th
and the 10th percentile (2), interquartile range (3) and standard deviation (4). All regressions include
controls for individual lagged test scores and characteristics, teacher characteristics and the distribution
of classmate characteristics, including variables that may be correlated with dispersion in earthquake
intensity like income variance. Standard errors are clustered at the school level. 95 percent confidence
intervals reported.

4 Econometric Model

First, I define treatment as an increase in earthquake damage dispersion in the classroom
and show how to identify and estimate treatment effects as a nonparametric function of
student types. A student’s type is discussed in detail in section 4.4. In brief, a type is a
single index of student characteristics. Second, I show that earthquake damage dispersion
is estimated to shift student type dispersion, so that the effect of damage dispersion can
be interpreted as a contextual/exogenous peer effect in the terminology of Manski (1993),
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that is, the effect of dispersion in student types.
This method can be used to estimate the impact of any moment of the distribution of

student types. Simply substitute the variance of MSK-Intensity with any moment of the
MSK-Intensity distribution in the explanation below, and, post-estimation, verify that
the chosen moment in the MSK-Intensity distribution is a shifter to the corresponding
moment in the student type distribution.

4.1 Definition of Treatment and Outcome Equations

Define treatment as an increase in damage dispersion in the classroom. Consider a pair of
classrooms, {r, r′}, with damage variances equal to σ2

H and σ2
L, and with σ2

H−σ2
L = δ > 0.

δ is the intensity of treatment. Damage dispersion is measured by the classroom variance
in MSK-Intensity. Let the indicator Gr,r′ be equal to 1 if classroom r has the higher MSK-
Intensity variance within the pair {r, r′}, i.e., σ2

r = σ2
H , and 0 otherwise, and let Tr = 1

if classroom r is in the post-earthquake cohort and Tr = 0 if it is in the pre-earthquake
cohort. Students in the pre-earthquake cohort have not been affected by the earthquake:
variance in MSK-Intensity reflects geographic dispersion, because it is calculated from
students’ home locations, but it does not reflect damage dispersion. All students in this
cohort are untreated, therefore, they serve as the control group. The observed outcome
(achievement) of student i in classroom r is Yir. Let Y 1

ir denote the potential outcome of
student i if she is treated, and Y 0

ir the potential outcome if she is not treated.
The observed outcome is:

Yir = τrr′Y
1
ir + (1− τrr′)Y 0

ir, (1)

where the treatment indicator is τrr′ = Tr×Gr,r′ : student i is treated if she is in the class-
room with the higher MSK-Intensity variance in the post-earthquake cohort, untreated
otherwise.
I assume that potential outcomes satisfy:

Y 0
ir = h0(ci,Wr, Tr, σ

2
r) + ε0

ir (2)

Y 1
ir = h0(ci,Wr, Tr, σ

2
r) + λDD(ci,Wr, δ) + ε1

ir (3)

where ci is a student’s type, that is, a scalar student characteristic and Wr is a vector
of classroom characteristics, including peer characteristics. No distributional assump-
tions are made on the error terms, which are only assumed to be mean-independent:
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E[ε0
ir|ci,Wr, Tr, σ

2
r ] = E[ε1

ir|ci,Wr, Tr, σ
2
r ] = 0.15 From equations (2) and (3), it is clear

that the mean treatment effect is given by the function λDD(ci,Wr, δ) (where DD stands
for damage dispersion). The treatment effect depends on student and classroom charac-
teristics, and on treatment intensity. The objective of this analysis is to describe how the
treatment effect varies with student type ci. Therefore, the estimator will average out
Wr and δ. However, with a large enough number of classrooms, this econometric frame-
work can be used to non-parametrically estimate how treatment varies with classroom
characteristics and/or with treatment intensity.

I assume the following structure for the potential outcome function h0(·):

h0(ci,Wr, Tr, σ
2
r) = λ(ci,Wr, σ

2
L) + Tr ·

[
λE(ci,Wr) + λDD(ci,Wr, σ

2
L)
]

+

+Gr,r′ · λ(ci,Wr, δ). (4)

The model in equations (2), (3) and (4) makes minimal assumptions on how student and
classroom characteristics combine to produce outcomes and on their interaction with the
treatment variable. This is what allows the model to identify any pattern of heterogeneity
of treatment effects in the classroom. Specifically, the model embeds two assumptions on
the production of achievement:

Assumption 1. h0(·) is additively separable in λ(·), λE(·) and λDD(·).
Assumption 2. λ(·, ·, σ2) and λDD(·, ·, σ2) are linear in σ2.

Additive separability (Assumption 1) is what permits identification of the treatment effect
function through double differences. Assumption 2 is what allows me to express the
realised outcome as:

Yir = hr(ci) = λ(ci,Wr, σ
2
L) + Tr ·

[
λE(ci,Wr) + λDD(ci,Wr, σ

2
L)
]

+

+Gr,r′ · λ(ci,Wr, δ) + Tr ·Grr′ · λDD(ci,Wr, δ) + εir. (5)

Recognize that equation (5) has a similar structure to a typical linear difference in differ-
ences model (D-i-D): there is a cohort dummy (Tr), a dummy that indicates the low or
high variance status (Grr′), and an interaction of these two dummies. The cohort repre-
sents the group (treatment or control), while the variance status dummy plays the role
of time in a typical linear D-i-D model. Thanks to Assumption 2, we can separate the

15This is a weaker assumption than the full-independence assumptions imposed in the nonlinear
difference-in-differences models in Athey and Imbens (2006).
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functions λ(ci,Wr, ·) and λDD(ci,Wr, ·) into two additive components, one that multiplies
1 and Grr′ for λ, and one that multiplies Tt and Tr ·Grr′ for λDD.

The main differences with typical D-i-D models are that functions replace the re-
gression coefficients, cross-sectional comparisons replace time trends, and the treatment
indicator τrr′ = Tr × Grr′ has double index rr′ because treatment status is determined
within each pair of classrooms. The estimand of interest is the function λDD(ci,Wr, δ),
which multiplies the treatment indicator Tr ·Grr′ .

The functions on the right had side of (5) have the following interpretations. λ(ci,Wr, σ
2
L)

is the counterpart of the constant in a linear D-i-D: it is the outcome function for stu-
dents in the control group (pre-earthquake cohort) who are not subject to treatment, that
is, who are in the lower-variance classroom within the pair rr′. In these pre-earthquake
classrooms, σ2

L reflects the geographic dispersion of the student body.
When this function is evaluated in the classroom with the higher MSK-Intensity vari-

ance within the pair, λ(ci,Wr, σ
2
H = σ2

L + δ), it traces the outcomes of pre-earthquake co-
hort students (Tr = 0) who are in the higher-variance classroom within the pair (Grr′ = 1).
The additional geographic dispersion effect (GDE) experienced by the higher-variance
classroom compared to the lower-variance classroom, λ(ci,Wr, δ), is identified from the
difference in outcomes between students in higher- and lower-variance classrooms in the
pre-earthquake cohort. In equation (5), this is the GDE function that multiplies the
dummy Gr,r′ . GDE are the counterpart of time trends in typical D-i-D models.

λE(ci,Wr) are cohort effects, the counterpart of group effects in a typical linear D-i-D.
They let the achievement of post-earthquake cohort students differ from the achievement
of pre-earthquake cohort students for any number of reasons. An important example is
that the earthquake could have had a direct effect on student achievement. No restric-
tions are made on how these effects vary by student and classroom characteristic. For
example, high ci students may have been affected more (or less) by the earthquake than
low ci students; more affluent schools may (or may not) have attenuated the impact of
the earthquake; teachers may (or may not) have focussed their attention on the most vul-
nerable students, and so on. Another source of cohort effects are policy changes occurring
in between the two cohorts, like the amendments to the voucher system implemented in
2008. These are only two examples of possible sources of cohort effects. The treatment
effects are robust to any change occurring between cohorts. Moreover, the functional
form of these cohort effects is entirely unrestricted, allowing the researcher to be agnostic
about how they vary across classrooms and students.

Finally, λDD(ci,Wr, δ) is the treatment effect function calculated at treatment intensity
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δ. It measures the impact of an increase in damage dispersion by δ on a student of
characteristics ci who is in a classroom with characteristics Wr. The treatment effect
function measures the causal impact of moving from a classroom with damage dispersion
σ2
L (where the impact of σ2

L on achievement is measured by λDD(ci,Wr, σ
2
L) in equation

(5)) to one with damage dispersion σ2
L + δ, keeping Wr constant. Wr includes peer

characteristics such as their lagged test scores and socio-economic status.
To summarize, in this flexible nonlinear model, estimates of treatment effects as a

function of student type ci are robust to cohort effects and geographic dispersion effects
which can be arbitrarily heterogenous across students and classrooms. Cohort effects
include any earthquake impact on student outcomes that is not mediated by damage
dispersion effects. Having a model that is robust to these kind of effects is important,
because an earthquake is a complex phenomenon which could impact achievement through
a number of channels.

