Short overview of asymptotic theory

(Wooldridge, chapter 3)

1 Convergence in probability

Let $\left\{x_{n}(\omega)\right\}_{n=1,2, \ldots}$ be a sequence of random variables or vectors and $x(\omega)$ be another random variable/vector of the same dimension. Both x and x_{n} are defined in the sample space Ω so that $\omega \in \Omega$. Then $x_{n} \xrightarrow{p} x$ if for any $\epsilon>0$

$$
\lim _{n \rightarrow \infty} P\left[\left|x_{n}(\omega)-x(\omega)\right|>\epsilon\right]=0
$$

which means that x_{n} is arbitrarily close to x for n sufficiently large.
This form of convergence does not actually require that the sequence x_{n} converges to x in the sense that it may not converge at any point ω for as long as the size of the set at which x_{n} and x are far from each other decreases to zero as $n \rightarrow \infty$.

Example Consider $\omega \in \Omega=[0,1]$ and define the following sequence of intervals,

$$
\begin{array}{lll}
I_{1}=[0,1] & & \\
I_{2}=[0,1 / 2) & I_{3}=[1 / 2,1] & \\
I_{4}=[0,1 / 3) & I_{5}=[1 / 3,2 / 3) & I_{6}=[2 / 3,1] \\
I_{7}=[0,1 / 4) & I_{8}=[1 / 4,2 / 4) & I_{9}=[2 / 4,3 / 4)
\end{array} \quad I_{10}=[3 / 4,1] \text { 有 }
$$

Now consider the random variable,

$$
x_{n}(\omega)=\mathbf{1}\left(\omega \in I_{n}\right)
$$

and the limit, $x=0$.
Now we notice that the size of the set where $x_{n}(\omega) \neq 0$ decreases with n and converges to 0 . Thus,

$$
x_{n} \xrightarrow{p} 0
$$

However, the set at which $x_{n}(\omega)=1$ keeps moving and, for all $\omega \in \Omega$, there is an infinite number of indexes, n, at which $x_{n}(\omega)=1$. Thus, we can never guarantee that $x_{n}(\omega)$ converges to x at any point ω.

Slutsky theorem: Let $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{j}$ be a continuous function at a point $c \in \mathbb{R}^{k}$. Let $\left\{x_{n}\right\}_{n=1,2, \ldots}$ be a sequence of random variables such that $x_{n} \xrightarrow{p} c$. Then

$$
g\left(x_{n}\right) \xrightarrow{p} g(c) \quad \text { or } \quad \operatorname{plim}_{n \rightarrow \infty} g\left(x_{n}\right)=g\left(\operatorname{plim}_{n \rightarrow \infty} x_{n}\right)
$$

2 Convergence in distribution

This is a weaker form of convergence. Let $\left\{x_{n}\right\}_{n=1,2, \ldots}$ be a sequence of random variables or vectors and x be another random variable/vector. Then $x_{n} \xrightarrow{d} x$ iff

$$
P\left(x_{n}<a\right)=F_{n}(a) \longrightarrow F(a)=P(x<a)
$$

at all continuous points of F.

Result: Let $\left\{x_{n}\right\}_{n=1,2, \ldots .}$ be a sequence of random variables such that $x_{n} \xrightarrow{d} x$. If g is a continuous function then $g\left(x_{n}\right) \xrightarrow{d} g(x)$.

Result: Convergence is distribution implies convergence in probability but the reverse is not true.

Example: Consider the sequence of random variables $x_{n} \sim \mathcal{N}(0,1)$ and the random variable x : $-x \sim \mathcal{N}(0,1)$.

Since the normal distribution is symmetric, the density functions of $\mathcal{N}(0,1)$ and $-\mathcal{N}(0,1)$ are the same. Thus,

$$
P\left(x_{n} \leqslant a\right)=P\left(-x_{n} \leqslant a\right)=P(x \leqslant a)
$$

meaning that,

$$
x_{n} \xrightarrow{d} x
$$

However, taking $\epsilon>0$ and $x_{n}=-x$:

$$
\begin{aligned}
P\left(\left|x_{n}-x\right|<\epsilon\right) & =P(|-x-x|<\epsilon) \\
& =P(2|x|<\epsilon) \\
& =\Phi\left(\frac{\epsilon}{2}\right)-\Phi\left(\frac{-\epsilon}{2}\right)
\end{aligned}
$$

which does not converge to 1 with n.

3 Weak Law of Large Numbers

Let $\left\{x_{n}\right\}_{n=1,2, \ldots}$ be a sequence of iid random variables such that $E\left(\left|x_{n}\right|\right)<\infty$. Then

$$
\frac{1}{N} \sum_{n=1}^{N} x_{n} \quad \xrightarrow{p} E\left(x_{n}\right)
$$

which is to say

$$
\bar{x}_{n} \xrightarrow{p} \mu_{x}
$$

4 Central Limit Theorem (Lindeberg-Levy)

Let $\left\{x_{n}\right\}_{n=1,2, \ldots}$ be a sequence of iid random variables/vectors such that $E\left(x_{n}\right)=0$ and $E\left(x_{n} x_{n}^{\prime}\right)<\infty$. Then

$$
\frac{1}{\sqrt{N}} \sum_{n=1}^{N} x_{n} \quad \xrightarrow{d} \mathcal{N}\left(0, \Sigma_{x}\right)
$$

where $\Sigma_{x}=V(x)=E\left(x_{n} x_{n}^{\prime}\right)$.
Then we say

$$
\bar{x}_{N} \quad \dot{\sim} \mathcal{N}\left(0, \frac{1}{N} \Sigma_{x}\right)
$$

5 Asymptotic properties of the estimators

Consistency: Let $\left\{\widehat{\theta}_{N}\right\}_{N=1,2, \ldots}$ be a sequence of estimators of the $k * 1$ vector of coefficients, θ, where N represents the sample size. If $\hat{\theta}_{N} \xrightarrow{p} \theta$ for any value of θ then it is said that $\widehat{\theta}_{N}$ is a consistent estimator of θ.

