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Short overview of asymptotic theory

(Wooldridge, chapter 3)

1 Convergence in probability

Let {z,(w)},,_1 4  be a sequence of random variables or vectors and z(w) be another random vari-
able/vector of the same dimension. Both z and x,, are defined in the sample space 2 so that w € Q.

Then z, —— x if for any € > 0

lim P[|zy(w) —z(w)] > € =0

n—o0

which means that z,, is arbitrarily close to x for n sufficiently large.
This form of convergence does not actually require that the sequence z,, converges to x in the sense
that it may not converge at any point w for as long as the size of the set at which x,, and x are far

from each other decreases to zero as n — oo.

Example Consider w € Q2 = [0,1] and define the following sequence of intervals,
I =10,1]
I4=100,1/3)  Is=[1/3,2/3) Is = [2/3,1]

I =1[0,1/4) Is=[1/4,2/4) Io=[2/4,3/4) Lo =[3/4,1]

Now consider the random variable,
Tp(w) = 1(wely)

and the limit, z = 0.

Now we notice that the size of the set where x,,(w) # 0 decreases with n and converges to 0. Thus,

p
Ty, — 0
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However, the set at which z,(w) = 1 keeps moving and, for all w € 2, there is an infinite number
of indexes, n, at which z,(w) = 1. Thus, we can never guarantee that x,(w) converges to x at any

point w.

Slutsky theorem: Let g: R¥ — R/ be a continuous function at a point ¢ € R*. Let {zntnz10,

be a sequence of random variables such that xz, L, ¢. Then

2 Convergence in distribution

This is a weaker form of convergence. Let {z,},_;, be a sequence of random variables or vectors
=1,2,...

and z be another random variable/vector. Then z, 4,z iff
P(z, < a) = Fy(a) — F(a) = P(x < a)

at all continuous points of F.

Result: Let {xn}nzl,z,... be a sequence of random variables such that z,, o I g is a continuous

function then g(x,) N g(z).
Result: Convergence is distribution implies convergence in probability but the reverse is not true.

Example: Consider the sequence of random variables x,, ~ A(0,1) and the random variable z :
—z ~N(0,1).
Since the normal distribution is symmetric, the density functions of N'(0,1) and —A(0,1) are the

same. Thus,

meaning that,

Ty — T
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However, taking € > 0 and x,, = —a:

P(lx, —x| <€) = P(|l—x—x|<e¢)

= P(2lz| <)
RERE

which does not converge to 1 with n.

3 Weak Law of Large Numbers

Let {zn},_; o . be a sequence of iid random variables such that E(|z,|) < co. Then

1 N
NZ:C” 2, E(xy)
n=1

which is to say

4 Central Limit Theorem (Lindeberg-Levy)

Let {zn},_; 5 . be asequence of iid random variables/vectors such that E(z,,) = 0 and E(z,1;,) < oo.
Then
1 N d
—an — N(0,%,)
\/N n=1
where ¥, = V(z) = E (zp2),).

Then we say

} 1

5 Asymptotic properties of the estimators

Consistency: Let {é\N} be a sequence of estimators of the k * 1 vector of coefficients, 6,

=1,4,...

where N represents the sample size. If éN L, 9 for any value of # then it is said that §N is a

consistent estimator of 6.
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Asymptotic normality: Let {gN}N s be a sequence of estimators of the k % 1 vector of co-

efficients, 0, where N represents the sample size. If VN <§N — 9) N (0,%) where ¥ is positive
semi-definite, then it is said that @\N is a asymptotically normally distributed with > being the asymp-
totic variance of VN <§N — 9).

Notice that §N will not in general be normally distributed or have a variance-covariance matrix /N

However, we treat it as such: Oy ~ N(6,2/N).

Asymptotic efficiency: Let §N and §N be two alternative asymptotically normally distributed
estimators of # with respective variance-covariance matrices ¥ and A. Oy is asymptotically more

efficient than Oy iff A — ¥ is positive semi-definite.

6 Example: the OLS estimator

Consider the model,
yi = mif+u; (1)
where x; is 1 X k and 3 is k x 1. The OLS assumptions are,
OLS1. E(x}u;) =0 (u is uncorrelated with each regressor)
OLS2. E(x}x;) = My, has rank k (is positive definite)
We can rearrange equation (1) using (OLS1) and (OLS2) to obtain
B = B(wiz:) " B(ziy:)

Analogy principle: Turn population moments into their sample counterparts.

In this case, we replace E(z}z;) by N~' > 2lx; and E(zly;) by N1 2ly; to obtain:

N -1 N
GOLS  _ (1233/96,) (1296/ )
- N v N lyl
i1 i1

= (X'X)"'X'v
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6.1 Consistency of OLS under OLS1 and OLS2

The OLS estimator can be re-written as,

L -1 L
15 = (5 5m) (o)
i=1 i=1
From the LLN we have
1
plimNHooN Z i, =F (95;1‘1) = My,
i=1
which by OLS2 is positive definite, and thus invertible. The LLN also implies that

N

1
plimN_mN Z riu;=F (:rguz)
i=1

which by OLS1 equals zero.
Thus,

plimy o, 37" = 3

which is to say that OLS consistently estimates (.

6.2 Asymptotic distribution of OLS

We can write,

VN (8055 — ) = (1 ZN:CCIx) h <1 ZNzgyu)
W i=1 o VN i=1 o

The first term on the rhs converges in probability to M_,! (OLS2). The second term is the sum of
a sequence {x}u;} i=12,... of lid random variables with zero mean and finite variance. Thus, from the
CLT,

N

N~Y2 Zx’zuz LR N(0, B)

i=1
where B = E (ulz}x;).
Thus,

N
VN (8985 — g) 2 MINY2 ST wlu -4 (0, 0)

=1
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where C = M} BM_,!.

Consider the additional homoscedasticity assumption,
OLS3: E (u?wixl) = 02 My,
Under OLS3,
C = oM My, M}

u rx