4.2 Double Difference of Functions

Within each classroom r, the different components of h(·) described in equation (5)
are not separately identified. However, the treatment effect function λDD(·) is identified
through double differences: one within and one across cohorts. Consider two pairs of
classrooms: one pair in the post-earthquake cohort, r and r

′ , and one pair in the pre-
earthquake cohort, s and s

′ . Assume that Grr′ = 1 and Gss′ = 1, that is, r and s are
the classrooms with the relatively higher variance in MSK-Intensity within their pair.
Moreover, assume that δrr′ = δss′ = δ, that is, the treatment intensity within pair is the
same across pairs. Finally, assume that, except for the variance in MSK-Intensity, these
four classrooms share all other characteristics, that is Wr = Wr′ = Ws = Ws′ = W . In the
empirical implementation the Wr vector has 14 elements: mean, variance, skewness and
kurtosis of parental education of peers and of lagged test scores of peers, average income
in class, percentage of female students in class, average MSK-Intensity in class, class size,
MSK-Intensity in the school town, teacher’s teaching experience in years. Conditional on
W and δ, the damage dispersion effect can be obtained as a function of ci through the
following double difference of functions, performed point by point:

E [λ(ci;W, δ)|ci,W, δ] = E
[(
hr(ci)− hr′(ci)

)
−
(
hs(ci)− hs′(ci)

)
|ci,W, δ

]
=

(
λGD(ci;W, δ) + λ(ci;W, δ)

)
− λGD(ci;W, δ) (6)

where the expectation is taken with respect to the εir shocks. The double difference is
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visualised in two Figures: Figure 6 shows the within cohort differences that identify the
confounding GDE from the pre-earthquake classrooms, and Figure 7 shows the across
cohort differences that nett out the GDE. These differences are taken for each value of
ci, therefore, they require matching students within and across cohorts based on their
student type ci.

hs(c;W, δ)

hs′ (c;W, δ)

c0

λGD
∆prehss′ (c;W, δ)

c0

PRE-EARTHQUAKE
V ars(I)− V ars′ (I) = δ > 0

hr(c;W, δ)

hr′ (c;W, δ)

c0

λGD + λ

∆posthrr′ (c;W, δ)

c0

POST-EARTHQUAKE
V ar(I)r − V ar(I)r′ = δ > 0

Figure 6: Classrooms r, r′ , s, and s
′ have identical W and within-pair δ. λGD is the

geographic dispersion effect function, λ is the effect on achievement of increasing damage
dispersion by δ, as a function of student type c, conditional on W .

4.3 Obtaining Treatment Effects as a Function of Student Type

For each pair of pairs of classrooms in the data that are matched on W and δ, the effect of
damage dispersion on achievement as a function of student’s type ci is identified through
the conditional double difference in 6. Matching on W and δ addresses any unbalance
in the distribution of covariates between the control (pre-earthquake) and the treatment
(post-earthquake) groups (Smith and Todd 2005). These covariates are then integrated
out using their empirical distribution. Let f(W, δ) indicate the empirical distribution
of quadruplets of classrooms with the same W and δ. The effect of increasing damage
dispersion, unconditional on W and δ, is obtained by averaging the treatment effect over
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λGD + λλGD
∆prehss′ (c;W, δ)

∆posthrr′ (c;W, δ)

c0

λ

∆posthrr′ (c)−∆prehss′ (c)

c0

Figure 7: Netting out the geographic dispersion effects. Notice that the difference between
the ∆h functions can be taken only over the overlapping portion of the two domains. The
nonlinear difference-in-differences models in Athey and Imbens (2006) impose a similar
support restriction.

W and δ, with δ > 0:

TE(ci) = E[λ(ci;W, δ)] =
∫
λ(ci;W, δ)I[δ > 0]f(W, δ)dWdδ (7)

where TE(ci) is the treatment effect, and I[·] is an indicator function equal to 1 if its
argument is true. In practice, matching quadruplets of classrooms with respect to W and
δ is performed by kernel weighting, in the spirit of Ahn and Powell (1993). Because of
the high dimensionality of W , it would be difficult to find a quadruplet of classrooms
that are exactly identical in all elements of W ; for this reason, I use nearest neighbour
matching.16 Weights are built with multivariate standard normal kernel functions. Details
of the weighting procedure can be found in Appendix A.3.

For now, assume that nonparametric estimates of the hr(·) functions are available for
all classrooms in the sample. Given kernel weights ωrr′ss′ for each quadruplet of classrooms
in the sample (two from each cohort), at each candidate value of c the estimate of the

16One additional regularity condition is required to apply kernel matching: the function λE(ci,Wr)
must be continuous in Wr, and the functions λGD(ci,Wr, σ

2
r) and λ(ci,Wr, σ

2
r) must be continuous in

Wr and σ2
r . In Ahn and Powell (1993), this assumption corresponds to the continuity of the selection

function (see page 9 of their paper). This guarantees that there are no jumps when we compare pairs of
classrooms that are similar but not identical in W and δ.
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treatment effect TE(c) is obtained through the following sample mean:

ˆTE(c) =
∑Npre−1
s=1

∑Npre

s′=s+1
∑Npost−1
r=1

∑Npost

r′=r+1 ωrr′ss′(∆postĥrr′(c;W, δ)−∆preĥss′(c;W, δ))∑Npre−1
s=1

∑Npre

s′=s+1
∑Npost−1
r=1

∑Npost

r′=r+1 ωrr′ss′
(8)

where Npost and Npre are the sample number of classrooms in the post- and pre-earthquake
cohorts, and the numerator contains the double difference at point c.

4.4 Student Types and Nonparametric Estimation of the Out-
come Functions

If student type ci were observed, the hr(ci) functions in equation (6) could be estimated
non-parametrically at a grid of values for ci and these nonparametric estimates could be
used to estimate the treatment effect function using equation (8). To be useful for the
estimation of treatment effects as a function of student type, the latter must be a variable
ci that identifies comparable students both within and, importantly, across cohorts. This
is because taking the double difference of functions point by point requires matching
students on type ci within and across cohorts.

There is a difference between students across cohorts: those in the post-earthquake
cohort have been affected by the earthquake, while those in the pre-earthquake cohort have
not. Section 3.1 showed that individual exposure to the earthquake impacted student’s
achievement, therefore, it is desirable to allow local earthquake intensity experienced by
a student to affect her type. However, in the data there is no variable that captures this,
because, for both cohorts, all baseline student level variables were measured before the
earthquake struck.

To see why this is problematic when taking across cohort differences, consider using
lagged test score yi,t−1 as a measure of ci. It was measured before the 2010 earthquake (in
2005 for the pre-earthquake cohort and in 2009 for the post-earthquake cohort). A student
in the post-earthquake cohort whose house has been badly damaged in the earthquake
may have a very different productivity from a student in the pre-earthquake cohorts who
has the same lagged test score but who has not been affected by the earthquake. Not
taking this into account would bias the estimate of the treatment effect function. Students
across cohorts cannot be matched on lagged test score yi,t−1, nor on any other student
characteristic observed in the data.

To address this issue, I model student type ci as an index function of the student
characteristics that are observed in the data, and I let earthquake damage at a student’s
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home be one of the determinants of type ci for post-earthquake students. Formally:

ci = cTr(Xi; θ) =

θ1yi,t−1 + θ2peduci + θ3incomei + θ4femalei, if Tr = 0

cTr=0(Xi) + θ5Ii + θ6IiX
−
i , if Tr = 1

where yi,t−1 is lagged achievement, peduci is the average of father’s and mother’s years of
education, incomei is total household monthly income, femalei is equal to 1 if student i is
female, vector X− is the vector of all student characteristics except for MSK-Intensity (Ii),
that is, X− = [yi,t−1, peduci, incomei, femalei]. Finally, vector Xi = [X−i , Ii] includes all
student’s characteristics. In the post-earthquake cohort (Tr = 1), MSK-intensity is one of
the determinants of student type. So is the interaction between MSK-intensity and student
characteristics, which allows for heterogeneity in how damage affects a student’s type ci.17

This way of modelling and estimating student type overcomes the issues discussed above
that would arise if we used, instead, any of the student characteristics available in the
data.18

There are two additional advantages to modelling student type as a single index.
First, it reduces the curse of dimensionality compared to using a vector of student
characteristics. This improves the precision of the estimator of the treatment effects
(Abadie 2005, Horowitz 2010). Second, it allows me to obtain interpretable results, be-
cause the heterogeneity of the treatment effects can be graphed with respect to a single
scalar. Typically, heterogeneity of peer effects is expressed with respect to a single stu-
dent characteristic such as lagged test scores. The single index estimated here is more
comprehensive because it incorporates more student variables.

The nonparametric function hr(ci) combined with the parametric model for ci are
a semi-parametric single index model. Under regularity conditions set out in Ichimura
(1993), conditional on Wr, Tr, and σ2

r , the mapping from ci to achievement, hr(ci) in equa-
tion (5), and the parameters of the index cTr(Xi; θ) are identifiable for all r.19 Appendix
A.1 describes the algorithm for the estimation of hr(ci). Appendix A.2 uses results on

17 For example, wealthier parents may try to attenuate the impact of the earthquake by providing more
resources to an affected child, or the psychological impact of Ii may vary by gender.

18 For example, suppose that we estimate that pre-earthquake ci = 1 · yi,t−1 and post-earthquake
ci = 1·yi,t−1−2·Ii. Then, a pre-earthquake student with lagged achievement yi,t−1 = 10 is the appropriate
control/match for a post-earthquake (treated) student with higher lagged achievement yi,t−1 = 12, but
who is hit by an earthquake shock of 1 (12− 2 · 1 = 10), rather than for a post-earthquake student with
the same lagged achievement yi,t−1 = 10 who is hit by the same shock (10− 2 · 1 = 8 6= 10).

19The θ parameters are identified up to a normalisation. Here, I interpret ci as a shifter to cost of
effort and set the coefficient on yi,t−1 to −1, assuming that higher academic skills reduce cost of effort.
The regularity conditions include assuming that Xi has at least one continuously distributed component
whose θ coefficient is nonzero, and h is differentiable and nonconstant in ci (Ichimura 1993).
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semi-parametric models to build the standard errors for the treatment effect function in
equation (7). Estimating the treatment effect function ˆTE(c) over a grid of values for c
allows me to trace the treatment effect TE(c) as a function of student types. Computing

ˆTE(c) at each grid point requires a number of calculations of the order of 1012, there-
fore, parallel processing is required. Using ∼ 2, 000 nodes on the UCL Legion cluster,
estimation is completed in around 70 hours.

5 Identification

5.1 Shifting the Types of Peers by Shifting their Earthquake
Intensities

We would like to relate the effects of damage dispersion (or of any moment of the classroom
damage distribution), a concept specific to the Chilean earthquake context, to the more
broad concept of peer effects. I define peer effects as the causal effect on own achievement
of changing the classroom distribution of student types ci. To estimate peer effects, we
need an exogenous shifter to the variance (or other desired moment) of student types.
Having modelled student types as a single index, it is possible to shift its distribution by
shifting the distribution of any of the variables that enter the index. For example, variation
in the classroom distribution of parental income generates variation in the classroom
distribution of student types. However, such variation is likely to be correlated with
unobservables affecting outcomes.

