Short overview of asymptotic theory

(Wooldridge, chapter 3)

1 Convergence in probability

Let $\{x_n(\omega)\}_{n=1,2,\dots}$ be a sequence of random variables or vectors and $x(\omega)$ be another random variable/vector of the same dimension. Both x and x_n are defined in the sample space Ω so that $\omega \in \Omega$. Then $x_n \xrightarrow{p} x$ if for any $\epsilon > 0$

$$\lim_{n \to \infty} P\left[|x_n(\omega) - x(\omega)| > \epsilon \right] = 0$$

which means that x_n is arbitrarily close to x for n sufficiently large.

This form of convergence does not actually require that the sequence x_n converges to x in the sense that it may not converge at any point ω for as long as the size of the set at which x_n and x are far from each other decreases to zero as $n \to \infty$.

Example Consider $\omega \in \Omega = [0, 1]$ and define the following sequence of intervals,

$$I_{1} = [0, 1]$$

$$I_{2} = [0, 1/2) \qquad I_{3} = [1/2, 1]$$

$$I_{4} = [0, 1/3) \qquad I_{5} = [1/3, 2/3) \qquad I_{6} = [2/3, 1]$$

$$I_{7} = [0, 1/4) \qquad I_{8} = [1/4, 2/4) \qquad I_{9} = [2/4, 3/4) \qquad I_{10} = [3/4, 1]$$
...

Now consider the random variable,

$$x_n(\omega) = \mathbf{1}(\omega \in I_n)$$

and the limit, x = 0.

Now we notice that the size of the set where $x_n(\omega) \neq 0$ decreases with n and converges to 0. Thus,

 $x_n \xrightarrow{p} 0$

However, the set at which $x_n(\omega) = 1$ keeps moving and, for all $\omega \in \Omega$, there is an infinite number of indexes, n, at which $x_n(\omega) = 1$. Thus, we can never guarantee that $x_n(\omega)$ converges to x at any point ω .

Slutsky theorem: Let $g : \mathbb{R}^k \to \mathbb{R}^j$ be a continuous function at a point $c \in \mathbb{R}^k$. Let $\{x_n\}_{n=1,2,\ldots}$ be a sequence of random variables such that $x_n \xrightarrow{p} c$. Then

$$g(x_n) \xrightarrow{p} g(c)$$
 or $\operatorname{plim}_{n \to \infty} g(x_n) = g\left(\operatorname{plim}_{n \to \infty} x_n\right)$

2 Convergence in distribution

This is a weaker form of convergence. Let $\{x_n\}_{n=1,2,\dots}$ be a sequence of random variables or vectors and x be another random variable/vector. Then $x_n \xrightarrow{d} x$ iff

$$P(x_n < a) = F_n(a) \longrightarrow F(a) = P(x < a)$$

at all continuous points of F.

Result: Let $\{x_n\}_{n=1,2,\dots}$ be a sequence of random variables such that $x_n \xrightarrow{d} x$. If g is a continuous function then $g(x_n) \xrightarrow{d} g(x)$.

Result: Convergence is distribution implies convergence in probability but the reverse is not true.

Example: Consider the sequence of random variables $x_n \sim \mathcal{N}(0, 1)$ and the random variable $x : -x \sim \mathcal{N}(0, 1)$.

Since the normal distribution is symmetric, the density functions of $\mathcal{N}(0,1)$ and $-\mathcal{N}(0,1)$ are the same. Thus,

$$P(x_n \leqslant a) = P(-x_n \leqslant a) = P(x \leqslant a)$$

meaning that,

 $x_n \xrightarrow{d} x$

However, taking $\epsilon > 0$ and $x_n = -x$:

$$P(|x_n - x| < \epsilon) = P(|-x - x| < \epsilon)$$
$$= P(2|x| < \epsilon)$$
$$= \Phi\left(\frac{\epsilon}{2}\right) - \Phi\left(\frac{-\epsilon}{2}\right)$$

which does not converge to 1 with n.

3 Weak Law of Large Numbers

Let $\{x_n\}_{n=1,2,\dots}$ be a sequence of iid random variables such that $E(|x_n|) < \infty$. Then

$$\frac{1}{N}\sum_{n=1}^{N}x_n \quad \stackrel{p}{\longrightarrow} \quad E(x_n)$$

which is to say

$$\overline{x}_n \xrightarrow{p} \mu_x$$

4 Central Limit Theorem (Lindeberg-Levy)

Let $\{x_n\}_{n=1,2,\dots}$ be a sequence of iid random variables/vectors such that $E(x_n) = 0$ and $E(x_n x'_n) < \infty$. Then

$$\frac{1}{\sqrt{N}}\sum_{n=1}^{N}x_{n} \quad \stackrel{d}{\longrightarrow} \quad \mathcal{N}\left(0,\Sigma_{x}\right)$$

where $\Sigma_x = V(x) = E(x_n x'_n)$.