Asymptotic normality: Let $\left\{\widehat{\theta}_{N}\right\}_{N=1,2, \ldots}$ be a sequence of estimators of the $k * 1$ vector of coefficients, θ, where N represents the sample size. If $\sqrt{N}\left(\widehat{\theta}_{N}-\theta\right) \xrightarrow{d} \mathcal{N}(0, \Sigma)$ where Σ is positive semi-definite, then it is said that $\widehat{\theta}_{N}$ is a asymptotically normally distributed with Σ being the asymptotic variance of $\sqrt{N}\left(\widehat{\theta}_{N}-\theta\right)$.
Notice that $\widehat{\theta}_{N}$ will not in general be normally distributed or have a variance-covariance matrix Σ / N. However, we treat it as such: $\widehat{\theta}_{N} \sim \mathcal{N}(\theta, \Sigma / N)$.

Asymptotic efficiency: Let $\widehat{\theta}_{N}$ and $\tilde{\theta}_{N}$ be two alternative asymptotically normally distributed estimators of θ with respective variance-covariance matrices Σ and $\Lambda . \widehat{\theta}_{N}$ is asymptotically more efficient than $\widetilde{\theta}_{N}$ iff $\Lambda-\Sigma$ is positive semi-definite.

6 Example: the OLS estimator

Consider the model,

$$
\begin{equation*}
y_{i}=x_{i} \beta+u_{i} \tag{1}
\end{equation*}
$$

where x_{i} is $1 \times k$ and β is $k \times 1$. The OLS assumptions are,

OLS1. $E\left(x_{i}^{\prime} u_{i}\right)=0(u$ is uncorrelated with each regressor)

OLS2. $E\left(x_{i}^{\prime} x_{i}\right)=M_{x x}$ has rank k (is positive definite)

We can rearrange equation (1) using (OLS1) and (OLS2) to obtain

$$
\beta=E\left(x_{i}^{\prime} x_{i}\right)^{-1} E\left(x_{i}^{\prime} y_{i}\right)
$$

Analogy principle: Turn population moments into their sample counterparts.
In this case, we replace $E\left(x_{i}^{\prime} x_{i}\right)$ by $N^{-1} \sum x_{i}^{\prime} x_{i}$ and $E\left(x_{i}^{\prime} y_{i}\right)$ by $N^{-1} \sum x_{i}^{\prime} y_{i}$ to obtain:

$$
\begin{aligned}
\beta^{O L S} & =\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} y_{i}\right) \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} Y
\end{aligned}
$$

6.1 Consistency of OLS under OLS1 and OLS2

The OLS estimator can be re-written as,

$$
\beta^{O L S}=\beta+\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} u_{i}\right)
$$

From the LLN we have

$$
\operatorname{plim}_{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}=E\left(x_{i}^{\prime} x_{i}\right)=M_{x x}
$$

which by OLS2 is positive definite, and thus invertible. The LLN also implies that

$$
\operatorname{plim}_{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} u_{i}=E\left(x_{i}^{\prime} u_{i}\right)
$$

which by OLS1 equals zero.
Thus,

$$
\operatorname{plim}_{N \rightarrow \infty} \beta^{O L S}=\beta
$$

which is to say that OLS consistently estimates β.

6.2 Asymptotic distribution of OLS

We can write,

$$
\sqrt{N}\left(\beta^{O L S}-\beta\right)=\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{\prime} x_{i}\right)^{-1}\left(\frac{1}{\sqrt{N}} \sum_{i=1}^{N} x_{i}^{\prime} u_{i}\right)
$$

The first term on the rhs converges in probability to $M_{x x}^{-1}$ (OLS2). The second term is the sum of a sequence $\left\{x_{i}^{\prime} u_{i}\right\}_{i=1,2, \ldots}$ of iid random variables with zero mean and finite variance. Thus, from the CLT,

$$
N^{-1 / 2} \sum_{i=1}^{N} x_{i}^{\prime} u_{i} \quad \xrightarrow{d} \mathcal{N}(0, B)
$$

where $B=E\left(u_{i}^{2} x_{i}^{\prime} x_{i}\right)$.
Thus,

$$
\sqrt{N}\left(\beta^{O L S}-\beta\right) \xrightarrow{p} M_{x x}^{-1} N^{-1 / 2} \sum_{i=1}^{N} x_{i}^{\prime} u_{i} \xrightarrow{d} \mathcal{N}(0, C)
$$

where $C=M_{x x}^{-1} B M_{x x}^{-1}$.
Consider the additional homoscedasticity assumption,
OLS3: $E\left(u_{i}^{2} x_{i}^{\prime} x_{i}\right)=\sigma_{u}^{2} M_{x x}$
Under OLS3,

$$
\begin{aligned}
C & =\sigma_{u}^{2} M_{x x}^{-1} M_{x x} M_{x x}^{-1} \\
& =\sigma_{u}^{2} M_{x x}^{-1}
\end{aligned}
$$