In general, peer characteristics such as lagged test scores, gender and socio-economic
status are known to correlate with unobserved determinants of student achievement. Much
of the empirical peer effect literature in education is concerned with finding data variation
that breaks this correlation (see, for example, Hoxby (2000)). In this paper I take a
different approach. I estimate peer effects keeping these peer characteristics constant. To
do so, I use variation in a component of student types that can be varied independently of
these peer characteristics. That is, I vary the distribution of earthquake intensity shocks
in a classroom (in particular, its variance), keeping all other peer characteristics constant.
The innovation of this approach is that the unobserved characteristics that typically co-
vary with these peer characteristics are kept constant, eliminating a well known source of
endogeneity in the estimation of peer effects.20

20Consider this thought experiment. Two post-earthquake classrooms, A and B, are both affected by
the earthquake. The composition of students in these two classrooms is identical: the same distribution
of lagged test scores, SES level, etc., however, the earthquake exposure is different. In classroom A,
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5.2 Identifying Assumption: Common Geographic Dispersion
Effects

While the usual peer effect confounders are kept constant, using variation in the classroom
variance of earthquake damages poses different challenges to the identification of causal
effects. This classroom variable, too, may be correlated with unobservables that affect
achievement, but in a way that the empirical model and data are designed to address.
Specifically, the model allows for geographic dispersion effects (GDE), function λ(·) in
equation (5). GDE are due to a mechanical positive relationship that exists between
variance in earthquake damages (the treatment variable) and geographic dispersion of
the student body. Mechanically, the more dispersed the student body is geographically,
the larger the variance in earthquake damages is. Keeping observed classroom and peer
characteristics constant, students in classrooms with different geographic dispersion can
have different achievement levels because of unobserved classroom characteristics that
correlate with geographic dispersion. An example for why this may be the case is that
a classroom that attracts students from far away may be more desirable in terms of
characteristics that the econometrician does not observe, but that the parents see and
base their school choice on. In fact, a descriptive analysis of the pre-earthquake sample
indicates that in classrooms with more geographically dispersed students, test scores are
higher, keeping everything else constant (see Table 6 in Appendix B).

Not taking this into account would bias estimates of the treatment effect of damage
dispersion (and, ultimately, of peer effects). The model and data account for potentially
confounding GDE: the pre-earthquake cohort serves as a control group that experiences
GDE but not damage dispersion effects, and it is used to nett out the GDE from the gross
effects calculated on the treatment group (the post-earthquake cohort). The identifying
assumption is the equivalent of the common trends assumption in typical D-i-D models.
I call it “the common GDE across cohorts” assumption: GDE must not depend on cohort
Tr. Notice that GDE are modelled flexibly: no assumptions need to be made on their sign

all students are affected equally by the earthquake: the variance of student types in this classroom is
entirely determined by student composition. In classroom B, on the other hand, students were affected
differently by the earthquake: the positive variance in earthquake exposure generates additional variance
in students types, beyond what is determined by student composition alone. As a result, compared
to classroom A, in classroom B there are more relatively high and relatively low type students, and
fewer middle-type students, even though the classroom composition is identical to that in classroom A.
By matching classrooms that have identical student compositions but different variances of earthquake
intensities, it is possible to measure how the classroom achievement distribution varies with the classroom
variance in student types, keeping student composition in terms of lagged test scores, gender and family
background constant.
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or shape. Therefore, estimates of the treatment effects are robust to GDE of any sign,
and to GDE that vary arbitrarily across students and classroom characteristics. This is
more general than the way time trends are typically modelled in a linear D-i-D model,
where they are assumed to be constants.

5.3 Test of the Identifying Assumption

As usual, testing an identifying assumption is possible if additional data is available that
is not used in estimation. In this context, I must be able to estimate for both cohorts the
effect of geographic dispersion, in the absence of damage dispersion. This is not possible
with the estimation sample, because geographic dispersion and damage dispersion co-
move in the post-earthquake cohort. Instead, I use data from the regions which were never
affected by the earthquake, because in this sample there are no earthquake damages and,
therefore, variation in geographic dispersion is not accompanied by variation in damage
dispersion. An issue that arises is that in these regions the treatment variable (variance
of MSK-Intensity) cannot be calculated, because the structural engineering formula on
which it is based does not exist for these regions (Astroza, Ruiz, and Astroza 2012).
To overcome this issue, I must use a different measure of geographic dispersion that is
available in non-earthquake regions.

I define a classroom as geographically homogeneous if all students reside in the same
town, and geographically dispersed if at least one student comes from a different town.
In the entire sample, 55 percent of schools are geographically dispersed according to this
measure. Letting Gr indicate this discrete geographic dispersion measure, I estimate the
following regression model:

yir = γyir,g−1 + θ0 + θ1Tr + θ2Xig + θ3XigTr + θ4Zrg + θ5ZrgTr + (9)

θ6Gr + θ7Gr × Tr + ζirg,

where yir,g−1 is lagged (grade 4) test score of student i in classroom r, yir is test score
in grade 8, Xig are student characteristics, Zrg are classroom characteristics, and Tr is
equal to 1 for post-earthquake students and to 0 for pre-earthquake students. Parame-
ter θ1 measures cohort effects, and parameters θ3 and θ4 measure cohort effects on the
achievement production coefficients. They are added to make the model comparable to
the semiparametric model, which allows for unrestricted changes to the achievement pro-
duction functions across cohorts. The parameter of interest is θ7. When equation (9)

24



is estimated in non-earthquake regions, parameter θ7 tests the hypothesis that average
(across students) geographic dispersion effects are constant across cohorts, a necessary
condition for identification.21

The top panel of Table 2 shows results from the estimation of equation (9) in non-
earthquake regions. The third row in the Table shows that the estimate of θ7 is always
small and always statistically insignificant in models with covariates (it is only significant
in the model without covariates in column 3). This indicates that when covariates are
included in the model, as they are in the main estimation model, GDE are, on average,
constant across cohorts. This satisfies a necessary condition for identification.

As an additional check, the bottom panel of Table 2 shows results from the estimation
of model (9) in earthquake regions. The goal of this check is to verify that the lack of
a change in GDE across cohorts in non-earthquake regions is not due to a failure of the
variable used to measure GDE. In other words, if the measure of geographic dispersion is
good, it should be able to pick up damage dispersion effects when model (9) is estimated
in earthquake regions. Indeed, results show that a larger geographic dispersion according
to this measure has similar negative effects on test scores as those reported in Figure 5,
which base the measure of GDE on the MSK-Intensity of students.

6 Estimation Results: Student Types

6.1 Parameter Estimates of the Student Type Index

Table 3 presents the estimates of the single index parameters. The coefficient on lagged
test score, θ1, has been normalized to −1. Parental education and income are estimated
to have an impact on student type of the same sign as that of lagged test score, while
earthquake intensity is estimated to have an impact of the opposite sign, as expected, but
the point estimate is not significant. The interactions of earthquake intensity with income
and gender are significant for Mathematics and Spanish test scores respectively, indicating
that lower income students and female students are those whose type is affected more by
the earthquake.22 The finding on gender differences in the interaction is compatible with
the medical literature. For example, on a sample of young adults who survived the

21 For numerical tractability, I use a linear regression model which tests if the identifying assumption
holds on average.

22Because of the normalization, a negative coefficient should be interpreted as “good” for a student, a
positive coefficient as “bad”. To bootstrap the standard errors, I must account for the clustered sample
design. To do so, I bootstrap 100 samples stratified at the classroom levels, and I estimate θ in each
bootstrapped sampled.
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Table 2: Testing the identifying assumption using non-earthquake regions. Sample of
Municipal schools.

(1) (2) (3) (4)
Math TS Math TS Spanish TS Spanish TS

Non-earthquake regions
Gr × Ti -0.014 0.013 -0.030+ -0.010

(0.017) (0.018) (0.018) (0.019)

Lagged TS 0.664∗∗∗ 0.679∗∗∗
(0.005) (0.005)

Observations 47,396 23,473 47,253 23,298

Earthquake regions
Gr × Ti -0.088∗∗∗ -0.034∗∗ -0.094∗∗∗ -0.017

(0.011) (0.011) (0.012) (0.012)

Lagged TS 0.666∗∗∗ 0.684∗∗∗
(0.003) (0.003)

Observations 110,320 58,783 110,748 56,805

Controls No Yes No Yes
Standard errors in parentheses. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Controls: whether the student lives in the same town of the school, mother’s and father’s education,
household income, student gender, class size, the teaching experience and tenure at the school of
(resp.) the Math and Spanish teacher, whether he/she is female, has a
postgraduate degree, has a permanent contract. A constant is included.

26



L’Aquila 2009 earthquake, females were significantly more likely to suffer from PTSD
(Dell’Osso, Carmassi, Massimetti, Daneluzzo, Di Tommaso, and Rossi 2011). Finally, the
coefficient on gender is of opposite signs across subjects, indicating that females have a
lower type than males in Spanish, and vice versa in Mathematics.

Table 3: Parameter Estimates (bootstrapped standard errors in parentheses)
Parameter Coefficient on Mathematics Spanish
θ2 Parental Education −0.0116∗∗∗ −0.0212∗∗∗

(0.0052) (0.0045)
θ3 High Income Dummy −0.0560∗∗∗ −0.0356∗∗

(0.0162) (0.0175)
θ4 Female 0.1290∗∗∗ −0.2303∗∗∗

(0.0195) (0.0350)
θ5 MSK-Intensity 0.0326 0.0946

(0.0596) (0.1438)
θ61 MSK-Intensity*High Income −0.0004∗∗∗ -0.0004

(0.0000) (0.0027)
θ62 MSK-Intensity*Female -0.0031 0.0550∗

(0.0288) (0.0334)
* p < 0.10, ** p < 0.05, *** p < 0.01

6.2 Interpretation of Student Type

The analysis is agnostic about and independent from the interpretation of student type.
However, for interpretation of the treatment effects, it is useful to relate the concept of
type to a more concrete determinant of student achievement.