Then we say

$$\overline{x}_N \stackrel{\sim}{\sim} \mathcal{N}\left(0, \frac{1}{N}\Sigma_x\right)$$

5 Asymptotic properties of the estimators

Consistency: Let $\left\{\widehat{\theta}_N\right\}_{N=1,2,\dots}$ be a sequence of estimators of the k * 1 vector of coefficients, θ , where N represents the sample size. If $\widehat{\theta}_N \xrightarrow{p} \theta$ for any value of θ then it is said that $\widehat{\theta}_N$ is a consistent estimator of θ .

Asymptotic normality: Let $\{\widehat{\theta}_N\}_{N=1,2,\dots}$ be a sequence of estimators of the k * 1 vector of coefficients, θ , where N represents the sample size. If $\sqrt{N}\left(\widehat{\theta}_N - \theta\right) \xrightarrow{d} \mathcal{N}(0,\Sigma)$ where Σ is positive semi-definite, then it is said that $\widehat{\theta}_N$ is a asymptotically normally distributed with Σ being the asymptotic variance of $\sqrt{N}\left(\widehat{\theta}_N - \theta\right)$. Notice that $\widehat{\theta}_N$ will not in general be normally distributed or have a variance-covariance matrix Σ/N .

However, we treat it as such: $\widehat{\theta}_N \sim \mathcal{N}(\theta, \Sigma/N)$.

Asymptotic efficiency: Let $\hat{\theta}_N$ and $\tilde{\theta}_N$ be two alternative asymptotically normally distributed estimators of θ with respective variance-covariance matrices Σ and Λ . $\hat{\theta}_N$ is asymptotically more efficient than $\tilde{\theta}_N$ iff $\Lambda - \Sigma$ is positive semi-definite.

6 Example: the OLS estimator

Consider the model,

$$y_i = x_i \beta + u_i \tag{1}$$

where x_i is $1 \times k$ and β is $k \times 1$. The OLS assumptions are,

OLS1. $E(x'_i u_i) = 0$ (*u* is uncorrelated with each regressor)

OLS2. $E(x'_i x_i) = M_{xx}$ has rank k (is positive definite)

We can rearrange equation (1) using (OLS1) and (OLS2) to obtain

$$\beta = E(x_i'x_i)^{-1}E(x_i'y_i)$$

Analogy principle: Turn population moments into their sample counterparts. In this case, we replace $E(x'_i x_i)$ by $N^{-1} \sum x'_i x_i$ and $E(x'_i y_i)$ by $N^{-1} \sum x'_i y_i$ to obtain:

$$\beta^{OLS} = \left(\frac{1}{N}\sum_{i=1}^{N}x'_{i}x_{i}\right)^{-1}\left(\frac{1}{N}\sum_{i=1}^{N}x'_{i}y_{i}\right)$$
$$= (X'X)^{-1}X'Y$$

6.1 Consistency of OLS under OLS1 and OLS2

The OLS estimator can be re-written as,

$$\beta^{OLS} = \beta + \left(\frac{1}{N}\sum_{i=1}^{N}x'_{i}x_{i}\right)^{-1}\left(\frac{1}{N}\sum_{i=1}^{N}x'_{i}u_{i}\right)$$

From the LLN we have

$$\operatorname{plim}_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} x_i' x_i = E\left(x_i' x_i\right) = M_{xx}$$

which by OLS2 is positive definite, and thus invertible. The LLN also implies that

$$\operatorname{plim}_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} x_i' u_i = E\left(x_i' u_i\right)$$

which by OLS1 equals zero.

Thus,

$$\mathrm{plim}_{N\to\infty}\beta^{OLS}=\beta$$

which is to say that OLS consistently estimates β .

6.2 Asymptotic distribution of OLS

We can write,

$$\sqrt{N} \left(\beta^{OLS} - \beta \right) = \left(\frac{1}{N} \sum_{i=1}^{N} x'_i x_i \right)^{-1} \left(\frac{1}{\sqrt{N}} \sum_{i=1}^{N} x'_i u_i \right)$$

The first term on the rhs converges in probability to M_{xx}^{-1} (OLS2). The second term is the sum of a sequence $\{x'_i u_i\}_{i=1,2,\ldots}$ of iid random variables with zero mean and finite variance. Thus, from the CLT,

$$N^{-1/2} \sum_{i=1}^{N} x'_i u_i \quad \stackrel{d}{\longrightarrow} \quad \mathcal{N}(0, B)$$

where $B = E(u_i^2 x_i' x_i)$. Thus,

$$\sqrt{N} \left(\beta^{OLS} - \beta \right) \xrightarrow{p} M_{xx}^{-1} N^{-1/2} \sum_{i=1}^{N} x_i' u_i \xrightarrow{d} \mathcal{N}(0, C)$$

where $C = M_{xx}^{-1} B M_{xx}^{-1}$.

Consider the additional homoscedasticity assumption,

OLS3: $E(u_i^2 x_i' x_i) = \sigma_u^2 M_{xx}$

Under OLS3,

$$C = \sigma_u^2 M_{xx}^{-1} M_{xx} M_{xx}^{-1}$$
$$= \sigma_u^2 M_{xx}^{-1}$$