Type is decreasing in lagged test scores, parental education and parental income, its
relationship with gender depends on the subject, and, according to point estimates, it
increases with earthquake intensity, more so for females and low income students. There-
fore, a natural interpretation is that type decreases student productivity. In standard
models of achievement production, achievement is typically monotonically increasing in
student productivity (see, for example, the seminal work in Arnott and Rowse (1987)).23

23For example, suppose that ci ≤ 0 represents productivity. Achievement is produced as yi = αeici,
where ei is effort and where α > 0. Productivity affects the rate at which one additional unit of effort is
transformed into achievement. Students maximize utility with respect to effort. Utility is the difference
between achievement and cost of effort: ui = yi − 1

2λe
2
i , with λ > 0. At the optimum, achievement is

monotone increasing in student type ci: y∗
i = 2α

2

λ c
2
i . Alternatively, suppose that ci represents a student’s

shifter to the cost of study effort. Suppose that achievement is produced as yi = βei, and students
maximize ui = yi − 1

2λcie
2
i . In this case, optimal effort is decreasing in ci: e∗

i = β
λci

. As a result, at the
optimum, achievement is monotonically decreasing in student type ci: y∗

i = β2

λci
.
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This means that, under this interpretation of student type, we would expect achievement
to be monotonically decreasing in student types. Because the econometric model does
not impose monotonicity ex-ante, I can test for it post-estimation.

Figure B in Appendix B shows visually an example of two estimated classroom-
specific functions ĥr(ĉi). As can be seen, the higher a student’s type ĉi is, the lower
achievement is. I formally test monotonicity of hr(ci) in ci using the method developed in
Chetverikov (2018). The null hypothesis that the h function is monotonically decreasing
in ci is not rejected at the α = 0.10 significance level (see Appendix C).

This post-estimation check fits nicely with survey evidence not used in estimation,
suggesting that seismic intensity at a student’s home affected a student’s self-reported
cost of exerting study effort. Students were asked to rate how much they agree with
sentences such as “It costs me to concentrate and pay attention in class” and “Studying
Mathematics costs me more than it costs my classmates.” Combining the answers to these
questions into a single factor, I find that conditional on student lagged test scores and
parental education and income, post-earthquake students affected by a higher earthquake
intensity report that it is more costly for them to study, as shown in Table 7 in Appendix
B.

6.3 Damage Variance Shifts the Variance of Student Types

To interpret the outcome of the treatment effect estimator in (8) as a peer effect of
increasing the variance in student types, it must be that damage dispersion is a shifter
to the variance of student types. This is an empirical question, because it depends on
the estimated θ parameters in the student type function. To answer this question, I use
the estimated parameters from Table 3 to predict student types ĉi ∀i and to calculate the
variance of student types in each post-earthquake classroom. I then regress this variance
on the variance of earthquake damages, controlling for the classroom characteristics Wr

that are controlled for in the main empirical model.
Results from this regression are reported in Table 4. They indicate that the variance

in predicted student types is increasing in the variance of earthquake damages. While the
linear models reported in columns (1) and (3) are unable to capture how variance in types
depends on variance in damages, columns (2) and (4) reveal that when allowed to enter
quadratically, the variance in damages does indeed impact the variance in student types.
This function is increasing and concave over the support of the data.24 Therefore, the

24The function is increasing when the variance of damages as measured by the variance of MSK-
Intensity is below 0.608 for Mathematics and below 0.328 for Spanish. This is true in over 99 percent of
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variance of earthquake damages is a shifter to the variance of student types, and the main
findings on the treatment effect of damage dispersion can be interpreted as the effects of
the variance of peer types.

Table 4: Regression of variance of predicted types on variance of damages
Mathematics Spanish
(1) (2) (3) (4)

Variance in 0.017 0.042∗∗ -0.004 0.040∗∗
earthquake damages (0.012) (0.021) (0.012) (0.020)

Squared variance in -0.035 -0.061∗∗∗
earthquake damages (0.024) (0.023)
Observations 2005 2005 1938 1938
R2 0.976 0.976 0.982 0.982
Standard errors in parentheses. Sample of classrooms in the post-earthquake cohort, in Municipal schools.
Controls: classroom mean, variance, skewness and kurtosis of parental years of education (average between
mother and father) and of baseline test scores; class size; number of students with family incomes above
150k CLP a month; number of female students; average of earthquake damages among classmates;
damages in school town.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

7 Estimation Results: Treatment Effects

7.1 Nonparametric Estimates of the Treatment Effects Function

The estimates of the treatment effect functions TE(ci) for Spanish and Mathematics are
reported in Figure 8. The results indicate that peer effects are heterogeneous. The
effect of increasing damage dispersion and, therefore, of increasing peer type variance on
student test scores is heterogeneous depending on a student’s type ci. It is worth noting
that some students benefit from an increase in peer type dispersion, indicating that results
from linear models, like the ones generating Figure 5, mask considerable heterogeneity.
Going from low to high c, the function ̂TE(c) is negative and then positive for Spanish test
scores, while it is positive, then negative and then positive for Mathematics test scores.
This means that increasing the variance of peer types has a negative impact on the test
scores of middle-c students, and a positive impact on the test scores of high-c students,
while it has a negative impact on low-c Spanish students, and a positive impact on low-c

classrooms.
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Mathematics students. Section 10.3 provides a conceptual framework to interpret these
results through the lens of a game theoretical model of effort choices in the classroom. For
now, it is worth noticing that peer effects are nonlinear (that is, the variance of student
types matters) and heterogeneous across students.

Figure 8: Estimated ̂TE(ci) for Spanish (top) and Mathematics (bottom) test scores.
Bounds for one-sided significance tests at the 10 percent significance level are reported.
When the lower bound is above 0, we accept the hypothesis that TE(c) > 0, when the
upper bound is below 0, we accept TE(c) < 0.
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8 Model Fit

The model fit is very good, as can be seen in Table 5. This is not surprising, given the
use of nonparametric techniques.

9 Relationship to Existing Nonlinear Difference in
Differences Models

Like the semiparametric model presented here, existing nonlinear difference-in-differences
models estimate flexibly the heterogeneity of treatment effects. The closest models to
the one presented here are the quantile Difference-in-Differences (QDID) and Changes-
in-Changes (CIC) models in Athey and Imbens (2006), and the nonlinear difference in
differences models in Blundell and Costa Dias (2000), Bell, Blundell, and Van Reenen
(1999), Blundell, Costa Dias, Meghir, and Van Reenen (2004), Smith and Todd (2005),
Heckman, Ichimura, Smith, and Todd (1998), Abadie (2005) and D’Haultfoeuille, Hoder-
lein, and Sasaki (2015). However, three features distinguish the model in this paper from
existing methods: nonseparability in the vector of student characteristics (Xi), continuous
treatment, and collapsing of the covariates in Xi into a single scalar ci. Existing methods
do not allow for all three, as explained in detail in Appendix D.1.

10 Mechanisms

10.1 Unobserved School Inputs

An earthquake is a complex disruption affecting not only students and households, but
also teachers and schools. Moreover, not all teacher and school characteristics are ob-
served. Therefore, the findings on the impact of damage dispersion may be caused by
a response of unobserved school and/or classroom inputs to damage dispersion. To test
whether this is the case, ideally, one would like to estimate classroom fixed effects be-
fore and after the earthquake, and explore whether the estimated fixed effects reacted
systematically to earthquake damage dispersion, the treatment variable. However, this
is not possible, because the econometric model already estimates (nonlinear) classroom
fixed effect functions, and interprets their reaction to the earthquake damage dispersion
as the treatment effect. Instead, it is possible to do the analysis at the school, rather than
classroom, level. I exploit the existence of schools with multiple classrooms to estimate
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Table 5: Model Fit, Test Scores

Mathematics Spanish
Actual Model Actual Model

Pre-Earthquake Cohort
Overall -.185 -.189 -.121 -.123
Female -.304 -.283 -.050 -.063
Male -.058 -.089 -.196 -.186
Female

Urban -.300 -.279 -.052 -.064
Rural -.322 -.302 -.043 -.056

Male
Urban -.035 -.066 -.180 -.172
Rural -.159 -.188 -.262 -.249

Female
Lower Income -.414 -.387 -.148 -.155
Higher Income -.130 -.120 .104 .083

Male
Lower Income -.222 -.246 -.348 -.328
Higher Income .155 .116 .001 -.003

Post-Earthquake Cohort
Overall -.222 -.228 -.153 -.156
Female -.307 -.292 -.058 -.078
Male -.132 -.159 -.254 -.239
Female

Urban -.302 -.287 -.071 -.086
Rural -.329 -.315 .001 -.039

Male
Urban -.120 -.148 -.257 -.246
Rural -.180 -.205 -.242 -.209

Female
Lower Income -.414 -.388 -.146 -.160
Higher Income -.151 -.151 .071 .042

Male
Lower Income -.237 -.262 -.351 -.322
Higher Income -.0004 -.0304 -.133 -.136
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school fixed effects, and explore whether unobserved school inputs reacted, specifically, to
the variance in earthquake damages in the classrooms.25

Intuitively, I estimate school fixed effects and test whether earthquake damage dis-
persion had any causal impact on school fixed effects, and find no evidence of this. In
Appendix D.2, I derive formally the condition that, if satisfied, guarantees that the em-
pirical findings are not driven by unobserved school inputs, and I formally introduce an
empirical test for this condition, as well as the test results. In the data, I find evidence
for this sufficient condition.

10.2 Teachers

I have shown that unobserved inputs at the school level are not a good candidate to explain
the observed empirical findings. However, a reaction of unobserved classroom level inputs
to damage dispersion in the classroom could be contributing to the estimated effects. The
most relevant unobserved classroom input is teacher’s effort. To explore this channel, I
use a measure of teacher effort in the classroom that is available both before and after
the earthquake: the fraction of the national curriculum covered in class during the year
by the Spanish and Mathematics teachers in the sample. There are three caveats. First,
this variable is subject to considerable non-response (35 percent for Mathematics and
30 percent for Spanish teachers) and this non-response is non-random (for example, the
mean of Mathematics test scores when the variable is non-missing is 0.035 and it is −0.066
when it is missing). Second, it is self-reported, and there may be legitimate concerns of
mis-reporting. Third, the survey question in the questionnaire for Mathematics teachers
changed slightly in between cohorts. In spite of these caveats, it would cause concern if
this (imperfect) effort measure did not pass the empirical tests presented here.
Specifically, I use this variable to perform a test similar to the one used to rule out
unobserved school inputs as a driver of the empirical findings (see Proposition D.2).
The main difference is that teacher effort is a classroom level input. Intuitively, for
teacher effort to explain any part of the damage dispersion effect, it must have reacted
to, specifically, damage dispersion. Any other reaction of teacher effort to the earthquake
is already controlled for by term λE in equation (4) and, therefore, cannot explain the
estimated effects.

Formally, I use a regression like the one used to test for a reaction of school fixed effects
(equation (19) in the Appendix, substituting teacher effort for the outcome variable).

25Any other type of reaction of unobserved school inputs to the earthquake is already accounted for
by term λE in equation (4), and cannot explain the empirical finings.
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Regression results are reported in Table 8 in Appendix B. For both Mathematics and
Spanish, I cannot reject at any conventional significance level the null that teacher effort
did not react to damage dispersion, indicating that the estimated treatment effects ˆTE(c)
cannot be explained by a change in this observed measure of teacher effort.

There may be unobserved components of teacher effort not captured by the measure
used here. Therefore, it is not possible to rule out teacher effort as one of the drivers of the
empirical findings. However, the results presented here are consistent with teacher effort
not entirely explaining the damage dispersion effects and their patterns across students.

10.3 Peer-to-peer Interactions: Effort Game in the Classroom

In this section I propose a conceptual framework that can help understand the empirical
findings. I follow the approach adopted in Blume, Brock, Durlauf, and Jayaraman (2015)
of micro-founding observed peer effects using a behavioural model.26 I refer to a technical
online document for a formal presentation of the theoretical model and derivations behind
the conceptual framework, and to Mierendorff and Tincani (2018) for a closely related
theoretical model tested on experimental data.27 Here, I present the main theoretical
results with the aid of graphs and intuition. The theoretical results derive directly from
the results in Hopkins and Kornienko (2004). Specifically, the model used here is a
variation of the model of conspicuous consumption in Hopkins and Kornienko (2004),
where the assumptions on the primitives of the problem are such that all the derivations
in that paper hold.

26 Blume, Brock, Durlauf, and Jayaraman (2015) assume that student achievement is a choice. I relax
this assumption by allowing for the choice to not be achievement directly, but effort, and by allowing
effort to have a possibly nonlinear effect on achievement. Because effort is not observed in the data but
achievement is, I assume, like in Fruehwirth (2013), that achievement is monotone increasing in effort.
This allows me to derive model implications on the observed outcome variable (achievement) while having
a model of effort choices. There exists empirical evidence that effort increases achievement (De Fraja,
Oliveira, and Zanchi 2010, Stinebrickner and Stinebrickner 2008, Stinebrickner and Stinebrickner 2004),
so this is not an unrealistic assumption. However, the theoretical predictions would hold true even in the
case in which students were assumed to directly choose achievement, like in Blume, Brock, Durlauf, and
Jayaraman (2015). If effort were observed, it could be used to estimate an effort game in the classrooms
as well as the mapping from effort to achievement. For example, see Conley, Mehta, Stinebrickner, and
Stinebrickner (2015) for a model of social interactions that uses observed study time as a measure of effort.
Typically, however, effort is unobserved in large administrative datasets. Given the costs of collecting
time diaries, the sample sizes of datasets that include good quality effort measures is small and cannot be
combined with nonparametric techniques. For example, the sample size in Conley, Mehta, Stinebrickner,
and Stinebrickner (2015) is 331 students, three orders of magnitude smaller than the sample size in this
paper.

27See supplementary material at http://www.homepages.ucl.ac.uk/˜uctpmt1/Tincani_
heterogeneous_online_supplementary_material.pdf
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Students differ in terms of ability, with higher ability students having lower cost of
study effort. Cost of effort is the counterpart of student type in the econometric model,
therefore, this mechanism requires this interpretation of student types. Students choose
how much costly effort e to exert, and effort increases achievement y. Student’s utility
is increasing in own achievement. This is a standard assumption in the literature, see,
for example, Blume, Brock, Durlauf, and Jayaraman (2015), Fruehwirth (2012), and
De Giorgi and Pellizzari (2013).

I introduce a novel primitive of the student’s problem: I assume that students’ utility
is increasing in achievement rank in their reference group (e.g., classroom). This assump-
tion says that students do not only put in effort because they derive a direct utility from
achievement in absolute terms, but also because they care about obtaining higher achieve-
ment (e.g. grades) than their peers. Although there exists evidence that students display
rank concerns in various settings (Tran and Zeckhauser 2012, Azmat and Iriberri 2010),
the possibility that rank enters the utility function has received little attention until now.
In a related paper, we show how this assumption can help us understand some pervasive
but unexplained experimental results on ability tracking (Mierendorff and Tincani 2018).

This assumption generates peer effects even when spillovers are not explicitly embed-
ded in the achievement production function. This is because when students have rank
concerns, own effort depends on the distribution of peer ability and this, observationally,
looks like an ability peer effect. Intuitively, a low ability student might “give up” in a
classroom where all other classmates are highly skilled academically. On the other hand,
she might instead engage in a healthy competition with her peers when they are of similar
ability to herself.

Finally, technological spillovers are allowed to (but not necessarily assumed to) enter
the achievement production function. Specifically, average peer ability is allowed to di-
rectly affect own achievement. This is a standard assumption in the peer effect literature,
both theoretical and empirical. For example, the working-horse model of ability peer ef-
fects until recently has been the linear in means model (see Epple and Romano (2011) and
Sacerdote (2014) for reviews of this very large literature). Because mean student type is
controlled for in the econometric model, this type of technological peer effect cannot be a
driver of the empirical findings. Therefore, both the theory and the empirical analysis can
be agnostic about the existence and shape of technological peer effects working through
mean peer ability. This adds to the generalizability of the results.

There are two theoretical results. The first one states that there is a unique symmetric
Nash equilibrium of the effort game, and that, in equilibrium, achievement is strictly
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increasing (decreasing) in student ability (type/cost of effort). Therefore, the standard
result of monotonicity of achievement in student type holds also in this novel conceptual
framework. I have tested for monotonicity empirically in section 6.2 and failed to reject
it. Therefore, the first model implication holds in the data.

The second theoretical result is a comparative statics result that states that when the
dispersion in student types in the reference group increases (in the unimodal likelihood
ratio sense, like, for example, through a mean-preserving variance increase), medium-
type students perform more poorly and high-type students perform better, while low-type
students perform better or worse, depending on the relative strength of the preference for
achievement rank in the utility function. To make these patterns easy to understand, I
present them graphically in Figure 9.

Dy(c)

c0

Dy

Dy(c)

c0

Dy

Figure 9: The function Dy(c) traces the effect on achievement of increasing the disper-
sion (e.g.,the variance) of student type c, as a function of c. Like student types in the
econometrc model, higher c have higher cost of effort/lower ability. The function Dy(c)
can cross the x-axis once or twice. If it crosses it once (upper panel), the sequence of its
signs, from low c to large c, is −, +. If it crosses it twice (lower panel), the sequence of
its signs, from low c to large c, is +, −, +. As long as these crossing properties and signs
are satisfied, the function Dy(c) can admit any shape.

There are two intuitions for this result. First, in a world where students have rank
concerns, how many students are of similar ability to oneself (technically, the density of
types computed at own type) determines how easy or hard it is to improve one’s own
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rank. The more peers there are with an ability similar to one’s own, the more students
can be surpassed for a unitary increase in effort. Therefore, the higher the type density
at one own’s type, the higher the marginal utility of effort, the higher the incentive to put
in effort.

The second intuition is that a change in type variance affects the density of the type
distribution differently at different points in its support. Specifically, an increase in type
variance generates fatter tails: a higher density of high and low types, and a lower density
of medium types.

Taken together, these two intuitions imply that high and low type students face an
incentive to increase their effort when type variance increases, because there are more
students at their own type level, while middle type students face an incentive to lower
their effort, because there are fewer students at their type level. In fact, the theoretical
model predicts, unambiguously, that low type students increase their effort and middle
type students decrease it, as implied by these incentives. However, for low type students
there are two simultaneous incentive: the aforementioned incentive to increase their effort
in order to improve their rank, and an incentive to lower their effort to save on effort cost
while not worsening their own rank, due to the fact that they now face lower competition
from below (i.e., from the middle type students, who are decreasing their effort). Which
effect prevails depends on how strong the preference for rank is, relative to the utility from
achievement in absolute terms nett of effort cost. The model does not impose a value for
this relative strength. As a result, we can let the data inform us on which effect prevails.

Comparing Figure 9 with the empirical findings reported in Figure 8, it is easy to
see that the treatment effect patterns follow those predicted by the model. In particu-
lar, the patterns for Spanish resemble the top panel of Figure 9 while the patterns for
Mathematics resemble the bottom panel. This is compatible with stronger rank concerns
in Mathematics than in Spanish. Therefore, a model of rank concerns can explain in an
intuitive and simple way the nonlinear patterns that the econometric model uncovered.
This is useful, because these patterns of heterogeneity are hard to rationalize with existing
models of peer effects.

11 Conclusions

In this paper, I combine semi-parametric techniques with a large administrative dataset
and with data variation from a natural disaster to flexibly estimate peer effects in the
classroom. The econometric model estimates peer effects as non-parametric functions of
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student characteristics. It imposes fewer restriction on the shape of peer effects than any
existing method.

Estimates show that peer effects that work through the variance of peer characteristics
are heterogeneous across students and follow patterns that are hard to rationalize with the
existing knowledge on peer effects. I show that an effort game in the classroom, in which
achievement rank enters students’ payoffs, is able to rationalize the observed patterns.
This demonstrates that estimating peer effects flexibly is valuable, because it can inform
theories on the mechanisms behind them.

References

Abadie, A. (2005): “Semiparametric difference-in-differences estimators,” The Review
of Economic Studies, 72(1), 1–19.

Ahn, H., and J. L. Powell (1993): “Semiparametric estimation of censored selection
models with a nonparametric selection mechanism,” Journal of Econometrics, 58(1),
3–29.

Altindag, A., S. Ozen, et al. (2005): “One-year follow-up study of posttraumatic
stress disorder among earthquake survivors in Turkey,” Comprehensive psychiatry,
46(5), 328–333.

Angrist, J. D., and K. Lang (2004): “Does school integration generate peer effects?
Evidence from Boston’s Metco Program,” American Economic Review, 94(5), 1613–
1634.

Arnott, R., and J. Rowse (1987): “Peer group effects and educational attainment,”
Journal of Public Economics, 32(3), 287–305.

Astroza, M., S. Ruiz, and R. Astroza (2012): “Damage Assessment and Seismic In-
tensity Analysis of the 2010 (Mw 8.8) Maule Earthquake,” Earthquake Spectra, 28(S1),
S145–S164.

Athey, S., and G. W. Imbens (2006): “Identification and inference in nonlinear
difference-in-differences models,” Econometrica, 74(2), 431–497.

Azmat, G., and N. Iriberri (2010): “The importance of relative performance feedback
information: Evidence from a natural experiment using high school students,” Journal
of Public Economics, 94(7), 435–452.

38



Bell, B., R. Blundell, and J. Van Reenen (1999): “Getting the unemployed back
to work: the role of targeted wage subsidies,” International tax and public finance, 6(3),
339–360.

Blume, L. E., W. A. Brock, S. N. Durlauf, and R. Jayaraman (2015): “Linear
social interactions models,” Journal of Political Economy, 123(2), 444–496.

Blundell, R., and M. Costa Dias (2000): “Evaluation methods for non-experimental
data,” Fiscal studies, 21(4), 427–468.

Blundell, R., M. Costa Dias, C. Meghir, and J. Van Reenen (2004): “Eval-
uating the employment impact of a mandatory job search program,” Journal of the
European economic association, 2(4), 569–606.

Booij, A., E. Leuven, and H. Oosterbeek (2016): “Ability Peer Effects in Univer-
sity: Evidence from a Randomized Experiment,” Review of Economic Studies, forth-
coming.
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A Technical Appendix: Estimation

A.1 Algorithm for the Estimation of the Semi-parametric Single-
Index Model

1. Normalize to a constant one of the elements of θ, because only the ratios among the
components of θ are identified. I normalize to -1 the coefficient on lagged test score
(θ1).

2. Make an initial guess for all the other elements of θ.

3. Form ci ∀i according to ci = −yi,t−1 + θ2peduci + θ3incomei + θ4femalei if i belongs
to the pre-earthquake cohort, and ci = −yi,t−1 +θ2peduci+θ3incomei+θ4femalei+
θ5Ii + θ6IiX

−
i if i belongs to the post-earthquake cohort. Only household income

and student gender are interacted with Ii.

4. Estimate E(yi|c, r; θ) ∀r by Nadaraya-Watson kernel regression with weights wi:

ĥr(c; θ) =
∑
i∈r wiK

(
ci−c
b

)
yi∑

i∈r wiK
(
ci−c
b

)
with a standard normal Kernel: K(ψ) = (2π)− 1

2 exp(−0.5ψ2) and optimal band-
width b = 1.06σ̂cn−1/5, minimizing the Approximated Mean Integrated Squared
Error (AMISE).28 The weights wi are such that only observations i where the p.d.f.
of c at ci exceeds a small positive number are used (see Ichimura (1993) and Horowitz
(2010)). Observation i is excluded from the calculation of ĥ at ci.

5. Compute the sum of squared residuals in each r at the current guess for θ: SSRr(θ) =∑
i∈r wi(yi − ĥr(ci; θ))2. The weights are the same as those used in the kernel esti-

mator of h.

6. Update guess for θ using Generating Set Search algorithm (HOPSPACK).

7. Repeat steps 1-6 until convergence to the minimizer of ∑r SSRr(θ).

Notice that SSR(θ) is computed in each classroom r, and its sum over classrooms is
minimized. The parameter θ is restricted to be identical in all classrooms.

28The MISE is equal to E{
∫

[ĥ(c) − h(c)]2dx} =
∫ [

(Biasĥ)2 + V (ĥ)
]
dc, and AMISE substitutes the

expressions for the bias and variance of ĥ with approximations. See Pagan and Ullah (1999), p. 24.
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A.2 Standard errors of the treatment effect function

The standard errors of ̂TE(c) cannot be easily bootstrapped for computational reasons.29

Instead, I use the result in Ichimura (1993), who proves that the asymptotic variance of
ĥr(c) in the appropriately weighted semiparametric single-index model above is identical
to the asymptotic variance of a non-parametric conditional mean estimator. The variance
of such estimator is V (ĥr(c)) = σ2

r

nrhrfr(c)
∫
K2(ψ)dψ + o(n−1b−1

r ), where σ2 is the variance
of εir, br is the bandwidth, nr is the size of classroom r (on average this is around 30), and
fr(c) is the density at c in classroom r. The kernel K(·) is the normal kernel, resulting
in
∫
K2(ψ)dψ = 0.2821. I estimate the asymptotic variance of ĥr(c) ∀r on a fine grid

for c. I substitute f(c) with its kernel estimator, and σ2
r with its estimator obtained by

averaging the squared residuals in each classroom: σ̂2
r =

∑
i∈r(yi−ŷi)2

nr−1 . I assume that the
covariances between the ĥr(c) belonging to different classrooms r are zero ∀c, and I obtain
the following expression for the variance of ̂TE(c):

V
( ̂TE(c)

)
=
Npre−1∑
r=1

Npre∑
r′=l+1

Npost−1∑
s=1

Npost∑
s′=s+1

κ2
rr′ss′

(
V
(
ĥposts (c)

)
+ V

(
ĥposts′ (c)

)
+ V

(
ĥprer (c)

)
+ V

(
ĥprer′ (c)

))
.

The weights κrr′ss′ are given by:

κrr′ss′ = ωrr′ss′∑Npre−1
r=1

∑Npre

r′=r+1
∑Npost−1
s=1

∑Npost

s′=s+1 ωrr′ss′

where ωrr′ss′ is defined in equation 10 below.

A.3 Kernel Weighting

To ensure that the classrooms are similar, I assign increasing weights to quadruplets that
are more similar in terms of W and δ. I construct weights using multivariate standard
normal kernel functions. As in the main text, let ss′ index a pre-earthquake classroom
pair, and rr′ a post-earthquake classroom pair. Letting t = r, r′, s, s′ I assign the weight
1
b
k
(
Wt−Wt′

b

)
to each of the pairs tt′ ∈ {rr′, ss′, rs}. This ensures similarity between pairs

within (tt′ = rr′, ss′) and across (tt′ = rs) cohorts.30 Finally, I build a weight that is
declining in |δss′ − δrr′ |, to guarantee that the pre- and post-earthquake pairs differ in
terms of geographic dispersion δ in a similar way: 1

bδ
k
(
δss′−δrr′

bδ

)
. The weight for the

29This would require submitting around 4,000 jobs of duration 72 hours each.
30I use a unique bandwidth b. Following Pagan and Ullah (1999), I normalize the elements in Wt so

that they all have the same standard deviation and using a unique bandwidth is admissible.
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quadruple, ωrr′ss′ , is the product of these four kernel weights:

ωrr′ss′ = drr′ss′
1
bδ
k

(
δss′ − δrr′

bδ

) ∏
tt′∈{rr′,ss′,sr}

1
b
k
(
Wt −Wt′

b

)
(10)

where drr′ss′ is a dummy variable equal to one if δrr′ > 0 and δss′ > 0, zero otherwise.

B Additional Tables and Figures

Figure 10: Plots of estimated h functions in two classrooms.

Figure 11: Source: Comerio (2013). Handmade sign found in Cauquenes, Chile, on
February 2, 2012. Translation: “Reconstruction is like God. Everyone knows it exists,
but nobody has seen it.”
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Table 6: Impact of variance of future earthquake intensity in the pre-earthquake cohort.
(Municipal schools sample)

(1) (2) (3) (4)
Math TS Math TS Spanish TS Spanish TS

Variance of MSK-Intensity 0.232∗∗∗ 0.137∗∗∗ 0.271∗∗∗ 0.178∗∗∗
in the classroom (0.030) (0.041) (0.032) (0.044)

Lagged TS 0.694∗∗∗ 0.672∗∗∗ 0.713∗∗∗ 0.699∗∗∗
(0.003) (0.004) (0.003) (0.005)

Controls No Yes No Yes
Observations 45,814 26,145 46,127 25,628
Standard errors in parentheses. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Controls: mean intensity in the classroom (in all columns), whether the student lives in the same town where the school is,
gender, mother’s education, father’s education, household income, intensity of earthquake in home town
and in school town, class size, whether the Math or Spanish teacher is female, has a postgraduate degree, has a
permanent contract, her tenure at the school, her teaching experience. A constant is always included.

Table 7: Probit regression, marginal probability estimates reported. Dependent variables:
being at the top (1) or bottom (2) third of the distribution of elicited cost of effort.

top 33 percent bottom 33 percent
(1) (2)

Lagged Math TS −0.055∗∗∗ 0.100∗∗∗
(0.002) (0.002)

Seismic intensity 0.013∗∗∗ −0.011∗∗∗
at student’s home (0.002) (0.003)

SES Controls Yes Yes
Observations 46,059 46,059
Standard errors in parentheses. + p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001.
SES controls: father’s and mother’s education, household income. Post-earthquake sample.

C Testing Monotonicity of h(c)

The procedure that I use is an application of Chetverikov (2018). It would be computa-
tionally unfeasible to perform the test in all classrooms. Therefore, I create 72 categories of
classrooms, containing approximately 60 classrooms each, that have similar distributions
of c, and test monotonicity within each category. The monotonicity of h is tested within
each one of these categories. In all categories, the null hypothesis that the h function is
monotonically decreasing in ci is not rejected at the α = 0.10 significance level.
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Figure 12: Schools where not all students are affected equally by the earthquake, and within school
standard deviation in damages.

Consider the i.i.d. sample {ci,−yi}1≤i≤nl , where nl is the size of the lth classroom
category.31 Let ci and cj be a pair of observations for c. The test function within each
category l is defined as:

b(s) = b({ci,−yi}, s) = 1
2

∑
1≤i,j≤n

(−yi + yj)sign(cj − ci)Q(ci, cj, s)

where I dropped the l subscript for convenience, and where Q(ci, cj, s) is a weighting
function indexed by s ∈ S. To each s corresponds a choice of point c and bandwidth h

for the following specification of the weighting function:

Q(c1, c2, (c, h)) = K
(
c1 − c
k

)
K
(
c2 − c
k

)

where K(u) = 0.75(1 − u2) if −1 < u < 1, and = 0 otherwise, and where k = 1
2n
− 1

5
l .32

I let c take on 100 values, which are equally spaced points going from the smallest to
the largest observed value of ci in the population. As a result, there are 100 weighting
functions for each classroom category l.

Conditional on {ci}, the variance of b(s) is given by:

V (s) = V ({ci}, {σi}, s) =
∑

1≤i≤n
σ2
i

 ∑
1≤j≤n

sign(cj − ci)Q(ci, cj, s)
2

(11)

31yi is replaced by −yi, and h will be replaced by −h, because this procedure tests that −h is increasing,
which is equivalent to testing that h is decreasing.

32This is the value for the bandwidth recommended in Ghosal, Sen, and Van Der Vaart (2000).
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Table 8: Is measured teacher productivity in the classroom a channel behind the empirical
findings?

Dependent Variable: Curriculum Covered
Mathematics Spanish

(1) (2)
β1 (st. dev.) -0.00246 0.00525

(0.0412) (0.0355)

β2 (cohort) -0.0105 0.0191
(0.0439) (0.0357)

β3 (st. dev.× treatm. dummy) 0.0364 0.0264
(0.0513) (0.0435)

Curriculum Covered

Constant β0 0.555∗∗∗ 0.638∗∗∗
(0.0430) (0.0337)

Controls Yes Yes
Observations 2,902 3,187
Standard errors in parentheses. + p < 0.105, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Notes. Sample of Municipal schools.
Models (1) and (2) are regression (19). The unit of observation is the classroom. Included regressors are
the classroom means of: MSK-intensity, also interacted with the cohort dummy, lagged Math and Spanish test
scores, mother’s and father’s education, income; and a set of teacher and classroom characteristics.

where σi = (E[ε2
i |ci])

1
2 and εi = −yi − (−h(ci)). Following Chetverikov (2018), I use the

residual ε̂i = −yi − (−h(ci)) as an estimator for σi, and obtain the estimated conditional
variance of b(s) by substituting σ2

i with σ̂2
i in equation 11. The test statistic is given by:

T = T ({ci,−yi}, {σ̂i}, S) = max
s∈S

b({ci,−yi}, s)√
V̂ ({ci}, {σ̂i}, s)

.

Large values of T indicate that the null hypothesis that −h is increasing is violated.
To simulate the critical values, I adopt the plug-in approach. The goal is to obtain a

test of level α. Let {ξi} be a sequence of B independent N(0, 1) random variables that
are independent of the data. Let −y∗i,b = σ̂iξi,b for each b = 1, B and i = 1, n, where
σ̂i = ε̂i. For each b = 1, B, calculate the value T ∗b of the test statistic using the sample
{ci,−y∗i,b}ni=1. The plug-in critical value c1−α is the (1− α) sample quantile of {T ∗b }Bb=1.
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Table 9: Values of test statistics and critical values for test of monotonicity at the α = 0.10
significance level, by classroom category. 8 randomly selected categories.

Mathematics Spanish
Classroom Category Test statistic Critical Value Test statistic Critical Value
Pre-earthquake classrooms
1 2.2874460E-02 4.60e+19 4.0707965E-03 1.05e+19
2 6.2840671E-04 1.08e+19 1.6759724E-03 7.75e+18
3 3.6209350E-04 4.98e+18 1.0020613E-03 1.79e+19
4 3.9056635E-03 1.92e+19 2.2328943E-03 1.97e+19
Post-earthquake classrooms
5 1.0598215E-03 6.01e+18 3.8213478E-04 1.63e+19
6 2.7184933E-03 1.41e+19 1.1514544E-03 1.32e+19
7 4.1919011E-03 4.22e+19 1.3525186E-03 1.19e+19
8 1.7282768E-03 1.22e+19 3.4069275E-03 1.42e+19
In all classroom categories, the test statistic is below the critical value. Therefore, the null
hypothesis that h(c) is monotonically decreasing is not rejected.

D Technical Appendix: Robustness

D.1 Nonlinear D-i-D Models

The model in this paper accommodates the continuity of the treatment variable. It ex-
ploits it by defining treatment status within pairs of classrooms, with treatment defined
as an increase, of any amount, in the treatment variable. Existing non-linear difference-
in-differences models cannot be used in this context because they do not accommodate
continuous treatment. For example, the changes-in-changes and quantile-difference-in-
differences (QDID) models in Athey and Imbens (2006) compare outcome distributions
across multiple groups and time periods, however, treatment status is a binary variable.
Similarly, continuity of treatment is not accommodated within the framework of the non-
linear D-i-D models based on propensity score matching in Blundell and Costa Dias
(2000), Bell, Blundell, and Van Reenen (1999), Blundell, Costa Dias, Meghir, and
Van Reenen (2004), Smith and Todd (2005), and Heckman, Ichimura, Smith, and Todd
(1998). On the other hand, the multi-level treatment case in Abadie (2005) and the
model in D’Haultfoeuille, Hoderlein, and Sasaki (2015) accommodate continuous treat-
ment. However, they do not allow the researcher to collapse the student covariates in Xi

into a single scalar, ci. In fact, no existing method allows for this feature.
Nonseparability in X is due to the fact that student type ci is determined differently

in the pre- and post-earthquake cohort. As a result, the outcome function cannot be
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expressed as a component that only depends on damage dispersion status (high or low)
and one that only depends on cohort, conditional on X. This is shown in detail below.
As described in the main text, this feature of the model is important to make the cor-
rect comparisons across cohorts, that is, between treated post-earthquake students and
control pre-earthquake students. Separability is assumed in the QDID model, as well as
in the models that combine matching with differences in differences, that is, Blundell
and Costa Dias (2000), Bell, Blundell, and Van Reenen (1999), Blundell, Costa Dias,
Meghir, and Van Reenen (2004), Smith and Todd (2005), Heckman, Ichimura, Smith,
and Todd (1998), and Abadie (2005). These models, therefore, are not well-suited in this
context.

To exemplify non-separability, I describe it within the framework of a hypothetical
QDID model applied to the context of this paper. Such a model would assume additive
separability of the outcome function. Specifically, the outcome function in the absence of
treatment (which is used to build the distribution of counterfactual outcomes for treated
individuals) would be assumed to be: Y N = h(U,G, T,X) = hG(U,G,X) + hT (U, T,X)
where G indicates dispersion (high or low) and T indicates cohort, U is an individual’s
unobservable, and X is a vector of individual characteristics.33 That is, function h would
be composed of an outcome function that only depends on dispersion status hG and one
that only depends on cohort hT , conditional on X. In the context of this paper this
assumption is not satisfied if the vector X enters the outcome function as an index ci

and if the same vector X contributes to generate a student’s type ci differently in the
pre- and post-earthquake cohort. This is the case when damage to a student’s home
has no effect on students’ type before the earthquake (because damage has not occurred
yet), but it does after the earthquake. Formally, the identifying assumption for QDID
fails if what enters the outcome function is an index c which is a cohort-specific function
of X. The data generating process in the absence of treatment would then be Y N =
h(U,G, T, cT (X)) = hG(U,G, cT (X)) + hT (U, T, cT (X)), where it is clear that the first
function depends on both G and T and, therefore, QDID would be misspecified, because
additive separability would not be satisfied. The model presented in this paper relaxes
the assumption of additive separability conditional on X. Additive separability holds only
conditional on c, a weaker assumption.

33I am switching the notation with respect to, for example, the notation in Athey and Imbens (2006).
In particular, the control group here is T = 0, the pre-earthquake cohort, rather than G = 0. The
time-trend in Athey and Imbens (2006) corresponds to the geographic dispersion effect here. All results
are unchanged.
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D.2 Robustness to School Fixed Effects

Proposition D.1 Robustness to school×cohort fixed effects. Under the condition
below, the point estimator of the treatment effect ˆTE(c) in equation (8) is an unbiased
estimator of the causal effect of damage dispersion on achievement in the presence of
school×cohort fixed effects, for all values of ci. Moreover, it converges in probability to
the true causal effect as the number of schools in the sample goes to infinity. The condition
provides that:

[
E[αRT |TM = 1, GRR′ = 1, c,W, δ]− E[αRT |TR = 1, GRR′ = 0, c,W, δ]

]
=

=
[
E[αRT |TR = 0, GRR′ = 1, c,W, δ]− E[αRT |TR = 0, GRR′ = 0, c,W, δ]

]
∀δ, c,W,(12)

where αRT is the school×cohort fixed effect, R is a school indicator, TR is a cohort indi-
cator, and the other variables are defined in the main text.

Proof of Proposition D.1.
Suppose that the true Data Generating Process is the nonlinear model in (5), augmented
with unobserved school×cohort effects αRT :

YirR = H(cTr(Xi),Wr, Tr, σ
2
r , R) + εirR

= h(cTr(Xi),Wr, Tr, σ
2
r) + αRT + εirR

= φ(ci,Wr) + λGD(ci,Wr, σ
2
L) + Tr ·

[
λE(ci,Wr) + λDD(ci,Wr, σ

2
L)
]

+

+Gr,r′ · λGD(ci,Wr, δ) + Tr ·Grr′ · λDD(ci,Wr, δ) + αRT + εirR (13)

To keep track of the school each classroom is in, I use an upper case letter for the school,
so, for example, classroom r is in school R, classroom r′ is in school R′, et cetera. The fixed
effect αRT is identified from schools with multiple classrooms. Consider one quadruplet
of classrooms, r, r′ from the pre-earthquake cohort, l, l′ from the post-earthquake cohort,
sharing the same W and with Grr′ = 1, Gss′ = 1, and δrr′ = δss′ = δ. I drop the T
subscript from the fixed effect because the school index now also uniquely identifies the
cohort. Conditional on a point c, on W and on δ, the double difference now yields:

(
Hr(ci)−Hr′(ci)

)
−
(
Hs(ci)−Hs′(ci)

)
=

(
λGD(ci;W, δ) + λDD(ci;W, δ)

)
− λGD(ci;W, δ) +

+(αR − αR′)− (αS − αS′)

= λDD(ci;W, δ) + (αR − αR′)− (αS − αS′) + ζiRR′SS′ .(14)
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There are two cases two consider. First, when R = R′ and S = S ′, that is, when within
cohorts the pairs of classrooms are in the same school, school×cohort fixed effects cancel
out. No restrictions on the fixed effects would have to be imposed. However, only 37
percent of schools in the sample have more than one classroom, hence, it is reasonable to
expect that there is only a small number of within cohort matched classroom pairs that
belong to the same school. Therefore, I consider the properties of the nonlinear model in
the more empirically relevant case that R 6= R′ or S 6= S ′ or both.

In this case, it is easy to see that the conditional expectation of the double difference in
14, E

[(
Hr(ci)−Hr′(ci)

)
−
(
Hs(ci)−Hs′(ci)

)
|c,W, δ

]
, is equal to the conditional damage

dispersion effect, λDD(ci;W, δ), if and only if

E
[
(αR − αR′)− (αS − αS′)|c,W, δ

]
= 0 ∀c,W, δ, (15)

where the expectation is taken with respect to the distribution of school×cohort fixed
effects. In turn, when the condition in (15) is true, equation (7) identifies the treatment
effect, TE(c), and the expectation of the sample mean in (8) is equal to TE(c) for all
values of c. That is, the nonlinear estimator is unbiased. To see why, notice that when
the true DGP includes fixed effects, equation (8) is equivalent to:

ˆTE(c) =
∑Npre−1
s=1

∑Npre

s′=s+1
∑Npost−1
r=1

∑Npost

r′=r+1 ωrr′ss′(∆postĥrr′(c;W, δ)−∆preĥss′(c;W, δ))∑Npre−1
s=1

∑Npre

s′=s+1
∑Npost−1
r=1

∑Npost

r′=r+1 ωrr′ss′
+

+
∑Npre−1
s=1

∑Npre

s′=s+1
∑Npost−1
r=1

∑Npost

r′=r+1 ωrr′ss′(α̂R − α̂R′)− (α̂S − α̂S′)∑Npre−1
s=1

∑Npre

s′=s+1
∑Npost−1
r=1

∑Npost

r′=r+1 ωrr′ss′
.

The second line is the empirical counterpart of E
[
E
[
(αR − αR′) − (αS − αS′)|c,W, δ

]]
,

and, under condition (15), its expectation is equal to 0 by the central limit theorem.
Additionally, as the number of schools goes to infinity, the second line of the expression
above converges to zero, i.e., to its population counterpart under (15), by the weak
law of large numbers for independent and not identically distributed random variables.34

Therefore, when there are school×cohort fixed effects in the DGP, condition (15) is a
necessary and sufficient condition for the identification of the conditional treatment effect

34 The elements of the average in the second line of the expression above are not identically distributed
because the sampling variance of each element depends on the school size, that is, on the sample size on
which the fixed effects that enter the double difference are calculated. It is the number of schools that
must go to infinity for convergence because the expectation in (15) is taken with respect to the school
fixed effect distribution.
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λDD(ci;W, δ), and it is sufficient for the identification of the unconditional treatment
effect, TE(c). Finally, using the definitions of R,R′, S and S ′, condition (15) can be
rewritten as it appears in the main text:

[
E[αRT |TR = 1, GRR′ = 1, c,W, δ]− E[αRT |TR = 1, GRR′ = 0, c,W, δ]

]
=

=
[
E[αRT |Tm = 0, GRR′ = 1, c,W, δ]− E[αRT |TR = 0, GRR′ = 0, c,W, δ]

]
∀c,W, δ.

In addition, the school effects may have heterogeneous impacts on students. To see
why, replace αRT with a function αRT (c) and all derivations above hold true.

Proposition D.2 Identification test in the presence of fixed effects. If the con-
ditional expectation of the school×cohort fixed effect is a linear function of σ2

r and TR,
with W and c entering in an additively separable way, then a sufficient condition for
identification of the treatment effect TE(c) is that β3 = 0 in the following equation:

αRT = β0 + β1σ
2
r + β2TR + β3σ

2
rTR + g(Wr, ci; β4) + εrR ∀r ∈ R. (16)

Proof of Proposition D.2.
The sufficient condition for identification with fixed effects in (12) must be true for every
δ. In particular, it must be true for δ → 0, in which case, if the conditional expectation
of the fixed effect is differentiable in σ2

r , it must be that

∂E[αR|TR = 1, c,W, σ2
r ]

∂σ2
r

= ∂E[αR|TR = 0, c,W, σ2
r ]

∂σ2
r

∀r ∈ R, ∀σ2
r , c,W. (17)

A specification for the conditional expectation of the fixed effects that is useful for testing
is the special case in which this expectation is linear in σ2 and T . In this case, condition
(17) is also sufficient for identification of TE(c) when there are school×cohort fixed effects
in the DGP.35 A further simplifying (but not necessary) assumption is that W and c

enter in an additively separable way. Condition (17) under this model of fixed effects is
equivalent to β3 = 0 in:

αRT = β0 + β1σ
2
r + β2TR + β3σ

2
rTR + g(W, c; β4) + εrR. (18)

35To see why, notice that if E[αR|TR, c,W, σ2
r ] is linear in σ2

r and it has the same slope under TR = 1
and TR = 0, then condition (12) is satisfied for all values of δ and not only for δ → 0.
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Therefore, β3 = 0 is a sufficient condition for identification in the presence of fixed effects,
when the fixed effects follow the specification in (18).

To verify if this condition is satisfied in the data, I estimate damage dispersion effects
in a linear D-i-D model (for numerical tractability reasons) with the addition of school
fixed effects, and compute predicted fixed effects α̂RT using the estimated parameters.36

I then verify if the condition for identification under linearity of the fixed effects in (16)
is rejected in the data by estimating the following linear model:

α̂RT = β0 + β1σ
2
r + β2TR + β3σ

2
rTR + β4WR + β5c̃R + εR (19)

where, for simplicity, I have replaced g(W, c; β4) with a linear function, and where c̃R are
student characteristics aggregated at the school level like, for example, average income and
average parental education.37 A t-test on the significance of the β̂3 estimated coefficient
cannot reject β3 = 0, for both Mathematics and Spanish (p-values: 0.171 and 0.682
respectively). Estimation results are reported in Table 10. Therefore, the identifying
assumption under fixed effects is not rejected.

36However, in the linear model only the average fixed effect across students in the same school can be
estimated. That is, the heterogeneity of the school effect across students cannot be captured in the linear
model. Therefore, I am testing robustness of ˆTE(c) to a standard kind of school fixed effects (that is, a
constant school effect for all students in the same school). To keep a close correspondence between the
semiparametric and the linear models, the linear regression used to compute the fixed effects contains
the same set of W and X characteristics as the non-linear model.

37For each school there are as many equations as there are classrooms, because σ2
r is classroom specific.

Therefore, the most appropriate model is a seemingly unrelated regression (SUR). However, given the
high correlation in σ2

r across classrooms within the same school, for simplicity, I compute overall school
level σ2

R, and estimate the regression in 19 using σ2
R in place of σ2

r . Because the SUR estimator is expected
to have a higher variance, ceteris paribus, it would reject β3 = 0 less often than the simpler model that I
estimate, which has higher power. Because it is desirable to detect a wrong null with high probability if
β3 6= 0, the single regression model that I estimate ( 19) is preferable to SUR.
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Table 10: Empirical test of identification in the presence of school×cohort fixed effects
(1) (2)

Math Predicted Fixed Effects Spanish Predicted Fixed Effects
β1 -0.310 0.348

(0.276) (0.277)

β2 1.428∗∗∗ -0.352∗∗∗
(0.0475) (0.0485)

β3 0.471 -0.143
(0.344) (0.348)

β0 -2.284∗∗∗ -1.269∗∗∗
(0.173) (0.179)

School and student controls Yes Yes
Observations 1,810 1,778
Standard errors in parentheses. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Controls: school level averages of father’s education and income, teaching experience
of (resp.) Math and Spanish teacher, and MSK-Intensity in the school town.
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